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Abstract

Many scientific and industrial applications require solving Partial Differen-
tial Equations (PDEs) to describe the physical phenomena of interest. Some
examples can be found in the fields of aerodynamics, astrodynamics, com-
bustion and many others. In some exceptional cases an analytical solution
to the PDEs exists, but in the vast majority of the applications some kind
of numerical approximation has to be computed.

Numerical methods are based on the idea of domain discretization. The
region of interest (usually the space and time domain) is divided in small
regions where some kind of form of the solution is assumed (for example, we
can consider a constant solution in each sub-region). Then, the global so-
lution is approximated by putting together the solution for each discretized
zone. Different numerical methods exist depending on the form of the ap-
proximated solution and the final objective is to find the parameters of the
discretized functions that minimize the approximation error given by the
PDEs.

In this work, an alternative approach is proposed using neural networks
(NNs) as the approximation function for the PDEs. Unlike traditional nu-
merical methods, NNs have the property to be able to approximate any
function given enough parameters. Moreover, this solutions are continu-
ous and derivable over the entire domain and, hence, there is no need for
discretization. Another advantage that NNs as function approximations pro-
vide is the ability to include the free-parameters in the process of finding the
solution. As a result, the solution can generalize to a range of situations in-
stead of a particular case, avoiding the need of performing new calculations
every time a parameter is changed.

In chapter 1 we begin by introducing conservation laws, a kind of PDEs
that are used in the field of Computational Fluid Dynamics (CFD). We will
restrict our analysis to this kind of PDEs due to the author’s background
in the fluid simulation field. Numerical methods will be explained in order
to present the traditional numerical approach for solving PDEs. Then NNs
are introduced and their properties will be explored. Finally, a state of the
art study is presented with previous works related to this topic. Our first
attempt to solve PDEs with NNs is presented in chapter 2 where the one-
dimensional advection equation is presented and solved. Then, the study
is extended to the two-dimensional form of the same PDE in chapter 3.
In chapter 4, the inviscid Smith-Hutton problem is tackled with different
boundary conditions. Finally, in chapter 5, an approach to solve second-
order PDEs is presented and tested in the viscous Smith-Hutton problem.
This work ends with chapter 6 where the conclusions and possible further
work is discussed.
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Chapter 1

Introduction

The main topic of this work is exploring the use of Neural Networks (NNs)
as solution approximation to Partial Differential Equations (PDEs). In this
chapter, the motivation of this work is discussed. Then, conservation laws
(a form of PDEs) are presented and Numerical Methods are explained. Fol-
lowing, NNs are introduced and its properties are explored. Finally, a state
of the art study is presented with other works found in the literature that
also use NNs to solve PDEs.

1.1 Motivation

Many scientific and industrial applications require solving PDEs to describe
the physical phenomena of interest. Some examples can be found in the
fields of aerodynamics, astrodynamics, combustion and many more. In some
exceptional cases an analytical solution to the PDEs exists, but in the vast
majority of the applications some kind of numerical approximation has to
be computed.

Numerical methods are based on the idea of domain discretization. The
region of interest (usually the space and time domain) is divided in small
regions where some kind of form of the solution is assumed (for example, we
can consider a constant solution in each sub-region). Then, the global solu-
tion, is approximated by putting together the solution for each discretized
zone. Different numerical methods exist depending on the form of the ap-
proximated solution and the final objective is to find the parameters of the
discretized functions that minimize the approximation error given by the
PDEs.

In this work, an alternative is proposed using NNs as the approximation
function for the PDEs. Unlike traditional numerical methods, NNs have the
property to be able to approximate any function given enough parameters.
Moreover, this solutions are continuous and derivable over the entire domain
and, hence, there is no need for discretization. Another advantage that
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NNs as function approximations provide is the ability to include the free-
parameters in the process of finding the solution. As a result, our solution
can generalize to a range of situations instead of a particular case avoiding
the need of performing new calculations every time a parameter is changed.

1.2 Conservation laws

Conservation laws arise from physical principles[6]. Consider the simplest
fluid dynamics problem, in which a gas is flowing through a one-dimensional
pipe with some known velocity u(x, t), which is assumed to vary only with
x, the distance along the pipe, and the time t. Let ρ(x, t) be the density of
the gas, the function that must be determined. Consider a section of pipe
x1 < x < x2, the total mass of the gas in the pipe is given by

m(t) =

∫ x2

x1

ρ(x, t)dx (1.1)

and, if there is no creation or destruction of gas in this section (i.e. no
nuclear reactions) the total mass within this section can change only due to
the flux or flow of particles through the endpoints of the section at x1 and
x2.

∂

∂t

∫ x2

x1

ρ(x, t)dx = F1(t)− F2(t) (1.2)

Here, Fi(t) for i = 1, 2 are the fluxes at the endpoints. This is the basic
integral form of a conservation law, and the basis of conservation. Roughly
speaking, the variation of mass within the section is the sum of what is
entering the section plus what is leaving it. Remember that ρ(x, t) has to
be computed, it is therefore required to relate the flux with the variable. In
this case, the flux is given by the product of the density and the velocity

f(x, t) = u(x, t)ρ(x, t) (1.3)

The function f(x, t) is the flux function, and Fi(t) = f(xi, t). Since the
velocity is known, the flux function reads f(ρ(x, t)).

∂

∂t

∫ x2

x1

ρ(x, t)dx = f(ρ(x1, t))− f(ρ(x2, t)) (1.4)

The function ρ(x, t) that satisfies 1.4 cannot be directly found, instead it
is transformed into a partial differential equation that can be handled with
standard techniques.

∂

∂t

∫ x2

x1

ρ(x, t)dx = −
∫ x2

x1

∂

∂x
f(ρ(x, t))dx (1.5)
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Or, manipulating ∫ x2

x1

[
∂

∂t
ρ(x, t) +

∂

∂x
f(ρ(x, t))

]
dx = 0 (1.6)

Since the integral must be zero for all values of x1 and x2, the final differential
equation is

∂

∂t
ρ(x, t) +

∂

∂x
f(ρ(x, t)) = 0 (1.7)

Notice that the derivation of the differential equation requires both ρ(x, t)
and f(ρ(x, t)) to be smooth functions. This is true in most cases, but discon-
tinuities may appear in the general treatment of compressible fluids. This
is an important fact, because when a discontinuity appear the differential
conservation equation cannot be used and the integral form must be revis-
ited. Summarizing, the differential equation of a conservation law takes the
form

∂

∂t
φ(x, t) +

∂

∂x
f(φ(x, t)) = 0 (1.8)

Where φ is called the conserved variable (like the density in the previous
development), and f(φ(x, t)) is the flux function of the conserved variable.
Our main focus will be to compute φ(x, t), given the initial and bound-
ary conditions. In order to use a more friendly notation, equation 1.8 is
expressed as

φt + f(φ)x = 0 (1.9)

Where the subscripts t and x denote the partial derivatives with respect to
the time and space, respectively.

1.3 Numerical Methods

We want numerical methods to be accurate at minimal effort, flexible to solve
different problems, easy to maintain and reliable. To construct a numerical
method for solving PDEs we need to consider how to represent our solution
by an approximate solution and in which sense will the approximate solution
satisfy the PDE. We need ways to generate a system of algebraic equations
from the well-posed PDE and incorporate boundary conditions. Then solve
the system while minimizing unavoidable errors that are introduced in the
process. Considering the one-dimensional conservation law 1.9 we discuss
basic ideas, advantages and disadvantages of different classical methods.

