

Doctoral Thesis

Automating Routine Tasks in
Smart Environments

A Context-aware Model-driven Approach

Estefańıa Serral Asensio

Supervisors:
Dr. Pedro Valderas Aranda
Dr. Vicente Pelechano Ferragud

Automating Routine Tasks in Smart Environments: A Context-aware
Model-driven Approach

This report was prepared by
Estefańıa Serral Asensio

Supervisors
Dr. Pedro Valderas Aranda
Dr. Vicente Pelechano Ferragud

Members of the Thesis Committee
Dr. Oscar Pastor López, Universidad Politécnica de Valencia
Dr. Joan Fons Cors, Universidad Politécnica de Valencia
Dr. Xavier Franch Gutiérrez, Universitat Politècnica de Catalunya
Dr. Antonio Ruiz Cortés, Universidad de Sevilla
Dr. José Bravo Rodŕıguez, Universidad de Castilla-La Mancha

Release date: 14-07-2011
Comments: A thesis submitted for the degree of Doctor in

Computer Science at the Universidad Politécnica
de Valencia.
Title page painting of Vladimir Kush (c©Vladimir
Kush. All rights reserved).

Rights: c©Estefańıa Serral

Centro de Investigación en Métodos de Producción de Software
Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia
Spain

Tel: (+34) 963 877 007 (Ext. 83530)
Fax: (+34) 963 877 359
Web: http://www.pros.upv.es

Acknowledgements

First of all, I would like to thank my supervisors, Dr. Vicente
Pelechano and Dr. Pedro Valderas, for always being there

and showing me the path to be followed. This work would not
have been possible without their valuable guidelines, advice, reviews
and discussions. Their expertise, understanding, and patience have
contributed a lot to improve this work. Thanks for everything. I also
want to express my gratitude to Prof. Óscar Pastor for his direction
of our research center, for always having a smile for me and for not
exchanging me for camels when he had the chance. Also, I would like
to thank the external members of my committee, Dr. Antonio Ruiz,
Dr. Xavier Franch and José Bravo for taking time out from their busy
schedules and for their valuable comments.

Thanks Javi and Joan, for trusting me and giving me the
opportunity of forming part of the pervasive group. Also, thanks
for provinding me their support and guidelines in my first steps as a
researcher. Thanks Vicky for her catchy laugh and for our amusing
conversations. Thanks Miriam, Isma, Nacho and Pablo, for helping me
in my work and showing me that the workplace has no reason to be hard,
but it may be a place where we can have fun and where people help
each other whenever needed. Thanks Salva for his effort, his time and
his patience. Also, I want to thank Paqui, Clara, Mario, Maria, Ignacio,

Paco, Nathalie and Sergio S. for helping me in my work by only asking.
Thanks Arthur for keeping me company in the long afternoons in the
lab. Thanks also to José Luis for his friendship and his incredible sense
of humor, his emails made me laugh a lot. Thanks Pau and Carlos, for
being my partners, for helping me with the thesis paperwork and, above
all, for being a work model to follow. A special gratitude is due to Bea
and Giovanni for their friendship, support and encouragement inside
and out the lab. I would also like to thank Ana for her kindness and
her help with the paperwork, and to the rest of friends and colleagues
from the ProS research center for their collaboration.

Outside the work, plenty of people kept me sane and happy; without
them, I could not have finished this work. I am grateful to all my
friends, among them, Ana and Norma, my friends from Losa and my
friends from the university, for their continued moral support and the
quality time we spend together.

I want to express my warmest gratitude to all my family, for their
constant support, encouragement and love. I know that they want as
much as me that I am a Doctor. Above all, I want to thank my parents,
Rafa and Amparo, who raised me with love and great values. I am
forever indebted to them for their continued understanding, endless
patience and encouragement.

Also, I would like to express a special gratitude to my grandmothers.
They took care of me the best they could, always providing me with
their support and incondicional love. For that, they will always be in
my mind and my heart. I wish they still were with me to share my joy
with them. Nobody knows how much I miss them.

Finally, I would like to dedicate this thesis to my loving, supportive,
and patient boyfriend Guillem. Thanks for being at my side everyday,
for trusting me, for putting up with my bad temper, for helping me in
whatever I require and for making me laugh whenever I need.

Abstract

Ubiquitous and Pervasive computing put forth a vision where
environments are enriched with devices that provide users with

services to serve them in their everyday lives. The building of such
environments has the final objective of automating tedious routine tasks
that users must perform every day.

This automation is a very desirable challenge because it can
considerably reduce natural resource consumption and improve users’
quality of life by 1) making users’ lives more comfortable, efficient, and
productive, and 2) helping them to stop worrying and wasting time
in performing tasks that need to be done and that they do not enjoy.
However, the automation of user tasks is a complicated and delicate
matter because it may bother users, interfere in their goals, or even be
dangerous. To avoid this, tasks must be automated in a non-intrusive
way by attending to users’ desires and demands.

This is the main goal of this thesis, that is, to automate the routine
tasks that users want the way they want them. To achieve this, we
propose two models of a high level of abstraction to specify the routines
to be automated. These models provide abstract concepts that facilitate
the participation of end-users in the model specification. In addition,
these models are designed to be machine-processable and precise-enough
to be executable models.

iv

Thus, we provide a software infrastructure that is capable of
automating the specified routines by directly interpreting the models at
runtime. Therefore, the routines to be automated are only represented
in the models. This makes the models the primary means to understand,
interact with, and modify the automated routines. This considerably
facilitates the evolution of the routines over time to adapt them to
changes in user behaviour. Without this adaptation, the automation of
the routines may not only become useless for end-users but may also
become a burden on them instead of being a help in their daily life. In
our approach, the evolution of the automated routines is achieved by
simply updating the models. As soon as the models are changed, the
changes are also taken into account by the software infrastructure that
interprets them to execute the routines. To support this evolution, our
approach provides high-level mechanisms as well as a graphical tool that
allow the routines to be evolved at runtime by updating the models.

The proposal has been validated by following a case study based
evaluaction in which end-users have participated. This validation has
proven that our approach is capable of automating the routine tasks
that users want to be automated the way they want them to be.

Resumen

L
a computación ubicua o pervasiva plantea proveer de inteligencia a
nuestros entornos desplegando en ellos dispositivos capaces de sensar

la información que los rodea (como la temperatura, la localización de
los usuarios, etc.) y de controlar los objetos cotidianos (como luces,
persianas, etc.) que contienen. Uno de los objetivos más importantes de
construir estos entornos es ofrecer servicios a los usuarios que permitan
automatizar las tediosas tareas rutinarias que tienen que llevar a cabo
cada d́ıa.

Esta automatización mejoraŕıa considerablemente la calidad de vida
de los usuarios, permitiendo que se despreocupen de realizar estas tareas
y evitando que malgasten su tiempo en llevarlas a cabo. Además, al
automatizarse, las tareas pueden ser ejecutadas ofreciendo más confort
a los usuarios y de manera más eficiente, reduciendo el consumo de
recursos naturales como enerǵıa y agua.

Sin embargo, la automatización de tareas es un tema complicado
ya que, si se realiza erróneamente, puede resultar muy molesto para los
usuarios. Si el sistema automatiza tareas que los usuarios no desean o las
automatizan de una manera diferente a como ellos quieren, el resultado
de la automatización puede acabar siendo intrusivo, interfiriendo en los
objetivos de los usuarios, o siendo incluso peligroso. Para evitar estas
consecuencias no deseadas, las tareas deben automatizarse atendiendo

vi

a los deseos y necesidades de los usuarios.

Éste es el objetivo principal de esta tesis: automatizar las
tareas rutinarias de los usuarios tal y como ellos desean que sean
automatizadas. Para conseguirlo, proponemos, por una parte, dos
modelos de alto nivel de abstracción para describir las rutinas. Estos
modelos proporcionan conceptos cercanos a los usuarios, facilitando
su participación en la descripción de las rutinas. Además, los
modelos están diseñados para ser interpretados por máquinas, y
para proporcionar información suficientemente precisa para poder ser
directamente ejecutables.

Por otra parte, proporcionamos también una infraestructura
software que es capaz de ejecutar los modelos interpretándolos en
runtime; lo que permite automatizar las rutinas tal y como están
descritas en los modelos. De esta manera, éstos constituyen la única
representación de las rutinas que deben automatizarse, lo que los
convierte en los medios principales para entenderlas y modificarlas. Esto
facilita considerablemente la evolución de las rutinas para adaptarlas a
los cambios de comportamiento de los usuarios. Sin esta adaptación,
la automatización acabaŕıa siendo inútil e incluso una molestia para
los usuarios. En nuestra aproximación, la evolución de las rutinas se
lleva a cabo mediante la adaptación de los modelos, ya que en cuanto
éstos cambian, los cambios son tenidos en cuenta por la infraestructura
software que los interpreta. Para dar soporte a esta evolución,
proporcionamos tanto mecanismos de alto nivel de abstracción como
una herramienta gráfica que permite evolucionar las rutinas en runtime
mediante la modificación de los modelos.

El trabajo presentado en esta tesis ha sido validado siguiendo una
evaluación basada en casos de estudio en la han participado usuarios
finales. Esta validación prueba que la propuesta presentada es capaz de
automatizar las tareas rutinarias que los usuarios quieren y tal y como
ellos quieren.

Resum

L
a computació ubiqua o pervasiva planteja proveir d’intel·ligència els
nostres entorns desplegant en ells dispositius capaços de sensar la

informació que els rodeja (tals com la temperatura, la localització dels
usuaris, etc.) i de controlar els objectes quotidians (tals com llums,
persianes, etc.). Un dels objectius més importants de construir aquests
entorns és oferir servicis als usuaris que permeten automatitzar les
farragoses tasques rutinàries que han de dur a terme cada dia.

Aquesta automatització milloraria considerablement la qualitat de
vida dels usuaris, permetent que es despreocupen de realitzar aquestes
tasques i evitant que malbaraten el seu temps en portar-les a terme.
A més, en automatitzar-se, les tasques poden ser executades oferint
més confort als usuaris i de manera més eficient, reduint el consum de
recursos naturals com energia i aigua.

No obstant això, l’automatització de tasques és un tema complicat ja
que, si es realitza erròniament, pot resultar molt molest per als usuaris.
Si el sistema automatitza tasques que els usuaris no desitgen o les
automatitzen d’una manera diferent de com ells volen, el resultat de
l’automatització pot acabar sent intrusiu, interferint en els objectius
dels usuaris, o sent fins i tot perillós. Per evitar aquestes conseqüències
no desitjades, les tasques han d’automatitzar-se atenent els desitjos i
necessitats dels usuaris.

viii Contents

Aquest és l’objectiu principal d’aquesta tesi: automatitzar les
tasques rutinàries dels usuaris tal i com ells desitgen que siguen
automatitzades. Per tal d’aconseguir-ho, proposem, d’una banda, dos
models d’alt nivell d’abstracció per descriure les rutines. Aquests
models proporcionen conceptes pròxims als usuaris i aix́ı faciliten la
seua participació en la descripció de les rutines. A més, els models
estan dissenyats per ser interpretats per màquines, i per proporcionar
informació prou precisa per fer-los directament executables.

D’altra banda, proporcionem també una infraestructura de progra-
mari que és capaç d’executar els models interpretant-los en runtime.
Això permet automatitzar les rutines tal i com estan descrites en
els models. D’aquesta manera, els models constitueixen l’única
representació de les rutines que han d’automatitzar-se, la qual cosa els
converteix en els mitjans principals per a entendre-les i modificar-les.
Això facilita considerablement l’evolució de les rutines per adaptar-les
als canvis de comportament dels usuaris. Sense aquesta adaptació,
l’automatització acabaria sent inútil i fins i tot una molèstia per als
usuaris.

En la nostra aproximació, l’evolució de les rutines es porta a
terme per mitjà de l’adaptació dels models, ja que, quan aquests
canvien, els canvis són tinguts en compte per la infraestructura de
programari que els interpreta. Per tal de donar suport a aquesta
evolució, proporcionem tant mecanismes d’alt nivell d’abstracció com
una ferramenta gràfica que permet evolucionar les rutines en runtime
per mitjà de la modificació dels models.

El treball presentat en aquesta tesi ha sigut validat seguint una
avaluació basada en casos d’estudi en la qual han participat usuaris
finals. Aquesta validació prova que la proposta presentada és capaç
d’automatitzar les tasques rutinàries que els usuaris volen i tal i com
ells volen.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 6

1.3 Thesis Goals . 7

1.4 Design Methodology . 9

1.5 Thesis Context . 10

1.6 Outline . 11

2 Background and Technological Overview 13

2.1 Ubiquitous Computing vs Pervasive Computing vs
Ambient Intelligence . 14

2.2 Model Driven Engineering 15

2.2.1 Development Models, Executable Models &
Runtime Models 15

2.2.2 Code Generation vs Model Interpretation 17

2.3 Ontology, Ontology Languages and Ontology Reasoners 20

2.3.1 Web Ontology Language (OWL) 22

2.3.2 Pellet: an OWL-DL Reasoner 22

x CONTENTS

2.3.3 SPARQL . 23

2.4 Open Services Gateway initiative (OSGi) 24

2.5 Conclusions . 28

3 State of the Art 29

3.1 Analysis Criteria . 30

3.2 Machine Learning Approaches 34

3.2.1 Analysis and Discussion 44

3.3 Rule-based Context-aware Approaches 46

3.3.1 Analysis and Discussion 55

3.4 End-user Centred Approaches 56

3.4.1 Analysis and Discussion 65

3.5 Benefits of our Proposal 67

3.6 Discussion and Conclusions 68

4 Overview of the Proposal 71

4.1 Introduction . 73

4.2 Process for Automating User Behaviour Patterns 74

4.2.1 SPEM notation 75

4.2.2 The Process Activities 76

4.3 Software Infrastructure 80

4.4 Validation . 84

4.5 Conclusions . 86

5 Modelling User Behaviour Patterns 87

5.1 Modelling Context . 88

5.1.1 The Context Concept 89

5.1.2 Context Modelling in Pervasive Systems 91

5.1.3 An Ontology-based Context Model 92

5.1.4 Tool Support for Creating a Context Model . . . 99

CONTENTS xi

5.2 Modelling the Behaviour Patterns 101

5.2.1 The Task Concept 101

5.2.2 Task Modelling in Software Engineering 102

5.2.3 A Context-adaptive Task Model 105

5.2.4 Tool support . 118

5.3 Conclusions . 121

6 Automating User Behaviour Patterns 123

6.1 Requirements for Automating Behaviour Patterns . . . 124

6.2 Behaviour Patterns’ Automation Process 125

6.3 Software Infrastructure 128

6.3.1 Components of the Software Infrastructure . . . 128

6.3.2 Implementation of the Software Infrastructure . 131

6.4 Conclusions . 146

7 Addressing the Evolution of the User Behaviour
Patterns 149

7.1 Evolution Characterization 151

7.2 Mechanisms for Evolving the Behaviour Patterns 153

7.3 Tool Support . 159

7.3.1 Interface Design Decisions 163

7.3.2 Description of the Graphical User Interfaces . . . 164

7.3.3 Evolving the Behaviour Patterns 171

7.4 Conclusions . 174

8 Evaluation of the Approach 175

8.1 Smart Home Case Studies 176

8.1.1 Design of the Smart Home Case Studies 177

8.1.2 Results of the smart home case studies 183

8.1.3 Conclusions of the Smart Home Case Studies’
Validation . 196

xii CONTENTS

8.2 Nursing Home Case Study 197

8.2.1 Design of the Nursing Home Case Study 197

8.2.2 Results of the the Nursing Home Case Study . . 200

8.2.3 Conclusions of the Nursing Home Case Study
Validation . 207

8.3 Scalability of Using Models at Runtime 208

8.4 Conclusions . 209

9 Conclusions 211

9.1 Contributions . 212

9.2 Publications . 213

9.2.1 Detail and Relevance of the publications 216

9.3 Future work . 217

9.3.1 Combination with Machine-learning Algorithms . 218

9.3.2 Providing Adaptive User Interfaces 219

9.3.3 Interactive and Iterative Tasks and Tasks with State220

9.3.4 Facilitating the Routine Task Evolution by End-
users . 222

Bibliography 224

A Software Infrastructure 237

A.1 Model Management Mechanisms Implementation 237

A.1.1 Managing the Context Model: OCean 239

A.1.2 Managing the Task Model: MUTate 242

A.1.3 APIs’ Testing . 246

A.2 Pervasive Services . 248

A.3 Context Monitor . 250

A.4 MAtE . 253

B Case Study Requirements 257

CONTENTS xiii

B.1 Smart Home Requirements 257

B.1.1 An Interview for Identifying the Behaviour Patterns257

B.1.2 The Identified Behaviour Patterns 259

B.1.3 Required Services 261

B.2 Nursing Home Requirements 263

B.2.1 ACube Requirement Elicitation Artefacts 263

B.2.2 The Identified Behaviour Patterns 269

B.2.3 Required Services 272

xiv CONTENTS

List of Figures

1.1 Research methodology followed in this thesis. 10

2.1 The OSGi Service Platform Architecture 25

3.1 Architecture of the Neural Network house project 35

3.2 ISL architecture . 38

3.3 Architecture of the MavHome and CASAS projects . . . 41

3.4 An example of HHMM 42

3.5 Architecture of the Henricksen and Indulska’s approach 49

3.6 a CAPpella user interface 57

3.7 CAMP user interface . 59

3.8 PiP Graphical Interface 64

4.1 Pervasive System Architecture 72

4.2 SPEM notation . 76

4.3 SPEM Process for achieving the automation of user
behaviour patterns . 77

4.4 Software infrastructure 81

xvi LIST OF FIGURES

5.1 Context ontology classes in ecore format 94

5.2 An example of a context model shown in a tree
representation on the top and in OWL code on the bottom 99

5.3 Snapshot of the Protégé user interface 100

5.4 Example of behaviour pattern modelling (graphical
representation) . 108

5.5 Overview of the task model metamodel 114

5.6 Snapshot of the behaviour pattern modelling tool 120

5.7 Part of the XMI representation of the WakingUp
behaviour pattern . 120

6.1 Process for Automating User Behaviour Patterns 126

6.2 Automating User Behaviour Patterns 129

6.3 Communication among the components of the software
infrastructure . 133

6.4 Part of a PervML service model and an example of service
code generation . 135

6.5 Overview of the OCean API 138

6.6 Overview of the MUTate API 140

6.7 MAtE process for automating the user behaviour patterns 142

7.1 Evolving the executed services using OCean and MUTate 154

7.2 WakingUp model before and after evolving the executed
services . 155

7.3 Execution traces before and after evolving the executed
services . 155

7.4 Modifying context conditions using OCean and MUTate 157

7.5 WakingUp model and execution trace after modifying the
context conditions . 157

7.6 Evolving the service execution plan using OCean and
MUTate . 158

LIST OF FIGURES xvii

7.7 WakingUp model and execution trace after evolving the
service execution plan 159

7.8 End-user toolkit architecture 160

7.9 Snapshot of the end-user tool for managing the user
behaviour patterns . 166

7.10 Snapshot of the end-user tool for specifying the context
situation of a pattern . 167

7.11 Snapshot of the end-user tool for specifying the tasks of
a pattern . 168

7.12 Snapshot of the end-user tool for managing context
information . 169

7.13 Snapshot of the end-user tool for managing user
information . 170

7.14 Evolving the executed services using the end-user tool . 172

7.15 Modifying the context conditions using the end-user tool 173

7.16 Evolving the service execution plan using the end-user tool174

8.1 A context model examples of the smart home case studies 185

8.2 Examples of the models specified in the smart home case
studies . 186

8.3 JUnit test for evaluating that all the pattern tasks are
executed . 190

8.4 Results of the PSSUQ Questionnaire 192

8.5 Interface extended with forms for modifying a context
condition . 194

8.6 Interface extended with forms for modifying a behaviour
pattern task . 195

8.7 Interface that shows the change validation 196

8.8 Three produced artefacts: a couple of relevant Personas,
the scenario of aggressive behaviour in which they are
involved and the slice of correspondent goal model. . . . 201

xviii LIST OF FIGURES

8.9 Overview of the context model created for the nursing
home case study . 203

8.10 Specified behaviour patterns in the nursing home case
study . 205

8.11 Example of a behaviour pattern evolution 207

8.12 Temporal cost of task model operations 209

9.1 Snapshot of an iPhone interface for specifying a
behaviour pattern . 223

A.1 Class diagram of the context ontology in ecore format . 241

A.2 Overview of the OCean API 243

A.3 Class diagram of the task model metamodel in ecore format244

A.4 Overview of the MUTate API 246

A.5 JUnit test example . 247

A.6 An example of initializePersistentVariables operation
that the pervasive services must implement 250

