
✐

✐

“memoria” — 2018/9/17 — 19:17 — page i — #1
✐

✐

✐

✐

✐

✐

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Department of Computer Systems and Computation

Master’s Degree Final Project

Adaptation and assessment of speaker diarization models for

open educational resources

Master’s Degree in Artificial Intelligence, Pattern Recognition and

Digital Imaging

Vicent Andreu Ciscar Martínez

Directors:

Dr. Alfons Juan Ciscar

Dr. Albert Sanchis Navarro

Experimental director:

Adrià Giménez Pastor

September 17, 2018

✐

✐

“memoria” — 2018/9/17 — 19:17 — page ii — #2
✐

✐

✐

✐

✐

✐

✐

✐

“memoria” — 2018/9/17 — 19:17 — page iii — #3
✐

✐

✐

✐

✐

✐

Contents

1 Introduction 3
1.1 Introduction . 3
1.2 Motivation . 4
1.3 Objectives . 4
1.4 Speaker Diarization . 5
1.5 Feature extraction . 6
1.6 Speaker Recognition . 7
1.7 Speech Activity Detection . 8
1.8 Speaker Change Detection . 8
1.9 Clustering and re-alignment . 10
1.10 Speaker diarization systems . 10
1.11 Computer tools . 12
1.12 Evaluation of results: DER and WER 12

2 LIUM toolkit 15
2.1 Introduction . 15
2.2 Methodology . 15
2.3 Speaker Diarization with LIUM . 16
2.4 Computation of features . 16
2.5 Segmentation . 17
2.6 Speech and Gender detection . 18
2.7 GMM-based speaker clustering . 19
2.8 Experiments . 20
2.9 Conclusions . 24

3 Toolkit Pyannote.audio 27
3.1 Introduction . 27
3.2 Methodology . 27
3.3 Speaker Diarization with artificial neural networks 28
3.4 Computation of features . 28
3.5 Speech activity detection . 29
3.6 Speech change detection . 31
3.7 Speaker embbedings . 33
3.8 Pipeline . 34
3.9 Experiments . 36
3.10 Conclusions . 40

4 Evaluation of the corpus Video Actas 41
4.1 Introduction . 41
4.2 Experiments . 41
4.3 Conclusions . 43

iii

✐

✐

“memoria” — 2018/9/17 — 19:17 — page iv — #4
✐

✐

✐

✐

✐

✐

5 Conclusions 45

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 1 — #5
✐

✐

✐

✐

✐

✐

Prologue

In this work we will investigate a quite current task, Speaker Diarization. This task

aims to find the segments that correspond to each speaker in a multi-speaker audio.

Its use covers several real areas such as, for example, the transcription of telephone

conversations, broadcast news, movies or domain-specific videos like a surgery oper-

ations documentation. In addition, the latest developments in the area are based on

a technology as current as artificial neural networks.

In Chapter 1, several aspects encompassed by the task of Speaker Diarization

are briefly discussed, at an introductory level. In addition, the motivation that has

helped to decide on the realization of this project will be explained and the objectives

to be achieved will be defined. Also, the different tools used during the development

of this work are pointed out.

In Chapter 2, we cover the work done using a well-know toolkit in Speaker Di-

arization: the LIUM toolkit. This set of tools has been a basis for a few years now

and, as in our case, some authors [8] use it as a baseline for their experiments.

Another toolkit used is Pyannote. This library performs a whole pipeline based

on recurrent neural networks and is explained in the Chapter 3. We will also use

several tools available in the toolkit to structure the corpus data and to evaluate the

results obtained throughout the work.

Chapter 4 is about the segmentation of a corpus of speech data called Video

Actas. This corpus is composed of audios of plenary sessions of various town halls.

It will be explained how the corpus has been obtained, what characteristics it has,

the experiments carried out and the results that have been obtained using the LIUM

toolkit.

Finally, in Chapter 5 the different conclusions that have been reached from the

various experiments carried out, the problems encountered, the results obtained and

the corpus used are described.

1

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 2 — #6
✐

✐

✐

✐

✐

✐

Contents

2 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 3 — #7
✐

✐

✐

✐

✐

✐

Chapter 1

Introduction

1.1 Introduction

Automatic Speech Recognition (ASR) is an area seeking to improve current technolog-

ical systems that try to convert an audio signal into a sequence of words. Although

ASR systems are often applied to single-speaker speech recordings, there is an increas-

ing interest in applying these systems to the more challenging case in which multiple

speakers are recorded. In this case, a very important (sub)task is to segment the

recorded audio into single-speaker segments. This task is called Speaker Diarization

(SD).

Speaker Diarization tries to solve the problem of "who spoke when?". For this

reason it has utility in most applications that perform an audio or video processing

and contain more than one active speaker. Some of these applications are telephone

conversations, broadcast news, debates, shows, movies, meetings, domain-specific

videos or even lecture or conference recording [14].

Currently the research on Speaker Diarization is progressing to a large extent

thanks to the National Institute of Standards and Technology [1] which defined the

task evaluation method. In addition, due to the current development of deep learning

in different fields, Speaker Diarization systems based on artificial neural networks are

showing good results despite the complexity of the task [33]. In this work we will aim

to understand where the complexity of several Speaker Diarization systems lies and

evaluate the results obtained.

We will explain in the next sections several important aspects for introducing

some concepts related to the Speaker Diarization task. First of all we will see what

has been the motivation to get into this task of speech recognition and what are the

objectives that we want to achieve throughout the work. Then we will provide several

concepts that will help us to understand the elements that make up this task and

that range from the obtaining of features to the segmentation of the audios in the

turns of the different speakers. Finally, in this chapter we will find a brief description

of the tools used and, after that, what are the main values that are sought for the

3

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 4 — #8
✐

✐

✐

✐

✐

✐

Chapter 1. Introduction

evaluation of a Speaker Diarization system.

1.2 Motivation

During the master’s degree, I had the opportunity to develop a speaker recognition

system based on Gaussian mixture models. This system was simply to recognize a

user by voice and accept him as a client. However, it led me to consider in which

other areas a similar recognition was also used. As explained in the Section 1, the

objective of a Speaker Diarization system is the location of the fragments pronounced

by different speakers along an audio signal. Therefore, to a certain extent, a work on

Speaker Diarization allowed me to expand my knowledge in this area.

In addition, we must add the fact that currently the application of Speaker Di-

arization systems is trying to use real tasks such as the transcription of telephone

calls, where it is necessary to know the words spoken by each user, or even the auto-

matic subtitling of TV shows [4]. This diversity in the possibilities of the task was a

very interesting addition.

Another aspect that motivated me to do this work was the possibility of working

with artificial neural networks. In current systems of Speaker Diarization network

architectures are being used close to the state-of-the-art. Some of the systems use

convolutional layers, recurrent networks, d-vectors and other very current elements

in the development of deep learning. For all this the possibility of conducting an

investigation on Speaker Diarization was seen as a good knowledge to acquire.

1.3 Objectives

In the area of speech recognition, much progress has been made in recent years with

the arrival of neural networks. Within this area we find the task of speaker diarization

which, as discussed above, consists in labeling the fragments of the speakers at the

intervals in which they speak. In this regard, the main objectives of this work (and

some ideas to achieve them) are:

• Understand and become familiar with the task of Speaker Diariza-

tion. For this purpose, a literature review will be carried out. Documentation

will be sought near the state-of-the-art as well as documentation related to the

first functional systems.

4 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 5 — #9
✐

✐

✐

✐

✐

✐

1.4. Speaker Diarization

• Apply state-of-the-art Speaker Diarization systems. We also want to

find a toolkit that allows us to obtain a baseline with already tested and re-

producible results. The aim is to compare the results obtained with the tests

carried out throughout the work. Then we want to find and apply a system

that uses automatic neural networks and brings us closer to the current state-

of-the-art.

• Improve the results obtained with the Speaker Diarization systems.

Another objective that we want to reach with this work is the improvement

of the toolkits that we can apply. After evaluating each one separately with

the default parameters, some way of improving the results obtained will be

considered.

• Find a corpus that is related to the academic or public sphere and try

the studied Speaker Diarization techniques/tools on it. And finally, to

make the comparison between the various systems, in addition to the corpus of

data with proven results, it is intended to find a corpus that is related to the

academic or public sphere. In this way we will observe the results that can be

obtained with audios that are currently being used for other tasks and we will

evaluate if Speaker Diarization is an aspect to be taken into account.

1.4 Speaker Diarization

The main goal in ASR is to search for the sequence of words pronounced in a given

speech audio fragment. For this, this discipline is responsible for the conception

and realization of automatic systems that process acoustic signals and transform

them into specific sequences of linguistic elements. ASR systems usually require a

language model for the search of the pronounced words. In this way they use the

syntactic, semantic and pragmatic knowledge to guide the automatic systems towards

the minimum possible error (WER) (see Sec. 1.12).

With the advance of new technologies, especially thanks to the considerable in-

crease in computing capacity, some branches of the area of speech recognition have

continued to improve. One of them, in which we deepen in this work, is the speaker

diarization. As discussed above, this task consists of subdividing the audio, as nec-

essary, to determine "who spoke when?". This is done without knowing a priori the

number of speakers that spoke in the audio [33].

To carry out the whole process of diarization, several steps are taken. In Figure

MLLP-DSIC-UPV 5

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 6 — #10
✐

✐

✐

✐

✐

✐

Chapter 1. Introduction

1.1 we can see an example of this process [20]. The different parts are speech activity

detection (SAD), segmentation of audio and its subsequent clustering and, finally,

a speaker recognition for each cluster. In the next sections, these parts will be

explained, which together form the pipeline for the complete conversion of the signal

in the different outputs that can be obtained.

Audio

Feature Extraction

Speech Activity Detection

Speaker Change Detection

Clustering

Speaker Diarization Evaluation

Figure 1.1: Typical Speaker Diarization system

1.5 Feature extraction

The initial part of any speech recognizer is the conversion of the signal into a series of

features that will form the input of the system [40]. In the case of speaker diarization

the different types of features that can be obtained can be divided into three types:

short-term spectrum based features [3], spatial features [38] and long-term features

[15].