The finite difference method (FDM) consists on representing the com-
putational domain by a set of collocated points. The solution is represented
locally as a polynomial

φ(x, t) =

2∑
l=0

al(t)(x− xk)l f(x, t) =

2∑
l=0

bl(t)(z − zk)l (1.10)
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The PDE is satisfied in a point-wise manner

∂φ(xk, t)

∂t
+
f(xk+1, t)− f(xk−1, t)

hk + hk+1
= 0 (1.11)

Local smoothness requirement pose a problem for resolving complex ge-
ometries, internal discontinuities and overall grid structure. Finite differ-
ence methods are simple to understand, straightforward to implement on
structured meshes, high-order accurate, explicit in time and they have an
extensive body of theoretical and practical work since the 60s. The main
problems is their implementation on complex geometries, non-suitability for
discontinuous problems and require grid smoothness.

On the other hand, finite volume methods (FVM) represent the domain
with a set of non-overlapping cells, where the solution is represented locally
as a cell average

φ
k

=
1

V k

∫
V k

φkdV k (1.12)

The PDE is satisfied in conservation form

V k ∂φ
k

∂t
+ f(xk+1/2, t)− f(xk−1/2, t) = 0 (1.13)

A flux function needs to be reconstructed on cells interfaces

f(xk+1/2) = F (φk, φk+1) (1.14)

Finite volume methods are robust, support complex geometries, are well
suited for hyperbolic problems, methods are local and explicit in time, lo-
cally conservative (due to telescopic property) and an extensive theoretical
background exists since the 70s. Their main problems are the inability to
achieve high-order accuracy on general grids and grid smoothness is required.

Another formulation, known as finite element method (FEM), consists
on representing the domain by non-overlapping elements where the solution
is represented globally with piecewise continuous polynomials.

φ(x) =

K∑
k=1

u(xk, t)N
k(x) (1.15)

The PDE is satisfied in a global manner∫
Ωh

(φt + fx)N j(x)dx = 0 (1.16)

The semi-discrete scheme is implicit by construction and reduces overall effi-
ciency for explicit time-integration. Finite element methods are robust, sup-
port unstructured meshes, are high-order, well suited for elliptic problems
(due to the global statement) and extensive theoretical framework exists
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Figure 1.1: Numerical methods comparison.

since the 70s. Their main disadvantages are that they are not well suited
for hyperbolic problems (due to directionality) and they are implicit in time
(reducing overall efficiency).

An old methodology that is seeing success recently is the so called Discon-
tinuous Galerkin Methods (DGM), and the more advanced PNPM methods
[7]. This class of methods represent a combination of FEM and FVM that
take advantage of the local statement and geometrical flexibility of FVM
redefining the cell averaged nature by the local high-order formulation of
FEM. Briefly, the computational domain is subdivided into non-overlapping
elements as in FVM and FEM. The global solution is represented using local
high-order polynomials similar to FEM. Elements are then connected with
numerical fluxes at elements interfaces as in FVM. DGM are arbitrary high-
order schemes, locally conservative, flexible, explicit in time, locally adaptive
(hp−refinement) and well-suited for hyperbolic problems. The main problem
is its higher computational cost and relative lack of theoretical background
compared with the other methods.

1.4 Neural Networks

Neural networks are inspired in the human ability to recognize patterns.
They consist of a densely interconnected set of elemental processors with the
objective to output some information such as a class label to an object, a vec-
tor (regression) or something more structured such as a sentence. We will use
NNs to output the solution to a PDE. Nowadays we have available multiple
tool boxes with all the functionality that NNs provide already implemented
and tested. Some examples are Layers (github.com/RParedesPalacios/Layers),
Tensorflow (tensorflow.org) or the one we will use in this work, Pytorch (py-
torch.org).

The type of NNs that we are going to explore are also known as Multi-
layer Perceptron (MLP). They consist of multiple layers of simple Perceptron
architecture allowing the representation of complex structures. Activation
units are used to overcome the linear limitations if the Preceptron. The ba-
sic elemental processor of the MLP, also called neuron, is depicted in figure
1.2. The neuron receives a series of values coming from the input layer or
the output of other neurons. Each of these values are weighted and summed
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Figure 1.2: Logistic linear discriminant functions.

together, and a bias is added. The result is then filtered with an activation
function, resulting in the output.

s(x) = f(
D∑

k=1

wkxk + w0) = f(wtx) (1.17)

where x = (1, x1, ..., xD) are the inputs, w = (w0, w1, ..., wD) are the weights
and bias. Multiple activation functions exist, but we will limit ourselves to
Relu (rectified linear units) activation functions for first-order PDEs and
Sigmoid activation functions for second-order PDEs, which are defined in
equations 1.18 and 1.19 respectively.

frelu(x) = max(0, x) (1.18)

fsigmoid(x) =
1

1 + e−x
(1.19)

A two-layer Perceptron is shown in figure 1.3. As it can be seen it consists of
5 input units that are connected to 3 neurons in the first hidden layer (each
unit with its own weights and bias). Then, the outputs of these neurons are
also connected to three neurons in the output layer. For this simple case we
can find the output of our MLP as

g(x,w) = f(wt
2f(wt

1x)) (1.20)

Our objective will be to find the set of weights that, given as an input the
independent variables of the PDE, outputs the solution to the equation. To
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Figure 1.3: A two layer Perceptron.

do so, we use an algorithm known as error backpropagation. Consider a
general conservation law

φt + f(φ)x = 0 (1.21)

Where φ(x, t) is the solution to the PDE and (x, t) ∈ [0, L]x[0, tf ] are the in-
dependent variables. Given a topology of a MLP andA = (x1, t1), ...(xN , tN ),
we want to search for w such that minimizes an objective function. For re-
gression problems, such as the one we are interested in, a mean squared
error function is used.

EA(w) =
1

2N

N∑
n=1

(L(xn,w))2 (1.22)

where L(xn,w) is the loss function. If we know the output of the NN (for
example for the initial condition or the boundary conditions) we can define
a loss function as

L(xn,w) = g(xn,w)− φ(xn) (1.23)

with this loss function, the NN will adjust the weights to match our solution.
Nevertheless, our interest is to obtain the solution in all the domain. The
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Figure 1.4: Error backpropagation example.

loss function that we will use to achieve that objective is the PDE itself.

L(xn,w) = φt(xn) + f(φ(xn))x (1.24)

If we can ensure that the error introduced with this loss function is close
to zero, we can assume that the output of the NN is indeed the solution to
our PDE. An issue remains open, and it is how to compute the derivative
of the output with respect to the inputs in order to build the loss function.
Luckily, the error backpropagation algorithm solves this problem for us.

1.4.1 Error backpropagation

The error backpropagation algorithm consist on computing the error deriva-
tive with respect to the weights, allowing a weight update in the direction
that minimizes the error

∆wk
ij = −ρ∂EA

∂wk
ij

(1.25)

where ρ is the learning rate. An example of the algorithm can be found in
figure 1.4. Starting from a random value for the weight, computing the error
derivative allows to its update in such a way that after several iterations of
the algorithm local minima of the error function are found. Small values of
the learning rate result in a slow but steady optimization, while big values
can produce the divergence of the process. It will depend ultimately on
the search space. The fact that the backpropagation algorithm finds only
local minima is one of the disadvantage of this method. Nevertheless it has
proved to be reliable and good enough for multiple applications.