A.7 Code for updating the context model 252

A.8 MAtE process for automating the user behaviour patterns 253

A.9 Code for carrying out the first step of MAtE by using
MUTate . 254

A.10 Code for executing a system task 256

B.1 Services required for the smart home case studies 262

B.2 Tropos model of the ACube case study. 264

B.3 Transformation performed following the provided guide-
lines . 271

B.4 Services required for the nursing home case studies . . . 273

List of Tables

3.1 Table layout for showing the most important character-
istics of each work. X : characteristic not supported or
information not published. 33

3.2 Table that summarizes the most important characteris-
tics of NNH. 36

3.3 Table that summarizes the most important characteris-
tics of iDorm. 39

3.4 Table that summarizes the most important characteris-
tics of MavHome and CASAS. 43

3.5 Table that summarizes the most important characteris-
tics of ParcTab. 47

3.6 Table that summarizes the most important characteris-
tics of the Henricksen and Indulska’s approach. 50

3.7 Table that summarizes the most important characteris-
tics of the Garćıa-Herranz’s Approach. 54

3.8 Table that summarizes the most important characteris-
tics of a CAPpella. 58

3.9 Table that summarizes the most important characteris-
tics of CAMP. 60

xx LIST OF TABLES

3.10 Table that summarizes the most important characteris-
tics of Alfred. 63

3.11 Table that summarizes the most important characteris-
tics of PiP. 66

3.12 Table that summarizes the state of the art of the
challenges confronted in this thesis. 69

Chapter 1

Introduction

I
n recent decades, computers have become more and more common
in many items such as DVDs, microwave ovens, refrigerators, coffee

makers, personal digital assistants, mobile phones, tablets, etc. This
proliferation of technology brings Ubiquitous Computing closer to
becoming a reality. In Ubiquitous Computing, services are no longer
used at the desktop computer, but everywhere to control the items
that are used in our daily activities. These services are in charge of
functioning invisibly and unobtrusively in the background in order to
serve people in their everyday lives and free them to a large extent from
tedious routine tasks (Mattern, 2001, 2005).

This is the main goal pursued in this thesis, that is, automating
user routine tasks, also known as behaviour patterns. A routine or
behaviour pattern is a set of tasks that is characterized by habitual
repetition in similar contexts (Neal & Wood, 2007). For instance, some
behaviour patterns can be determined by our lifestyle, such as cleaning
the house twice a week, or reading electronic mail and opening certain
web pages as soon as we have access to Internet; others are reactions to

2 Introduction

things happening around us, such as lowering every blind and winding
up every awning when it starts to rain, or calling the police when an
intruder gets into our home or our store.

The work presented in this thesis deals with automating these
behaviour patterns on behalf of users. Until now, several works have
been developed to confront this challenge. However, the solutions to
this problem still need to be improved upon because of the lack of
adequate software methods and models that capture the behaviour
patterns according to users’ desires and demands, and the difficulty
in understanding and evolving the developed systems. In this work,
we tackle these problems by proposing a context-aware model-driven
approach. It allows behaviour patterns to be described using models of
a high level of abstraction according to users’ desires and demands. The
specified behaviour patterns are automated when needed according to
their description by an automation engine that interprets the models at
runtime. In this way, all the automations are managed at a high level
of abstraction by using the models, which facilitates the understanding
and evolution of the automated behaviour patterns. In addition, to
support the runtime evolution of the described behaviour patterns, we
provide end-users with a tool that provides graphical interfaces to evolve
the behaviour patterns.

The rest of this chapter is organized as follows: Section 1.1 explains
the motivations for this work. Section 1.2 details the problem that is
to solve. Section 1.3 introduces the goals to be achieved. Section 1.4
introduces the research methodology that has been followed. Section 1.5
explains the context in which the work of this thesis is performed.
Finally, Section 1.6 gives an overview of the structure of this document.

1.1 Motivation

The more advanced society and technology become, the more interest
there is in improving the intelligence of the environments in which we
live and work. To achieve this, they are more and more equipped
with devices capable of sensing context information and controlling the

1.1 Motivation 3

state of the objects that surround us. The result is the building of
which is known as smart environments. The term smart environment
was described in 1991 by Mark Weiser as a physical world that is
richly and invisibly interwoven with sensors, actuators, displays, and
computational elements, embedded seamlessly in the everyday objects of
our lives, and connected through a continuous network (Weiser, 1991).
Since then, there has been extensive research towards developing smart
environments such as digital homes, intelligent work spaces, or hospitals
and health care facilities.

One of the most important challenges of building these environments
is to automate routine tasks or behaviour patterns. This is because
modern life is so busy that time is a premium. Studying, working, doing
the housework, socializing, and maintaining a personal life; we must
juggle so many tasks that even maintaining a mental list of the tasks to
be done becomes difficult. Considering this context, the automation of
our behaviour patterns is a very desirable challenge. By automating
these patterns, we can not only make our lives more comfortable,
efficient and productive, but we can also avoid worrying and wasting
time performing tasks that we do not enjoy but that need to be done.

In addition, the automation of our behaviour patterns can also help
to deal with an important world challenge: conservation of natural
resources, such as energy and water. Despite the advice and guidelines
that many Business and NGO’s (such as WWF1, European Climate
Foundation2, etc.) provide us to reduce the consumption of energy
and water, it is demonstrated that we use more natural resources each
year than we used the previous one. By applying the advice provided
by experts on the automation of the behaviour patterns that control
lighting, heating and air conditioning, taps, and so on, not only can we
optimize water and energy consumption, but we can also save money
on our bills.

Nevertheless, although automating user behaviour patterns can
bring us great benefits, confronting this challenge is a very complex and

1http://www.wwf.org/
2http://www.europeanclimate.org/

4 Introduction

delicate matter that has not yet been solved. For instance, some of the
approaches that have attempted to deal with this challenge are based on
machine-learning algorithms. From past user actions, these approaches
automatically infer user behaviour patterns and then automate them
when the first tasks of an inferred behaviour pattern are detected. For
instance, if it is detected that at 8:00 a.m. the user’s alarm clock goes
off, the lights are switched on, the bathroom heating is switched on,
and the coffeemaker makes a cup of coffee, the execution of these tasks
will be automatically triggered at 8:00 a.m.

Machine-learning approaches have done excellent work by automat-
ically learning from user behaviour; however, these approaches have
some problems. They do not usually take into account users’ desires
(e.g., the repeated execution of an action does not imply that the user
wants this automation). This may make the system automate tasks
that users do not necessarily want automated or automate them in a
different way from how users want, which may bother users, interfere
in their goals, or even be dangerous.

In addition, machine-learning algorithms cannot infer behaviour
patterns until they gather sufficient past user actions; therefore, they
require a learning period that can take from several weeks to months.
Furthermore, they have a lot of difficulty inferring behaviour patterns
from several people; thus, they can only learn and automate behaviour
for one person. Moreover, since these approaches learn from past user
actions, they can only reproduce the actions that users have frequently
executed in the past and in the same manner that they were executed.
This prevents user tasks from being carried out in a more efficient and
comfortable way (e.g., instead of switching on lights, the system could
raise blinds when it is a sunny day) and also performing tasks that
users did not perform before (e.g., closing windows when users are not
at home and it starts to rain).

One way to solve these problems is to tell the system which
behaviour patterns the users want to be automated and also how and
in which context users want these patterns to be automated. This
information is only known by the end-users; therefore, it can only be
specified by the end-users or with their participation. The former

1.1 Motivation 5

option implies the use of end-user tools that allow the end-users to
describe their behaviour patterns in an automatable way. To date,
several end-user tools have been proposed. However, these tools only
provide end-users with limited capacities; therefore, these tools are only
appropriate for automating simple tasks such as switching on the lights
when user presence is detected. The latter option needs high-level
abstractions that allow the behaviour patterns to be captured in an
understandable way for users. This would facilitate their participation
in the description of the behaviour patterns to be automated. Several
works have proposed task models to specify users’ tasks in a way that is
understandable to them; however, none of the proposed models focus on
the automation of user behaviour patterns. Hence, they neither provide
enough expressiveness to specify the needed information nor enough
accuracy to allow their subsequent automation from their specification.
Thus, a technique for properly specifying the behaviour patterns to be
automated is still a challenge to be faced.

Furthermore, the specified behaviour patterns must be automated
when needed in an unobtrusive way. To achieve this, it is essential
to know the up-to-date context on which the behaviour patterns
depend. There are already several context-aware approaches that
deal with the automation of simple user tasks in the suitable context.
These approaches program rules that trigger the sequential execution
of actions when a certain context event is produced (e.g., switching
on lights when presence is detected). However, although context
information is taken into account to automate tasks, these works do not
usually take into account the personal desires of each user; therefore,
they may still be annoying. For instance, consider that the security
system has been programmed to be automatically activated when you
leave home. This can be useful because you will not have to do this task
anymore, but it can also be a burden if you are absent-minded: you
will have to deactivate the alarm each time that you forget something.
Furthermore, these techniques are only appropriate for automating
relatively simple tasks (Cook & Das, 2005); hence, they usually require
large numbers of rules. If we also consider that these rules have to
be manually programmed (Cook & Das, 2005), the understanding and

6 Introduction

maintenance of the system become very difficult. In spite of the research
efforts that have already been done, mechanisms and tools that allow
the automation of complex routine tasks when needed and that facilitate
understanding and maintenance of the system are still missing.

In addition, the automation of routine tasks is not solved by
providing the system with the tasks to be automated and the tools for
automating them. This is because users’ behaviour may change over
time. If the system does not support the evolution of the automated
behaviour patterns to adapt to user behaviour changes, the automation
of the patterns may become a burden on users instead of a way of
helping them. To avoid this, it is essential for the automation of the
specified behaviour patterns to be performed in such a way that their
evolution is facilitated, i.e., in a maintainable way. Moreover, new tools
are required to allow this evolution to be easily performed at runtime
without stopping the system (since it has to be performed after system
deployment).

1.2 Problem Statement

The automation of user behaviour patterns is not a closed research
topic. The above discussion indicates that some problems still need to
be considered. The work presented in this thesis attempts to solve these
problems, which can be stated by the following three research questions:

Research question 1. How should the behaviour patterns that users
want to be automated be represented in order to facilitate that
users’ desires and demands are taken into account?

Research question 2. How should the specified behaviour patterns
be properly automated?

Research question 3. How should the specified behaviour patterns
be evolved over time in order to adapt them to new user
automation requirements?

1.3 Thesis Goals 7

These research questions are analyzed and answered in the following
section.

1.3 Thesis Goals

The main goal of this thesis is to define a context-aware model-driven
approach for improving the automation of user behaviour patterns.

First of all, with regard to research question 1, one of the
main goals of this work is the specification of the information needed
to properly automate the behaviour patterns that users want to be
automated. This information is made up of the tasks to be automated
for each pattern, and how and in which context these tasks must be
automated. To achieve this goal, we propose a context-adaptive task
model where each behaviour pattern is specified with user participation
as a hierarchical composition of tasks. These tasks are specified
according to context in such a way that they are capable of adapting
to it. This context information is described in a context model that is
based on an ontology. We use an ontology model because according to
the works presented in (Baldauf et al., 2007; Chen et al., 2004), it is one
of the best ways to describe context. In addition, we use the concept
of task not only because it has proved to be effective in user behaviour
modelling (Paternò, 2002; Pribeanu et al., 2001; Sousa et al., 2006),
but also because it is easily understandable to users (Johnson, 1999).
This favours the participation of end-users in their behaviour pattern
specification, thereby facilitating that their desires and demands are
properly taken into account in this specification.

With regard to research question 2, another goal of this work
is to automate the behaviour patterns as specified in the models.
To achieve this, both the task model and the context model are
brought a step further: they are also used at runtime. We develop an
infrastructure that allows these models to be interpreted and modified at
runtime. This infrastructure is composed by 1) a context monitor that
continuously updates the context model according to context changes,
and 2) an engine that automates the behaviour patterns according to

8 Introduction

context as specified in the models. It is worth noting that rather than
translating the models into code, the engine directly interprets them
at runtime to automate the patterns as specified. Thus, the behaviour
patterns are only represented in the models in such a way that these
models are the primary means to understand, interact with, and modify
the behaviour patterns that are automated. This allows the behaviour
patterns to be easily understood and managed by using concepts of a
high level of abstraction instead of code.

With regard to research question 3, one of the goals of the present
work is to allow the evolution of the automated behaviour patterns to
adapt them to changeable user needs. To achieve this goal, we confront
two of the most important challenges identified in software evolution:
1) supporting evolution at higher levels of abstraction (e.g., by changing
design models) (Ajila & Alam, 2009; Bennett & Rajlich, 2000; Mens,
2009), and 2) supporting post-deployment runtime evolution (Hirschfeld
et al., 2004; Mens et al., 2005). Since the behaviour patterns are
executed by directly interpreting the models, as soon as the models
are changed, the changes are applied in the system. Thus, to confront
these evolution challenges, we provide mechanisms that allow the task
and context models to be evolved at runtime. These mechanisms use
the same high-level concepts used to create the designed models. This
allows the evolution of the behaviour patterns to be performed at a high
level of abstraction. In addition, we also provide tool support in order
to facilitate the adaptation of the behaviour patterns at runtime. This
tool provides intuitive graphical interfaces that are inspired by end-user
development techniques. The tool reflects the adaptations described
in the interfaces by using the designed evolution mechanisms. Thus,
adaptations can be performed without the need to stop the system or
redeploy it.

Finally, it is worth noting that with this approach, user behaviour
patterns can be analyzed in detail before automating them. This
achieves a smart environment that can not only automate complex
tasks, but one that can also perform them in a more pleasant manner for
users and more efficiently in time and energy concerns. Furthermore, it
can support the automation of tasks that users want to be automated

1.4 Design Methodology 9

although they did not perform them. For instance, using our approach,
instead of switching on the bathroom heating at 8:00 a.m. (like machine-
learning algorithms would do), the system could switch it on ten minutes
before to reach the optimum temperature when the user takes a shower.
In addition, the system could wake him with his preferred music instead
of the alarm clock going off; and it could also check whether it is a sunny
day and, if so, raise the bedroom blinds (instead of switching on the
light) to save energy. Moreover, the system could wait until the user
enters the kitchen to make coffee so that it was very hot (as the user
likes) when the user arrives.

1.4 Design Methodology

In order to perform the work of this thesis, we carried out a research
project following the design methodology described by (March & Smith,
1995) and (Vaishnavi & Kuechler, 2004). This design methodology was
proposed for performing research in information systems. It involves the
analysis of the use and performance of designed artifacts to understand,
explain and, very frequently, to improve on the behaviour of aspects of
Information Systems (Vaishnavi & Kuechler, 2004).

The design cycle consists of 5 process steps: (1) awareness of
the problem, (2) suggestion, (3) development, (4) evaluation, and (5)
conclusion. The design cycle is an iterative process; knowledge that is
produced in the process by constructing and evaluating new artifacts is
used as input for a better awareness of the problem.

Following the cycle defined in the design research methodology, we
started with the awareness of the problem (see Fig. 1.1): first, we
identified the problem to be resolved, and we stated it clearly. Next, we
performed the second step which is suggesting a solution to the problem
and comparing the improvements that this solution introduces with
already existing solutions. To do this, the most relevant approaches were
studied in detail. Once the solution to the problem was described, we
planned to develop it (step 3). This step is performed in several phases
(see Fig. 1.1). These phases were intended to achieve the proposed

10 Introduction

Figure 1.1: Research methodology followed in this thesis.

approach based on models at runtime for automating user behaviour
patterns. When the solution was developed, we evaluated the obtained
artefacts of the different phases performed in step 3 and validated the
whole approach by applying it to several case studies (step 4).

Finally, we analysed the results of our research work in order to
obtain several conclusions as well as to delimit areas for further research
(step 5).

1.5 Thesis Context

This thesis is being developed in the context of the research center
Centro de Investigación en Métodos de Producción de Software of the
Universidad Politécnica de Valencia. The work that has made the
development of this thesis possible is in the context of the following
research government projects:

• LIFEWARE: Mobilized Lifestyle with Wearables. ITEA 2 project
referenced as TSI-020400-2010-100.

• INTERNET DE LAS COSAS COMO SOPORTE A PROCE-
SOS DE NEGOCIO. Project first subsidized by Universidad
Politécnica de Valencia with the reference PAID-06-09-2920)

1.6 Outline 11

and continued by Generalitat Valenciana with the reference
GV/2010/079.

• EVERYWARE: Construcción de Software Adaptativo para la
Integración de Personas, Servicios y Cosas usando Modelos en
tiempo de Ejecución. CYCIT project referenced as TIN2010-
18011.

• SESAMO: Construcción de Servicios Software a partir de
Modelos. CYCIT project referenced as TIN2007-62894-AR07.

• OSAMI Commons: Open Source Ambient Intelligence Commons.
ITEA 2 project referenced as TSI-020400-2008-114.

• DESTINO: Desarrollo de e-Servicios para la nueva sociedad
digital. CYCIT project referenced as TIN2004-03534.

• ATENEA: Arquitectura, Middleware y Herramientas. ProFIT
project referenced as FIT-340503-2006-5.