In most of the speaker diarization systems the short-term spectrum based features

are used. In this kind the features are extracted from the short-term spectrum. This

is due to the information of the vocal tract characteristics of individual speakers that

the short-term spectrum based features carry on. These features are typical extracted

for every 10 ms from a window size of around 30 ms. Many systems use Mel frequency

cepstral coeficients (MFCCs) as features for speaker diarization [22].

6 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 7 — #11
✐

✐

✐

✐

✐

✐

1.6. Speaker Recognition

Nowadays, another audio embedding extraction is done after the consecutive seg-

mentations, where specific features such as MFCCs, speaker factors or i-vectors [32]

are extracted from the segmented sections.

1.6 Speaker Recognition

The main objective of a speaker recognition system [30] is to identify a person through

his or her voice. Being able to make a distinction between the physiological character-

istics and the linguistic habits of different speakers is what allows this identification

to be carried out correctly. Therefore, the first step is to perform an extraction of

characteristics inherent to the speaker and then compare them with other patterns,

or models.

Like most recognition systems, the speaker recognizer can be divided into two

parts: training and testing. In the training, it seeks the recording of the speakers

using a feature extractor and at a later stage the models of each speaker are obtained.

In the part of the test the features of the unknown speakers that could appear are

extracted, and their models are compared with those already stored. The process

finalizes when the system obtain the possible coincidences and shows the speakers

that present a more similar features to those sought in the exam.

In general, the process for the implementation of a speaker recognizer starts from

the data acquisition, which is essential to be able to extract the features of the speaker

in the best possible way. For this it is necessary to use an acoustic-electric transducer

that transforms the sound pressure into electrical signal and can digitize it. After

that, the feature extraction is performed. In this task, the audio is processed to

extract the vectors that the recognizer needs as input. These vectors present a low

level of abstraction and are limited to describing spectral, parametric and temporal

features of the audio signal.

From the vectors that contain the features of the signal the training and the test

are carried out in the part of classification of the system. In this part of the recognizer,

the vectors are compared and the probabilities that an unknown speaker coincides

with one of the speakers stored in the database are calculated. The decision about

the speaker’s identification depends on the configuration of the system, but usually

it is the one that maximizes the probability.

MLLP-DSIC-UPV 7

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 8 — #12
✐

✐

✐

✐

✐

✐

Chapter 1. Introduction

1.7 Speech Activity Detection

This segmentation consists in dividing the audio into fragments and label them de-

pending on whether they are composed by speech or not. Those that are not speech

not only include silences, but also music, breathing sounds, background noise, among

others [29].

The first works of speaker diarization developed, tried to obviate the part of SAD,

replacing it with another cluster corresponding to the non-speech part, however it

was observed to affect negatively the output of the system [23].

Errors that can occur in a Speech Activity Detection (SAD) system affect diariza-

tion directly, since missing speech fragments or false alarm detections contribute to

the calculation of the diarization error rate (see Sec. 1.12).

1.8 Speaker Change Detection

The Speaker Change Detection (SCD) task is also known as the Segmentation part

of a speaker diarization system. The objective of this task is to segment speech frag-

ments into homogeneous subfragments that only correspond to a speaker. Another

way of looking at it would be that its objective is to detect where the speaker changes

occur. The most common way to perform this part is to compare two speech windows

and make hypotheses to see if they are from different speakers or is the same speaker.

These windows move along the audio regularly to detect all the points of change.

The hypotheses are estimated thanks to the stored models of the speakers and

the calculation of a criterion based on the similarity or distance between them. The

main criteria proposed throughout the literature related to the diarization task are

the following:

Bayesian information criterion:

The Bayesian Information Criterion (BIC) is a model selector criterion [Schwarz,

1978] used to determine which model best explains the available data. It has been

used for SCD in [Chen and Gopalakrishan, 1998].

The value of a model M representing a data set X is given by:

BIC(M) = logL(X |M)−
λ

2
#(M)log(N) (1.1)

8 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 9 — #13
✐

✐

✐

✐

✐

✐

1.8. Speaker Change Detection

where, L(X |M) is the likelihood of data X given the model M, N is the number

of data points in X, #(M) is the number of parameters in the model M, and λ is a

trade-off between the model complexity and how well the models fit the given data

set.

The difference in BIC values sought for the comparison between the various models

is calculated as follows:

∆BIC(i, j) = logL(Xij|Mij)− [logL(Xi|Mi) + logL(Xj|Mj)]−
λ

2
δij log(N) (1.2)

where, Xij is the combined data and Mij is the estimated model of the combined

data, δij is the difference in the parameters of both models and Xi or Xj is the data

of each subwindow, Mi and Mj are the different models that the system is testing.

Generalized likelihood ratio:

Another criterion that is usually used to perform speaker change detection is the

generalized likelihood ratio (GLR) [19, 17, 18, 16]. This criterion is similar to ∆BIC,

but does not take into account the complexity of the model.

GLR(i, j) =
L(Xij |Mij)

L(Xi|Mi) + L(Xj |Mj)
(1.3)

L(X |M) denotes the likelihood of data X given a model M. On the other hand,

Xij and Mij denote the data and model resulting from the combination of segments

Xi and Xj .

KL divergence:

The divergence of Kullback Leiber (KL) is used to measure the inequality between

two probability distributions. In this way, the distribution of the data in two segments

is compared to decide if there has been a change of the speaker or not. When this

divergence is modelled by Gaussian distributions it can be obtained with the following

formula:

KL(Xi||Xj) =
1

2
tr[(Σi −Σj)(Σ

−1
j −Σ−1

i) + (Σ−1
j −Σ−1

i)(µi − µj)(µi − µj)
′

)] (1.4)

where, µk,Σk denote the mean and covariance of data Xk.

A symmetric form is also used (KL2):

KL2(Xi, Xj) = KL(Xi||Xj) +KL(Xj||Xi) (1.5)

MLLP-DSIC-UPV 9

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 10 — #14
✐

✐

✐

✐

✐

✐

Chapter 1. Introduction

When using the KL criterion, only one Gaussian distribution can be modelled for

each segment, this greatly limits the modeling capacity and leads to an expense in

computing. For this reason, this criterion is usually only used as a first step, and

then improve the segmentation with the BIC criterion.

1.9 Clustering and re-alignment

The clustering part is responsible for taking the homogeneous segments obtained in

the previous task and joining them up to the point of only having one cluster for

speaker. To perform this task, the same criteria can be used as in the segmentation

task, BIC, GLR, KL and KL2 [39].

When the pipeline pass from the segmentation task to the clustering task, the

errors of the first task accumulate. To prevent this from happening, after joining two

clusters, a re-alignment is made by Viterbi algorithm to stabilize the model of each

cluster.

1.10 Speaker diarization systems

Up to this point, we have seen the different tasks that form a complete system of

speaker diarization. However, there are several ways to perform some of these tasks

and therefore different systems of speaker diarization can be composed [35].

HMM/GMM system:

This type of speaker diarization system [24] represents each speaker as a state

within a Hidden Markov Model (HMM) and the probability of emission from each

state is modelled using Gaussian Mixture Models (GMM).

The clusters are initialized with a uniform segmentation in the zones where speech

has been detected and this generates a group of segments (Xi). Afterwards, each seg-

ment is treated as a cluster and modeled as a HMM state. To calculate the probability

of emission of each state, the following function must be taken into account:

log bi(st) = log
∑

(r)

w
(r)
i N(st, µ

(r)
i ,Σ

(r)
i), (1.6)

where N() is a Gaussian and w
(r)
i , µ

(r)
i and Σ

(r)
i are the weights, means and

10 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 11 — #15
✐

✐

✐

✐

✐

✐

1.10. Speaker diarization systems

covariance matrices respectively of the rth Gaussian mixture component of a cluster

i. In the previous formula bi denote the emission probability distribution of one

cluster and st denote a feature vector on time t.

Clustering in an agglomerative framework starts by over-estimating the number

of speaker clusters. At each iterative step, the clusters that are most similar to each

other based on a distance measure are merged. The similarity between two clusters is

measured using a modified delta Bayesian information criterion [Ajmera et al., 2004].

The modified ∆BIC criterion ∆BIC(ci, cj) for two clusters is given by:

∆BIC(ci, cj) =
∑

stǫ{ci∪cj}

log bij(st)−
∑

stǫci

log bi(st)−
∑

stǫcj

log bj(st) (1.7)

where bij is the probability distribution estimated over the combined data of cluster

ci and cj . The clusters that produce the highest ∆BIC score are merged. After

each merge step, a Viterbi decoding pass realigns the speech data to the new speaker

clusters.

Deep neural network systems :

The improvement of technology that has been in recent times has allowed comput-

ers to be able to process much more information. This has allowed the development

of artificial neural networks to a large extent. These networks are able to "learn"

by means of a given reference to perform a desired task. In the scope of Speaker

Diarization, artificial neural networks were introduced to improve some parts of the

entire pipeline [27].

In the part of speaker recognition it was seen that one way to improve the fea-

tures extracted from each speaker was to obtain d-vectors. These vectors collect

information from the speaker from single-speaker audio and using deep neural net-

works (DNN). Many audios of the same speaker are passed through the network and

at the end the weights of the penultimate layer are saved as the identification vector

of that speaker. This vector is used as a comparison reference in a speaker recogni-

tion system. Although the d-vectors gave a good result, research continues on new

systems to improve the extraction of characteristics [34].

Nowadays, neural networks are being used to improve steps of the Speaker Di-

arization task such as speech activity detection, speech change detection, speech turn

embedding, clustering, etc. The architectures of the networks are very different and

in recent years there has been a shift from the use of convolutional networks to the

addition of recurring layers (LSTMs). A more detailed description of a system that

MLLP-DSIC-UPV 11

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 12 — #16
✐

✐

✐

✐

✐

✐

Chapter 1. Introduction

uses recurring networks can be seen in Chapter 3.

1.11 Computer tools

For the realization of this work, the tools used have been:

• LIUM [10]. This toolkit is a software dedicated to speaker diarization. It is

written in Java and was developed for the French ESTER2 evaluation campaign,

where it obtained the best results for the task of speaker diarization of broadcast

news in 2008.