As it was previously mentioned we are going to use Pytorch. This frame-
work has already implemented all the required functionality to perform error
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backpropagation and to compute the derivatives of the NN output with re-
spect to the input variables. An example of the implementation (Pytorch
v0.4.0) to solve our simple example is presented now

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.autograd import Variable

dtype = torch.FloatTensor

# Define a NN with two hidden layers

class Net(nn.Module):

def __init__(self, H):

super(Net, self).__init__()

D_in, H1, D_out = H

# The linear layer corresponds to the perceptron architecture

self.linear1 = nn.Linear(D_in, H1)

self.linear2 = nn.Linear(H1, D_out)

def forward(self, x):

# Use relu activation functions for the hidden layer

x = F.relu(self.linear1(x))

# No activation is used in the output layer (regression)

y_pred = self.linear2(x)

return y_pred

# two inputs, 16 neurons in the hidden layer, 1 output

H = 2, 16, 1

net = Net(H)

# random input (x, t)

x = torch.randn(2)

x = Variable(x.type(dtype), requires_grad=True)

# the output will be a random number

p = net(x)

# compute the output derivative w.r.t inputs

grads, = torch.autograd.grad(p, x,

grad_outputs=p.data.new(p.shape).fill_(1),

create_graph=True, only_inputs=True)

dpdx, dpdt = grads[0], grads[1]

# The loss function is the PDE (for example, dpdt + dpdx = 0)

loss = dpdt + dpdx

# create your optimizer with a learning rate

optimizer = torch.optim.SGD(net.parameters(), lr=0.01)

9



# update the weights

optimizer.zero_grad()

loss.backward()

optimizer.step()

If we repeat the process until the loss reaches near-zero values, that means
we have been able to find an approximated solution to our PDE. Once again
Pytorch helps us with its built-in functionality.

It is important to note that in many cases to close the problem an initial
condition and boundary conditions are required. We will need to define
the points that belong to these conditions and use them separately to train
the NN with a different loss. The process to solve our problem will in the
end involve as many loss functions as PDEs in the system we want to solve
plus all the initial conditions and boundary conditions required to close the
problem. In some cases this can result in a lot of functions to be optimized
making it very difficult to find an optimal set of weights that match all the
requirements.

Another important issue worth discussing is the fact that, when comput-
ing derivatives, the derivatives of the activation functions are required. The
derivative of the Relu function is 1 or 0. This means that if second-order
derivatives are required, Relu activation functions will always result in 0.
This is the reason why Sigmoid activation functions are used in this cases,
since they have arbitrary order defined derivative.

In the next chapters we are going to explore how the presented method
apply in different cases in order to asses its capabilities, performance and
limitations.

1.5 State of the art

In this subsection we are going to explore the most relevant works concerning
the use of NNs to solve PDEs. Traditional methods such as FEM, FVM
and FDM rely on discretizing the domain and weakly solving PDEs over the
discretization. This result in discrete solutions with exponential cost growth
with the number of points and dimensionality of the problem (a continuous
solution would require infinite time). Furthermore, free parameters such as
the Reynolds or Mach numbers, the geometry and the boundary conditions
require new simulations every time we change them. We will see how using
NNs allows us to obtain analytical solutions which are continuous over all
the domain, that include all the free-parameters as part of the solution and
that once trained are able to give accurate results instantly dramatically
accelerating the optimization process.

Chiaramonte and Kiener [2] use a NN with a single hidden layer and a
trial solution to obtain continuous differentiable solution to PDEs. They use
the independent variables and a bias as input parameters, and one single
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output with the optimal values of the trial solution that satisfies the PDE.
They test it in the Laplace’s equation and a conservation law. The results
show relatively small errors when compared to the analytical solutions. The
advantage of this method is that the obtained solution is a smooth approxi-
mation that can be evaluated and differentiated continuously on the domain.
Several areas of improvement include adaptive training set generation to re-
duce training costs and the study of non-uniform discretizations.

Parisi et al. [4] use an unsupervised approach to train a NN to solve
PDEs. They take advantage of the universal approximation capabilities of
NNs to postulate them as a solution for a given PDE. A single hidden layer
perceptron is used as a generic function. The weights are then found by
gradient descent optimisation using the original PDE and a set of sample
points as error function, using a genetic algorithm for their initialisation.
They compared their solution with a traditional method in an unsteady
solid-gas reactor problem which relied in spatial discretization obtaining
similar accuracy results but at a fraction of the time since once the NN is
trained it can find the solution at any given point instantaneously.

Bayman et al. [1] use a NN to solve the Navier Stokes (NS) equations.
An analytical solution formed by two parts (one that satisfies boundary
conditions and other for the internal domain) is found via optimization in
a feed-forward network with two hidden layers. Results obtained with this
method for a two-dimensional steady problem show good agreement with
existing data with smaller errors compared to traditional numerical methods.
Furthermore, the solution generated by the NN can be reused at any time.

In [8] Sirignano and Spiliopoulos develop an algorithm similar to Galerkin
methods in order to approximate high-order PDEs. Their method is mesh-
less, and the NN is trained to satisfy the differential operators and boundary
conditions using stochastic gradient descent at randomly sampled spatial
points. A similar work is presented in Han et al. [3] who also studied the
use of NNs to approximate high-dimensional PDEs.

1.6 Conclusions

We can conclude that the advantages that solving PDEs with NNs present,
compared to traditional methods, are:

• Analytic solution over the domain, not piecewise discrete (mesh-less).

• Computational complexity does not increase with the number of sam-
pling points.

• Free parameters can be included in the solution, avoiding repeating
simulations at different conditions.

• Once the NN is trained, it can be reused to obtain results instantly.
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On the other hand, the main disadvantage of this methodology is the ex-
pensive training. Nevertheless, its advantages overcome this disadvantage
since once the train is completed, the NN can be reused over and over.

As an example of the potential of this method, and main motivation
for this work, we can consider the design of an airfoil. Traditionally, some
analytical method would be used to estimate the geometry of the airfoil in
order to achieve some performance criteria (a lift or drag value, for example).
Then, a scaled model would be built and tested in a wind tunnel to validate
the model. Some iterations of this process would be required in order to
achieve the initial goal, since simplified models does not account for many
phenomena that take place in the real testing (turbulence, acoustics and
others). This process is expensive and takes a lot of time. A step forward
was introduced with the use of CFD. Some wind tunnel experiments could
be replaced by virtual simulations. Thanks to the rise of the computational
power available, more sophisticated models could be used such as solving the
three-dimensional NS equations. Accurate simulations are still prohibitive
nevertheless, and so the process of optimization is still slow. The use of NNs
can disrupt the simulation environment as follows:

• We can train a NN to solve the three-dimensional NS equations over
an airfoil, obtaining an accurate continuous solution over the entire
domain without the need of a mesh (which is the main limiting factor
nowadays).

• We can include the design parameters in the solution as NN inputs
(Reynolds, Mach, airfoil chord, AoA, etc).

• We can train the NN in an unsupervised way, no train data is re-
quired (the solution is obtained requiring it to satisfy the NS system
of equations and the boundary conditions).

• Once the solution is found (which may be as expensive as one or several
traditional simulations) we can compute any solution at any point
with any set of free parameters instantly, dramatically speeding up
the process of optimization and also allowing real-time simulations.
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Chapter 2

One-Dimensional Advection
Equation

In this chapter the first attempt to solve a PDE with a NN is presented.
The one-dimensional advection equation is chosen because it is a simple PDE
with analytical solution. This means that we can easily compare the solution
provided by our NN with the exact one. The one-dimensional advection
equation has the form

φt + uφx = 0 (2.1)

If we compare equations 2.1 and 1.9 we can see that the advection equation is
a conservation law where φ is the conserved variable and the flux f(φ) = uφ
where u is a known constant. We can think of the advection equation as
the expression that describes the time evolution of a dye in a background
velocity field. Given an initial condition φ(x, t = 0) we can find the analytical
solution only by transporting the initial condition in x at the speed u.