1.6 Outline

The remainder of this work has been structured as follows. First,
Chapter 2 explains the technologies and concepts used in this thesis.
Chapter 3 compares this work with similar approaches in the area.
Chapter 4 gives an overview of the thesis work. Chapter 5 presents the
models proposed for specifying the behaviour patterns to be automated
at a high level of abstraction. Chapter 6 describes the mechanisms
and tools provided for supporting the management of the models at
runtime and the automation of the behaviour patterns as described in
the models. Chapter 7 presents how the behaviour patterns can be
easily evolved over time. Chapter 8 evaluates the presented approach.
Finally, Chapter 9 summarizes the results of this work and describes
the future work.

12 Introduction

Chapter 2

Background and
Technological Overview

Research in Pervasive Computing is very diverse since the field
itself has not yet been clearly defined. Researchers from

different communities make efforts to understand and improve concepts,
technologies and applications for research in Pervasive Computing. In
order to clarify the foundations on which our approach relies, the
concepts, techniques and technologies used in this thesis are introduced
in this chapter. The remainder of the chapter is structured as
follows: Section 2.1 describes the different terms used to refer to
pervasive computing. Section 2.4 explains the OSGi technology used
for implementing the systems developed by the presented approach.
Section 2.2 defines the term Model-Driven Engineering (MDE) and
the different MDE concepts and techniques for understanding this
thesis. Section 2.3 explains what is an ontology and the main ontology
languages and tools used in this work. Finally, Section 6.4 concludes
the chapter.

14 Background and Technological Overview

2.1 Ubiquitous Computing vs Pervasive Com-
puting vs Ambient Intelligence

The main goal of this thesis is providing a context-aware model-
driven approach for achieving the automation of user tasks in smart
environments. A smart environment is a “physical world that is
richly and invisibly interwoven with sensors, actuators, displays, and
computational elements, embedded seamlessly in the everyday objects
of our lives, and connected through a continuous network” (Weiser,
1991). In this context, several terms are used in the published literature
for talking about similar concepts. The main differences depend on the
context of use: Academy vs Industry and EEUU vs Europe.

On the one hand, Mark Weiser coined the term ubiquitous
computing in a more academic and idealistic sense (Mattern, 2001,
2005). He saw it as omnipresent services that serve people in
their everyday lives at home and at work, functioning invisibly and
unobtrusively in the background and freeing people to a large extent
from tedious routine tasks. On the other hand, industry (IBM)
coined the term pervasive computing, with a slightly different slant
(Jochen Burkhardt & Rindtor, 2002; Uwe Hansmann & Stober, 2001),
as an explosion of interconnected “smart devices”, from watches to cars,
that can make user lives easier and more productive. Here, investigation
is focus on what forms these devices might take, what new functions
they might perform, and ways to pack more computing ability into
smaller spaces.

In (Bohn et al., 2005; David Wright & Punie, 2005) is stated that
while researchers in the United States were working on the vision of
ubiquitous computing, the European Union began promoting a similar
vision for its research and development agenda. The term adopted in
Europe is ambient intelligence (coined by Emile Aarts of Philips) as
“a vision where people will be surrounded by intelligent and intuitive
interfaces embedded in everyday objects around us and an environment
recognizing and responding to the presence of individuals in an invisible
way”. This point of view is confirmed by the great number of events and
research projects that are organized and/or funded in Europe under this

2.2 Model Driven Engineering 15

term whose topics clearly matches the ones that are inside the scope of
the ubiquitous computing area.

Although subtle differentiations could be done between these terms
according to their etymological meanings (neither ubiquitous implies
intelligence, nor intelligence implies pervasiveness, etc.), we can state
in general that the main idea or vision behind them is the same and,
therefore, they can be equally used in this thesis.

2.2 Model Driven Engineering

The work presented in this thesis applies the guidelines provided
by Model Driven Engineering (MDE). It aims to raise the level
of abstraction in program specification and increase automation in
program development. The idea promoted by MDE is to use models
at different levels of abstraction for developing systems, thereby raising
the level of abstraction in program specification. The major advantage
of this is that models can be expressed using concepts that are much
less bound to the underlying implementation technology and are much
closer to the problem domain. This makes the models easier to specify,
understand, and maintain (Selic, 2003). The increase in automation
of program development is reached by transforming the higher-level
models into lower level models until they can be executable using either
code generation or model interpretation.

We next define the terms of MDE that are needed for understanding
the approach proposed in this thesis.

2.2.1 Development Models, Executable Models & Run-
time Models

In MDE, a model is an abstraction or reduced representation of a
system. When the models are used in the software development phase,
they are named development models. Development models are
models of levels of abstraction above the code level that are used
for representing some aspect of the software to be developed. For

16 Background and Technological Overview

instance, technology-independent models of software describe systems
using concepts independent of the underlying computing technologies.

If development models are fully expressive to be automatically
executed, they are considered executable models. Executable models
can be executed by means of translating them into the system code that
will be executed (such as in the works presented in (Mellor & Balcer,
2002; Muñoz et al., April 2006)) or by using an interpreter/engine that
directly executes what is specified (such as in the work presented in
(M.B. Juric & Sarang, 2006)). Further discussion about these two
ways of executing a model can be found in the next subsection. When
the models are used at runtime, they are named runtime models.
Runtime models are models that present views of some aspect of an
executing system and are therefore abstractions of runtime phenomena
(France & Rumpe, 2007). Runtime models can provide a richer semantic
base for runtime decision-making in order to achieve system adaptation,
since they provide up-to-date and exact information about the runtime
system. Thus, the system itself can query the models at runtime in
order to make adaptation decisions, to choose the adaptation strategy,
and to control and to steer the adaptation process.

It is also important to note that development models may be used
as runtime models if they are still used at runtime, and runtime models
as development models if they are used to evolve software systems. In
this last case, a runtime model can be seen as a live development model
that enables dynamic evolution.

In (Blair et al., 2009) a very interesting classification of models was
stated according to the following characteristics:

• Structural or behavioural: Models specify either the structure of
the system or its behaviour aspects. Structural (or architectural)
models specify system components and their connections; objects,
inheritance relationships and invocation pathways, etc. In
contrast, behavioural models specify the functionalities provided,
how the system is going to react to the events, etc.

• Procedural or declarative: Procedural models specify the real
structure or behaviour of the system; while declarative models

2.2 Model Driven Engineering 17

specify this in terms, for instance, of system goals.

• Functional or non-functional: Functional models specify the
system functionality, while non-functional models are used for
specifying non-functional requirements as security, temporal and
memory cost, etc.

• Formal or informal: Formal models are inspired by the
mathematics of computation; whereas informal models are
derived from consideration of programming models or domain
abstractions.

2.2.2 Code Generation vs Model Interpretation

In MDE, Code Generation and Model Interpretation are two different
strategies to make executable models become a reality. Both strategies
are used in practice.

Code generation is used to generate the code of an application
from a higher level model that describes it. To generate the code in
existing programming languages and platforms from the model, a model
compiler (many times defined as a template engine using languages
of model-to-text transformation such as Mofscript, Xpand, etc.) is
implemented.

In case of model interpretation, code is not generated to create the
code of the application. Instead of this, a generic engine is implemented
(for instance in Java) to directly interpret and execute the model.

Next we explain some of the most important advantages (many of
them discussed in the Code Generation conference of 2010) of these
approaches compared to each other:

Advantages of Code Generation

Code generation has the following advantages in comparison to model
interpretation:

18 Background and Technological Overview

• It protects intellectual property: with code generation an
application can be generated and delivered to a specific client.
With model interpretation, the runtime engine, which allows a
whole class of applications to be implemented, has to be given to
the client as well as the application.

• Easier to start with: if multiple applications for the same domain
have been built, code generation can be used. The code being the
same for all applications (i.e., static code) can be put in a domain
framework, and the code that is specific for each application
(i.e., variable code) can be generated by creating a Domain-
Specific Language to model the variability and using templates
that transform it into the variable code.

• It provides an additional check by the compiler: when code is
generated, that code needs to be compiled. Thus, compilers also
check the generated code for errors. In case of an interpreter,
either these checks have to be done during the interpretation of
the model or a tight coupling between the modelling environment
and its interpreter has to be created.

• Changes in templates are easier to track: code generation
templates are just text files, hence changes can be easy to track
(e.g., by using a version control system). The same holds for
changes in the code of the interpreter, however, this code is generic
and its less clear what exactly has changed.

Advantages of Model Interpretation

Model interpretation has the following advantages in comparison to code
generation:

• It enables faster changes: changes in the model do not require an
explicit regeneration, rebuild, retest, and redeploy step. This will
lead to a significant shortening of the turnaround time.

2.2 Model Driven Engineering 19

• It enables changes at runtime: because the model is available at
runtime it is even possible to change the model without stopping
the running application.

• Easier to change for portability: in principle, an interpreter
creates a platform independent target to execute the model. It is
easy to create an interpreter which runs on multiple platforms. In
case of code generation you need to make sure you generate code
compliant to the platform. In case of model interpretation, the
interpreter is a black box, it does not matter how it is implemented
as long as it can run on the target platform.

• Easier to deploy: when code generation is used, the generated
code has to be often opened in Eclipse (Eclipse, 2011) or Visual
Studio 1 and built to create the final application. In case of model
interpretation, the interpreter just has to be started and the model
has to put into it. Code is not necessary any more.

• Easier to update and scale: it is easier to change the interpreter
and restart it with the same model. You do not have to generate
the code again using an updated generator. The same can hold for
scaling: scaling an application means initializing more instances
of the interpreter, executing the same model.

• It is more secure: The interpreter provides an additional layer
on top of the infrastructure, everything underneath is abstracted
away. This is essentially the idea of a Platform-as-a-Service
(PaaS).

• It is more flexible than code generation: there are limits to
template-based code generation. In these cases, helper files to
extend the possibilities of template based code generation are
needed. An interpreter can be less complex in these cases, and
often less code is needed to accomplish the same result.

• Debug models at runtime: while the model is available at runtime,
it is possible to debug the models by stepping through them at

1http://msdn.microsoft.com/es-es/vstudio/aa718325

20 Background and Technological Overview

runtime. This only holds for action languages, not for declarative
languages. When debugging at model level is possible, domain
experts can debug their own models and adapt the functional
behaviour of an application based on this debugging. This can be
very helpful when complex process or state models are used.

2.3 Ontology, Ontology Languages and Ontol-
ogy Reasoners

In philosophy, Ontology is the study of being or existence and its basic
categories and relationships. It seeks to determine what entities can
be said to ”exist”, and how these entities can be grouped according to
similarities and differences. We have used ontologies for millennia to
understand and explain our rationale and environment. However, only
recently ontologies have become a research topic of interest in computer
and information science.

In computer and information science, an ontology is a formal
representation of a set of concepts within a domain and the relationships
between those concepts. It is used to reason about the properties of
that domain, and may be used to define the domain. In philosophy,
ontologies have a main goal: to establish the truth about reality by
finding an answer to the question “what exists”. In the world of
information systems, in contrast, an ontology is a software artefact (or
formal language) designed with a specific set of uses and computational
environments in mind. An ontology is often something that is ordered
by a specific client in a specific context and in relation to specific
practical needs and resources. In a widely-quoted definition, an ontology
is “a specification of a conceptualization” (Gruber, 1993). Thus, an
ontology allows a programmer to specify in an open and meaningful
way the concepts and relationships that collectively characterize some
domain.

An ontology mainly contains the following elements:

• Classes: all kinds of existences or concepts. A class usually refers

2.3 Ontology, Ontology Languages and Ontology Reasoners 21

to a collection or a category of objects sharing some common
character and well accepted under common sense.

• Attributes: properties that identify a class itself from other
classes.

• Relationships: A relation between two ontology classes interprets
how the two classes, more precisely the objects of these classes, are
related. Typically a relation is a particular connection between
two classes that specifies how an object is connected to the other
in an ontology.

• Individuals: instances or objects of the defined classes. All the
objects under a category are named as “individuals” of this class.

The terms Abox and Tbox are also used to refer to the elements of
an ontology. These terms describe two different types of statements
in ontologies. Tbox statements describe a system in terms of
controlled vocabularies, for example, a set of classes and properties.
Abox are Tbox-compliant statements about that vocabulary. Tbox
statements are sometimes associated with object-oriented classes and
Abox statements are associated with instances of those classes. Abox
and Tbox statements together make up a knowledge base (a special
kind of database for knowledge management).

Thus, an ontology is an explicit, first-class description. This
description can be specified in different languages, such as RDF or
OWL, and it can be used by different reasoners, such as Racer (Haarslev
& Möller, 2003) or Pellet (Sirin et al., 2007). This is one of the main
reasons for building a context ontology: we can use a reasoner to derive
additional truths about the concepts that we are modelling. Next, we
introduce OWL, which is the ontology language used in this thesis,
Pellet, which is the reasoner used, and SPARQL, which is the query
language used for reasoning.

22 Background and Technological Overview

2.3.1 Web Ontology Language (OWL)

Web Ontology Language (OWL) (Smith et al., 2004) is a semantic
markup language for publishing and sharing ontologies on the World
Wide Web. In our approach, we have selected OWL for implementing
an ontology-based context model.

The OWL Web Ontology Language is designed for being used by
applications that need to process the content of information instead
of just presenting information to humans. OWL facilitates greater
machine interpretability of Web content than that supported by XML,
RDF, or RDF Schema (RDF-S), by providing additional vocabulary
along with a formal semantics. OWL has three increasingly-expressive
sublanguages: OWL Lite, OWL DL, and OWL Full. OWL DL does not
permit some constructions allowed in OWL Full, and OWL Lite has all
the constraints of OWL DL plus some more. The intent for OWL Lite
and OWL DL is to make the task of reasoning with expressions more
tractable. Specifically, OWL DL is intended to be able to be processed
efficiently by a description logic reasoner. OWL Lite is intended to
be amenable to processing by a variety of reasonably simple inference
algorithms. We have selected OWL DL because of several reasons:

• It enables automated reasoning.

• It has the capability of supporting semantic interoperability to
exchange and share context knowledge between different systems,
i.e., contexts can be exchanged and understood between different
systems in various domains.

• It is also more expressive than other ontology languages such as
RDF.

• It is an open World Wide Web Consortium (W3C) standard.

2.3.2 Pellet: an OWL-DL Reasoner

In this approach, we use Pellet (Sirin et al., 2007) to derive additional
truths about the modelled context information. Pellet is a complete

2.3 Ontology, Ontology Languages and Ontology Reasoners 23

and capable OWL-DL reasoner with very good performance, extensive
middleware, and a number of unique features. It is written in Java and
is open source under a liberal license. It is used in a number of projects,
from pure research to industrial settings.

Pellet is the first implementation of the full decision procedure for
OWL-DL (including instances) and has extensive support for reasoning
with individuals (including conjunctive query over assertions), user-
defined data types, and debugging ontologies. It implements several
extensions to OWL-DL including a combination formalism for OWL-
DL ontologies, a non-monotonic operator, and preliminary support
for OWL/Rule hybrid reasoning. It has proven to be a reliable tool
for working with OWL-DL ontologies and experimenting with OWL
extensions.

2.3.3 SPARQL

SPARQL (SPARQL, 2010) is a recursive acronym that stands for
SPARQL Protocol and RDF Query Language. As the name implies,
SPARQL is a general term for both a protocol and a query language. In
this thesis, we use the SPARQL acronym to refer to the query language.

SPARQL was standardized by the RDF Data Access Working
Group (DAWG) of the W3C, and is considered a key semantic web
technology. On 15 January 2008, SPARQL became an official W3C
Recommendation. This query language is based on graph-matching
techniques. Given a data source, a query consists of a pattern which
is matched against the data source, and the values obtained from this
matching are processed to give the answer. The data source to be
queried can be an OWL model as the context model proposed in this
context.

A SPARQL query consists of three parts:

• The output selection part: a SPARQL query can be a yes/no
query (ASK), a selection of values of the variables which match
the patterns (SELECT), a creation of new triples (INSERT), and
a description of resources (DESCRIBE).

24 Background and Technological Overview

• The pattern matching part: it includes several features of pattern
matching of graphs, like optional parts, union of patterns, nesting,
filtering (or restricting) values of possible matchings, and the
possibility of choosing the data source to be matched by a pattern.

• The solution modifiers part: once the output of the pattern has
been computed in the form of a table of values of variables, this
part allows to modify these values applying classical operators like
projection, distinct, order, limit, and offset.

2.4 Open Services Gateway initiative (OSGi)

The implementation of the approach proposed in this thesis uses an
OSGi server for running the developed systems. The Open Services
Gateway initiative (OSGi), more known now as the OSGi Alliance
(OSGI, 2011) is an independent, non-profit corporation founded in
1999. Since then, the OSGi Alliance has been working to define and
promote open specifications for the delivery of services to networks in
homes, cars, and other environments. These specifications enable a
development model where applications are dynamically composed of
many different reusable components, which are known in the OSGi
terminology as bundles.

The OSGi Service Platform provides functionalities to Java that
makes Java the premier environment for software development. Java
provides the portability that is required to support products on
many different platforms; while the OSGi technology provides the
standardized primitives that allow applications to be dynamically
constructed from reusable and collaborative bundles.

To achieve this, the OSGi Service Platform allows the composition
of bundles to be changed dynamically without requiring restarts. To
minimize the coupling, as well as make these couplings managed, the
OSGi technology provides a service-oriented architecture that enables
these components to dynamically discover each other for collaboration.
The OSGi Alliance has already developed many standard component
interfaces for common functions like HTTP servers, configuration,

2.4 Open Services Gateway initiative (OSGi) 25

Figure 2.1: The OSGi Service Platform Architecture

logging, security, user administration, XML and many more.

The architecture of the OSGi Service Platform is shown in Figure
2.1. The core component of this architecture is the OSGi Framework,
which is divided in four layers:

L0-Execution Environment: is the specification of the Java environ-
ment.

L1-Modules: defines the class loading policies which establish how a
bundle can import and export code.

L2-Life Cycle Management: it provides the API for installing,
starting, stopping, updating and uninstalling bundles at runtime.

L3-Service Registry: provides a comprehensive model to share
objects between bundles. To do this, it connects bundles in a
dynamic way by offering a publish-find-bind model for plain Java
objects.

As shown, the bundles are installed over this framework, which runs
over a Java Virtual Machine (JVM).

26 Background and Technological Overview

In addition, the OSGi Service Platform provides constructs and
services that offer many important benefits for developing context-aware
pervasive systems such as the following ones:

• Device Discovery. OSGi relies on device discovery using low-
level protocols as EIB, Lonworks or UPnP. When the devices are
discovered they can be coupled to device drivers and then used
for the system services.

• Adaptation. Adaptation is achieved through dynamic bundle
loading and updating, and service lookup. When a new device
or service is registered in the framework by a bundle, any other
running service can use it. The link is done at runtime.

• Easy Deployment. The OSGi technology specifies how com-
ponents are installed and managed by defining an API. This
standardized management API makes it very easy to integrate
OSGi technology in existing and future systems.

• Small size. The OSGi Release 4 Framework is implemented in
about a 300KB JAR file. This is a small overhead for the amount
of functionality that is added to an application by including OSGi.
OSGi therefore runs on a large range of devices. It only asks for
a minimal Java VM to run and adds very little on top of it.