• TensorFlow [11]. TensorFlow is an open-source software library for dataflow

programming across a range of tasks. It is a symbolic math library, and is also

used for machine learning applications such as neural networks.

• Jupyter Notebook [13]. Notebook documents are documents produced by the

Jupyter Notebook App, which contain both computer code (e.g. python) and

rich text elements (paragraph, equations, figures, links, etc. . .). Notebook doc-

uments are both human-readable documents containing the analysis description

and the results (figures, tables, etc..) as well as executable documents which

can be run to perform data analysis.

• Python [28]. Python is an interpreted high-level programming language for

general-purpose programming.

• pyannote.metrics [6]. A toolkit for reproducible evaluation, diagnostic, and

error analysis of speaker diarization systems.

• pyannote.audio [37]. A toolkit for reproducible evaluation, diagnostic, and

error analysis of speaker diarization systems.

• Yaafee [9]. A toolkit for reproducible evaluation, diagnostic, and error analysis

of speaker diarization systems.

1.12 Evaluation of results: DER and WER

• DER:

For the evaluation of Speaker Diarization systems, the main evaluation measure

is the Diarization Error Rate (DER). It was introduced by the NIST in 2000.

12 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 13 — #17
✐

✐

✐

✐

✐

✐

1.12. Evaluation of results: DER and WER

The calculation of the DER is done in two steps, the first is to make a mapping

between the labels returned by the system and the identities of the speakers

stored in the references. The next step is to calculate the error that occurs once

the mapping is done.

For the total calculation of this evaluation value it must be taken into account

that the error can occur for three reasons. These types of errors are given by

the context in the diarization system:

– The confusion error, when the speaker labeling given by the system and

the one in the reference do not coincide during the mapping.

– The loss error, when in the reference there is a fragment of speech that

does not occur in the output of the system.

– The false alarm error, when a speech fragment is detected by the system

and in the reference corresponds to a segment without speech.

These previous errors can occur during a certain period of time, to calculate

the error we must add these times together. In case of overlapping speech

between several speakers, the complexity of the loss error and the false alarm

error increase considerably. The formula for calculating the DER is as follows:

DER =
confusion+miss+ falsealarm

totalreferencespeechtime
(1.8)

Some flexibility must be added to the calculation of the DER to take into

account the possible human error made in annotating the reference. Therefore,

a margin of +/− 250ms around every reference boundary is usually used.

• WER:

The Word Error Rate (WER) is kept as the primary evaluation metric for this

evaluation of ASR. That metric basically counts the number of word deletions,

insertions and substitutions in the output of the automatic transcription system

compared to a reference transcription produced by humans. It can be computed

as:

WER =
S +D + I

N
(1.9)

where S is the number of substitutions, D is the number of deletions, I is the

number of insertions and N is the number of words in the reference transcription.

MLLP-DSIC-UPV 13

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 14 — #18
✐

✐

✐

✐

✐

✐

Chapter 1. Introduction

14 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 15 — #19
✐

✐

✐

✐

✐

✐

Chapter 2

LIUM toolkit

2.1 Introduction

In the first part of the work we have introduced the concept of Speaker Diarization

from a series of theoretical sections that try to cover the most important points of

the task. After showing the tools in which we will work and defined the objectives

we want to achieve, in this chapter we will begin to perform the first experiments to

understand the task in a more practical way. For this reason we wanted to start with

a toolkit that has been often used as a baseline for comprison purposes [8, 21].

The software that we are going to use is known as LIUM_SpkDiarization [10].

This toolkit was developed by the computer science lab of the University of Le Mans

in 2010. It is a software capable of carrying out the entire speaker diarization process.

It is based on hierarchical agglomerative clustering methods using measures such as

BIC (Eq. 1.1) or GLR (eq. 1.3) and also on Gaussian Mixture Models. For the

evaluation of the toolkit and its comparison with the rest of the systems that are

going to be tested in this work, the AMI corpus will be used [25].

This Chapter is organised as follows. First, in Section 2.2, the basic methodology

is briefly discussed. Then, in Section 2.3, we focus on the system that LIUM uses.

After that, there are four Sections covering different parts of the LIUM system. Then,

empirical results are reported in Section 2.8 and the main conclusions drawn are given

in Section 2.9.

2.2 Methodology

After the installation of the LIUM toolkit, several tests will be performed with dif-

ferent audios to observe the correct functioning of the system and familiarize with

the format of the output file of the software.

We want to use the same form of evaluation for all the programs that we will see

in the work, so we will use pyanote.metrics in all cases for the calculation of DER.

15

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 16 — #20
✐

✐

✐

✐

✐

✐

Chapter 2. LIUM toolkit

For that, python files will be implemented that would serve as calls to functions and

thus not do so from the linux terminal.

With the whole system prepared, the different audios of the test will be segmented.

First we will call the main function of the toolkit for obtaining a first segmentation.

Then we will use the necessary scripts to obtain the feature vectors and carry out

the Speaker Diarization process with LIUM that allows us to modify the different

parameters of the software.

Once the output files of the system have been obtained, we will implement a file

with python to evaluate the system and obtain the DER from the test set. After

that, all subsequent tests with this set of tools will be repeated by the same steps

described in this section and making only changes to the parameters of the scripts

provided by LIUM.

2.3 Speaker Diarization with LIUM

The system implemented in the toolkit created by LIUM performs all the necessary

pipeline to obtain an adequate final segmentation due to a speaker diarization system.

For this, a series of functions are available that are responsible for performing the

following steps: Calculation of the features of the audios, initial segmentation, initial

clustering, second segmentation based on Viterbi, speech detection, detection of the

genre and the band of the channel and a final clustering based on Gaussian mixture

models. In the figure 2.1 we will see in greater detail each one of these parts [10].

2.4 Computation of features

The first steps of the system uses the feature vectors obtained in the module of

feature extraction. To obtain this vector, the Sphinx 4 tool is used. This tool obtains

a vector of features per frame from the audio that it takes by input. The output is

composed by 13 Mel-frequency cepstral coefficients (MFCCs) with energy and they

are not normalized. That is because at this point we need all the information of the

audio signal and the normalization is used to remove the background sounds.

The MFCCs are usually derived by taking the Fourier transform of a signal and

then applying another steps like mapping the power of the spectrum onto the Mel

16 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 17 — #21
✐

✐

✐

✐

✐

✐

2.5. Segmentation

Figure 2.1: Speaker Diarization System with LIUM

scale or taking the discrete cosine transform of the list of Mel log powers.

2.5 Segmentation

A big part of the task of Speaker Diarization is the segmentation of the signal with

the ultimate goal of subdividing it in fragments that each of them corresponds to a

single speaker. In addition, clustering algorithms are also used to group segments

that correspond to the same speaker and thus have a structure formed by a speaker

per cluster.

Among the segmentation techniques implemented by the LIUM toolkit we have:

• Segmentation based on BIC

From the features obtained in the previous step, a first segmentation of the audio

signal is performed. For this, the toolkit uses an algorithm that detects the

segment boundaries corresponding to the changes between speakers, treating

the non-speech part as another speaker for now.

MLLP-DSIC-UPV 17

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 18 — #22
✐

✐

✐

✐

✐

✐

Chapter 2. LIUM toolkit

The audio is segmented taking into account the change points that are de-

termined with GMM of complete covariance matrices. The entire signal is

traversed using a window of 5 seconds and possible changes are detected using

a generalized likelihood ratio (GLR) (see Sec. 1.8). This ratio is used to deter-

mine if in the middle of a window has occurred a change of speaker and if the

value of comparison is above the ratio the fragment is segmented.

To complete this step, a second pass is made through the signal to group differ-

ent consecutive segments of the same speaker. It is verified that they are from

the same speaker by calculating ∆BIC.

• BIC Clustering

Starting from the segmentation carried out in the previous step, another sub-

sequent step is done where a first grouping of segments into clusters is made.

Each cluster is modelled as a GMM with a complete covariance matrix and

the input is initialized with a cluster for each segment. The algorithm is based

on a hierarchical agglomerative clustering and the ∆BIC criterion is used to

determine if it is necessary to group several segments in the same cluster or

not. At the end of this step, the objective is to unify some segments of the

same speaker into the same cluster.

• Segmentation based on Viterbi decoding

The next step improves segmentation by Viterbi decoding. The clusters are

modeled by hidden Markov models with a single state which is represented by

a Gaussian mixture with 8 components and diagonal covariance matrix. The

model is learned by an EM-ML algorithm using the segments of the cluster.

This algorithm improve the model by maximizing the likelihood in each of

their iterations. The log-penalty used to compare between two HMMs was

fixed experimentally with the corpus ESTER 2 [26].

To adjust the point where the segments are separated, a modification is made

taking into account the areas of low energy and trying to obtain a segmentation

avoiding fragmentation in the middle of words.

2.6 Speech and Gender detection

After the segmentations performed, a series of detection is carried out in the system

implemented in the LIUM toolkit. The first one serves to locate non-speech areas,

18 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 19 — #23
✐

✐

✐

✐

✐

✐

2.7. GMM-based speaker clustering

an aspect necessary for the final evaluation of the result obtained. The second tries

to extract more information from the signal and the speakers.

The detections that are made in the system are:

• Speech detection

Up to this point the system treated the segments corresponding to the non-

speech zones as if they corresponded to another speaker. The next step is to

look for the non-speech segments and separate them from the rest. For this,

a decoding by Viterbi is performed with 8 one-state HMMs like the described

previously. The eight models consist of 2 of silence, 3 of wide band speech, 1 of

narrow band speech, 1 of jingles and 1 of music. Each one is represented with

a GMM of 64 diagonal components trained with EM-ML using the ESTER 1

corpus [12].

At this point in the system the energy of the features is eliminated, since it is

no longer necessary for the following steps.

• Gender and Bandwith detection

Detection of gender and bandwidth is done using a GMM (with 128 diago-

nal components) for each of the 4 combinations of gender (male/female) and

bandwidth (narrow/wide band). Each cluster is labeled according to the char-

acteristics of the GMM which maximizes likelihood over the features of the

cluster.