φ(x, t) = φ(x− ut, t) (2.2)

Let’s say, for example, that φ(x, t = 0) = sin(2πx/L) where x ∈ [0, L].
Then, we can find the solution to our PDE at any given time as φ(x, t) =
sin(2π(x−ut)/L). See figure 2.1 where the solution for this case is presented
at t = 0.5 and different values of u. Since u = x/t, in the case where u = 1
the solution moves in x 1 dimension unit each time unit.

2.1 Neural Network

2.1.1 Topology

For this case, we are going to use a neural network with 2 input units (x, t)
and 1 output unit, φ(x, t). Different combination of hidden layers and hidden
units were studied, and results for a specific topology are presented in the
next section..
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Figure 2.1: Example of the solution to the one-dimensional equation with
the initial condition sin(2πx).

Figure 2.2: NN topology used for solving the one-dimensional advection
equation.
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Figure 2.3: Example of training points with N = 5 and M = 4.

2.1.2 Training points

In order to build the training data we first define a set of points in which
we are going to evaluate our solution during the training process. We define
N + 2 points in x (N interior points and 2 points at the boundaries) and
M+1 points in t (M points for each time step and 1 for the initial condition).
In total, there are (M + 1)(N + 2) points. Then we divide this points in
three groups:

• NM points to evaluate the PDE in the internal points.

• N points at t = 0 to evaluate the initial condition.

• 2(M + 1) points to evaluate periodic boundary conditions.

In order to build periodic boundary conditions we need to match the solution
at x = 0 with the solution at x = L at any given t. An example of the points
generated for the training process can be seen in figure 2.3. It is important
to notice that despite we decided to use equidistant points it is not required
to do so. In fact, the points used during the training process could be
random as long as they belong inside the considered domain. A smarter
way to define this points, that could result in more accurate solutions, could
consist on adding points near those with the larger losses in order to achieve
better resolution where the NN requires it. This adaptive process, however,
is not considered in the present work but could be a nice approach for future
studies.
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2.1.3 Loss function

Each set of points has their own loss function to minimize, so the final loss
function is composed by three different losses:

• The output of the network for the initial condition training points is
used along with the known initial condition to build a Mean Square
Error loss function to be minimized.

• The outputs of the network for the corresponding periodic boundary
conditions training points are used to build a Mean Square Error loss
function to be minimized.

• The output of the network for the internal points is derived with re-
spect to the inputs, obtaining φt and φx. A loss function that matches
the PDE is built. Since φt + uφx has to be 0 for every x and t we
simply minimize this loss function.

If the triple loss function reduces to 0 during the training process, we can
assume that any result that we obtain with the NN for any arbitrary pair
(x, t) included in the training set satisfies the initial condition, boundary
conditions and the PDE. Thus, we have an approximate solution for our
PDE that is continuous and derivable throughout the entire domain. We
can get the solution to the PDE at any desired point with a simple forward
pass through the network.

2.2 Results

After some tests we decided to go with a NN with 5 hidden layers. Each
layer consists of 32 units with Relu activations. A lot of configurations
were studied and here we present results for two different initial conditions,
a sinus and a hat function. All the results presented were obtained in a
domain (x, t) ∈ [0, 1]x[0, 1] with u = 1. The training process was conducted
during 5000 epochs with the Adam optimizer and a learning rate of 0.01.

2.2.1 Smooth solution

In figures 2.4 to 2.6 results for the sinus initial condition are presented using
a time step of 0.05 and different values of N . Overall, results are in good
agreement with the exact solution for the different considered meshes.

2.2.2 Discontinuous solution

In figure 2.7 results for the hat initial condition are presented. As we can
see we also obtain moderate good results, but since we are trying to ap-
proximate a discontinuous solution the final results are not as good as the
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Figure 2.4: Sinus initial condition and N = 10.
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Figure 2.5: Sinus initial condition and N = 20.
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Figure 2.6: Sinus initial condition and N = 50.
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previous smooth condition. Nevertheless, in all the cases we are able to
obtain a solution for our PDE that is correct in the physical sense (the
initial condition is transported at the correct speed) but with an accuracy
highly dependent on the loss achieved at the end of the training. Several
techniques have been tried to achieve better results, such as re-training the
network with a lower learning rate, try to use more hidden layers, etc. We
can conclude that the lower the loss achieved during the training process,
the better approximation it is obtained.

No significant difference can be observed between the different values of
N , which is surprising since in traditional methods such as FVM this is a key
aspect in the accuracy of the results. Our guess is that, since the functions
that we are trying to approximate are very simple, a relative small number
of grid points are enough to represent the solution over the entire domain.
Another important aspect is that all the results are obtained with the same
time step, ∆t, a value that we can set. We tried bigger values with success,
in contrast with FVM where this value is limited by physical aspects and
the smaller the spatial resolution is, the smaller the time step has to be
resulting in an increase in the computational cost. We assume that, since
the NN can see the solution in all the temporal domain, the time step is
not a limiting factor similar to what happens when using implicit temporal
integration schemes.

2.2.3 NN vs FVM

We are going to compare the performance of the presented method with
respect to traditional finite volume methods. In figure 2.8 the same results
are presented obtained with three different methods. All of them are com-
pared against the exact solution in terms of the L2 error. A mesh with 30
elements has been used and the simulation has been run with a time step
of 0.01 during 1 time unit and u = 1. We have used two different numerical
schemes for the finite volume solutions: upwind (UDS) and central (CDS)
schemes. Upwind schemes suffer from numerical diffusion, which can be seen
in the figure. On the other hand, central schemes suffer from error accu-
mulation which results in the simulation blow-up. Usual techniques used to
alleviate this issues consist of high-order spatial numerical schemes to reduce
the diffusion of UDS and high-order integration schemes to reduce the error
accumulation of the CDS. Without requiring extra tuning, our method is
able to obtain a more accurate solution in all the domain. Moreover, we can
reuse our NN to obtain results with different meshes while the use of FVM
would require new simulations. Also, the solution provided by the NN is
derivable in the entire domain, which is not true for the FVM results since
they consist of piece-wise functions. An important aspect to be considered
is that in order to obtain solutions with FVM the time step was required
to be reduced by a factor of 5 due to physical limitations. This constrain

20



Figure 2.7: Hat initial condition and N = 10 (top), 30 (middle) and 50
(bottom).
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is not required for our approach, hence the NN can provide more accurate
solutions using bigger time steps.

2.3 Conclusions

In this chapter the one-dimensional advection equation has been solved using
a NN for two different initial conditions (smooth and discontinuous). After
several experiments, a NN with 5 hidden layers and 32 hidden units in
each layer was selected to perform the experiments. Three sets of training
points have been constructed to include the initial condition, the boundary
conditions and the internal solution. Each set has its own loss function to
be minimized.

First of all, we can conclude that our approach to solve the PDE is able
to obtain results that are correct in the physical way. The initial condition
is transported at the correct velocity as it is predicted by the analytical
solution. The error, however, depends on the final loss achieved during the
training process. The closer to 0 the loss goes, the less error compared to
the analytical solution is observed.