• Fast. One of the primary responsibilities of the OSGi framework
is loading the classes from bundles. In traditional Java, the JARs
are completely visible and placed on a linear list. Searching a class
requires searching through this list. In contrast, OSGi pre-wires
bundles and knows for each bundle exactly which bundle provides
the class. This lack of searching is a significant speed up factor at
startup.

• Integration. The integration of the software representation
of a device and the physical environment relies on low-level
technologies. Basically, OSGi uses bridges to the final device
drivers. The native device drivers are in charge of the
communication with the physical device.

2.4 Open Services Gateway initiative (OSGi) 27

• Programming Framework. OSGi provides a well defined pro-
gramming framework around the service concept that separates
service description from any possible implementation. In addition,
as OSGi is Java-based, it is operative system independent. For
complex applications, there is a proposal and implementation of
a component model built on top of OSGi.

• Robustness. Dynamic coupling of services and devices is a
guarantee of robustness. If a service runs out or a device fails they
can be automatically replaced by other elements that provide the
same functionality.

• Security. The framework security model is based on the Java
2 specification. OSGi defines a standard service for permission
administration. In the framework, a bundle can have a single
set of permissions. These permissions are used to verify that a
bundle is authorized to execute privileged code. For example, a
FilePermission defines what files can be used and in what way.

• Widely Used. The OSGi specifications started out in the
embedded home automation market, but since 1999 they
have been extensively used in many industries: automotive,
mobile telephony, industrial automation, gateways and routers,
private branch exchanges, fixed line telephony, and many more.
Since 2003, the highly popular Eclipse Integrated Development
Environment runs on OSGi technology and provides extensive
support for bundle development. In the last few years, OSGi has
been taken up by the enterprise developers. Eclipse developers
discovered the power of OSGi technology but also the Spring
Framework helped popularize this technology by creating a
specific extension for OSGi. Today, OSGi technology can be found
at the foundation of IBM Websphere, SpringSource Application
Server, Oracle (formerly BEA) Weblogic, Sun’s GlassFish, and
Redhat’s JBoss.

• Supported by Key Companies. OSGi counts on some of the largest
computing companies from a diverse set of industries such as:

28 Background and Technological Overview

Oracle, IBM, Samsung, Nokia, IONA, Motorola, NTT, Siemens,
Hitachi, Deutsche Telekom, Redhat, Ericsson, etc.

2.5 Conclusions

The purpose of this chapter was to provide a brief introduction to the
existing background on top of which this work is built on. We have
explained the different concepts needed for understand the presented
work and the paradigms where it has been developed as well as the
techniques and technologies used for developing it and that will be
applied in the following chapters.

Chapter 3

State of the Art

The automation of behaviour patterns is the automatic execution
of tasks that users perform everyday. This is a complicate and

delicate matter because tasks must be executed in a non-intrusive way
and attending users’ desires and demands; otherwise, the automation of
behaviour patterns may bother users, interfere in their goals or even be
dangerous. This implies executing tasks on behalf of users when they
need and the way they want them.

This chapter revisits and analyses the most popular and relevant
approaches found in the literature that deal with the challenge of
intelligently acting on behalf of users. In order to classify these
approaches, we use the taxonomy published in (Chin et al., 2008), which
defines three different categories: machine-learning approaches, rule-
based context-aware approaches and user-centred approaches.

Machine-learning approaches cover those based on the use of
machine learning mechanisms. These approaches automatically derive
a prediction model of future user behaviour from observation of the past
user actions.

30 State of the Art

Rule-based context-aware approaches cover those in which develop-
ers or manufacturers program context-aware rules for automating user
behaviour. These approaches are focus on the management on context,
and the developed rules are usually composed of two parts: context
conditions and tasks that must be triggered when these conditions are
fulfilled.

User-centred approaches are those commonly referred to end-user
programming. They are characterised by the use of techniques that
allow non-technical people to create “programs” to customise the
functionality of their own environments.

Next, we first suggest a set of important dimensions to classify
and analyse the approaches found in the literature. Next tree sections
describe the approaches related with our work placed on each one of the
described categories, providing analysis and discussion of them at the
end of each section. After this analysis, we explain the most important
benefits of our approach. Finally, we present general discussions and
conclusions of the related work.

3.1 Analysis Criteria

This section explains the dimensions used to analyse the related work.
These dimensions characterize how the challenges confronted in this
thesis are managed. Specifically, according to the challenge confronted,
the following dimensions are studied:

• Regarding the modelling of behaviour patterns at design time:

– Type of model: it indicates the type of the model/s used for
specifying the automations of the system.

– Expressivity: it indicates the expressivity of the model/s
used in terms of support for specifying conditions, context-
awareness, temporal relationships between the tasks to be
automated (or only sequence of actions), and hierarchy task
descriptions.

3.1 Analysis Criteria 31

– Support for user participation: it indicates whether or not
the approach facilitates user participation in the specification
of the models. To avoid that the automation of the behaviour
patterns may be intrusive or non-desirable, they should be
specified according to users desires and demands. To achieve
this, user participation is required.

– Supported by tools: it indicates if tools are provided for
facilitating the specification of the model/s.

• Regarding the implementation of behaviour patterns:

– Technique: it describes the technique or method used for
implementing the automations. For instance, manual, using
algorithms, code generation, model interpretation, etc.

– Implemented by: it indicates if the implementation of the
behaviour patterns is automatic or manual; and in the later
case, who implements the automation (only developers, only
end-users, or both).

– Supported by tools: it indicates if tools are provided for
developing the automations.

• Regarding the automation of behaviour patterns:

– Capabilities: it indicates what capabilities are provided for
automating user tasks, i.e., only sequence of tasks or also
temporal relationships between the tasks to be automated,
context-adaptivity and context reactivity of the tasks, task
abstraction hierarchies, etc.

– Dynamic representation of the automations: it indicates how
the automations are stored/managed at runtime.

– Control: it indicates if the automations are only controlled by
the system (the system decides what is going to be automated
and when) or by the end-users (the end-users keeps the
control about what have to be automated and in which
conditions) or by both (the system decides what is going
to be automated and when but the end-users can modify

32 State of the Art

these decisions by specifying, for instance, their preferences).
Much of the behavioural literature on information system
acceptance (Heijden, 2003) suggests that users actually
prefer to stay in control over their systems.

– Scalability: it indicates if the automation approach is
prepared to be scalable, which is a critical problem in
pervasive computing (Satyanarayanan, 2001).

• Regarding the evolution of the automated behaviour patterns (in
accordance to the taxonomies published in (Buckley et al., 2003;
Lientz & Swanson, 1980)):

– Level of support: it indicates what can be evolved and when
and how is evolved.

– Developers vs end-users: it indicates who can perform the
evolution (developers, end-users or both).

– Level of abstraction: it indicates where and in which level
of abstraction the evolution can be carried out; i.e., at a
low level of abstraction by changing code, at a high level of
abstraction by changing the models (at modelling level).

This information is summed up for each work using the layout of
Table 3.1. As well as the above explained dimensions, this table also
shows the following important characteristics in the automation of user
behaviour:

• Application domain: in which domains the developed applications
can be applied and whether they are independent of the domain
or specific of some domain.

• Number of users: number of users for which automations can be
performed; i.e., if the approach only supports the automation of
actions for only one user or if it supports the automation of actions
for many users.

Finally, the table also summarizes the specific limitations of each work.

3.1 Analysis Criteria 33

Approach

Modelling

Type of model

Expressivity

User Participation

Supported by tools

Implementation

Technique / Method

Developers vs end-users

Supported by tools

Automation

Capabilities

Dynamic representation of
the automations

Scalability

Control (end-users vs
system)

Runtime
Evolution

Level of support

Developers vs end-users

Level of abstraction

Domain

Number of
Users

Limitations

X: not supported or not published information

Table 3.1: Table layout for showing the most important characteristics of
each work. X : characteristic not supported or information not
published.

Paying more attention in the properties above explained, we next
describe the most important approaches related with our work according
to the identified categories.

34 State of the Art

3.2 Machine Learning Approaches

Machine Learning Approaches use machine-learning algorithms capable
of predicting or inferring user behaviour from past user actions and then
automating this inferred behaviour according to the past observations.
For instance, let’s suppose that the user switched on the bedroom
lights at 8:00 a.m., then switched on the heating of the bathroom, and
afterwards made a coffee. If the algorithm detects that this sequence
is usually performed, the algorithm classifies it as a behaviour pattern
and then automatically triggers the execution of this sequence of actions
at 8:00 a.m. Next, we present some relevant examples of this type of
approach.

The Neural Network house. The Neural Network house (NNH)
(Mozer, 1998) was proposed by Mozer. It uses a neural network
for achieving two different goals: anticipate the user’s needs and
minimize energy consumption by automatically controlling light,
heating, water and ventilation. To achieve this, Mozer et al.
developed an adaptive control of home environments’ (ACHE)
system.

Its architecture (which is shown in Figure 3.1) is structured in
four layers that are replicated for each control domain (lighting,
air heating, water heating, and ventilation). At the lowest level,
the state of the environment and models about the occupancy of
the rooms are obtained by monitoring the environment. Using
this context information, predictors based on artificial neural
networks, forecast future states (such as expected hot water
usage, expected occupancy patterns, etc.). These future states
are then passed to setpoint generators, which are in charge of
determining a setpoint profile specifying the optimal value for
each environmental variable (e.g. light or air temperature) over
a window of time. Finally, the setpoint profile is passed to the
device regulators, which are in charge of controlling the physical
devices to achieve the optimal value using the minimum set of
actions (e.g. increase lamp1’s intensity 2 points and lower lamp2

3.2 Machine Learning Approaches 35

Figure 3.1: Architecture of the Neural Network house project

and lamp3 3 points each).

The setpoint generator requires knowledge about inhabitant
preferences, while the device regulator has knowledge about
the physical layout and characteristics of the environment and
controlled devices. In this way, if the inhabitants or their
preferences change over time, only the setpoint generator need to
relearn. Setpoint generators and device regulators are based on
one of two approaches to control: indirect control using dynamic
programming and models of the environment and inhabitant, or
reinforcement learning.

A neural network is a powerful model for inferring patterns,
however, it is a complex mathematical model of a low level of
abstraction and very difficult to understand (i.e., the system
cannot explain its reasoning process to users in an understandable
manner). In addition, both establishing the overall goals
and deciding how they are accomplished are system decisions,

36 State of the Art

completely avoiding user control. Furthermore, although NNH
supports learning from multiple users, it restricts the automation
to just certain environmental variables in the house domain.

Table 3.2 summarizes the relevant information of NNH according
to the presented layout.

NNH

Modelling

Type of model X

Expressivity X

User Participation X

Supported by tools X

Implementation

Technique / Method Learning by using neural networks

Developers vs end-users Automatic

Supported by tools Yes

Automation

Capabilities sequence of actions to achieve a goal
according to context

Dynamic representation of
the automations

Neural network

Scalability X

Control (end-users vs
system)

System

Runtime
Evolution

Level of support X

Developers vs end-users X

Level of abstraction X

Domain Home

Number of
Users

 Multiple

Limitations - Relationships between tasks not
suported, and automations limited
to lighting, air heating, water
heating, and ventilation.

- The control is totally in the system.
- Difficult understanding and

maintenance

Table 3.2: Table that summarizes the most important characteristics of
NNH.

The iDorm project. The iDorm (Hagras et al., 2004) project is a
test bed for ubiquitous computing environments. It predicts
user behaviour by learning fuzzy rules that map sensor state to

3.2 Machine Learning Approaches 37

actuator readings representing inhabitant action. A fuzzy rule is
defined as a conditional statement in the form:

IF x is A

THEN y is B

In the iDorm project, x and y are context variables managed by
the devices of the environment, and A and B are values of these
variables. These rules are stored in a text file, but the authors
have implemented a small parsing tool to convert this text file
into a human-readable format.

The iDorm contains areas for varied activities such as sleeping,
working, and entertaining. To make the iDorm as responsive
as possible to its occupant’s needs, it has a set of embedded
sensors (such as temperature, occupancy, humidity, and light-
level sensors) and effectors (such as door actuators, heaters, and
blinds). All of them are connected to a network infrastructure
and some of them contain agents.

In addition, a physically static computational artefact closely
associated with the building is also connected to the network. This
artefact contains the iDorm embedded agent. This agent receives
sensor values through the network, contains the user’s learned
behaviour, and computes the appropriate control actions using
the fuzzy-logic-based Incremental Synchronous Learning (fuzzy
ISL) system. It then sends them to iDorm effectors across the
network.

Figure 3.2 shows the ISL architecture, which forms the learning
engine in the iDorm embedded agent. The ISL works as follows:
when new users enter the room, they are identified by the active
key button, and the ISL enters an initial monitoring mode where
it monitors the inputs and the user’s action and tries to infer
rules from the user’s behaviour. Learning is based on negative
reinforcement because users will usually request a change to
the environment when they are dissatisfied with it. After the
monitoring period, the ISL enters a control mode in which it uses
the rules learned during the monitoring mode to guide its control

38 State of the Art

Economy

BR

Safety

BR

Emergency

From other
agents

Fuzzy hierarchyFixed agents

Sensors

Time

Sequence

BR

MF

MF

MF

BR

Rule
assassin

Experience
bank

Contextual
prompter

Rule
constructor

MF

Dynamic agents
comfort

Solution
evaluator

Coordinator

Last experience
temporal buffer

To other
agents

Effector output
(n-bit-wide word)

Inputs
(n-bit wide)

Associative
experience

learning
engine

Fuzzy logic controllers Membership functionMF Behavior rulesBR

Figure 3.2: ISL architecture

of the room’s effectors. Whenever the user behaviour changes,
it might need to modify, add, or delete some of the rules in the
rule base. Thus, the ISL goes back to the monitoring mode to
infer rule-based changes by determining the user’s preferences in
relation to the specific components of the rules that have failed.
All the consequents of the rules that were unsatisfactory to the
user are changed. Up to date, iDorm supports behaviour learning
from one user, but it is prepared for learning behaviour for more
users if it is done in an isolated way.

As well as the learned behaviour, iDorm also contains fixed
behaviours that are preprogrammed. The fixed behaviours are
predefined because they cannot be easily learned (they include
safety, emergency, and economy behaviours).

Since embedded agents have limited computational and memory
capabilities, the number of stored rules is limited to 450. Each rule
will have a measure of importance according to how frequently
it is used. When the system reaches the memory limit, the

3.2 Machine Learning Approaches 39

iDorm

Modelling

Type of model X

Expressivity X

User Participation X

Supported by tools X

Implementation

Technique / Method Automatic learning of fuzzy rules that
are located in agents

Implemented by Automatic

Supported by tools Rules are automatically learned by the
fuzzy-logic-based Incremental
Synchronous Learning (fuzzy ISL) system

Automation

Capabilities Fuzzy rules: Event-action rules

Dynamic representation of
the automations

Text file

Scalability Low, they are limited to 450 rules

Control (end-users vs
system)

System

Runtime
Evolution

Level of support Rules are automatically added,
modified, and deleted as necessary

Developers vs end-users Automatic

Level of abstraction Low

Domain Home

Number of
Users

 Only one, but prepared for learning
behaviour for more users in an isolated
way.

Limitations - Not support for relationships
between tasks.

- The control is totally in the system.
- Low scalability, difficult

understanding and maintenance.

Table 3.3: Table that summarizes the most important characteristics of
iDorm.

Rule Assassin retains rules according to the priority of highest
frequency of use.

The iDorm project have done excellent work in the automation of
user actions by predicting them from user behaviour. Although
the implemented system needs some period to be able to predict
these actions, it introduces an advantage regarding the other

40 State of the Art

machine-learning approaches, which is implementing a fixed
behaviour that is executed from the very beginning. However, the
project still keeps the control in the system and does not consider
user desires for the automation of their actions. Furthermore,
the presented approach neither provide support for establishing
context relationships among the actions to be automated nor
configuring these actions by using context information. In
addition, the rules that they learned are very simple (like event-
action rules), therefore, they need a great amount of rules to
meet user needs. This factor and the limited computational and
memory capabilities of their agents make the scalability of the
approach very difficult.

Table 3.3 summarizes the relevant information of IDorm according
to the presented layout.

MavHome and CASAS. MavHome (Cook et al., 2003; Youngblood
et al., 2005) and CASAS (Rashidi & Cook, 2009) are two projects
directed by Diane J. Cook in the School of Electrical Engineering
and Computer Science at Washington State University. CASAS
is the continuation of the MavHome Project.

These projects assume that people are creatures of habit;
therefore, MavHome and CASAS apply automatic user behaviour
learning through observation.

Their architecture, as shown in Figure 3.3, is designed with
modular components and has four cooperating layers:

• The Physical layer contains the hardware available in the
house. This includes all physical components such as sensors,
actuators, network equipment, and computers.

• The Communication layer routes communications between
the users and the house and the house and external resources.
It is available to all layers to facilitate communication and
service discovery between components.

• The Information layer gathers, stores, and generates
knowledge useful for decision making.

3.2 Machine Learning Approaches 41

Figure 3.3: Architecture of the MavHome and CASAS projects

• The Decision layer learns from stored information and makes
decisions on actions to automate in the environment. In
addition, this layer also provides adaptation by altering the
transition probabilities between events based on feedback in
order to improve automation performance.

Using this architecture, MavHome performs the following
process: sensors monitor the environment and make information
available through the communication layer to information layer
components. The database stores this information while the
data-mining algorithm encapsulates these observations in event-
based chains of a Hierarchical Hidden Markov Model (HHMM)
forming behaviour patterns with an exact periodicity (see an
example of HHMM in Figure 3.4). This HHMM is extended
by tying actions and rewards to the transitions between states

42 State of the Art

forming a Hierarchical Partially-observable Markov Decision
Process (HPOMDP) model. The observation data and data-
mined patterns are also used to train an episode membership
algorithm. This algorithm is used by the decision-maker layer
to try to locate where in the HPOMDP model the inhabitant’s
activities are currently engaged. Once successful, the decision-
maker looks ahead in the model to determine events that will
occur in the near future, and if these events are within the control
of the system it can issue actions to automate them. The decision
actions are communicated to the information layer which records
the action and communicates it to the physical layer. The physical
layer performs the actions changing the state of the system.

Figure 3.4: An example of HHMM

CASAS uses the same architecture but provides other algorithms
that allow behaviour patterns to be predicted with more
information such as duration and start times. In addition,
CASAS also provides an end-user tool that allows the user to
adapt the inferred behaviour patterns. For instance, using this
tool, end-users can add activities, delete activities, or modify
entire activities by adding, deleting, or reordering the events
that comprise the activity. The user can also indicate that the
adaptation is automatically performed.

3.2 Machine Learning Approaches 43

MavHome & CASAS

Modelling

Type of model X

Expressivity X

User Participation X

Supported by tools X

Implementation

Technique or Method Automatic user behaviour learning
through observation

Performed by Automatic

Supported by tools Yes

Automation

Capabilities Sequence of actions with temporal
relations

Dynamic representation of
the automations

Hierarchical Hidden Markov Model

Scalability X

Control (users vs system) Both

Runtime
Evolution

Level of support Adding, modifying and deleting
behaviour patterns

Developers vs end-users End-users and automatic

Level of abstraction Low

Domain Home

Number of
Users

Only one vs multiple users Only one

Limitations - Not support for context
adaptation or context
relationships among tasks.