2.7 GMM-based speaker clustering

In the segmentation and clustering steps above, features were used unnormalized in

order to preserve information on the background environment, which helps differ-

entiating between speakers. Now we must perform a normalization to remove the

information from the environment before performing a hierarchical agglomerative

clustering to finally relate the speakers and the clusters one by one.

To adapt the mean of each cluster, a UBM (Universal Background Model) model is

used, made up of the fusion of the GMMs used in the previous gender and bandwidth

detection. In each iteration, if two clusters maximize the measure proposed by Cross

Likelihood Ratio (CLR), and by Cross Entropy, they will be merged. It is due to the

fact that both clusters probably have segments of the same speaker.

MLLP-DSIC-UPV 19

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 20 — #24
✐

✐

✐

✐

✐

✐

Chapter 2. LIUM toolkit

In this final part we obtain a final segmentation that will be compared with the

annotated reference and helps us determine the performance of the toolkit.

2.8 Experiments

The LIUM toolkit was seen as a good basis for the study of the task of this work

since it is based on systems that already gave good results before the introduction

of neural networks in the area of speaker diarization. Once the entire installation

process was completed, the familiarization process with the toolkit began. The main

calls to this toolkit are made with functions implemented in java and the quickest

way to use it is to call its main function directly. However, this function performs

the whole process of speaker diarization, but does not allow too much variation to

improve the system itself.

After verifying that the system was able to obtain a segmentation from an input

audio, a proper corpus was searched for its evaluation. The AMI corpus [25] was

chosen because it is accessible for free and because it has been used as a reference

task in speaker diarization [8]. This corpus is a multi-modal dataset consisting of 100

hours of meeting recordings and 150 speakers in it. And it was separated in 115 files

of training 20 files of development and 21 files of test.

Table 2.1: AMI corpus statistics

Dataset # speakers # hours # training # dev. # test

AMI 150 100 115 20 21

The next step consists in searching a better way to carry out the speaker diariza-

tion process and for that, scripts were found available on the toolkit documentation

web. These scripts implement the calls to the functions of each one of the parts of

the system pipeline. In the following paragraphs we will explain the different imple-

mentations, with python, made to facilitate the control of the toolkit and a better

explanation about the possibilities of the functions in the scripts of the LIUM toolkit.

As we said several programs were carried out in python for a greater control of

the task and the subsequent evaluation through the library "pyannote.metrics" (A li-

brary of Speaker Diarization evaluation). Before explaining the different experiments

performed with the toolkit, we will detail the processes performed by two of the main

files implemented. The first one, "Segmenta_corpus_AMI", is responsible of making

20 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 21 — #25
✐

✐

✐

✐

✐

✐

2.8. Experiments

convenient calls to the toolkit for its use. The second, "Evaluation_AMI", collects

the output obtained by the LIUM software, and matches it to the structure necessary

to carry out its evaluation.

• Segmenta_corpus_AMI

One of the implemented files is "Segmenta_corpus_AMI.py", in which all the

segmentation and clustering process is done using the LIUM toolkit. This file

has several versions: the first calls the main function that perform the entire

pipeline, obtaining a segmented file for each input audio and not allowing the

modification of the default parameters. The second version is responsible for

calling a script which uses all the necessary functions to perform each step of

the task. This second version allows the modification of several parameters and

is the one that has allowed a greater variation to minimize the error sought.

In all the implemented files that use the AMI corpus, the "pyannote.database"

library has been used. In that library the references of the corpus are stored

and it offers a defined structure that separates the corpus data in training, de-

velopment and test. In addition, this library helps organizing the data structure

so that it is easier to manage the location of the corpus audios to prepare the

input to the system.

As mentioned previously, the second version of the program uses a script avail-

able in the toolkit. In this script, called "diarization.sh", the whole process of

Speaker Diarization is done like in the case of using the main function. But in

this case it uses different functions and allows the user to modify each one of

the parameters that participate in the whole process.

The system takes as input an audio and a series of parameters that indicate

how the feature vectors should be structured. After doing the feature extraction

with this information, the first segmentation is performed using the functions

MsegInit, MDecode and MSeg. After that, the first clustering is performed

with MClust and the models are trained for each Speaker using MTrainInit and

MTrainEM. The next step is to perform a Viterbi decoding with MDecode and

an adjustment from the lower energy zones with SAdjSeg (see Sec. 2.5).

Taking the information of the first call to MDecode as part of the input, the

non-Speech zones are searched and filtered with SFliter and the fragments of

more than 20 seconds are segmented, to facilitate the subsequent clustering,

with SSplitSeg. The next step is not significant in our case, since it try to label

the audios in genre and audio band with MScore (see Sec. 2.6). To complete

MLLP-DSIC-UPV 21

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 22 — #26
✐

✐

✐

✐

✐

✐

Chapter 2. LIUM toolkit

the Speaker Diarization process a last clustering process is performed with the

call to the MClust function (see Sec. 2.7).

Repeating the process for each of the test audios, we obtain several files with the

necessary segmentations to make the comparison with the available reference

and perform the evaluation of the system.

• Evaluation_AMI

For evaluating the segmentations obtained with the LIUM toolkit, another file

called Evaluation_AMI was implemented. The python code that we find in it

is divided into two parts: The part of parsing the files into the correct structure

format and the evaluation part using pyannote.metrics.

In the first part, the different output files obtained with the toolkit are parsed

and storage in variables with the format implemented in pyannote.core. LIUM

saves the segmentations made following a format close to the MDTM or STM

NIST format:

alzira20180327 1 11 389 F S U S0

In which we can find the name of the file, the channel number, the start of the

segment in frames, the lenght of the segment in frames, the speaker gender, the

type of band, the type of environment and the speaker label.

In contrast, in the structure used by pyannote we need to define a variable

annotation with the label of the speaker. The variable is a cluster defined with

the start and end time of the fragment as we can see in the Fig. 2.2.

Figure 2.2: Example of pyannote.core annotation

In the evaluation part of this file, the names of the audios of the test part of

AMI are obtained using the pyannote.database library. Then the DER metric

is calculated using pyannote.metrics and the system returns a report with the

different errors of each one of the test files and the total obtained, which forms

the results that we will interpret.

22 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 23 — #27
✐

✐

✐

✐

✐

✐

2.8. Experiments

Once we have seen the files implemented in this chapter, we will show the different

experiments carried out for the evaluation of the LIUM toolkit. At this point of the

work was where one of the biggest problems was found. In [8] showed that using the

default parameters of the toolkit, they obtained a DER of 25%, however in our case

the first results were approximately 53% of DER.

The Table 2.2 shows the values obtained with the experiments that we are going

to explain below.

Table 2.2: DER results with AMI test

LIUM toolkit results with AMI
Test false alarm m. detection confusion DER
1 9,21 17,66 26,40 53,27
2 5,99 12,97 12,82 31,78
3 12,14 19,75 13,03 44,92
4 5,12 20,80 8,92 34,84
5 6,91 7,25 13,37 27,52
6 6,76 7,60 12,71 27,07

As we commented before, LIUM toolkit has a main function that can be called

and it performs the whole process of speaker diarization. In the experiment 1 we use

that form of calling the software. However, this method does not allow modification

of the system parameters. In the file implemented for this purpose we only pass to

the system the names of the audios using a loop and reading them from the AMI

test part. This resulted in a series of files corresponding to the segmentations of each

audio.

The evaluation of these files gave us a value of DER of 53%. We can see also that

the values of confusion, 26.4, and miss detection, 16.66, are quite elevated. We aim

for a value of 25% so we needed to improve the results but we couldn’t modify the

system by this way of processing the signals of audio.

At this point we changed the form of calling the software and we started to

use a script that allows us to see every function needed to do the entire pipeline

of the Speaker Diarization process. The experiment 2 was carried out without any

modification of this script.

The result obtained was a DER of 31%. This was a good improvement of the first

result obtained but it was still far from the desired result. We can see in the Table

2.2 that in this test the false alarm is one of the lowest values of all the experiments.

MLLP-DSIC-UPV 23

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 24 — #28
✐

✐

✐

✐

✐

✐

Chapter 2. LIUM toolkit

Analyzing the error produced by the system, it was seen that an important part

of the error was found in the speaker recognition part of the system. To improve this

part, the parameter relative to the components of the GMM used for the clustering

was changed. First a value of 128 components was used (experiment 3), and then a

value of 12 components (experiment 4).

The DER increased considerably to a 44,9% error in the experiment 3 and not

so much for the experiment 4 that gave us a value of 34,8% of DER. These two

values were greater than that obtained with the second experiment, so we had to find

another way to improve the result.

After carrying out another verification segmentation and obtaining the same re-

sult, a possible solution was searched through the network. Navigating between

articles and forums of people who used the same toolkit, a user was discovered which

indicated that the LIUM toolkit had a problem when the speakers changed briefly

in a few seconds [2]. This was precisely the problem of the AMI corpus, so the sug-

gestion of the user was tested and the size of the initial segmentation window was

decreased.

At the end we find that the problem occurs in the precision of the cut between

fragments of different speakers in the initial segmentation. To solve this, the window

size was changed to 100 ms. and the GMM configurations of the two experiments

with the best results so far were also projected, experiments 5 and 6. With this,

values of 27,5% and 27,1% of DER were obtained. That values were close to the 25%

of DER searched, so we saw that this toolkit obtain good results despite the fact that

the AMI corpus is complicated.

2.9 Conclusions

After becoming familiar with the main concepts of the task of Speaker Diarization, we

went to use a toolkit with base results to establish the starting point of the practical

part of the work. We saw that this toolkit, known as LIUM, was based on Gaussian

mixtures models, hidden models of Markov and Hierarchical agglomerative clustering.

And we also tried to obtain a similar result to 25% of DER that was established in

[8] using the AMI corpus.

To find the value that was wanted to use as a reference, we implement several

files that would serve to make the experiments repetitively adequate. In the article

the authors only said that they had used the LIUM standard parameters, so the tests

24 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 25 — #29
✐

✐

✐

✐

✐

✐

2.9. Conclusions

performed consisted of several tests that were approaching the value sought.