A study of the impact of the number of training points considered has
been carried out. It is concluded that, for this simple case, the amount of
points used in the spatial domain is not very important since all the meshes
achieved a good solution whenever the loss was able to reduce to near zero
values. This fact strengthen our previous conclusion that the accuracy of the
solution ultimately depends on the ability of the network to find the optimal
weights. In more complicated configuration this fact can be affected by the
domain discretization, but that is not the case for the experiments conducted
in this chapter.

Finally, a comparative between the presented method and traditional
finite volume methods has been presented. The accuracy of the obtained
solutions with the different methods has been compared in terms of the L2
error. The NN is able to provide much more accurate solutions than tradi-
tional FVM at lower computational cost (big meshes and big time steps).
This is due to the fact that FVM are constrained by physical limitations
concerning the exchange of information between cells. NNs, on the other
hand, are not affected by this constrains giving them the ability to com-
pute more accurate solutions using bigger time steps and less points. The
L2 error obtained with the NN is approximately the error achieved during
the training phase. This means that NN allow to evaluate in real-time the
accuracy of the solution while training. Moreover, any technique used to
decrease the loss during the training (increase the number of hidden layers
or units, for example) directly impacts the accuracy of the solution.
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Figure 2.8: Comparative between the NN and FV methods.
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Chapter 3

Two-Dimensional Advection
Equation

In this chapter we are going to extend the analysis started in the previous one
but with an additional spatial dimension. The two-dimensional advection
equation has the form

φt + uφx + vφy = 0 (3.1)

Like before, this PDE has analytical solution

φ(x, y, t) = φ(x− ut, y − vt, t) (3.2)

The initial condition is transported over the (x, y) plane at the velocity
(u, v). An example of the solution to this PDE with a sinusoidal initial
condition can be seen in figure 3.1.

3.1 Neural Network

3.1.1 Topology

Since now we have a second spatial dimension, we are going to use a neural
network with 3 input units (x, y, t) and 1 output unit, φ(x, y, t) (see figure
3.2).

3.1.2 Training points

In order to build the training set we first define a set of points in which we
are going to evaluate our solution during the training process. We define
Nx+2 points in x (Nx interior points and 2 points at the boundaries), Ny+2
points in y and M + 1 points in t (M points for each time step and 1 for
the initial condition). In total, there are (Nx + 2)(Ny + 2)(M + 1) points.
Then we divide this points in three groups:
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Figure 3.1: Example of the solution to the two-dimensional equation with
the initial condition φ(x, y, 0) = sin(2πx)∗sin(2πy) and (u, v) = (1.0,−0.5).
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Figure 3.2: NN topology used for solving the two-dimensional advection
equation.

• NxNyM points to evaluate the PDE in the internal points.

• NxNy points at t = 0 to evaluate the initial condition.

• (2Nx + 2Ny)(M + 1) points to evaluate periodic boundary conditions.

In order to build periodic boundary conditions we need to match the solution
at x = 0 with the solution at x = Lx at any given t, and the same for y = 0
and y = Ly. As mentioned in the previous chapter we are not required
to used equidistant points in space and time. Since the NN provides a
continuous solution we could use any given set of points as long as they
belong to the considered domain. Again, an adaptive approach consisting
on defining more points near those with bigger loss values could potentially
result in more accurate solutions.

3.1.3 Loss function

Each set of points has their own loss function to minimize, so the final loss
function is composed by three different losses:

• The output of the network for the initial condition training points is
used along with the known initial condition to build a Mean Square
Error loss function to be minimized.

• The outputs of the network for the corresponding periodic boundary
conditions training points are used to build a Mean Square Error loss
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function to be minimized.

• The output of the network for the internal points is derived with re-
spect to the inputs, obtaining φt, φx and φy. A loss function that
matches the PDE is built. Since φt + uφx + vφy has to be 0 for every
x, y and t we simply minimize this loss function.

If the triple loss function reduces to 0 during the training process, we can
assume that any result that we obtain with the NN for any arbitrary point
(x, y, t) included in the training set satisfies the initial condition, boundary
conditions and the PDE. Thus, we have an approximate solution for our
PDE that is continuous and derivable throughout the entire domain. We
can get the solution to the PDE at any desired point with a simple forward
pass through the network.

3.2 Results

After some tests we decided to go with a NN with 5 hidden layers. Each
layer consists of 512 units with Relu activations. A lot of configurations
were studied and here we present results for two different conditions, a sinus
and a hat function. All the results presented were obtained in a domain
(x, y, t) ∈ [0, 1]x[0, 1]x[0, 1]. The training process was conducted during sev-
eral epochs with the Adam optimizer and learning rates between 0.0001 and
0.001. As opposed to the training process of the one-dimensional advection
equation, mini batch training was used for this case. The reason can be
found in the considerable increase in the number of points required to solve
the PDE. Each batch, the entire initial condition and boundary conditions
are considered in the loss function and only 100 internal points are used.
This is done because the amount of internal points can be several order of
magnitudes bigger than the other two training sets. If all the points are
considered, the NN overfit to the internal solution while not fitting to the
initial and boundary conditions.

3.2.1 Smooth solution

In figure 3.3 results for a 30 x 30 mesh are presented using a time step of
0.01 for a sinus initial condition with (u, v) = (1,−0.5). In figure 3.4 the
same results are prestend but for a 50 x 50 mesh. In all cases we can see
how the NN is able to reproduce results that are in good agreement with
the exact solution.

3.2.2 Discontinuous solution

In figures 3.5 and 3.6 results for a 30 x 30 and a 50 x 50 mesh are presented,
respectively, using a hat initial condition with (u, v) = (1,−1) and a time
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Figure 3.3: Results with a 30x30 mesh.
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Figure 3.4: Results with a 50x50 mesh.
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step of 0.01. In all cases we can see how the NN is able to reproduce results
in good agreement with the exact solution.

Firstly, we can see how the relative error between our solution and the
analytical solution is bigger when compared to the one-dimensional exam-
ple. The reason for this is due to the considerable increase in the number of
points used during training (we added another spatial dimension). Never-
theless, results are in very good agreement with the exact solution. Like we
concluded in the previous chapter, no practical improvement is seen when
using bigger meshes. Results using the 30x30 or 50x50 meshes are practi-
cally identical. The ability of the NN to reproduce the solution with a small
number of points is a property worth mentioning, specially for the discon-
tinuous solution where traditional numerical methods require a lot of points
to well reproduce discontinuities as well as other numerical techniques to
avoid divergence. Once again, the NN is able to provide accurate results
with relatively small resources when compared to the traditional numerical
approach.

3.2.3 NN vs FVM

As we did in the previous chapter, we are going to compare the performance
of the presented method with respect to traditional finite volume methods.
In figures 3.7 and 3.8 the same results that the one in figure 3.3 are presented
but obtained with FVM. All of them are compared against the exact solution
in terms of the L2 error. A mesh with 30x30 elements has been used and
the simulation has been run with a time step of 0.01 during 1 time unit and
(u, v) = (1,−0.5). We have used two different numerical schemes for the
finite volume solutions: upwind (UDS) and central (CDS) schemes. Without
requiring extra tuning, our method is able to obtain a more accurate solution
in all the domain. Moreover, we can reuse our NN to obtain results with
different meshes while the use of FVM would require new simulations. Also,
the solution provided by the NN is derivable in the entire domain, which is
not true for the FVM results since they consist of piece-wise functions. The
difference between methods, however, is not as big as in the one-dimensional
case. An important aspect to be noticed is the rapid growing of the L2 error
as time evolves for the FVM solutions. In fact, if given enough time, the
solution obtained with the UDS scheme would fade out completely while the
solution obtained with the CDS scheme would accumulate numerical errors
until its divergence. A nice property observed in our results is that the L2
error of the solution provided by the NN grows at a much smaller rate with
time resulting in more stable solutions.
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Figure 3.5: Results with a 30x30 mesh.
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Figure 3.6: Results with a 50x50 mesh.
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Figure 3.7: Results with UDS.
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Figure 3.8: Results with CDS.
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3.3 Conclusions

In this chapter the two-dimensional advection equation has been solved using
a NN for two different initial conditions (smooth and discontinuous). After
several experiments, a NN with 5 hidden layers and 512 hidden units in
each layer was selected to perform the experiments. Three sets of training
points have been constructed to include the initial condition, the boundary
conditions and the internal solution. Each set has its own loss function to
be minimized.