- Do not provide information about
how runtime adaptation is
applied in the system

Table 3.4: Table that summarizes the most important characteristics of
MavHome and CASAS.

Both MavHome and CASAS are outstanding examples of
machine-learning approaches. Although MavHome kept the
control in the system, CASAS extends this to allow the user
modify this behaviour if so desired. However, they still automates
user behaviour without considering user desires, what may be
intrusive for them. In addition, they do not use context

44 State of the Art

information to properly automate user actions, instead, they
only based on the occurred events. Thus, they neither provide
support for establishing context relationships among the actions
to be automated nor configuring these actions by using context
information. Furthermore, these projects are focused on the home
domain and are restricted to only one inhabitant in the home.

Table 3.4 summarizes the relevant information of this approach
according to the presented layout.

3.2.1 Analysis and Discussion

The presented approaches have obtained great results in automating
user behaviour patterns inferring them from the actions performed
by users using machine-learning algorithms. However, the automatic
learning is a difficult task that has several important limitations.

First, most of the presented algorithms have the cold-start problem:
they cannot start to predict until they have captured enough past
actions, which may takes weeks or even months. For this reason, these
approaches are usually applied in the smart home domain, since it is a
domain where routine tasks are more often performed. If we consider
routines that are performed once a week (e.g. only on Saturdays) or only
in certain circumstances (e.g., fertilize the land according to the season),
the training may take even longer. In our approach, the application
domain is not limited to smart homes and a learning process after
system deployment is not required. All the behaviour patterns that
are known at design time and that users want to be automated are
automated from the very beginning.

In addition, machine-learning algorithms act on the basis of what
happened, according to what they see happening and believe is going
to happen, but without considering users’ desires nor knowing users’
goals. This lack of knowledge may lead to automating tasks which
the user may not want automated (users may not want to automate
everything they do) or reach generalizations in such a way that the
automation becomes a burden on the users instead of a way of helping

3.2 Machine Learning Approaches 45

them. Another related problem that automatic learning presents is that
users lose the control of the system. It is the system who makes the
decision of what automating and when, which may cause anxiety on
users (Heijden, 2003). Contrary to the majority, CASAS allows end-
users to change the automations. However, these automations can only
be changed after been executed, which may have already bothered users
because they want to change them. These two problems can cause the
loss of user acceptance of the system

In this thesis, we attempt that users are involved in all the
process. Analysts analyse users’ tasks to identify behaviour patterns
that can be automated and specify them. Thus, analysts can use
their knowledge and their experience to improve the performance of
the identified behaviour patterns, but always taking into account users’
desires because users participate in this specification. In addition, users
can also evolve the automations to adapt them to their needs; therefore,
the system only automates the tasks that users want to be automated
(users are always in control of the system), facilitating user acceptance.

Another important problem is that machine-learning algorithms are
based on the performed user actions; therefore, they can only reproduce
these actions and usually as a sequence of actions, without considering
conditions (according to context or temporal restrictions) among the
tasks. In addition, users cannot do all they would like to automate
(e.g. turn on/off all the lights at the same time). In our approach,
behaviour patterns to be automated are specified using users’ knowledge
and desires and analysts’ knowledge and experience; therefore, any
behaviour pattern can be automated even though users did not perform
it before.

Finally, machine-learning approaches represent the automations at
a low level of abstraction. Thus, if evolution is supported, it is also done
at a low level of abstraction, e.g., by changing states or rules. Unlike
these approaches, we propose to represent the automations at a high
level of abstraction by using high-level concepts (such as task, user,
location, etc.); thus, runtime evolution can be performed at modelling
level using these concepts.

46 State of the Art

3.3 Rule-based Context-aware Approaches

Rule-based context-aware approaches implement context-aware rules
for automating user actions (e.g. switching lights off when there is
nobody in a room). These rules are programmed by developers or
manufacturers and hard-coded in the system. Next, we present some
important examples of this type of approach.

ParcTab project. ParcTab at Xerox Parc is one of the pioneering
research projects centred in Ubiquitous Computing. It defines the
PARCTAB system (Want et al., 1992), a prototype developed to
explore the impact and possibilities of mobile computation in an
office environment. The system is based on three types of devices
of different sizes: tabs, pads and boards; and it is composed
of three types of software components: gateways, agents, and
applications. Gateways implement a service for sending and
receiving packets using IR signals. Each tab is represented by an
agent, which tracks the location of its tab and provides location
independent reliable remote procedure calls. Applications are
built using a library of widgets designed to accommodate the
PARCTAB’s low IR-communication bandwidth and small display
area. A distinguished application, the “shell”, permits a tab user
to start and switch among applications.

Over this system, different context-aware applications are
programmed. Of special interest for this work are the context-
triggered actions (Want et al., 1995) of these applications.
Context-triggered actions are simple IF-THEN rules used to
specify how context-aware systems should be adapted. To do
this, a rule specifies an action that should be executed in a
certain context. As an example, the watchdog program monitors
Active Badge activity and executes Unix shell commands in
response. A user configuration file (containing a description of
Active Badge events and actions) is loaded on start-up. Entries
of the configuration file, codifying the IF-THEN rule, are of the
form:

3.3 Rule-based Context-aware Approaches 47

The PARCTAB system

Modelling

Type of model X

Expressivity X

User Participation X

Supported by tools X

Implementation

Technique / Method Manually by using a library of widgets

Developers vs end-users Developers

Supported by tools No

Automation

Capabilities IF-THEN rules

Dynamic representation of
the automations

user configuration file

Scalability X

Control (end-users vs
system)

system

Runtime
Evolution

Level of support X

Developers vs end-users X

Level of abstraction X

Domain Office environment

Number of
Users

 Multiple, but without dealing with
conflicts

Limitations - Manual implementation
- Not support for context adaptation

or relationships between tasks
- The control is in the system
- Not support for the runtime

evolution of the rules.

Table 3.5: Table that summarizes the most important characteristics of
ParcTab.

badge location event-type action

where badge and location are strings matching the badge wearer
and current location, event-type is a badge event type (i.e.,
arriving, departing, settled-in, missing, or attention) and action
is a Unix shell command.

Even though the PARCTAB system is one of the pioneers in the
research of Ubiquitous Computing, this system already tackles
one of the most fundamental problems of Smart Environment
automation: their multiple population. It allows different users

48 State of the Art

to have different preferences over the same objects; however, no
mechanism for coordinating conflicting preferences is supplied.
In addition, the simplicity of the language does not have the
necessary flexibility to address complex problems: its triggers were
fixed to a badge, location and event type.

Table 3.5 summarizes the relevant information of this approach
according to the presented layout.

Henricksen and Indulska’s approach. Henricksen et al. present
in (Henricksen & Indulska, 2006; Henricksen et al., 2006) a set
of models to specify and support the development of context-
aware approaches that provided reactive behaviour to context
changes. Specifically, the authors provide a graphical Context
Modelling Language (CML) as an extension of Object-Role
Modeling (ORM). CML is focused on supporting the specification
of context-aware communication applications. Specifically, the
model captures the following: user activities, associations between
users and communication channels and devices, and locations
of users and devices. The authors also provide a procedure for
mapping from CML to a relational representation.

In order to define context conditions based on CML, the authors
propose the situation abstraction. They define a situation as a set
of logical expressions formed using context variables. Each logical
expression combines any number of basic expressions using the
logical connectives and, or and not. In our approach, we base on
this abstraction to define context conditions since it provides a
great expressivity to form them.

In addition, they propose a preference model that supports the
ranking of choices according to context. Each preference is a
pair consisting of a scope and a scoring expression. The scope
describes the context situation in which the preference applies.
The scoring expression assigns a score to a choice. Preferences
can be grouped into sets and combined according to policies. A
policy has a single score that reflects the score of all preferences
in the set. The policies dictate the weights attached to individual

3.3 Rule-based Context-aware Approaches 49

Figure 3.5: Architecture of the Henricksen and Indulska’s approach

preferences and determine how conflicting preferences are handled.
These preferences are also stored in a relational model.

As well as these design models, the authors proposed two
programming models: the branching model, which assists
in decision problems involving a context-dependent choice
among a set of alternatives; and the triggering model, which
describes event-condition-action rules to support event-driven
programming. In the triggering model, the precondition and the
event are specified in terms of situations, and the actions are
specified using a programming language as Java.

To support these models, the authors provide a software
infrastructure, which is shown in Figure 3.5, that is organized
into the following layers:

50 State of the Art

Henricksen & Indulska’s approach

Modelling

Type of model Graphical context model and a
preference model

Expressivity Context information

User Participation No

Supported by tools No

Implementation

Technique / Method Manually event-driven programming

Developers vs end-users Developers

Supported by tools They provide a software infrastructure
to facilitate application development

Automation

Capabilities ECA rules adaptive to context

Dynamic representation of
the automations

Context and preferences: relational
model
Triggers: Hard-coded rules

Scalability X

Control (end-users vs
system)

System, but end-users can change their
preferences to configure the rules

Runtime
Evolution

Level of support X

Developers vs end-users X

Level of abstraction X

Domain Communication applications

Number of
Users

 Multiple

Limitations - Not support for relationships
between tasks

- Manual implementation
- Not support for the evolution of

the rules over time.

Table 3.6: Table that summarizes the most important characteristics of the
Henricksen and Indulska’s approach.

• The context reception layer translates context inputs into
fact-based representation that uses the context gathering and
management layers.

• The context management layer is responsible for maintaining
a set of context models and instantiations of them.

• The query layer provides applications and the preference
management layer with a convenient interface with which

3.3 Rule-based Context-aware Approaches 51

to query the context management infrastructure. The
query layer also implements a transaction model that allows
synchronous queries to be performed against a set of context
information.

• The adaptation layer is responsible for storing repositories of
preferences and evaluating preferences using the services of
the query layer.

• The application layer provides a Java API to support the
branching model. This API provides a variety of methods
for evaluating and selecting one or more candidate triggers
according to the context.

This approach introduces very useful abstractions and concepts,
such as situation and preference, for automating user actions.
However, although this approach provides a software infrastruc-
ture that facilitate application development, these applications
have to be still manually implemented. In addition, it does not
allow establishing relationships among the tasks to be automated.
Also, the approach does not support the evolution of the
implemented rules; however, it allows end-users to configure these
rules by changing their preferences, but tools are not provided for
supporting this configuration.

Table 3.6 summarizes the relevant information of this approach
according to the presented layout.

Garćıa-Herranz’s Approach. The approach proposed by Garćıa-
Herranz et al (Garćıa-Herranz et al., 2010) presents a working
solution to end-user programmable context-aware smart homes.
He designed a rule-based language in which users’ preferences
can be codified by the end-users as reaction rules in the form
of Event Condition Action (ECA) rules. This language allows
context-dependent composite events through the use of timers
and using an event logic as well as expressing mixed consumption
policies. The language is an analogy of the natural “When trigger
if conditions then actions” structure, where:

52 State of the Art

• Triggers are supervised context variables responsible for
activating the rule. Only disjunction of primitive events is
allowed in the triggers part.

• Conditions are a set of “context variable-value” pairs
representing a context state that needs to be satisfied for
detonating the action. Only conjunction of conditions is
allowed. Disjunction can be codified as separate disjunction-
free rules.

• Actions are “context variable-value” pairs to be set when,
given a triggered action, all its conditions evaluate to true.

These parts are structured according to the following template:

trigger1 || trigger2 || ...
::

condition1 && condition2 && ...
=>

action1 && action2 && ...
;

For instance, to specify that the alarm is turned on if the main
door is opened for 5 minutes, the following rule is created:

door:main_door:status ::
door:main_door:status = 1
=>
TIMER 5m 1
{ device:alarm:status := 1 ; }
{ door:main_door:status ::

door:main_door:status = 0
=>
TIMER.kill

;
}

;

3.3 Rule-based Context-aware Approaches 53

These ECA rules are internally indexed in three hash tables that
index the rules through their triggers, conditions and actions.

The author states that this language can deal with most
of the requirements derived from having an end-user as a
programmer such as application-independent programming, an
increasing degree of complexity, a simple and flexible mechanism
of expression, means of explanation, or automatic learning.

In addition, he proposes an agent-based programming structure in
which the rules and the rule engines are distributed. Each agent
has its own set of rules and is related to the user or group of
users that created it, as well as to the elements they affect with
their rules. This programming structure helps to deal with other
end-user requirements such as maintaining the user’s trust in the
system when a part of it fails, solving conflicts. To deal with
multiple users, they allow the creation of hierarchies of users in
such a way that when a conflict is found, the triggers that are
executed are those associated to the user that is higher in the
hierarchy.

The goal of this work is not to develop any particular interface
but, conversely, to create a programming mechanism that can be
used through many interfaces. The work provides a language for
creating automation rules that is thought to be understood by
end-users, therefore, it lacks expressivity to specify context-aware
relationships among tasks. In order to facilitate rule creation,
the author has developed a basic GUI that is not an end-user
interface, but it facilitates the process for individuals with low
programming skills by abstracting users from the grammar of the
agent rule mechanism. In addition, they have also developed an
initial prototype for an end-user interface based on the Magnet
Poetry metaphor proposed by the CAMP approach, which will be
next explained.

Table 3.7 summarizes the relevant information of this approach
according to the presented layout.

54 State of the Art

Garcia-Herranz's Approach

Modelling

Type of model X

Expressivity X

User Participation X

Supported by tools X

Implementation

Technique / Method Manually programming the rules using
an Agent-based programming structure

Developers vs end-users End-users or developers

Supported by tools Yes, graphic interfaces

Automation

Capabilities ECA rules with timers: context-aware
conditions, sequence of actions, timers
between tasks.

Dynamic representation of
the automations

Three hash tables that index
the rules through their triggers,
conditions and actions

Scalability Distributed implementation: rules
and the rule engines are distributed
among agents.

Control (end-users vs
system)

End-users

Runtime
Evolution

Level of support X

Developers vs end-users X

Level of abstraction X

Domain Smart homes

Number of
Users

Only one vs multiple users Multiple

Limitations - Not support for context-aware
relationships or task hierarchy.

- It may be tedious for end-users to
specify the system

- The control is in the system
- Not support for the evolution of the

rules over time.

Table 3.7: Table that summarizes the most important characteristics of the
Garćıa-Herranz’s Approach.

3.3 Rule-based Context-aware Approaches 55

3.3.1 Analysis and Discussion

Context-aware rule-based approaches have made great advances in
introducing context into software systems. To automate user tasks, they
program rules that trigger the sequential execution of actions when a
certain context event is produced. However, they do not provide context
conditions among the tasks to be automated; therefore, they require
large numbers of manually programmed rules (Cook & Das, 2005). This
makes these approaches not appropriate for automating user complex
tasks and difficult to maintain. In contrast, in our approach, all the
routine tasks that the system automates are described and managed by
using a task model, which provides a great expressivity for specifying
complex tasks.

In rule-based approaches, rules are manually implemented by
developers or manufacturers, thus, although most of these approaches
provide software infrastructure for facilitating the development of
automated system, they have to be still manually implemented. In
addition, rules are fixed hard-coded in the appliances before they are
supplied to users; therefore, they do not usually take into account
users’ desires. An exception is the Garcia-Herranz’s approach, which
also provides an interface for allowing end-users to specify the rules.
However, specifying rules from scratch may be tedious for the end-
users. In our approach, we propose executable models of a high level
of abstraction to specify automations, therefore, their implementation
is done by only specifying these models. In addition, in our proposal,
end-users participate in the design of these models and can evolve them
at runtime when needed; therefore, users’ desires are always taken into
account.

The evolution of rules is another problem that present the
approaches placed in this category: whilst the developed automated
systems offer many automated features (e.g., switching lights off when
there is nobody in a room), they do not allow people to alter the rules.

56 State of the Art

3.4 End-user Centred Approaches

End-user centred approaches provide alternatives for end-users to
program their environments. The vast majority of these approaches
are focused on end-user programming by presenting particular UIs and
languages. Next, we present some relevant examples of this type of
approach.

a CAPpella. a CAPpella (Dey et al., 2004) is a Context-Aware Pro-
totyping environment intended for end-users to build applications
without writing any code. To achieve this, this prototyping
environment uses the programming by demonstration technique:
the user shows the program its desired context-aware behaviour
(situation and an associated action) in situ. a CAPpella uses a
combination of machine learning and user input for recording this
behaviour.

To achieve this, a CAPpella has 4 main components:

• A recording system, which provides multimodal sensing
capability to capture both the situation and the action that
should be taken.

• An event detection, which is the process of deriving higher-
level events from the raw data produced by the sensors.

• A user interface, which is shown in Figure 3.6. It consists
of two main panels, an event panel for viewing the captured
events and a player panel for watching and listening to the
captured audio and video. In this interface, users select the
events and also the streams of information that they believe
relevant to the demonstrated behaviour.

• A machine learning system, which is the system for testing
or training from the events selected in the interface. In either
case, the data being used is a collection of time series data.
It uses the Dynamic Bayesian Network framework equivalent
of a Hidden Markov Model to support activity recognition.

3.4 End-user Centred Approaches 57

Using these components, a CAPpella allows the user to
demonstrate interesting behaviours a number of times and learns
from these demonstrations. The user performs a demonstration of
a situation and associated action(s) and annotates the captured
events, helping a CAPpella to learn. When a CAPpella recognizes
the demonstrated situation, it performs the demonstrated actions.
a CAPpella supports the automation of actions of only one user.

Figure 3.6: a CAPpella user interface

The problem of this approach is that allowing the user to select
the relevant events from the recording and using them to train
can be tedious for users and has to be repeated a number of
times (over a period of days or weeks) before the system learns.
In addition, users cannot physically do all they may want to
be automated: the programming by demonstration technique is
not always valid. Furthermore, although the end-users show the
system the behaviour that must be automated, the control is in
the system; if the learned behaviour is wrong, end-users only can

58 State of the Art

A Cappella

Modelling

Type of model X

Expressivity X

User Participation X

Supported by tools X

Implementation

Technique / Method Demonstrate the behaviour to be
automated to the system, with
prediction help

Developers vs end-users End-users

Supported by tools Yes

Automation

Capabilities Sequence of actions triggered when a
situation is satisfied

Dynamic representation of
the automations

Hidden Markov Model

Scalability -

Control (users vs system) System

Runtime
Evolution

Level of support X

Developers vs end-users X

Level of abstraction X

Domain Independent

Number of
Users

Only one vs multiple users Only one

Limitations - Only supports the automation of
behaviour that can be
demonstrated by users

- It may be tedious for end-users to
specify the system

- The control is in the system
- Not support for the evolution of

the rules over time

Table 3.8: Table that summarizes the most important characteristics of a
CAPpella.

show the behaviour again, they cannot directly modify the learned
behaviour.

Table 3.8 summarizes the relevant information of this approach
according to the presented layout.