In the end we managed to reduce the error to 27% of DER. With the process

of achieving this result we observe that the error occurred in the accuracy of the

segmentation of the signal and this increased the values of false alarm and miss

detection in the calculation of the DER (Eq. 1.8. We correct this error by changing

the size of the window that crosses the signal in the first segmentation that is made

in the LIUM Speaker Diarization process.

MLLP-DSIC-UPV 25

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 26 — #30
✐

✐

✐

✐

✐

✐

Chapter 2. LIUM toolkit

26 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 27 — #31
✐

✐

✐

✐

✐

✐

Chapter 3

Toolkit Pyannote.audio

3.1 Introduction

After studying the LIUM toolkit in Chapter 2, where a good result was obtained to

use as a basis for the subsequent experiments, we wanted to use another toolkit that

was closer to the current state-of-the-art and based on recurrent neural networks. For

that we decide to use a toolkit that is currently being developed by Hervé Bredin and

is know as Pyannote [5]. Among all the tools covered by this software we can find

pyannote.audio. This tool was created in 2017 and has a tutorial to make speaker

diarization with the AMI corpus.

In addition to this tool, Pyannote has other tools that are necessary in various

parts of the Speaker Diarization system. To save and use the various corpus, we will

use pyannote.database. This library helps to create a structure using the elements

implemented in pyannote.core that serves to facilitate access to corpus information.

We can also find the tool pyannote.metrics [6], which we use for the evaluation of all

systems made in this work.

The organization of this Chapter starts in the Section 3.2 by defining the method-

ology that will be followed in this part of the work. It continue in the Section 3.3,

and the following five Sections, explaining the development carried out in each of

the parts that make up the entire Speaker Diarization system implemented in the

pyannote.audio library. After that, in Section 3.9 it is shown how the different ex-

periments have been developed and how we have solved the complications that have

encountered. In the Section 3.10, after showing the results obtained in the evaluation

of the experiments, we present the conclusions we have reached.

3.2 Methodology

The pyannote toolkit has many different libraries to help with the speaker Diariza-

tion process. The pyannote.audio library is in charge of training the network, the

pyannote.database library is responsible for structuring the corpora using the pyan-

27

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 28 — #32
✐

✐

✐

✐

✐

✐

Chapter 3. Toolkit Pyannote.audio

note.core structures and the pyannote.metrics library serves to evaluate the results.

The way in which a complete system of speaker diarization is built in this Chapter

is to large extent inspired by a tutorial on pyannote.audio that can be found in

[5]. Except for the feature extraction part, the rest of the parts are structured in:

preparation of the corpus, training of the network, validation of the network and

testing of the obtained files. The last part, which tunes the parameters of each step

and gathers the entire pipeline, is in charge of obtaining the final segmentation of the

signals of audio. We will evaluate the DER from the output of the entire Speaker

Diarization system.

In this chapter various experiments will be carried out in each of the pipeline

parts. However, several experiments will also be carried out repeating the same

methodology explained in this section.

3.3 Speaker Diarization with artificial neural net-

works

The latest studies concerning the area of speaker diarization are based on the use of

neural networks for the training of a system capable of performing the entire process

that gives us the segmentation of audio labeled with his speakers.

The pyannote toolkit tool that is responsible for this task is based on different

systems that perform four main steps and then join them. These four steps cover

the different parts of Speaker Diarization described so far and are the following:

Computation of features, Speech activity detection, Speech Change Detection and

the obtaining of Speaker Embeddings. The last three parts are based on neural

recurrent layers of LSTMs. The entire pipeline is explained with more detail in the

Section 3.8.

3.4 Computation of features

The first step in a typical process of speaker diarization is the feature extraction.

The pyannote toolkit relies on the toolbox Yaafe, an audio features extractor. The

current version is from 2011, but its feature computation is already reliable. This

toolbox transform an audio in a group of MFCCs using a 25ms-long sliding windows

on steps of 10ms. The MFCCs extracted are formed by the energy first derivative,

28 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 29 — #33
✐

✐

✐

✐

✐

✐

3.5. Speech activity detection

the energy second derivative, 19 coefficients, their first derivatives and their second

derivatives. Then they are normalized using short term standardization with a win-

dow of 3 seconds.

This first part of the pipeline is responsible for transforming the audio into a series

of feature vectors using but the toolkit is already responsible for making the call to

Yaafe using pyannote-speech-feature and it is only necessary to modify a configuration

file called "config.yml" to specify the details of the MFCCs that are to be obtained.

This step has only been done once and its results have been used in the various

experiments carried out. To do this, the feature vectors are stored in a folder that

will serve as an input to the next system steps.

3.5 Speech activity detection

This part of the speaker diarization process aims, first, to find the speech parts of the

audio and differentiate them from the parts of background noise, music or silence,

and second to detect the edges where these different fragments are separated, as well

as the speaking changes between different speakers, as accurately as possible.

For both speech activity detection and speech change detection, systems based

on LSTMs have shown a good result. For this reason, the toolkit proposes the use

of bi-LSTMs to predict whether or not a frame corresponds to a specific region of

speech [36]. The architecture used in this part is proposed as a problem of labeling

sequences where binary labeling is sought, being 1 if there is a speaker change and 0

when there is not. Therefore, the goal is to find a function f that relates a sequence

of features to the tagged sequence. The formula for finding f is based on the binary

cross-entropy and we can see it in Eq. 3.1.

L = −
1

T

T∑

i=1

yi log(f(x)i) + (1− yi) log(1− f(x)i) (3.1)

where x is a feature extracted from the audio, y is the binary label of that feature,

and T is the total number of features extracted. We can see in Fig. 3.1 the type of

annotation that is given in the reference to train the network in the part of speaker

change detection.

The proposed Speaker Diarization process starts by detecting the speech zones

MLLP-DSIC-UPV 29

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 30 — #34
✐

✐

✐

✐

✐

✐

Chapter 3. Toolkit Pyannote.audio

Figure 3.1: Reference annotation for SCD

and the no-speech zones [36]. For this, the pyannote-speech-detection function of

the toolkit is used. First of all we have to configure the system to train a network

with bidirectional LSTMs that will use the features obtained in the previous step

and the references that the system has saved in pyannote.database. Then is time to

pass to the training. The network was trained doing 1000 iterations, as indicated

in the tutorial. However, it was thought that the result could improve with more

iterations, and they were changed to evaluate their behaviour with different number

of iterations. We can see in Fig. 3.2 an example of the error values that have been

obtained in the training part of one of the experiments carried out.

0.04

0.06

0.08

0.1

0.12

0.14

0 200 400 600 800 1000 1200 1400 1600 1800 2000

SAD training error

Figure 3.2: SAD training error by iteration

At the same time, a validation was carried out using the development part of the

corpus. In this part we can see a result more approximate to the result obtained in

the test part since these audios have not been used in training. Once the network is

trained, the results of the validation are observed to find the iteration in which the

system has given the best result. In Fig. 3.3 we can see the results obtained in the

validation part of the best experiment carried out.

30 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 31 — #35
✐

✐

✐

✐

✐

✐

3.6. Speech change detection

0.04

0.08

0.12

0.16

0.2

0.24

5 15 25 35 45 55

SAD valida!on error

Figure 3.3: SAD validation error by iteration

For the evaluation part of the initial segmentation obtained in this part of speech

acivity detection, a file in Python called Evaluation_AMI_pyannAudio_SAD.ipynb

was created in which the obtained scores were loaded, binarized to obtain the speech

regions and evaluated using the DER. The results of this evaluation can be seen in

the Section 3.9.

3.6 Speech change detection

The second part of the system is the task entrusted to perform the speech change

detection. The architecture used in this part is composed by two Bi-LSTMs and a

multi-layer perceptron (MLP) whose weights are shared across the sequence. This

MLP is made of three fully connected feedforward layers, using tanh activation func-

tion and sigmoid for the last layer.

One of the important parts in a Speaker Diarization system is the precise detection

of each fragment in which the audio will be segmented. In this part, using the

pyannote-change-detection function, another artificial neural network is trained to

perform the speech change detection [36]. The network is configured so that the

duration of the subsequence is 3.2 seconds, also 10 hours of audio are used per epoch

and each batch has 32 sub-sequences. The network uses the StackedRNN architecture

and is composed of bidirectional LSTMs.

The process followed to train the network is similar to the one done in the pre-

vious section. With pyannote.database the system is already prepared to find the

data of the AMI corpus and we simply have to pass the corresponding protocol to

the functions. In this case the AMI.SpeakerDiarization.MixHeadset protocol. We

MLLP-DSIC-UPV 31

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 32 — #36
✐

✐

✐

✐

✐

✐

Chapter 3. Toolkit Pyannote.audio

start the process training the recurrent network while the validation is carried out in

parallel. In Fig. 3.4 we can see the error obtained in the different iterations of the

training. After that, once we obtain the iteration with the best result, the evaluation

is carried out using Evaluation_AMI_pyannAudio_SCD.ipynb.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000

SCD training error

Figure 3.4: SCD train error by iteration

In the validation part of the speaker change detection in pyannote.audio the sys-

tems try to improve the coverage respect a defined value of purity. By default the

value of purity is 80%, but we will change it due to the improve of the system. We

have an example of the improvement of the coverage in Fig. 3.5.

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100

SCD valida!on coverage

Figure 3.5: SCD validation coverage by iteration

32 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 33 — #37
✐

✐

✐

✐

✐

✐

3.7. Speaker embbedings

3.7 Speaker embbedings

In this part, the main objective is to train a speech sequence embeddings based on

recurrent neural networks to get closer to the optimal function that achieve the best

comparison on speaker recognition.

For the training part, a triplet loss comparison is done [7]. It consist in a triplet

composed with features of a speaker (anchor), features of another sequence of the

same speaker (positive) and the last element is formed by a different sequence of a

different speaker (negative). The network tries to maximize the value of a searched

formula in case of the two values of the same speaker (comparison between the anchor

and the positive) and minimize it if the comparison is between different speakers

(comparison between the anchor and the negative). The distance is calculated using

the Eq. 3.2.