First of all, we can conclude that our approach to solve the PDE is able
to obtain results that are correct in the physical way. The initial condition
is transported at the correct velocity as it is predicted by the analytical
solution. The error, however, depends on the final loss achieved during the
training process. The closer to 0 the loss goes, the less error compared to
the analytical solution is observed.

A study of the impact of the number of training points considered has
been carried out. It is concluded that, for this simple case, the amount of
points used in the spatial domain is not very important since all the meshes
achieved a good solution whenever the loss was able to reduce to near zero
values. This fact strengthen our previous conclusion that the accuracy of the
solution ultimately depends on the ability of the network to find the optimal
weights. In more complicated configuration this fact can be affected by the
domain discretization, but that is not the case for the experiments conducted
in this chapter.

Finally, a comparative between the presented method and traditional
finite volume methods has been presented. The accuracy of the obtained
solutions with the different methods has been compared in terms of the L2
error. The NN is able to provide more accurate solutions than traditional
FVM at lower computational cost (big meshes and big time steps). This is
due to the fact that FVM are constrained by physical limitations concerning
the exchange of information between cells. NNs, on the other hand, are
not affected by this constrains giving them the ability to compute more
accurate solutions using bigger time steps and less points. This differences,
however, are not as big as they were in the one-dimensional study performed
in the previous chapter due to the increase in the total amount of training
points used. It is expected that, as complexity grow, the differences between
methods in terms of accuracy will be smaller.
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Chapter 4

Inviscid Smith-Hutton
Problem

In this chapter we are going to solve the inviscid Smith Hutton problem.
As it can be seen in figure 4.1 a rectangular domain of (x, y) = [−1, 1]x[0, 1]
is considered. Now, the velocity field is not constant but a function of x
and y. Dirichlet boundary conditions are considered everywhere except for
the outlet, where a Neumann boundary condition is specified. The resulting
flow field makes the inlet condition to travel through the domain until it
reaches the outlet, when a steady state is achieved. In this problem we are
interested in the steady solution, hence we are going to solve the following
PDE:

(uφ)x + (vφ)y = 0 (4.1)

where the temporal term has been neglected (in a steady flow, φt = 0).
Notice that now the velocity is inside the derivative term because it is not
a constant anymore. This has implementation implications that will be
discussed later.

4.1 Neural Network

In this particular problem boundary conditions, and therefore the final so-
lution, are parametrized as a function of the parameter α. We are going
to use this value as an additional input to our network in order to evaluate
the generalization properties of the presented method. Our objective is to
train the network with several values of α and then evaluate the accuracy
of the solution in new values not seen in training. This means that, if we
achieve our goal, we could easily study a wide range of values in order to find
optimal conditions while the traditional approach would require to perform
a new simulation for each value.
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Figure 4.1: Smith-Hutton problem.

4.1.1 Topology

We are going to use a neural network with 3 input units (x, y, α) and 1
output unit, φ(x, y, α) as depicted in figure 4.2.

4.1.2 Training points

In order to build the training set we first define a set of points in which we
are going to evaluate our solution during the training process. We define
Nx+2 points in x (Nx interior points and 2 points at the boundaries), Ny+2
points in y and M different values of α. In total, there are (Nx+2)(Ny+2)M
points. Then we divide this points in three groups:

• NxNyM points to evaluate the PDE in the internal points.

• (3Nx/2 + 2Ny)M points to evaluate Dirichlet boundary conditions.

• (Nx/2)M points to evaluate Neumann boundary conditions.

Neumann boundary conditions are used at the points with y = 0 and x > 0,
Dirichlet boundary conditions are used elsewhere.

4.1.3 Loss function

Each set of points has their own loss function to minimize, so the final loss
function is composed by three different losses:

• The output of the network for the Dirichlet boundary condition train-
ing points is used along with the known value to build a Mean Square
Error loss function to be minimized.
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Figure 4.2: NN topology used for solving the inviscid Smith Hutton prob-
lem.

• The outputs of the network for the Neumann boundary conditions
training points are derived with respect to the inputs in order to obtain
φy. Then, since φy = 0 for all the points at the boundary we use the
derivative as the loss function to be minimized.

• The output of the network for the internal points is also derived with
respect to the inputs, obtaining (uφ)x and (vφ)y. A loss function that
matches the PDE is built. Since (uφ)x + (vφ)y has to be 0 for every
x and y we simply minimize this loss function. Note that the product
of the velocity and the conserved variable is the quantity that has to
be derived since the velocity field depends also on x and y.

If the triple loss function reduces to 0 during the training process, we can
assume that any result that we obtain with the NN for any arbitrary point
(x, y, α) included in the training set satisfies the boundary conditions and the
PDE. Thus, we have an approximate solution for our PDE that is continuous
and derivable throughout the entire domain. We can obtain the solution
to the PDE at any desired point with a simple forward pass through the
network.

4.2 Results

Results are obtained for a 60x30 grid and 4 different values of α. A 5
layer NN with 1024 hidden units in each layer is used. The training was
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carried out with a learning rate of 0.001 through several epochs, and several
retraining cycles at lower learning rates in order to achieve better results.
In figure 4.3 we can see the steady state flow fields for each value of α
considered in the training process. Also, the bottom boundary profiles are
presented to evaluate the ability of the NN to reproduce the inlet function
at the outlet. The L2 error is computed at the outlet profile to asses the
accuracy of the method. As it can be seen, the results agree quite well
with the expected behavior, although we can observe some degree of error
at the higher α values. Results for other values of α not used in the training
are presented in figure 4.4 to show the generalization property of the NN.
Despite observing a good tendency on the results, they do not match as well
as the previous cases (which is obvious since the NN is not trained for these
new parameters). We can observe that the profile at the outlet matches well
the inlet values which means that the PDE is well resolved. However, the
inaccuracy in reproducing the correct inlet value is causing the overall result
to be less accurate. If we include these new cases in the training set we can
observe how results improve for all the cases (figures 4.5 and 4.6) suggesting
that the more cases we take into account during training, the better our NN
generalize.

This results are very powerful since we are able to obtain the solution at
any α inside the range used in the training process. A simple forward to the
NN gives us the resulting field and hence we could very quickly study results
at different values of α to study optimal conditions. Approximate values
can be obtained with this simple process, and then the points of interest
can be used to retrain the model in order to obtain much more accurate
results around this zones. The described process could also be automatic
using, for example, a genetic algorithm replacing long and possibly erroneous
simulations with a simple forward pass through the trained NN.