Capture and Access Magnetic Poetry (CAMP). CAMP (Truong
et al., 2004) is an end-user programming environment that allows
users to create context-aware applications for home. CAMP is

3.4 End-user Centred Approaches 59

based on a magnetic poetry metaphor that allows users to create
a “poem”, i.e., a sentence codifying a control statement. This
sentence focuses on tasks or goals as users choose using a subset
of natural language.

CAMP provides a GUI (see Figure 3.7) to assist users in forming
the control statements. The words or pieces are shown to the
user in the upper frame of the interface classified in four different
categories (who, what, where, when) using different colours. Users
can select these words by clicking on them and dragging them
down to the poem authoring area on the interface. They can
move and re-order words as desired.

Figure 3.7: CAMP user interface

CAMP supports a limited number of artefacts or data types (i.e.,
still-pictures, audio, and video) and actions (i.e., capture, access,
and delete). For example, a specified sentence could be: “always
show me where baby Billy is”. In addition, the authors recognize
that the CAMP interface cannot scale to display and parse an
exhaustive vocabulary.

After creating a poem for the desired application, the user must
click the “run” button, which prompts the interface to read the
poem and generate a text-based parsing that is displayed in the
bottom frame of interface as feedback to the user.

60 State of the Art

CAMP

Modelling

Type of model X

Expressivity X

User Participation X

Supported by tools X

Implementation

Technique / Method Magnetic poetry metaphor. Specifying
the rules as sentences, the approach
automatically generates the application
specifications and provides the INCA
infrastructure for implementing these
specifications

Developers vs end-users End-users

Supported by tools Yes

Automation

Capabilities Supports the start and stop of capture
and access when two specific context
conditions occur: time and presence or
absence of a person at a location

Dynamic representation of
the automations

X

Scalability Low

Control (end-users vs
system)

End-users

Runtime
Evolution

Level of support X

Developers vs end-users X

Level of abstraction X

Domain Capture applications

Number of
Users

 X

Limitations - Limited for programming
applications of capture of audio
and video

- Difficult scalability to display and
parse an exhaustive vocabulary

- Not support for the evolution of
the rules over time

Table 3.9: Table that summarizes the most important characteristics of
CAMP.

Once the end-user has composed a sentence, the system
automatically translates it into instructions and parameters for
devices, using a custom dictionary to reword and restructure the

3.4 End-user Centred Approaches 61

user’s terms into a format that can be parsed. This translation is
displayed in the bottom frame of the interface as feedback to the
user. This allows the user to debug the sentences if needed.

The CAMP interface is built on top of the INCA infrastructure
(Truong & Abowd, 2004). It abstracts the lower level details
involved in the development of capture and access applications,
and provides customizable building blocks that support interfaces
for capturing and accessing information, components for storing
information, a way to integrate relevant streams of information,
and the removal of unwanted data.

Thus, CAMP provides a great balance between simplicity and
expressivity; however, its domain is restricted to programming
capture applications such as “Record picture in Billy’s bedroom
at night”.

Table 3.9 summarizes the relevant information of this approach
according to the presented layout.

Alfred. Alfred (Gajos et al., 2002) is an end-user programming
interface that gives the user the ability to program the system
to her particular needs and preferences. This interface is built
within the Intelligent Room Project (Nicholas Hanssens & Horton,
2002), and using the Rascal (Gajos, 2001) and ReBa (Kulkarni,
2002) systems, which are responsible for the adaptive and reactive
components.

Rascal is a framework for goal-directed self-adaptivity. It works
with goals, plans for achieving those goals, and the resources
needed to implement the plans. Since each goal may be satisfied
by multiple plans, the system can select the most appropriate plan
according to the context and user’s preferences.

ReBa responds to events from the environment’s perceptual
systems. For example, it might turn on lights if someone entered
the room. Reactions are handled by posting a new goal for Rascal
to achieve; the goal is then satisfied by finding an appropriate
plan. For example, when a user enters his office in the morning,

62 State of the Art

the system might react by posting the goal of illuminating the
room. One plan for illuminating the room might turn on the
lights, while another might open the drapes.

By using these components, Alfred allows an end-user to
“program” macros by using verbal commands or other natural
forms of interaction. A macro is a simple sequence of tasks. Thus,
Alfred is a multi-modal macro recorder. To record a macro, the
user must tell Alfred the name of a new goal, demonstrate one or
more plans for achieving that goal, and finally tell the system the
conditions under which it would prefer one plan to another. The
following dialogue shows an example of how a macro is recorded:

User: I want to record a new macro.

Computer: Beginning to record a macro. Say “stop recording”
when you are done.

User: Turn on the main lights. Open the drapes. Turn on my
desk lamp. Say “good morning”. Stop recording.

Computer: What phrase would you like to associate with this
macro?

User: Good morning, computer.

Computer: Any other phrase?

User: No, I am done.

Computer: Macro added!

Every time the user names the macro, the system executes the
programmed tasks for that macro. Also, users can add some
hardware trigger to the macro (i.e., when I press this button
run the “Good morning, computer” macro). The recorded macros
are simple task sequences lacking explicit conditionals. However
macros can call other macros, giving users the capability to create
abstractions.

Alfred has been successfully evaluated in a conference room and
in offices, always with only one user.

3.4 End-user Centred Approaches 63

Alfred

Modelling

Type of model X

Expressivity X

User Participation X

Supported by tools X

Implementation

Technique / Method Recording the tasks to be automated
using verbal commands or other natural
forms of interaction. The system
automates the tasks as recorded.

Developers vs end-users End-users

Supported by tools Yes

Automation

Capabilities Sequence of actions reactive when an
event happens. Possibility to use
abstraction hierarchy.

Dynamic representation of
the automations

Macros

Scalability -

Control (users vs system) End-users

Runtime
Evolution

Level of support X

Developers vs end-users X

Level of abstraction X

Domain Independent. Demonstrated in offices
and in a conference room

Number of
Users

Only one vs multiple users Only one

Limitations - The user has to know the
vocabulary to record the tasks

- Lack of conditionals and context-
adaptivity

- Not support for the evolution of
the rules over time

Table 3.10: Table that summarizes the most important characteristics of
Alfred.

While this system is perfectly suited to enhance direct interaction
and applies some valuable ideas for multi-modal interaction,
it lacks the potential to design more complex context-aware
applications due to mainly the lack of conditionals among tasks

64 State of the Art

(i.e., Alfred focuses on giving support for executing a sequence of
tasks) and the explicit management of context to configure the
automated actions.

Table 3.10 summarizes the relevant information of this approach
according to the presented layout.

Pervasive Interactive Programming (PiP). Pervasive Interactive
Programming (PiP) (Chin et al., 2008) provides a platform aimed
at non-technical people to customise the functionality of their
digital home to suit their particular needs.

PiP is based on the concept of a MAp. A MAp contains
a collection of rules that determine the behaviour of the
environment. Rules has two parts: the Antecedent (which are
the conditions that enable de rule) and Consequent (which is the
actions that are executed if the conditions are satisfied). It is
worth mentioning that PiP assumes that the logical sequence of
actions is not important.

Figure 3.8: PiP Graphical Interface

In order to create a MAp, the user can use any of the following
three methods: (1) physically interacting with the devices
themselves by demonstrating the functionalities that the MAp
should have via simple familiar interaction (e.g., by using a wall
switch to turn on a light), (2) using a UI control panels (which are

3.4 End-user Centred Approaches 65

shown in Figure 3.8) that allows the user to “drag & drop” device
representations by engaging them in graphical activities; (3) a
combination of the above two methods. To terminate a MAp, the
user simply clicks on the “stop” button of the interface.

PiP leverages ontology semantics as the core vocabulary for its
information space. When the user finishes the creation of a MAp,
PiP generates its corresponding ontology-based rule set and the
appropriate events and passes them to the network.

MAps can be visible to the user who created them, either at the
time of creation or later, when they can be retrieved, shared,
executed, or removed on demand. For instance, to execute a MAp,
the user only needs to drag the MAp graphical representation and
drop it into a “play” button located at the top of the PiP View.

The communication between PiP, the end-user and the environ-
ment is via an eventing mechanism; thus, PiP has an event-
based object-oriented asynchronous architecture and leverages
UPnP TM technology as its middleware and communication
protocol.

This platform has been evaluated by using the iDorm (Hagras
et al., 2004) infrastructure obtaining good usability results.

Although this approach provides great control of the system to
end-users, it still lacks of important capabilities such as order
or relationships among the automated actions or the explicit
management of context for configuring these actions.

Table 3.11 summarizes the relevant information of this approach
according to the presented layout.

3.4.1 Analysis and Discussion

End-user programming techniques generally provide better user control
than the rest of approaches. This improves user acceptance of the
system. However, these approaches provide limited capacities to allow
end-users to know how the automations must be built. End-users only

66 State of the Art

PiP

Modelling

Type of model X

Expressivity X

User Participation X

Supported by tools X

Implementation

Technique / Method Programming by example or using a UI
control Panels. The rules are
automatically generated.

Developers vs end-users End-users

Supported by tools Yes

Automation

Capabilities Condition-action rules

Dynamic representation of
the automations

X

Scalability X

Control (end-users vs
system)

End-users

Runtime
Evolution

Level of support Create and delete rules

Developers vs end-users End-users

Level of abstraction Low

Domain Home

Number of
Users

 Only one

Limitations - Low expressivity: not adaptation to
context or relationships between
tasks.

- Not order among the automated
tasks

- Limited evolution support

Table 3.11: Table that summarizes the most important characteristics of PiP.

can program basic event action rules. For this reason, they are only
appropriate for developing simple tasks commonly described in the
literature, such as controlling lights or creating doorbells.

In our approach, end-users are always in control of the automations
because they participate in their design and their evolution. But,
unlike end-user programming techniques, our proposal claims for an
approach in which analysts and end-users cooperate for obtaining the

3.5 Benefits of our Proposal 67

desired automations. The collaboration of end-users is really important
to minimize the mismatch between their expectations and the system
behaviour, but the figure of analysts is also very important because their
knowledge and experience are essential for obtaining a better result. In
addition, the cooperation between analysts and end-users allows end-
users to better understand how the system and the tools work, favouring
they successfully adopt the system and use it.

A further problem that end-user programming techniques present
is that most of them deals only with how to train or develop the
system initially, not with how to override or modify behaviour later (for
example, when unexpected actions arise or user requirements change).
This problem is improved in our approach, in which end-users can evolve
the automations at runtime to adapt them according to their needs.

3.5 Benefits of our Proposal

In order to automate user behaviour patterns, our proposal claims for
the cooperation among analysts and end-users. The collaboration of
end-users helps to minimize the mismatch between their expectations
and the system behaviour, and analysts apply their knowledge and
experience for obtaining a better result. To allow this cooperation,
we propose to specify the behaviour patterns to be automated at a high
level of abstraction using a context-adaptive task model and a context
model. These models are specified by analysts, and are refined and
validated with end-users’ participation.

This approach brings the following main benefits:

• any behaviour pattern can be automated regardless users
performed them before.

• behaviour patterns are analysed before automated, therefore, they
can be specified to be automated more efficiently in time and
energy concerns.

• users’ desires are taken into account in the behaviour pattern
specification because users participate in it.

68 State of the Art

To automate these behaviour patterns, our approach takes into
account that user behaviour may change over time and, therefore, their
specified behaviour patterns must be evolved to adapt to these changes.
To facilitate this evolution at runtime and after system deployment, the
models are directly interpreted at runtime to automate the behaviour
patterns as specified. This makes the models the unique representation
of the automated user behaviour patterns. Thus, if user behaviour
changes over time, the system can be easily evolved: the automated
behaviour patterns can be adapted by only updating the models. Our
approach provides mechanisms for supporting this evolution at runtime
and at a high level of abstraction. These mechanisms also facilitate
to provide end-user tools that allow the own end-users to adapt their
automated behaviour according to their needs.

Thus, we attempt that users are involved in all the process;
therefore, the system only automates the tasks that users want to be
automated (users are always in control of the system), facilitating user
acceptance.

3.6 Discussion and Conclusions

This chapter has presented the state of the art in proposals that
deal with intelligently acting on behalf of users according to context.
We have revisited and explained the most important approaches by
classifying them in three categories: machine-learning approaches, rule-
based context-aware approaches, and end-user centred approaches.

As well as analyzing and discussing the limitations that each
category presents, we have shown, for each approach, the most
important characteristics that are relevant to achieve the challenges
confronted in this thesis. As described in Section 1.3, these challenges
are the modelling, automation and evolution of behaviour patterns.

Table 3.12 summarizes the level of achievement of these challenges
by each one of the approaches described in this chapter. As shown,
none of these approaches attempt to confront the automation of user
actions at a high level of abstraction, i.e., none of the revisited

3.6 Discussion and Conclusions 69

 Modelling Implementation Automation Runtime

Evolution

NNH X Automatic learning Sequence of actions
with limited
functions. Control in
the system

X

iDorm X Automatic learning Event-action rules.
Control in the system

Automatic
evolution of the
rules. Low level

MavHome X Automatic learning Sequence of actions
with temporal
relationships.
Control in both

Modification of
the rules
automatically
and by end-
users. Low level

ParcTab X Manual implemented Condition-action
rules. Control in the
system

X

CML Graphical
context model

Manual implemented Context triggered
actions. Control in
the system

X

García-

Herranz

X Manual implemented
or end-user
programming

ECA rules with
timers. End-users’
control

X

a CAPpella X End-user
programming and
automatic learning

Context triggered
actions. Control in
the system

X

CAMP X End-user
programming

Capture and Access
actions. End-users’
control

X

Alfred X End-user
programming

Event-action rules.
End-users’ control

X

PiP X End-user
programming

Condition-action
rules. End-users’
control

Create and
delete rules.
Low level

Table 3.12: Table that summarizes the state of the art of the challenges
confronted in this thesis.

approaches proposes models to capture the automations at a high
level of abstraction. Only the language CML proposes a high level
of abstraction model, however, it is focused on specifying the context
managed by the system, not the automations.

Regarding the development and automation of user behaviour
patterns, most of the approaches provide great facilities for developing
and automating sequence of actions. Only a few of the presented

70 State of the Art

approaches allow temporal relationships and abstraction hierarchies to
be established among these actions. However, none of them provide
the expressivity and the automation capabilities that our approach
achieves, i.e., none support the use of context for establishing context
conditions (context relationships among tasks, context preconditions,
context parameters to execute a task) to configure how and when the
automated actions must be executed. This expressivity allows us to
form behaviour patterns that group together the tasks that must be
executed to achieve a whole goal (e.g., tasks for waking up the user,
tasks that must be carried out when users leave home, etc.), which
improves the understanding and management of the automated tasks.

Finally, regarding the evolution of the behaviour patterns that are
automated, only two of the presented approaches support runtime
evolution. However, these approaches support this evolution at a low
level of abstraction. Unlike them, in this thesis we attempt to confront
the runtime evolution of the automated behaviour patterns at modelling
level, by using the same high level concepts used for creating the
designed models.

Thus, in spite of the research efforts that have been done, this
chapter shows that there is still work to be done in order to completely
solve the challenges confronted in this thesis.

Chapter 4

Overview of the Proposal

Since the advent of Pervasive and Ubiquitous computing, the
automation of user routine tasks, also well-known as behaviour

patterns, has been a pursued challenge. Its achievement could not only
reduce the tasks that users must perform everyday, but also performing
them in a more comfortable way for users and optimizing energy and
water consumption. In order to deal with this challenge, our approach
makes use of the pervasive services provided by any pervasive system.

A pervasive system is developed to provide omnipresent services
that serve people in their everyday lives. These services are in charge
of interacting with physical devices in order to change the state of the
environment and to sense context. Thus, services are considered as the
primary elements of the pervasive system architecture.

Instead of considering these services in an isolated manner, we
propose to support the automation of user behaviour patterns by
coordinating these services in a context-adaptive way. Thus, the
automation of a behaviour pattern could be seen as a specific
coordination of pervasive services that is performed in the opportune

72 Overview of the Proposal

Figure 4.1: Pervasive System Architecture

context. Figure 4.1 represents this notion in a graphical way. Behaviour
patterns coordinate services to meet user needs, while these services use
the devices installed in the environment to provide their functionality.
For instance, the WakingUp behaviour pattern for waking up the user
can turn on the radio by using the Radio service. Then, if it is a sunny
day, the pattern can raise the bedroom blinds using the BlindControl
service, or can switch on the bedroom light using the Lighting service if
outside light intensity it is not enough. Afterwards, when the user is in
the kitchen, which is known using the UserLocation service, the pattern
can make breakfast using the CoffeeMaker service and inform the user
about the weather using the WeatherPrediction service.

Although several approaches have confronted the automation of user

4.1 Introduction 73

behaviour patterns, the provided solutions still present some drawbacks
that we attempt to solve in this work. In this chapter, we present an
overview of this solution. We firstly introduce it in a nutshell. Then, we
describe the process that must be followed to achieve the automation
of user behaviour patterns using our solution. We then explain the
developed software infrastructure to support this process. Afterwards,
we show how our solution has been put into practice and validated
throughout several case studies. Finally, we conclude the chapter.

4.1 Introduction

As explained in Chapter 3, although several approaches have dealt
with the pursued challenge of automating user behaviour patterns,
they still present some drawbacks. The two most important ones are
the intrusiveness of the automated tasks and their maintenance and
evolution over time.

Regarding intrusiveness, we have to consider that the automation of
users’ tasks on their behalf is a very delicate matter. The execution of
a not desired task may be very intrusive for users, bothering them,
interfering in their goals or even being dangerous. To avoid these
problems users’ desires and demands have to be taken into account
in order to automate the tasks that users want in the way they want
them.

Regarding maintenance and evolution, we have to consider that
users’ behaviour may change over time. Therefore, the automation of
their behaviour patterns must be adapted to these changes; otherwise,
system may become useless, obsolete, and intrusive. To avoid this, the
automation of user behaviour patterns has to be done to facilitate their
further evolution, and also evolution mechanisms have to be provided.

To solve these problems, we propose a context-aware model-driven
approach that achieves the automation of the behaviour patterns that
users want to be automated.

In order to avoid intrusiveness, it is essential the collaboration of
end-users in the obtaining of the behaviour patterns to be automated.

74 Overview of the Proposal

In this thesis, we deal with this goal by proposing two models of a
high level of abstraction. This allows end-users to focus on the main
concepts (the abstractions) without being confused by many low-level
details (Paternò, 2003).

In order to facilitate the maintenance and evolution of the
automated behaviour patterns, we use the MDE principles (see Section
Section 2.2). The objective of the proposed models is not only to
analyse the behaviour patterns to be automated, but become into the
primary means to understand, interact with, and modify the behaviour
patterns. To achieve this, the models are designed to be machine-
processable and precise-enough to be executable models.