∆τ = ||f(xτ
a)− f(xτ

p)||
2
2 − ||f(xτ

a)− f(xτ
n)||

2
2 (3.2)

And the lost that we try to maximize is defined by the Eq. 3.3.

L(T) =
∑

τ∈T

max(0,∆τ + α) (3.3)

In the formulas above, τ is a possible triplet, T is the number of all possible

triplets and α is a safety margin. We can see an scheme of the triplet sampling in

Fig. 3.6.

Figure 3.6: Triplet loss training

MLLP-DSIC-UPV 33

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 34 — #38
✐

✐

✐

✐

✐

✐

Chapter 3. Toolkit Pyannote.audio

The first steps made in the speaker Diarization system proposed by Pyannote

have allowed to find the parts of speech and in them to detect the parts of changes

between speakers. Finally, this last part aims to create the speech turn embbedings.

The architecture used in this part is called TristouNet and it is based on training a

network using as a loss function triplets (Eq. 3.2. The margin α used in the system is

0.2 and the network consists of recurring bidirectional LSTMs. In this step we started

a training with 1000 iterations calling the pyannote-speaker-embedding function, but

later it was varied to improve the result obtained in the validation. The error that

we have obtained in the training of one of the experiments can be seen in the figure

3.7.

0.14

0.19

0.24

0.29

0.34

0.39

0.44

0.49

0.54

0 500 1000 1500 2000

Turn Embbedings training error

Figure 3.7: Speech turn embeddings train error by iteration

This part does not have a test evaluation method, we can simply observe the

different embeddings obtained. These are used in the next step when the whole

system is joined and the entire network is applied to the test part of the corpus. A

form of evaluate this part of the system is follow the value obtained in the validation

of the network (see Fig. 3.8).

3.8 Pipeline

The steps described above make up the whole system of speaker diarization, however

it is necessary to put them together to create the whole process from start to finish

and optimize its parameters. All the steps were based on recurrent neural networks,

34 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 35 — #39
✐

✐

✐

✐

✐

✐

3.8. Pipeline

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 500 1000 1500 2000

Turn Embbedings valida!on error

Figure 3.8: Speech turn embeddings validation error by iteration

except the final clustering after obtaining the embbedings. In Fig. 3.9 we can see an

outline of the whole pipeline [37].

Speech activity detection

Speech change detection

Speech turn embedding

Afinity propagation

Re-segmentation

Audio

E

θ
AP

, λ
AP

θ
peak

, δ
peak

θ
onset

, θ
offset

C
lu

st
e

ri
n

g

Output

In
it

ia
l

se
g

m
e

n
ta

ti
o

n

Figure 3.9: Speaker Diarization pipeline with pyannote.audio

The system of speaker diarization proposed by Pyannote is composed of two first

parts, speech activity detection and speech change detection, that aim to obtain a

homogeneous segmentation per speaker. This two parts are modelled as a classifica-

MLLP-DSIC-UPV 35

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 36 — #40
✐

✐

✐

✐

✐

✐

Chapter 3. Toolkit Pyannote.audio

tion task of an improved binary system with deep learning approaches. After that

the system performs a speech turn embedding part and a clustering based on affinity

propagation. The output of the system goes through a re-segmentation that serves

to refine the edges of the obtained segments.

At this point in the system of speaker diarization proposed it is only necessary to

join the entire pipeline using the saved results of the previous four steps. For this,

the pyannote-pipeline function is responsible for completing the process and tuning

the parameters of each part of the system. For doing that the first step is to provide

a configuration file with the path to the results of applying the networks in speech

activity detection, speaker change detection and speaker embeddings. After that, the

function is called to train the network modifying each one of the parameters that we

can see in the scheme shown before (see Fig. 3.9). In this step, the system uses the

train and development data to obtain the best result by performing iterations until

the user stops it.

At the end the pyannote-pipeline function is applied, but using the "apply" pa-

rameter, to perform the speaker diarization segmentation. For that it was necessary

to implement a file called Evaluation_AMI_pyannoteAud_v2.ipynb to evaluate the

system in the same way as have been done with the LIUM toolkit, using pyan-

note.metrics to get the DER.

3.9 Experiments

Observing the pyannote documentation for doing the evaluation part of the LIUM

toolkit with pyannote.metrics, a tool was found that carried out speaker diarization

with recurrent neural networks and was also in the toolkit, pyannote.audio. In addi-

tion, this tool had a tutorial to perform every part of a speaker diarization system

with the AMI corpus, which was very consistent with the work that was being done.

As we explain in the previous chapter, the AMI corpus [25] is a multi-modal

dataset consisting of 100 hours of meeting recordings and have 150 speakers in it. Its

references are stored in pyannote.database separated in 115 files of training, 20 files

of development and 21 files of test. (see Table 2.1)

The tool pyannote.audio has been designed to perform Speaker Diarization using

artificial neural networks. For this, it has different functions that serve to carry out

the training, development and testing of each of the parts in which the developers

have seen fit to separate the entire pipeline (see Fig. 3.9).

36 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 37 — #41
✐

✐

✐

✐

✐

✐

3.9. Experiments

To carry out the whole process of speaker diarization the toolkit is separated into

several parts, as well as the tutorial. After the extraction of features (see Sec. 3.4), the

first part of the system performs speech activity detection (see Sec. 3.5), where the

speech audio and the parts of silence, background sound or music are detected. The

second part looks for the points of change between speakers or non-speech parts (see

Sec. 3.6). The third part of the system is responsible for obtaining embeddings (see

Sec. 3.7) and the last one merge the whole system and obtains the final segmentation

(see Sec. 3.8). Although the tutorial seemed to perfectly comply with what was

sought, it had several problems.

We contributed to the pyannote.audio library by sending to the author the infor-

mation about the errors that we found when performing the tutorial. A problem in

the code occurred when the evaluation file wanted to load the files obtained when

applying any of the segmentations. When the scores were saved, it called the "pre-

computed" function that theoretically should return the scores. However, the library

used to obtain the path no longer returned it with the same format and therefore

gave an error. To solve it, first an implementation was done to obtain the path, then

we load the data with numpy and we call directly the internal function that returned

the scores.

As shown in the previous sections, the pyannote.audio toolkit performs different

parts of the speaker diarization process separately and then brings them together in

a single system. Some of these parts allow to be evaluated before performing the

application of the complete system and the segmentation of the audios in the AMI

corpus test part. Although the evaluation of the DER can only be done in the last

part, an evaluation of each part is necessary to choose the best composition of the

network that will be later chosen and joined. We must also have to say that the

parameters we observe in the following tables are tuned in the part in which the

pipeline is joined, but they help us with the choice of the best partial result.

In the tutorial the results that should be obtained at the end of each of the parts

were not indicated and therefore a series of experiments was necessary to evaluate the

values that could be obtained. In Table 3.1 we can see the different tests performed

in the speech activity detection part. The parameters that we have modified in the

training of the network were the number of iterations, the onset and the offset.

The iterations shown in the table have three different values, the tutorial indicated

that the value to use was 50, 1999 is the value corresponding to the last iteration and

the value of 203 iterations corresponds to the iteration with the best result obtained in

the development task of the network. We observe in the table that the detection error

MLLP-DSIC-UPV 37

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 38 — #42
✐

✐

✐

✐

✐

✐

Chapter 3. Toolkit Pyannote.audio

Table 3.1: SAD tests with AMI

Speech Activity Detection
Test Iterations onset offset Detection error rate
1 50 0,25 0,25 8,9
2 293 0,25 0,25 6,8
3 1999 0,25 0,25 7,2
4 50 0,35 0,25 8,2
5 293 0,35 0,25 6,6
6 1999 0,35 0,25 7
7 50 0,35 0,35 7,7
8 293 0,35 0,35 6,3
9 1999 0,35 0,35 6,8

rate has given a better result for an onset and an offset of 0.35, with 293 iterations

of the network.

The values to improve in the speech change detection part are purity and coverage.

The two values affect the calculation of the DER in the final step and therefore an

trade-off between them is sought. In the Table 3.2 we can see the results for the

different tests.

Table 3.2: SCD tests with AMI

Speech Change Detection
Test Iterations alpha Purity Coverage
1 50 0,5 38,6 100
2 1821 0,5 74 7,8
3 1999 0,5 74,2 7,9
4 50 0,2 40,4 86,7
5 1821 0,2 79,6 3,2
6 1999 0,2 79,6 3,2

We have tried to get the maximum value of purity but at the same time tried to

maximize the coverage. In the end it was considered that the best option was given

in test 3, with a purity of 74,2% and a coverage of 7,9%.

The last step that is carried out with pyannote.audio, that allows us the com-

parison with the toolkit of LIUM, is to segment the audios with the whole process.

First SAD, then SCD and finally the obtaining of the embedings, but this time the

system connects all the steps in the training stage and then the user passes the audios

through the network.

38 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 39 — #43
✐

✐

✐

✐

✐

✐

3.9. Experiments

The tutorial did not indicate which was the target DER that was sought, but it

was expected to obtain a value better or close to the 27% achieved with the LIUM.

The values of diarization error rate (DER) obtained can be seen in the table 3.3.

Table 3.3: DER results with AMI test

Speaker Diarization with pyannote.audio
Test Iterations correct false alarm m. detection confusion DER
1 1000 42,59 2,97 6,14 51,27 60,38
2 2000 58,96 4,82 2,74 38,30 45,86
3 2000 59,06 2,48 6,31 34,64 43,42
4 4000 61,59 2,85 4,87 33,54 41,25

The experiment 1 was carried out using exactly the same values that the tutorial

told us. That was training each part using 100 iterations but applying the networks

using the weights of the iteration number 50. This gave a DER value of 60,38%,

which was far from the expected DER. It seems that the tutorial was in the process

of development and the indicated parameters corresponded to the corpus used in the

articles [36] and not to the AMI corpus.

After that, in experiment 2, it was decided to increase the number of iterations

of the system due to the fact the result of the previous experiment show that it was

necessary a greater training of the networks. Then we apply each step of the system

using the saved weights of the last training iterations. This improved the DER to

45,86%, still far from the value sought.