4.3 Conclusions

In this chapter the two-dimensional advection equation has been solved us-
ing a NN in the inviscid Smith Hutton problem. The problem uses a semi-
circular velocity field to propagate a profile defined at the inlet boundary
condition and through the domain until it reaches the outlet. If the problem
is solved correctly, the profile observed at the outlet should match exactly
the one in the inlet. The problem is parametrized with a constant α. We
have included this parameter as an input to our NN in order to obtain the
solution at any condition within a considered range. After several experi-
ments, a NN with 5 hidden layers and 1024 hidden units in each layer was
selected to perform the experiments. Three sets of training points have been
constructed to include the Dirichlet and Neumann boundary conditions and
the internal solution. Each set has its own loss function to be minimized.
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Figure 4.3: Smith Hutton results. Steady state fields (top) and bottom
boundary profiles (bottom).
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Figure 4.4: Smith Hutton results. Steady state fields (top) and bottom
boundary profiles (bottom).
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Figure 4.5: Smith Hutton results. Steady state fields (top) and bottom
boundary profiles (bottom).
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Figure 4.6: Smith Hutton results. Steady state fields (top) and bottom
boundary profiles (bottom).
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We have obtained good results when training the NN with 4 different
values of α. Once the NN is trained we have obtained results in a different set
of α’s. Despite obtaining moderate good results, the accuracy of the unseen
cases was not as good as the seen cases. The source of error has been
identified in the inaccuracy on the reproduction of the inlet profile. The
solution at the outlet matched the inlet condition, despite being erroneous,
suggesting that the solution in the internal points is accurate.

Then, we decided to perform a second experiment including all the con-
sidered values of α. In this case, the overall accuracy was improved for all
the cases. This fact suggests that in order to obtain better results, a wide
range of configurations has to be considered. At the end, a trade off between
training accuracy and computational cost would determine the amount of
training points to be used.

To conclude with this chapter we have proposed an approach to apply the
presented method for fast optimization studies. Depending on the number
of different conditions to study, training a NN can be faster than numerically
solving each one of them. Furthermore, once the network is trained we can
use it to obtain accurate solutions for other conditions not seen during the
training process. This approach can dramatically speed up the optimization
process of a particular problem. Finally, we can retrain the same network
in the particular optimal areas to further improve the accuracy near the
optimal zones.

45



46



Chapter 5

Viscous Smith-Hutton
Problem

In this chapter we are going to solve the viscous Smith Hutton problem.
The problem configuration is exactly the same than the one presented in
the previous chapter (see figure 4.1), but now we are going to introduce
diffusive effects solving the two-dimensional advection-diffusion PDE:

(uφ)x + (vφ)y = Γ(φxx + φyy) (5.1)

where φxx and φyy are the second-order derivatives of φ with respect to x and
y, respectively, and Γ is the diffusive constant. In contrast to all the cases
presented in the previous chapters, we cannot obtain an analytical solution
to our PDE (except when Γ→ 0). For small values of Γ we would expect to
observe a similar behavior than the inviscid Smith Hutton problem. For big
Γ values, however, the inlet profile will be diffused over the domain. This
phenomena results in a smoothing of the outlet profile when compared to
its inviscid solution.

5.1 Neural Network

The first aspect worth mentioning is the fact that we are going the need
the second-order derivative of the network output with respect to the in-
puts. As mentioned before, during the derivation process the second-order
derivative of the activation function is required. Up until now we have used
Relu activation functions in all of our experiments. Nevertheless, due to its
definition, the second-order derivative of Relu is always 0. This means that
if we compute the second-order derivatives of the NN output with respect to
the inputs using Relu activation functions we will always obtain 0 values. To
avoid this problem and be able to solve second-order PDEs we have to use
alternative activation functions that have defined and not null second-order
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Figure 5.1: NN topology used for solving the viscous Smith Hutton problem.

derivatives. In the present work, we are going to use Sigmoid activation
functions to achieve that goal.

In the previous chapter we observed how we can include the free-parameters
of the problem as inputs to the network in order to solve our PDE in a wide
range of conditions and not only in a particular case, with the benefits that
it implies. In this chapter the diffusive constant will be used as an additional
input. This means that, if we solve the problem, our NN will be able to pro-
vide the solution to the PDE at any value of Γ. In a traditional numerical
approach, for each value a complete new simulation would be required. An-
other aspect worth mentioning is the possibility to also include α like we did
in the previous chapter. If so, our NN would be able to provide the solution
to our PDE in an even bigger range with one simple forward. In this work
this fact is not implemented, but it would represent a nice future study.

5.1.1 Topology

We are going to use a neural network with 3 input units (x, y,Γ) and 1
output unit, φ(x, y,Γ) as depicted in figure 5.1.

5.1.2 Training points

In order to build the training set we first define a set of points in which we
are going to evaluate our solution during the training process. We define
Nx+2 points in x (Nx interior points and 2 points at the boundaries), Ny+2
points in y and M different values of Γ. In total, there are (Nx+2)(Ny+2)M
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points. Then we divide this points in three groups:

• NxNyM points to evaluate the PDE in the internal points.

• (3Nx/2 + 2Ny)M points to evaluate Dirichlet boundary conditions.

• (Nx/2)M points to evaluate Neumann boundary conditions.

Neumann boundary conditions are used at the points with y = 0 and x > 0,
Dirichlet boundary conditions are used elsewhere.

5.1.3 Loss function

Each set of points has their own loss function to minimize, so the final loss
function is composed by three different losses:

• The output of the network for the Dirichlet boundary condition train-
ing points is used along with the known value to build a Mean Square
Error loss function to be minimized.

• The outputs of the network for the Neumann boundary conditions
training points are derived with respect to the inputs in order to obtain
φy. Then, since φy = 0 for all the points at the boundary we use the
derivative as the loss function to be minimized.

• The output of the network for the internal points is also derived with
respect to the inputs, obtaining (uφ)x, (vφ)y, φx and φy. Then, a
second derivation is performed to obtain φxx and φyy. A loss function
that matches the PDE is built. Since (uφ)x +(vφ)y−Γ(φxx +φyy) has
to be 0 for every x and y we simply minimize this loss function.

If the triple loss function reduces to 0 during the training process, we can
assume that any result that we obtain with the NN for any arbitrary point
(x, y,Γ) included in the training set satisfies the boundary conditions and the
PDE. Thus, we have an approximate solution for our PDE that is continuous
and derivable throughout the entire domain. We can obtain the solution
to the PDE at any desired point with a simple forward pass through the
network.

5.2 Results

Results are obtained for a 60x30 grid and 3 different values of Γ. A 4 layer
NN with 1024 hidden units in each layer and Sigmoid activation functions
is used. The training was carried out with a learning rate of 0.001 through
several epochs, and several retraining cycles at lower learning rates in or-
der to achieve better results. In figure 5.2 we can see the steady state flow
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fields for each value of Γ considered in the training process. Also, the bot-
tom boundary profiles are presented and compared with numerical results
available in the literature [5] [9]. As it can be seen, the results agree quite
well with the expected behavior. Results for the higher value of Γ shows a
highly diffused field. The profile at the outlet has been diffused trough the
domain and it matches exactly with the reference solution. Results for the
lower viscosity values keep the inlet condition almost untouched as it was
expected since in the limit where Γ→ 0 the problem reduces to the inviscid
Smith Hutton. The results for Γ = 0.001 also match very well with the
reference data, while the results for Γ = 1e-6 differ slightly showing that the
NN has not been able to fit the entire search space. However the differences
are very small considering the difference in the magnitude of the diffusive
coefficient. It is worth noting that if the training process is continued and
smaller losses are achieved the overall solution could be even better and
solve some of the issues mentioned. In the end, a tendency observed in all
the experiments performed in this work is that the lower the loss achieved
during the training process the more accurate the NN is providing solutions
to the PDE. It is expected that anything that could be done to reduce the
loss would ultimately result in a better solution.