To properly automate the specified behaviour patterns, we design
and develop a software infrastructure that performs the behaviour
patterns by executing the models at runtime. This software
infrastructure could execute the models by following two strategies:
code generation or model interpretation. While code generation makes
that the system has to be stopped to be generated, packaged and
installed again when new changes must be applied, model interpretation
makes the evolution much more easier. Using model interpretation, the
models are the only representation of the automated behaviour patterns;
therefore, to evolve them, only the models must be updated. For these
reasons, the proposed software infrastructure directly interprets the
models to execute the behaviour patterns. This greatly facilitates the
runtime evolution of the behaviour patterns specified to be automated.

In addition, to support the runtime evolution of the behaviour
patterns, our approach provides mechanisms and tools to update the
automated behaviour patterns according to user needs.

4.2 Process for Automating User Behaviour
Patterns

To achieve the automation of user behaviour patterns by using our
approach, we propose a model-driven development process that benefits
from the whole range of gains brought by the application of MDE

4.2 Process for Automating User Behaviour Patterns 75

and model interpretation (see Chapter 2.2). For instance, we obtain
important benefits as automation of the development, support for the
simulation and early requirement validation, reusability, technology
independence, ease to perform changes at runtime, etc.

To define the process, we use Software and Systems Process
Engineering Meta-Model 2.0 (SPEM 2.0), which is the OMG standard
for describing development processes. Next, we first explain briefly the
notation of this language and then we describe the proposed process in
detail.

4.2.1 SPEM notation

SPEM 2.0 is used to define software and systems development processes
and their components. Using SPEM, the software process is defined by
means of a set of activities. Each of these activities is performed by
one or more process roles and can be divided into steps by depicting
a composite relationship from the activity to the step. After the
performance of each activity or step, one or more work products can be
obtained (output work products of the activity). An activity or step can
also require some work products in order to be performed. These work
products can be either output work products of other activities or work
products already performed in other processes (input work products of
the activity). Also, an activity can update some work product in its
development. The notation proposed by SPEM in order to represent all
these software process elements is presented in Figure 4.2.

Additionally, SPEM proposes the use of UML 2.0 activity diagrams1

in order to define sequences of activities as well as their input and
output work products. In this case, nodes in activity diagrams represent
activities or work products. Arcs in activity diagrams represent: (1) a
sequence of activities (depicted by solid arrows) if both the source and
the target of the arc are activities or (2) output or input work products
of an activity (depicted by dashed arrows) if the target or the source
of the arc is a work product. Solid arrows are also used to indicate

1http://www.uml.org/

76 Overview of the Proposal

1

Process Role

Activity

Step

Guidance

Work Product:
Executable

Work Product
no executables

Activity
Sequence

Input/Output/Use
Work Product

Refinement into
steps

Associated
Guidance

Work Product
Use

Line that separates
the activities
among roles

Figure 4.2: SPEM notation

the initial activity within a software process. To do this, these arrows
connect the initial activity with the process role that performs it. Figure
4.2 shows the notation of these arcs.

SPEM also allows us to associate activities with guidance elements
that help to perform them. As shown in Figure 4.2, this association is
represented by a solid line, which is depicted between the activity and
the guidance.

4.2.2 The Process Activities

The proposed process is composed of a sequence of activities to be
followed. These activities are driven by the challenges confronted in
this thesis, deriving each challenge in one activity of the development
process: modelling, automation and evolution. These activities must
be performed after the first one, which is the requirement elicitation
for identifying the behaviour patterns that users want to be automated.
Thus, the process, which is represented using SPEM in Figure 4.3, is
divided in the following activities:

4.2 Process for Automating User Behaviour Patterns 77

Graphical
Tool

Evolution

Modelling
Validation

Behaviour
Pattern

Modelling

Enable
Automation

1

<output, mandatory>

<input,
mandatory>

1
1

1Models

Deployment

Running

1

Service
Linkage

Context
Modelling

Behaviour
Pattern Modelling

Behaviour
Pattern

Identification

Analysts End-users

<output, mandatory>

Executable
Models

Corrections

Validated
Models

OSGi Server

<input, mandatory>

<input, mandatory>

Behaviour
Patterns

Description Context
Model

Task Model

<output, mandatory>

<output, mandatory>

End-users
information

<input, mandatory>

<WorkProductUse>

<input, mandatory>

1

Running
System

<output, mandatory>

Software
Infrastructure

<output, mandatory>

<output, mandatory>

<input, mandatory>

Deployed
System

No ValidatedValidated

Evolution
Mechanisms

Task
Model

Figure 4.3: SPEM Process for achieving the automation of user behaviour
patterns

78 Overview of the Proposal

Behaviour Pattern Identification. Analysts interview users to de-
termine the behaviour patterns that they want to be automated.
This activity is shown in the figure with a grey background
because it falls out of the scope of this work. Any requirement
elicitation process can be used to identify them. Particularly,
we have used scenarios to capture the automation requirements.
Scenarios are a well-known technique often used during the initial
informal analysis phase. They provide informal descriptions of
a specific use in a specific context of an application. A careful
identification of a set of meaningful scenarios allows analysts
to obtain a description of most of the activities that should be
considered.

Behaviour Pattern Modelling. This activity consists of modelling
the behaviour patterns that must be automated by the system. A
behaviour pattern is a set of tasks that are habitually performed
in the similar contexts. For this reason, context information must
be also specified to be able to carry out the behaviour patterns
in a non-intrusive way. Thus, to specify the identified behaviour
patterns, the following steps must be followed:

• Context modelling: analysts specify the context properties
on which the behaviour patterns depend.

• Behaviour pattern modelling: analysts specify the behaviour
patterns to be automated according to the context previously
specified. Each behaviour pattern is specified as a hierarchy
of tasks adaptive to context.

• Modelling validation: the behaviour pattern modelling is
validated with the end-users to ensure that the tasks that are
going to be automated are those tasks that users want and
these tasks are going to be automated in the way users want.
Thus, following an iterative process, the task modelling
(and if needed the context modelling), must be refined with
end-users’ participation until they agree with the specified
behaviour patterns. It is important to note that, in this
way, the modelling is complemented by both the analysts’

4.2 Process for Automating User Behaviour Patterns 79

knowledge, which contributes to improving the performance
of the identified behaviour patterns; and users’ knowledge,
which contributes to taking into account their demands
and desires. After validating the task modelling with user
participation, analysts also validate that the models are
correctly formed and inconsistencies are not found in them.

• Service linkage: once the modelling has been validated,
the analysts link each pattern task to be executed, with
a pervasive service that can carry it out. This linkage
is made in the task model by indicating the name of the
corresponding service. To be able to be applied, our approach
needs pervasive services in charge of controlling the devices
of the environment (e.g., switching lights on, activating the
security alarm, etc.) as well as of sensing context information
(e.g., detection of presence, measurement of temperature,
etc). The implementation of these services is out of the
scope of this thesis. In particular, we have used a modelling
approach named PervML (Muñoz et al., April 2006; Serral
et al., 2010) for developing them. More detail about the
development of the pervasive services will be explained in
Chapter 6.

Since we use model interpretation to automate the specified
behaviour patterns, this step finishes the development of the
automations. This also allows that the specified behaviour
patterns can be validated by using prototypes. This would
require that the automation of the specified patterns is done in a
simulation mode. This mode should allow us to cause context
changes and to easily observe the execution of the behaviour
patterns according to context.

Automation of the specified behaviour patterns. To enable the
automation of the specified behaviour patterns in the opportune
context, the following two steps must be performed:

• Deployment of the system in the target platform. To

80 Overview of the Proposal

deploy the system, analysts install each component of the
software infrastructure in an OSGi server. We use an OSGi
server (OSGI, 2011) because it provides numerous benefits
and facilities to make dynamic updates, to easily reuse
components, or to deploy the system. See all the benefits
of OSGi in Section 2.4. In addition, the files in which the
behaviour patterns are specified must be saved in the folder
where OSGi is installed.

• Running the system. To run the system, analysts start
the components installed in OSGi. From this moment,
the context is continuously monitored by a context monitor
that reflects the context changes in the context modelling.
This monitor also notifies an automation engine about these
changes. In this way, the engine can check whether some
behaviour pattern must be carried out in the new context.
If some behaviour pattern must be carried out, the engine
is in charge of executing it by interpreting the models at
runtime. It is important to note that, since the models are
not translated to code but they are directly interpreted by the
automation engine, the models are the only representation
of the behaviour patterns to be automated. This facilitates
their understanding and maintenance.

Evolution of the behaviour patterns if needed. User behaviour
may change over time and the behaviour patterns that are
automated may become obsolete or useless. If this happens,
the automated behaviour patterns can be adapted according to
user needs. To allow this evolution, evolution mechanisms and a
graphical tool are provided.

4.3 Software Infrastructure

To support the automation of user behaviour patterns by following
the process explained above, we design and develop a set of software
components. Specifically, these components support the application of

4.3 Software Infrastructure 81

Figure 4.4: Software infrastructure

the three steps of the process derived from the three goals pursued
in this thesis: modelling, automation and evolution of user behaviour
patterns.

Figure 4.4 presents an overview of these components. This figure
also shows the relation of these components with the pervasive services
in charge of controlling the devices of the environment. For each
one of the developed software components, we provide the following
information: name of the component, a brief description, steps of the
process that supports and the chapters where the component will be
explained in detail.

Models: To specify the behaviour patterns to be automated, we
propose two models: one for specifying the context needed for
performing the behaviour patterns unobtrusively and other for
specifying each behaviour pattern as a composition of tasks
adaptive to context.

To specify the context information needed, we propose an
ontology-based context model. This model is based on an ontology
because it is one of the best models to specify context (Baldauf
et al., 2007; Chen et al., 2004; Ye et al., 2007). Specifically, the
context model proposed in this thesis describes the context needed
for properly automating the identified behaviour patterns. For
facilitating the specification of the context model, the Protégé

82 Overview of the Proposal

tool is used. Protégé is a free open source ontology editor and
knowledge-base framework.

To specify the behaviour pattern according to the context specified
in the context model, we propose a context-adaptive task model
because: 1) it can provide enough expressivity and precision,
which is needed to be automatically executed; and 2) it can be
understood by end-users (Johnson, 1999; Lauesen, 2003), which is
needed for validating the model with their participation. The task
model specifies each behaviour pattern by describing: the context
situation in which the pattern has to be executed, the tasks to be
executed for each one of the identified patterns in a hierarchical
way (from more general to more specific), and the temporal
relationships that must be accomplished for the execution of
these tasks. In the task model, the behaviour pattern tasks and
their relationships are specified using the context information
of the context model, in such a way that the task execution
automatically adapts according to context. For facilitating the
specification of the task model, we develop an Eclipse(Eclipse,
2011) modelling tool that allows the task model to be graphically
specified.

According to the classification described in 2.2.1, these models
are development models, because they are used to develop the
automations of systems; they are also executable models because
they are fully expressive to be automatically executed; and they
are also runtime models, because they are directly interpreted at
runtime to perform the specified automations as specified in the
models.

Step/s that supports: the proposed models support the modelling
step.

Chapters where the component will be detailed: the context and
task models will be described in detail in Chapter 5.

Application Programming Interfaces (APIs): Two APIs are pro-
vided in order to manage the models at runtime: (1) MUTate

4.3 Software Infrastructure 83

(Model-based User Task management mechanisms), which pro-
vides constructors to manage the task model; and (2) OCean
(Ontology-based Context model management mechanisms), which
provides constructors to manage the context model. To facilitate
the use of these API’s, the constructors that they provide use the
same high-level concepts used for creating the models.

Step/s that supports: The APIs are used to support the
automation and evolution steps.

Chapters where the component will be detailed: in Chapter 6 these
APIs are explained. In Chapter 7 it is explained how these APIs
are used for evolving the behaviour patterns.

Context monitor: The context monitor is in charge of capturing and
processing context changes and then updating the context model
accordingly. Note that these changes are physically detected by
sensors, which are controlled by pervasive services. Thus, in
order to capture context changes, the monitor is continuously
monitoring the execution of the pervasive services. When a change
in context is detected, the context monitor reflects the change in
the context model by using OCean. Next, the context monitor is
in charge of informing the automation engine (which is introduced
below) about the context that has been updated.

Step/s that supports: the context monitor is used to support the
automation step.

Chapters where the component will be detailed: the context
monitor will be described in detail in Chapter 6.

Model-based user task Automation Engine (MAtE): MAtE is
in charge of executing the corresponding behaviour patterns
in the appropriate context as specified in the models. When
MAtE receives the context change notification sent by the context
monitor, MAtE checks whether there is any behaviour pattern
that has to be executed. To do this, it interprets the context
model and the task model by using the provided MUTate and

84 Overview of the Proposal

OCean APIs. If a pattern has to be carried out, MAtE executes
the corresponding pervasive services as specified in the task model.

Step/s that supports: MAtE is used to support the automation
step.

Chapters where the component will be detailed: MAtE will be
explained in detail in Chapter 6.

Evolution tool: A high-level tool is provided for allowing the
evolution of the automated behaviour patterns after system
deployment and without the need to stop or redeploy the system.
Since MAtE directly interprets the models at runtime to automate
the behaviour patterns, as soon as the models are changed, the
changes are applied. Thus, this tool provides users with a set
of intuitive interfaces that allow them to change the models at
runtime. The tool uses MUTate and OCean to update the models
at runtime.

Step/s that supports: the evolution tool is provided to support the
evolution step.

Chapters where the component will be detailed: the evolution tool
will be explained in detail in Chapter 7.

4.4 Validation

The presented work has been validated from three different perspectives
according to the confronted challenges:

Modelling of the behaviour patterns. The task model and the
context model must provide enough expressivity to specify the
behaviour patterns that users want to be automated. Also, this
specification must be understandable enough for the end-users so
that the models become artefacts for discussion between analysts
and users. Experimentation results show that, although some
specific aspects are not very intuitive to be described, all the

4.4 Validation 85

identified behaviour patterns can be specified using the provided
models. Regarding the comprehension of the task model, all the
users could understand and reason about the routines specified in
the model.

Automation Infrastructure. The provided infrastructure must au-
tomate the behaviour patterns in the opportune context as
specified in the models. Experimentation revealed that the
automation of user tasks is properly performed using our software
infrastructure. Also, model interpretation must be subject to the
same efficiency requirements as the rest of the system because this
impacts overall system performance. Therefore, we analysed the
scalability of our approach by studying the temporal cost of the
operations that access models. Experimentation results showed
that the user routine tasks are automated without drastically
affecting the system response.

Evolution of the Automated Patterns. The mechanisms and the
tool provided for evolving the automated behaviour patterns must
allow them to be easily evolved according to users needs, and at
runtime. As well as testing the evolution mechanisms, we perform
an experiment with end-users to evolve the automated behaviour
patterns. This experiment revealed that most of the users were
capable of performing the required evolutions efficiently.

To evaluate the above concerns, we have performed a case study
based evaluation. To perform it, we have developed several smart home
case studies and a nursing home case study (see Appendix B) following
the guidelines for case study research by Runeson and Höst (Runeson
& Höst, 2009).

From this evaluation, we conclude that the approach achieved
satisfactory results regarding the automation of user behaviour patterns.
Nevertheless, we detected that some aspects of the task model were still
a little difficult to understand by some users. In addition, although all
the users achieved to evolve the behaviour patterns using the provided
evolution tool, some of them took it too much effort to understand how

86 Overview of the Proposal

some aspects of the tool worked. These aspects need to be improved to
provide more facilities.

4.5 Conclusions

The automation of user routine tasks is a very desirable challenge
because it can considerably improve users’ quality of life. However,
this challenge is also very difficult to properly achieve because the
automation of user tasks may become intrusive if it is not performed
exactly in the way users want it. In this thesis, we propose an approach
that attempts to take into account users desires and demands overall the
development process. This process uses model interpretation achieving
that: 1) the user routines are specified at a high level of abstraction and
are obtained by simply specifying them in models; 2) the evolution of
the routines over time can be performed at a high level of abstraction
and at runtime. Finally, we have evaluated our approach by applying
it to several case studies, obtaining valuable validation information of
the approach.

Chapter 5

Modelling User Behaviour
Patterns

Modelling techniques focus on abstract models rather than com-
puter programs. Abstract models allow a system to be designed

by using concepts that are much less bound to the underlying
implementation technology and are much closer to the problem domain.
This makes the models easier to specify, understand, and maintain than
computer programs. In addition, the use of abstract models facilitate
the participation of end-users in the early stages of the development
process because models allow end-users to focus on the main concepts
(the abstractions) without being confused by many low-level details
(Paternò, 2003). Furthermore, when models are machine-processable
and precise-enough, they can be used as executable models to automate
the production of a software system (Pastor & Molina, 2007).

These benefits are the main reasons for selecting a modelling
technique to achieve the automation of user behaviour patterns. A
behaviour pattern is a set of tasks that are habitually performed when
similar contexts arise (Neal & Wood, 2007). For instance, a behaviour

88 Modelling User Behaviour Patterns

pattern could be the set of tasks that we usually perform when leaving
home: switching off the lights and air conditioning, closing windows
and locking doors; another example could be the set of tasks that we
usually perform in the morning: at 7:55 in working days, the heating
of the bathroom is switched on, five minutes later the alarm clock goes
off, and, when we are in the kitchen, the breakfast is prepared. They
are two examples of behaviour patterns.

As the definition states and the examples show, a behaviour pattern
is made up of two essential parts: the set of tasks that compose the
behaviour pattern (i.e., the alarm clock goes off, the heating is switched
on, etc.); and the context on which the behaviour pattern, including
their tasks, are performed (i.e., time, users’ presence, environment
location). Note that knowing context is essential for automating user
tasks unobtrusively, i.e., without bothering users.

Thus, as well as specifying the behaviour patterns, the context
information needed for carrying out them have to be also specified.
Therefore, to specify the behaviour patterns to be automated, we
propose two models: a context model and a context-adaptive task
model. The context model captures the context information that must
be taken into account for automating the behaviour patterns under the
opportune conditions. The task model specifies the behaviour patterns
by decomposing them into a hierarchy of tasks. In addition, in the
task model it is specified the context conditions where the behaviour
patterns and their tasks must be carried out. These context conditions
are specified by using the context information previously described in
the context model.

Section 5.1 describes the proposed context model. Section 5.2
explains the proposed task model. Finally, Section 5.3 presents the
conclusions of the chapter.

5.1 Modelling Context

A suitable model for handling, sharing and storing context is essential
for automating user behaviour patterns in a non-intrusive way. In

5.1 Modelling Context 89

this section, we first study the concept of context to establish the
information that our context model must capture. Next, we revisit the
most important models that have been proposed to model context in
order to select a suitable model. Finally, we explain the context model
proposed in this thesis to represent the context needed for correctly
automating user behaviour patterns.

5.1.1 The Context Concept

The context concept is widely used in Computer Science with different
meanings according to the working area. For instance:

• In Artificial Intelligence (Lieberman & Selker, 2000), it is defined
as everything that affects the computation except from the
explicit input and output of the application. According to this
definition, what is considered explicit and implicit has to be
precisely determined in the system. All what is considered implicit
constitute context. In this way, the context of a system changes
depending on the initial consideration of explicit and implicit
elements.