In the SCD part of the system (see Sec. 3.6), the function used for the validation

of the network obtains the maximum value of coverage from a value of purity modified

by the user. In experiment 3, we repeat the whole process done in the experiment

2 but changing this value from 80% to 70%. This allowed the DER to improve to

43,17%.

The final test, the experiment 4, consisted of repeating the whole process of

speaker diarization, with 70% purity in the SCD part, but this time using the trained

networks of the experiments with the best results observed in the Table 3.1 and the

Table 3.2. This improved the value of DER until obtaining a value of 41.25%. We

also observed that the correct part of the test is 61.594%.

Despite the fact that the the false alarm and the miss detection values are quite

low, the value given in the calculation of the confusion makes the final DER quite

distant from the 27% obtained with LIUM. That can be because the last part of the

MLLP-DSIC-UPV 39

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 40 — #44
✐

✐

✐

✐

✐

✐

Chapter 3. Toolkit Pyannote.audio

pipeline, the speech turn embedding (see Sec. 3.7), does not have good results with

corpus with fast changes of speaker and overlap between speakers.

3.10 Conclusions

Nowadays, artificial neural networks are being used in an immense amount of research

areas. In the task of Speaker Diarization they are also being used and in this chapter

we have seen an example of software that used deep learning. The toolkit created

by Pyannote has allowed us not only to perform segmentation of audio signals from

the AMI corpus through the pyannote.audio tool, it also allowed us to structure the

corpus with pyannote.database and evaluate both this system and the Chapter 2 with

pyannote.metrics.

In order to obtain the entire pipeline, it was necessary to train each network of

each part of the process separately and then unite the entire system. These parts

were the feature extraction, speech activity detection, speech change detection and

speaker turns embeddings. By following the tutorial of pyannote.audio we saw that

it was still in development, since it was not until the end of its use when the complete

documentation was available and we also found some errors in the provided code that

had to be corrected.

Once we got the system working completely, the AMI corpus was used to follow

the tutorial and the results were improved until obtaining a 41.25% of DER. This

error was somewhat high, although it was seen that it was in the confusion part of

the error calculation that it raised the value up to that point. Therefore, we conclude

that in the last part of the system, where the embeddings of the speakers are obtained

and the last clustering is done, the system still had to improve for the AMI corpus.

A corpus with many brief speaker changes and various overlaps of different speakers.

40 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 41 — #45
✐

✐

✐

✐

✐

✐

Chapter 4

Evaluation of the corpus Video Actas

4.1 Introduction

In previous chapters we have been able to test different software, which has led us

to have a greater knowledge of how to implement a Speaker Diarization system and

the problems that may appear in its development. For further study of this speaker

diarization systems, we intend to use a public-sector corpus that allow us to apply

the processes implemented so far in a real task.

On one hand, after a collaborative search between the research group, a website

was found where video records of plenary sessions of different town halls are available.

The web [31] is accessible to any user and among all its resources it has the audio

of the plenary sessions and the references with the speakers’ turns. On the other

hand, the software developed by LIUM has shown results close to the expected in the

corpus used so far, the corpus AMI. Thus, in these experiments carried out in this

part of the work these two elements will be used together. We will use the system of

speaker diarization proposed in the LIUM toolkit with the Video Actas corpus.

This chapter will show the development followed to extract and parse the nec-

essary information from the web, its segmentation using the LIUM toolkit and the

evaluation of a selection of some data from Video Actas for test.

4.2 Experiments

There are few corpora in the network with a good labeling that allows to perform

a task of Speaker Diarization on it. Most of the articles that talk about this area

use their own corpus or payment corpus. In the first parts of this work, a free access

corpus called AMI has been used, however, for this chapter we searched for a corpus

related to public domain administrations.

The corpus that will be used in this chapter will be called Video Actas. It is

composed by data obtained from a website where the plenary sessions of different

41

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 42 — #46
✐

✐

✐

✐

✐

✐

Chapter 4. Evaluation of the corpus Video Actas

town halls are stored [31] and in Table 4.1 it is described the amount of data that we

used for test.

Table 4.1: Video Actas corpus statistics

Dataset # cities # hours # test files # test cities

Video Actas 27 2461 41 5

The first necessary step to be able to use this corpus was the realization of web

scraping to download the audio files and the references of the corpus. Due to this the

plenary sessions available until July 2018 on the web were stored.

The next step was to select a group of files that would serve as a test of the sys-

tem. For this, data were selected from Blanes, Pego, Catarroja, Teruel and Alzira.

After that it was necessary to parse the documents obtained with the web scrap-

ing to the format that we will use with pyannote.metrics for the evaluation of this

test data. And also the conversion of the audios from m4a to wav. For these last

two steps, two files were implemented in python to perform the tasks automatically,

parseVAtoPyann.ipynb and towav_videoact.ipynb.

When performing the pairing we found a problem with this corpus. The way to

record the turn of the speakers is not precise and does not inform when a speaker

has finished spoken, only when the next speaker starts. This causes it to be a very

noisy corpus in that its references are not well targeted and do not help to observe

the non-speech fragments well.

Finally, all the test files were segmented with the LIUM toolkit, using the pa-

rameters of the best test performed with the AMI corpus (see Sec. 2.8) applying

the implemented file LIUM_videoact.ipynb. We have the Table 4.2 in which we can

appreciate all the results of this process.

As mentioned in before, the Video Actas corpus have a not very good references

and we will see that the DER results are somewhat high due to the confusion factor

of the formula. We can see in the Table 4.2, that the DER obtained was 40,65%. This

DER is quite different from the one obtained with the AMI corpus that was 27%.

We also observe that what most affects the value of DER obtained is confusion. This

is partly due to the error noted in the reference. By having more non-speech parts

targeted as if they were speech zones, this makes false alarms very low (non-speech

zones detected as speech) and that confusion is high (area that is detected as speech

but is not known if it correspond to the same speaker).

42 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 43 — #47
✐

✐

✐

✐

✐

✐

4.3. Conclusions

4.3 Conclusions

To get closer to a real task, we obtained a corpus from a public domain website where

the plenary sessions of different town halls are kept, the corpus Video Actas. After

downloading the information by web-scraping, references were parsed to the format

used throughout the work for the different evaluations. In addition, the audio files

were converted to the format used by the software developed by LIUM. This toolkit

was used to perform the Speaker Diarization process in this chapter.

The results obtained when evaluating the output segmentation of LIUM were not

very positive. The DER obtained was 40,65%, a very high value. The conclusion from

the interpretation of the data was that the error occurred because the references of

the corpus were not entirely correct. In the corpus only the information regarding

the beginning of the turn of each speaker was available, but the non-speech zones

were not well targeted. This entailed that the value of the calculated error was not

significant with the real result of the system and that in these cases it may be a good

idea to apply a known speech activity detection system and modify the reference.

MLLP-DSIC-UPV 43

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 44 — #48
✐

✐

✐

✐

✐

✐

Chapter 4. Evaluation of the corpus Video Actas

Table 4.2: LIUM tests with Video Actes

File false alarm missed detection confusion DER
blanes20180409 11,01 7,08 12,44 30,53
blanes20180531 0,86 14,99 29,23 45,07
blanes20161027 1,55 4,42 29,72 35,69

catarroja20171005 1,14 8,78 28,41 38,33
teruel20180314 2,23 6,30 19,37 27,90

catarroja20180426 0,03 17,19 29,80 47,03
teruel20180404 3,20 4,66 29,48 37,34
blanes20170126 0,56 12,58 25,86 39,00
alzira20180530 0,13 3,05 30,69 33,88

blanes20180222 1,14 18,75 29,43 49,32
blanes20170306 1,87 5,85 23,67 31,38
blanes20160721 2,34 12,14 28,33 42,81
blanes20171130 0,97 8,48 31,21 40,65

catarroja20180222 0,15 19,94 28,46 48,55
blanes20161213 0,98 22,22 20,66 43,86

catarroja20170525 0,85 23,09 26,86 50,81
catarroja20171130 0,32 19,68 28,04 48,04

blanes20170427 1,60 6,33 30,95 38,88
blanes20160630 0,94 12,96 28,89 42,80
blanes20160929 1,62 4,69 31,55 37,86
blanes20170223 1,00 12,28 27,56 40,84
blanes20160817 1,28 10,48 27,55 39,31
blanes20180426 0,57 16,09 28,53 45,19
blanes20170525 1,88 5,13 28,19 35,21
teruel20180305 17,22 4,59 26,38 48,19
pego20171102 2,44 8,33 20,28 31,05

catarroja20170629 3,71 9,04 30,90 43,66
blanes20171004 19,15 5,81 32,83 57,79
alzira20180327 0,54 0,92 31,80 33,25

catarroja20171026 0,42 25,60 24,92 50,93
catarroja20171115 3,82 19,09 27,11 50,02
catarroja20170619 2,73 14,02 27,85 44,60

blanes20171117 1,36 5,75 17,65 24,77
blanes20171228 2,00 6,75 31,01 39,77

catarroja20170427 0,43 8,38 31,45 40,26
catarroja20170914 4,76 36,70 20,13 61,59
catarroja20170727 0,70 23,94 28,94 53,58

alzira20180502 1,29 2,08 22,77 26,13
alzira20180425 0,87 1,73 29,97 32,57

blanes20161124 1,55 4,42 29,72 35,69
teruel20180507 7,80 22,18 21,25 51,23

Total 1,29 8,78 28,41 40,65

44 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 45 — #49
✐

✐

✐

✐

✐

✐

Chapter 5

Conclusions

Throughout the work done we have achieved the objectives that we defined at the

beginning of the approach. We have managed in becoming familiar and understanding

the task of Speaker Diarization. Also we have apply two different systems, one of

them close to the state-of-the-art, to the AMI corpus. Another objective that we

achieved was improving the results obtained with the systems throughout the different

experiments carried out. The last objective was to find a corpus related to the public

sphere, and for that we used a corpus created from the information on the Video

Actas website.