5.3 Conclusions

In this chapter the two-dimensional advection-diffusion equation has been
solved using a NN in the viscous Smith Hutton problem. The problem
uses a semi-circular velocity field to propagate a profile defined at the inlet
boundary condition and through the domain until it reaches the outlet. In
contrast to the inviscid Smith Hutton problem we cannot find an analytical
solution for this problem except when the diffusive constant, Γ, is close
to 0. We have included this constant as an input to our NN in order to
obtain the solution at any condition within a considered range. After several
experiments, a NN with 4 hidden layers with 1024 hidden units in each layer
and Sigmoid activation functions was selected to perform the experiments.
Relu activation functions are not useful for second-order PDEs since their
second-order derivative is always 0. Three sets of training points have been
constructed to include the Dirichlet and Neumann boundary conditions and
the internal solution. Each set has its own loss function to be minimized.

We have obtained good results when training the NN with 3 different
values of Γ. They match very well with reference results found in the lit-
erature showing the potential of NN as function approximation for PDEs
solutions allowing the inclusion of the free-parameters as inputs allowing
the computation of the solution in a wide range of conditions. We could
also include α like in the previous chapter to obtain an even more general
solution to our PDE allowing the study of a very large range of cases.
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Figure 5.2: Smith Hutton results. Steady state fields (top) and bottom
boundary profiles (bottom).
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Chapter 6

Conclusions & Further Work

6.1 Conclusions

In chapter 1 the motivation for this project was introduced as well as some
important aspects concerning PDEs, Numerical Methods and NNs. Also, a
state of the art study on other works on solving PDEs with NNs found in
the literature was presented. This are the main conclusions:

• NNs can approximate any function given enough parameters.

• NNs allow to obtain the solution to a PDE that is continuous and
derivable over the entire domain. In contrast, traditional numerical
methods rely on domain discretization and weakly solving the PDE in
each sub-region.

• Free-parameters can be included as inputs to the network allowing to
obtain the solution in a wide range of possible configurations. In con-
trast, traditional numerical methods require new computations each
time that a parameter is changed.

• NNs can be trained in an unsupervised manner requiring to minimize a
loss function that is equal to the PDE (initial and boundary conditions
may have to be also considered to close the problem).

• NNs can be used to dramatically decrease the time expended in opti-
mization tasks since they can provide the solution in different config-
urations with a simple forward.

• NNs framworks, like Pytorch, provide us with all the built-in function-
ality required to solve this problematic.

Our first attempt to solve a PDE using a NN was presented in chapter 2,
where the one-dimensional advection equation was solved for two different
initial conditions. A 5 layer NN with 32 hidden units in each layer was used
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in the experiments. Also, the method was compared with traditional FVM.
These are the main conclusions:

• The NN is able to obtain an accurate solution to the PDE in both
cases.

• The number of points used in the training does not seems to impact
the final accuracy.

• The NN provides better results than FVM without extra tuning, in
terms of L2 error.

In chapter 3 the two-dimensional advection equation was solved with two
different initial conditions. A 5 layer NN with 512 hidden units in each
layer was used in the experiments. Also, the method was compared with
traditional FVM. These are the main conclusions:

• The NN is able to obtain an accurate solution to the PDE in both
cases.

• The number of points used in the training does not seems to impact
the final accuracy.

• The NN provides better results than FVM without extra tuning, in
terms of L2 error (although the differences are not as big as for the
one-dimensional case).

The inviscid Smith Hutton problem was solved in chapter 4. In this problem
the free-parameter α was included as a network input. A NN with 5 layers
and 1024 hidden units in each layer was trained with several values of α and
then tested with new values not seen during the training. After that, the
NN was retrained with all the values of the parameter. These are the main
conclusions:

• The NN is able to obtain accurate solutions to the PDE with the seen
α’s.

• The NN is able to obtain less accurate, but qualitative correct, solu-
tions to the PDE with the unseen α’s.

• The retrained NN is able to obtain accurate solutions to the PDE with
all the α’s, even improving previous results.

• Training for several conditions allows to obtain approximated results in
new conditions, than can then be improved via retraining if necessary.

54



In chapter 5 the viscous Smith Hutton problem was solved. For this prob-
lem the second-order advection-diffusion PDE was used. Sigmoid activation
functions were required since second-order derivative of Relu functions are
always 0. A 4 layer NN with 1024 hidden units was trained for different
values of the diffusion coefficient, which was also included as a network in-
put. Results were compared with reference numerical results available in the
literature, since this PDE has not analytical solution. These are the main
conclusions:

• The NN is able to obtain very accurate solutions to the PDE with the
seen Γ’s.

• Results are in good agreement with reference data both numerically
and physically.

• The inclusion of the parameter α could result in a much more powerful
NN with a bigger range of applicability.

After presenting the conclusions of the different chapters in this work, here
are some global conclusions:

• NNs appear to be a good alternative to traditional numerical methods
for solving PDEs. For the kind of problems studied in this work, they
provide accurate results which are continuous in the entire domain and
reusable.

• A relative small amount of points is required to solve the PDE com-
pared to traditional methods such as FVM. Furthermore, NNs are not
affected by physical restrictions leaving to the engineer the possibility
to tune all the parameters involved in the process.

• The possibility to include the free-parameters in the solution as net-
work inputs is possibly the biggest advantage of NNs. Being able to
train a NN for different boundary conditions and physical properties
allows for a dramatic speedup in optimization studies. Furthermore,
the NN can be retrained iteratively to increase accuracy near the areas
of interest to further improve the solution.

6.2 Further Work

These are some ways in which this work could be improved in the future:

• Since we are not restricted to a particular discretization (the solution is
continuous) we can refine the solution near the points with the bigger
errors during the training process. This adaptive approach could lead
to much more accurate solutions.
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• More sophisticated and meaningful PDEs would be the next logic step:
the Euler Equations, the Navier Stokes equations, etc, are solved for
real-world applications and the possibility to solve them with NN could
represent a major milestone.

• Alternative network topologies could provide better results (convolu-
tional networks, recurrent networks, etc).

A proposed workflow for the optimization of an airfoil could be as possible:

• Define the time and space domain to solve the Navier Stokes equa-
tions. Inflow boundary conditions could be parametrized with the
airfoil’s angle of attack (AoA) while the solid boundary condition de-
fined by the airfoil itself could be parametrized with the airfoil’s chord,
thickness and curvature. Also we would define the range of physical
properties to study, the Mach and Reynolds numbers of interest. We
use all this parameters as network inputs in the same way we did in
chapters 4 and 5.

• With the training data in place, we would train a NN. If the loss
reaches near-zero values we can assure that our NN is able to solve the
PDEs for all the conditions. This is the critical step since it can be as
expensive as one or several traditional simulations.

• Once the network is trained, we can retrieve solutions for any com-
bination of input values with a simple forward through the network.
A genetic algorithm could be used to find the optimal combination
that optimizes an objective, for example maximum lift to drag ratio.
The traditional approach would require a simulation for every possible
combination, which is practically impossible.

• This NN could be retrained in this optimal configurations in order to
improve its accuracy and repeat the process until some design criteria
is met.

A method like the one proposed here could disrupt the simulation field since
today an expensive (and usually not very accurate) simulation is required for
every combination of parameters. Training a NN as explained before would
be as expensive as several simulations, but once it is trained the advantages
that it provides outperforms any other approach.
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