The first tool used to obtain the segmentation that is sought in a speaker diariza-

tion system has been LIUM. This tool has allowed us to follow a whole pipeline based

on hidden Markov models and Gaussian mixture models. With it, a DER of 27,07%

was obtained. This result has been close to the 25% reference of other authors who

used the same toolkit, but it has been difficult to achieve due to the brief explanations

about the process followed.

The other tool used has been pyannote.audio. This tool uses an architecture

close to the state-of-the-art with recurrent neural networks for different steps. It has

been seen that in the parts of Speech activity detection and Speech change detection

the software work better than the LIUM tool, with a false alarm of 2,8% and a

miss detection of 4,8% in pyannote with respect to a false alarm of 6,7% and a miss

detection of 7,6% in LIUM. However, the final DER was 41,25% due to the confusion.

We can say then that in this developing system there is a need to improve the part

of the final clustering in order to obtain a better result. This may be due to the fact

that the AMI corpus has many brief changes and in these cases the previous systems

continue to give good results.

Regarding the corpus Video Actas it can be said that the speaker diarization

obtains a acceptable result, nevertheless it is necessary to have a good reference to

be able to correctly evaluate the obtained result. It is necessary to emphasize that

if automatic systems are wanted to be used in a near future to extract information

about public data, all the turns of each speaker and the interventions of the rest of

the attendees in the plenary sessions must be taken into account.

45

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 46 — #50
✐

✐

✐

✐

✐

✐

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 47 — #51
✐

✐

✐

✐

✐

✐

Bibliography

[1] Nathional institute of standards and technology - www.nist.gov, 2009.

[2] Phone conversation diarization with lium - dsp.stackexchange.com, 2017.

[3] Leigh D. Alsteris and Kuldip K. Paliwal. Short-time phase spectrum in speech

processing: A review and some experimental results. Digital Signal Processing,

17(3):578 – 616, 2007.

[4] X. Bost, G. Linarès, and S. Gueye. Audiovisual speaker diarization of tv series. In

2015 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 4799–4803, April 2015.

[5] Hervé Bredin. Pyannote multimedia processing - pyannote.github.io.

[6] Hervé Bredin. pyannote.metrics: a toolkit for reproducible evaluation, diag-

nostic, and error analysis of speaker diarization systems. In Interspeech 2017,

18th Annual Conference of the International Speech Communication Association,

Stockholm, Sweden, August 2017.

[7] Hervé Bredin. TristouNet: Triplet Loss for Speaker Turn Embedding. In

42nd IEEE International Conference on Acoustics, Speech and Signal Process-

ing, ICASSP 2017, 2017.

[8] P. Cyrta, T. Trzciński, and W. Stokowiec. Speaker Diarization using Deep Re-

current Convolutional Neural Networks for Speaker Embeddings. ArXiv e-prints,

August 2017.

[9] Benoit Mathieu et al. Yaafe, an easy to use and efficient audio feature extraction

software. In Proceedings of the 11th International Society for Music Information

Retrieval Conference, pages 441–446, Utrecht, The Netherlands, August 9-13

2010. http://ismir2010.ismir.net/proceedings/ismir2010-75.pdf.

[10] M. Rouvier et al. An Open-source State-of-the-art Toolbox for Broadcast News

Diarization. Lyon, France, August 2013.

[11] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow.org.

47

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 48 — #52
✐

✐

✐

✐

✐

✐

Bibliography

[12] S. Galliano et al. Corpus description of the ester evaluation campaign for the rich

transcription of french broadcast news. In In Proceedings of the 5th international

Conference on Language Resources and Evaluation (LREC 2006, pages 315–320,

2006.

[13] Thomas Kluyver et al. Jupyter notebooks – a publishing format for reproducible

computational workflows. In F. Loizides and B. Schmidt, editors, Positioning

and Power in Academic Publishing: Players, Agents and Agendas, pages 87 –

90. IOS Press, 2016.

[14] Xavier Anguera Miró et al. Speaker diarization: A review of recent research.

IEEE Transactions on Audio, Speech, and Language Processing, 20:356–370,

2012.

[15] G. Friedland, O. Vinyals, Y. Huang, and C. Muller. Prosodic and other long-

term features for speaker diarization. IEEE Transactions on Audio, Speech, and

Language Processing, 17(5):985–993, July 2009.

[16] Rashmi Gangadharaiah, Balakrishnan Narayanaswamy, and Narayanaswamy

Balakrishnan. A novel method for two-speaker segmentation. 01 2004.

[17] H. Gish, M. . Siu, and R. Rohlicek. Segregation of speakers for speech recognition

and speaker identification. In [Proceedings] ICASSP 91: 1991 International

Conference on Acoustics, Speech, and Signal Processing, pages 873–876 vol.2,

April 1991.

[18] Kyu Jeong Han and Shrikanth Narayanan. Agglomerative hierarchical speaker

clustering using incremental gaussian mixture cluster modeling. In INTER-

SPEECH, 2008.

[19] Qin Jin, Kornel Laskowski, Tanja Schultz, and Alex Waibel. Speaker segmen-

tation and clustering in meetings. In In Proceedings of the 8th International

Conference on Spoken Language Processing, Jeju Island, Korea, 2004.

[20] Sukhvinder Kaur, J. S. Sohal, and Indira Gujral. Speech activity detection and

its evaluation in speaker diarization system. 2017.

[21] Eva Kiktova and Jozef Juhar. Comparison of diarization tools for building

speaker database. 13:314–319, 11 2015.

[22] Akshay Kumar and Anurendra Kumar. Unsupervised speaker diarization.

48 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 49 — #53
✐

✐

✐

✐

✐

✐

Bibliography

[23] Lie Lu, Hong-Jiang Zhang, and Hao Jiang. Content analysis for audio classifi-

cation and segmentation. IEEE Transactions on Speech and Audio Processing,

10(7):504–516, Oct 2002.

[24] S. Madikeri and H. Bourlard. Kl-hmm based speaker diarization system for

meetings. In 2015 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 4435–4439, April 2015.

[25] Iain et al. Mccowan. The ami meeting corpus. 01 2005.

[26] S. Meignier and T. Merlin. LIUM SpkDiarization: An Open Source Toolkit For

Diarization. In Proc. CMU SPUD Workshop, Dallas (Texas, USA), March 2010.

[27] V. Subba Ramaiah and R. Rajeswara Rao. Speaker diarization system using

hxlps and deep neural network. Alexandria Engineering Journal, 57(1):255 –

266, 2018.

[28] Guido Rossum. Python reference manual. Technical report, Amsterdam, The

Netherlands, The Netherlands, 1995.

[29] Md Sahidullah and Goutam Saha. Comparison of speech activity detection

techniques for speaker recognition. 10 2012.

[30] Zia et al. Saquib. A survey on automatic speaker recognition systems. 123:134–

145, 01 2010.

[31] Ambiser Innovaciones S.L. Sistema de gestión de actas municipales -

www.videoacta.es.

[32] Pulkit Verma and Pradip K. Das. i-vectors in speech processing applications: a

survey. International Journal of Speech Technology, 18(4):529–546, Dec 2015.

[33] Quan Wang, Carlton Downey, Li Wan, Philip Andrew Mansfield, and Igna-

cio Lopez Moreno. Speaker diarization with lstm. arXiv, 2018.

[34] S. H. Yella, A. Stolcke, and M. Slaney. Artificial neural network features

for speaker diarization. In 2014 IEEE Spoken Language Technology Workshop

(SLT), pages 402–406, Dec 2014.

[35] Sree Harsha Yella. Speaker diarization of spontaneous meeting room conversa-

tions. PhD thesis, EPFL, Lausanne, January 2015.

[36] Ruiqing Yin, Hervé Bredin, and Claude Barras. Speaker Change Detection

in Broadcast TV using Bidirectional Long Short-Term Memory Networks. In

MLLP-DSIC-UPV 49

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 50 — #54
✐

✐

✐

✐

✐

✐

Bibliography

18th Annual Conference of the International Speech Communication Association,

Interspeech 2017, Stockholm, Sweden, August 2017.

[37] Ruiqing Yin, Hervé Bredin, and Claude Barras. Neural Speech Turn Segmenta-

tion and Affinity Propagation for Speaker Diarization. In 19th Annual Confer-

ence of the International Speech Communication Association, Interspeech 2018,

Hyderabad, India, September 2018.

[38] M. Zelenak, C. Segura, J. Luque, and J. Hernando. Simultaneous speech detec-

tion with spatial features for speaker diarization. IEEE Transactions on Audio,

Speech, and Language Processing, 20(2):436–446, Feb 2012.

[39] Ying Zhao and George Karypis. Evaluation of hierarchical clustering algorithms

for document datasets. In Proceedings of the Eleventh International Conference

on Information and Knowledge Management, CIKM ’02, pages 515–524, New

York, NY, USA, 2002. ACM.

[40] W. Zhu, W. Guo, and G. Hu. Feature mapping for speaker diarization in noisy

conditions. In 2017 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 5445–5449, March 2017.

50 MLLP-DSIC-UPV

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 51 — #55
✐

✐

✐

✐

✐

✐

List of Figures

1.1 Typical Speaker Diarization system . 6

2.1 Speaker Diarization System with LIUM 17

2.2 Example of pyannote.core annotation 22

3.1 Reference annotation for SCD . 30

3.2 SAD training error by iteration . 30

3.3 SAD validation error by iteration . 31

3.4 SCD train error by iteration . 32

3.5 SCD validation coverage by iteration 32

3.6 Triplet loss training . 33

3.7 Speech turn embeddings train error by iteration 34

3.8 Speech turn embeddings validation error by iteration 35

3.9 Speaker Diarization pipeline with pyannote.audio 35

51

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 52 — #56
✐

✐

✐

✐

✐

✐

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 53 — #57
✐

✐

✐

✐

✐

✐

List of Tables

2.1 AMI corpus statistics . 20

2.2 DER results with AMI test . 23

3.1 SAD tests with AMI . 38

3.2 SCD tests with AMI . 38

3.3 DER results with AMI test . 39

4.1 Video Actas corpus statistics . 42

4.2 LIUM tests with Video Actes . 44

53

✐

✐

“memoria” — 2018/9/17 — 19:17 — page 54 — #58
✐

✐

✐

✐

✐

✐