• In Natural Language Processing (Lenat, 1998), it is understood as
all the knowledge that surrounds a specific statement or assertion.
In this area, it is important to avoid the danger of taking things
“out of context”. Assertions true in one context might be false in
another. Thus, context in this area is related to the meaning of
one sentence with regards to the meaning of other sentences.

• In Operating Systems (Stalling, 2000), it is defined as the minimal
set of data used by an operating system task. This data needs to
be saved in order to allow the task to be interrupted at a given
date, and to be resumed at the point it was interrupted.

In Pervasive Computing, the definition of Context is different from
the ones presented above. Some of the most important definitions in
Pervasive Computing are the following:

90 Modelling User Behaviour Patterns

• In (Schilit et al., 1994), Context is characterized by the location of
use, the collection of nearby people, hosts, and accessible devices.
Thus, context-aware systems are those that are able to adapt
themselves to these aspects.

• In (Ryan et al., 1998), Context-awareness is described as the
ability of the computer to sense and act upon information about
its environment, such as location, time, temperature, or user
identity. Thus, the concept of Context is mainly centred on the
characteristics of user location.

• In (Dey, 2001), the most used definition of Context in AmI
systems is presented. Dey defines Context as any information
that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the
user and the application themselves.

• In (Mitchell, 2002), two classes of Context are identified, namely
personal and environmental context. Examples of environmental
context include: the time of the day, the opening times of
attractions and the current weather forecast. Personal context
refers to user profiles in which information such as user’s interest,
attitudes, or beliefs are considered.

• In (Crowley et al., 2002), a distinction between user’s context
and system’s context is done. User’s context provides means to
determine what to observe and how to interpret the observations.
System’s context provides means to compose the federation of
components that observe the user’s context.

• In (Chen et al., 2004), Context is defined as the following
information: people, software agents that the system contains,
beliefs, desires and intentions of these software agents, actions,
policies, time, space, and events.

• In (Bardram, 2005), Context refers to the physical and social
situation in which computational devices are embedded.

5.1 Modelling Context 91

Although there is not a generally accepted definition for the Context
term in Pervasive Computing, all of the studied definitions share
some ideas about the information that must be considered as Context.
Thus, the core context information identified taking into account our
automation purposes consists of:

• User information: personal data, preferences, skills, location,
mobility, etc.

• Environment information: space information (areas of the
environment where the system is running and spatial relations
between these areas), environment properties (properties of the
environment such as temperature, light intensity, etc.), etc.

• System information: information about the system, such as
the services that it provides, the devices of the system, their
computational resources, etc.

• Privacy and security policies: information that indicates what
actions each user can execute and what context information each
user can see and modify.

• Temporal information: date and time, holiday, working day, etc.

• Events’ information: information about the events that happen
in the system, such as user actions and context changes.

5.1.2 Context Modelling in Pervasive Systems

Different context models have been proposed until now to capture
context in Pervasive Computing. Some of the most important examples
are: object oriented models such as the proposed by the projects
CORTEX (Biegel & Cahill, 2004) and Hydrogen (Hofer et al., 2002);
key-value models such as the used by Dey in the Context Toolkit (Dey,
2001); graphical models such as ContextUML (Sheng & Benatallah,
2005), CML (Henricksen & Indulska, 2004) and the proposed in (Ayed
et al., 2007); etc.

92 Modelling User Behaviour Patterns

However, several studies (Baldauf et al., 2007; Chen et al., 2004; Ye
et al., 2007) state that the use of ontologies to model context is one of
the best choices. They state that this model guarantees a high degree
of expressiveness, formality and semantic richness. Ontologies also
exhibit prominent advantages for reasoning and reusing context as well
as facilitating the integration of pervasive environments. Some relevant
examples of ontology-based approaches are SOUPA (Chen et al., 2004),
COMANTO (Preuveneers et al., 2004), SOCAM (Gu et al., 2005), and
COIVAS (Hervás et al., 2010). A complete background of most of the
ontologies proposed in Pervasive Computing can be found in (Ye et al.,
2007). None of the studied context ontologies cover adequately all the
context information identified in the previous subsection; however, the
SOUPA ontology is of special interest for this work.

SOUPA is a proposal for an Standard Ontology for Ubiquitous
and Pervasive Applications that defines core concepts by adopting
the following different consensus ontologies: FOAF, which captures
personal information and social connections to other people; DAML-
Time & the Entry Sub-ontology of Time, which represent Time and
facilitate the reasoning about the temporal orders of different events;
OpenCyc Spatial Ontologies & RCC, which allow space to be specified
using geo-spatial coordinates or symbolic representation; Rei Policy
Ontology, which specifies high-level rules for granting and revoking the
access rights to and from different services.

According to the context-modelling background published in (Ye
et al., 2007), SOUPA is the most consistent set of ontologies, since
it imports most of its concepts from external and consensual domain
ontologies. For this reason, and for facilitating information sharing, we
define a context ontology that adequately covers the context information
identified in the previous subsection by extending the SOUPA ontology.

5.1.3 An Ontology-based Context Model

The context model that we propose is based on a context ontology that
adopts, as far as possible, suitable concepts of the SOUPA ontology,
extending it in order to cover all the context information identified in

5.1 Modelling Context 93

Section 5.1.1. Thus, to explain the model, we first define the context
ontology by identifying the domain concepts and their relationshiops.
Next, we explain how we describe the context model based on this
ontology.

The context ontology

An ontology is a formal representation of a set of concepts within
a domain and the relationships between those concepts. To build
the context ontology, we follow a top-down approach, starting from
the most coarse-grained concepts and dividing them up into finer-
grained concepts. The coarse-grained concepts that we identify are:
Environment, System, Person, Policy, Time, and Event. Dividing them
into finer-grained concepts, we obtain the classes of the class diagram
shown in Figure 5.1.

To describe the environment, we reuse the OpenCyc Spatial
and RCC SOUPA ontologies, which allow space to be specified
using geo-spatial coordinates or symbolic geographical representation.
They propose classes such as GeographicalSpace that inherits from
SpatialThing, whose is related to LocationCoordinates class. However,
we think that a symbolic representation more intuitive for users is
also needed. Thus, we propose the term Location to describe the
different areas that compose the environment (i.e., Kitchen, Corridor,
etc.). A location is characterized by a name and by its relationships
with the other locations of the environment. These relationships are
subsumes, adjacency and mobility. The subsumes relationship indicates
that a location contains other locations (e.g., the location First Floor
subsumes the locations Kitchen, Hall and Living Room). The adjacency
relationship indicates that two locations are physically together (e.g.,
the Parent Bedroom and the Children Bedroom are adjacent). The
mobility relationship indicates that two locations are adjacent and there
is a way for people to go from one location to the other (e.g., the Hall
and the Living Room are adjacent and the Hall has a door to go to the
Living Room). In addition, we propose the term EnvironmentProperty
to describe the properties (e.g., lighting intensity, presence detection,

94 Modelling User Behaviour Patterns

*
* *

**

*

*

*

*
*

Figure 5.1: Context ontology classes in ecore format

noise level, etc.) of a certain location. Each environment property is
characterized by a name, a value, its data type, and the location where
is placed.

To describe the system, we propose the terms Service, Service-
Category, Operation, Argument, Device and SystemProperty. The
term Service represents the services (e.g., Lighting, Multimedia Player,
Alarm, etc.) that the system provides. A service is characterized
by the properties name and state and belongs to a service category
(e.g., illumination, multimedia, security, etc). Each service category is
characterized by a name and can belong to another category by using
the parent relationship. This aspect allows us to define hierarchies
of categories. Services can be related to each other by means of two
relationships: parent and uses. On the one hand, the parent relationship

5.1 Modelling Context 95

allows us to indicate hierarchies of services by defining parent and child
services (e.g., we can define the Lighting service as the parent of the
Gradual Lighting service). This relationship is used with inheritance
purpose in order to indicate that a service presents all the characteristics
of another service plus some additional ones. On the other hand, the
uses relationship indicates that a service needs to use other service/s
in order to provide its functionality (e.g., the HomeLighting service
needs to use the lighting services of all the locations contained in the
Home location). The behaviour of each service is characterized by its
operations which are described with a name (e.g., the operations of a
service Video Player may be play, stop, forward, review, etc), the set
of arguments that receives (e.g., the play operation may need the title
of the movie) and the argument that returns. In addition, a service
is also related to the devices used (lamp, dimmer, presence detector,
etc.) to carry out its operations. A device is characterized by a name.
Each service and each device are also related to the location where are
provided or installed. The term SystemProperty is used for defining
specific properties of the system, such as its computational resources,
networks, etc.

To describe the users of the system, we reuse the FOAF SOUPA
ontology, which propose the term Person. This term is described by a
set of properties that include profile information (e.g., name, gender,
birth date, etc.), contact information (e.g., email, mailing address,
phone numbers, etc.), and social and professional relationships (e.g.,
people that a person knows, relatives, etc.). To properly describe the
users, we add the UserProperty class, to represent the properties of
users, such as its preferences (e.g., preferred music, preferred language,
etc), or the skills and disabilities that a person has and may affect to
his/her interaction with the system (e.g., computer knowledge, deafness,
diseases, etc.). With regard to the location in which a person is, we
propose also the currentLocation relationship, which relates each person
to the location where it is in the current moment.

A person is also associated to policies. To define the Policy term,
SOUPA uses the Rei Policy Ontology. It specifies high-level but complex
rules for granting and revoking the access rights to and from different

96 Modelling User Behaviour Patterns

actions (concept similar to the operation concept that our approach
provides, but focused only on agents). Since our ontology allows us
to describe the services of the system and the operations that they
provide, we describe policies in an easier way as a set of operations
and/or services (which group a set of operations) that are permitted for
a person. In addition, the policy also describes the context information
that a person can see and/or modify. In our ontology, the permitted
context is defined by indicating the coarse-grained terms proposed
in this ontology; e.g., the environment term indicates that all the
information about the environment is permitted in the policy. Thus,
each policy restricts the operations that a person can use (e.g., we can
create a policy for children that does not allow them to activate the
security service or the heating service) and the context that s/he can
see or modify. A policy is described by a name, the set of people to who
the policy is applied (appliedFor), the set of operations/services that
the policy allows, and the list of context information that the person
can see and modify.

To describe temporal aspects, we reuse the DAML-Time ontology
and the Entry Sub-ontology of Time that SOUPA provides. These
ontologies provide us with the term TemporalEntity, which is refined
into TimeInstant and TimeInterval. The TimeInstant term is defined
by using the at property that stores the value of time; while the
TimeInterval term is defined by using the from and to properties that
relate the time interval to the two corresponding time instants. In
addition, these SOUPA ontologies provide useful temporal relationships
to compare and order to different temporal entities, for instance: after,
before, sameTimeAs, startsLaterThan, startsSoonerThan, startsSame-
TimeAs, endsLaterThan, endsSoonerThan, endsSameTimeAs. For
avoiding overloading the model, we do not show these relationships in
Figure 5.1. To these classes, we added the TemporalProperty class as
another refinement of the TemporalEntity class. It represents temporal
properties that are not identified as a time instant or a time interval,
such as the day of the week, if it is holidays or working days, etc. This
class has as attributes value and its data type (i.e., DayOfWeek could
have as value Monday and as type String).

5.1 Modelling Context 97

To describe the events that happen in the system, we reused the
Event class proposed by SOUPA. In SOUPA, an event is a temporal and
spacial thing. Thus, SOUPA provides the SpatialTemporalThing class,
which is the intersection between TemporalEntity and SpatialThing. In
addition, the SpatialTemporalEvent class is defined as the intersection of
the Event and SpatialTemporalThing classes. The events in our systems
can be a change detected by sensors, or can be an operation executed
by a person or automated by the system. Thus, in order to better
represent the events of our systems, we refine the SpatialTemporalEvent
class in the DetectedChange class and the ExecutedOperation class. The
DetectedChange represents a change that has been detected by the
devices of the system (e.g., the temperature has increased, presence
has been detected, the time goes by, etc.). This class is related with
the environment or temporal property whose value has changed (e.g.,
the temperature of the the kitchen). The ExecutedOperation class
represents an event produced by the execution of an operation (e.g.,
switching on the light or playing a song). This class is related with
the executed operation (e.g., the switch on operation of the lighting
service or the play operation of the multimedia player service) and the
arguments used for executing the operation. This class is refined in
the OperationExecutedByPerson and AutomaticOperation classes. The
OperationExecutedByPerson represents the execution of an operation by
a person. This class is related with the person that has executed it by
using the executedBy relationship. The AutomaticOperation represents
the execution of an operation by the system.

In Figure 5.1, the class diagram of the ontology is shown. In this
diagram, the classes reused from SOUPA are marked with an asterisk.
We have extended this ontology with the proposed concepts (those that
are not marked with an asterisk) to achieve the representation of all
the context information detected in subsection 5.1.1. In addition, these
concepts provide a greater semantic richness in order to express how
the system provides services to users and how users interact with these
services (user behaviour). For instance, we can relate services that are
available for users with the locations of the AmI environment in which
they are provided; we can also relate actions performed by users with

98 Modelling User Behaviour Patterns

the service operations that are executed. This information helps the
system to study the behaviour of users in more detail to properly adapt
itself to it.

It is important to note that this ontology covers the core context
information needed for automation purposes. However, other context
information specific for a system may be needed. In this case,
the ontology can be easily extended with new classes to cover this
information.

The Context Model

The context model implements the above explained context ontology
to semantically describe the context required for properly automating
user behaviour patterns. In this model, the context of the system is
represented as instances of the classes defined in the ontology.

We specified the context model in the Web Ontology Language
(OWL) (Smith et al., 2004). OWL is an ontology markup language
that greatly facilitates knowledge automated reasoning and is a W3C
standard (more information about OWL can be found in Section 2.3.1).
Using OWL, the classes of the ontology are defined by OWL classes, and
the context specific of the system is defined by OWL individuals, which
are instances of these classes. In OWL, the properties of each class are
represented by attributes whose data type is simple. These properties
are DatatypeProperties. The relationships with other classes are
represented by attributes whose data type is a class. These properties
are ObjectProperties. For instance, a user named Bob is specified as
an individual of the Person class whose ID DatatypeProperty is Bob.
Its preferred temperature is specified as an individual of the Preference
class and added to the userPreferences objectProperty (which contains
the list of user preferences) of the Bob individual. Figure 5.2 shows an
example of context model using a graphical tree representation and in
OWL format. In this figure, some of the classes and properties of the
created context ontology are shown as well as some individuals created
as examples.

5.1 Modelling Context 99

Figure 5.2: An example of a context model shown in a tree representation
on the top and in OWL code on the bottom

5.1.4 Tool Support for Creating a Context Model

There are several tools that can be used to create OWL models.
Some examples are SWOOP1, the editor developed by the Model
Feature company2, the OWL Visual Editor of the EMF Ontology
Definition Metamodel (EODM)3 plugin developed upon the eclipse
platform (Eclipse, 2011), the SematicWorks tool developed by Altova 4,

1http://www.mindswap.org/2004/SWOOP/
2http://www.modelfutures.com/
3http://wiki.eclipse.org/MDT-EODM
4http://www.altova.com/products/semanticworks/semantic web rdf owl editor.html

100 Modelling User Behaviour Patterns

Figure 5.3: Snapshot of the Protégé user interface

or Protégé5. Any of these tools can be used to create the OWL context
model. We have used the Protégé tool because it is an open source
tool that can be freely downloaded from its Web page, and because it
provides a very intuitive interface to create ontologies. In addition,
there is a great research community that is continuously extending
and improving this tool. A proof of that is the International Protégé
Conference that is celebrated each year.

Figure 5.3 shows a snapshot of the Protégé tool. In this snapshot

5http://protege.stanford.edu/overview/protege-owl.html

5.2 Modelling the Behaviour Patterns 101

the above introduced OWL model is being created. The Protégé user
interface is divided in several tabs that provide us with editors to
create the different elements of the ontology: classes, properties and
individuals.

5.2 Modelling the Behaviour Patterns

A suitable model for specifying the behaviour patterns to be automated
is needed. In this model, the tasks that compose each behaviour pattern
and how and when they must be executed must be described. In this
section, we first introduce some background of the task concept. Next,
we revisit the most important models that have been proposed to specify
tasks. Finally, we explain the task model proposed in this thesis.

5.2.1 The Task Concept

The task concept can be found with different meanings throughout the
literature. Some examples of these meanings are the following:

• In common language, a task is a piece of work to be done,
especially one done regularly, unwillingly or with difficulty (Card
et al., 1983).

• From a computer perspective, a task is an operating system
concept which refers to “an execution path through the address
space”. In other words, a task is a set of program instructions that
is loaded in memory. In this field, task is also known as process
or job (Silberschatz et al., 2004).

• From a project management perspective, a task is a specific work
item to be undertaken that usually results in partial completion
of a project deliverable (Westland, 2003).

• From a task analysis perspective, a task is a group of
discriminations, decisions and “effector” activities related to each

102 Modelling User Behaviour Patterns

other by temporal proximity, immediate purpose and a common
man-machine output (Miller, 1956).

• From a task modelling perspective, tasks are activities that have
to be performed to reach a goal, where a goal is either a desired
modification of the state of an application or an attempt to
retrieve some information from an application. Thus, tasks can
be either logical activities such as retrieving information about
the ambient temperature, or physical activities such as switching
on the lights (Paternò, 2001).

In this thesis, we apply task modelling for specifying the behaviour
patterns that users want to be automated. Thus, we base on the
first and the last definitions to describe the task concept. Taking into
account that this thesis is focused on the automation of the described
tasks, we consider a task to be:

An activity done regularly that users want to be automated in order
to achieve a certain need or goal.

5.2.2 Task Modelling in Software Engineering

Task modelling can be defined as a process in which the tasks to be
performed are precisely described detailing the relationships among
the identified tasks. In order to describe the tasks to be executed in
each behaviour pattern we need a model that deal with two important
requirements according to the goals of this thesis (see Section 1.3):

• being intuitive enough for users to facilitate their participation in
the modelling of the behaviour pattern tasks; in this way, users’
desires and demands can be properly taken into account.

• providing enough expressivity to accurately specify the behaviour
pattern tasks in such a way that they can be automated from their
specification (by interpreting the model at runtime).

Several models have been proposed to model behaviour, such as
Task Model, Use Case Diagram, Interaction Diagram, Business Process

5.2 Modelling the Behaviour Patterns 103

Model, etc. In this work, we decided to use task models because they
provide a notation closer to the concepts of user behaviour patterns. In
addition, they properly fulfil the above requirements:

• Tasks centre the modelling process around the users’ own
experiences and goals (Lauesen, 2003), and are well understood
by the users (Johnson, 1999).

• Task-based models can be very expressive to describe human-
computer interactions (Johnson, 1999) and to do it in a machine
understandable way (Limbourg & Vanderdonckt, 2004).

Furthermore, task models have been effectively applied for achieving
many goals, such as the following ones (Huang et al., 2008; Limbourg &
Vanderdonckt, 2004; Paternò, 2001, 2002; Pribeanu et al., 2001; Sousa
et al., 2006):

• Understanding an application domain: since it requires a precise
identification of the main activities and their relationships,
task modelling helps to clarify many issues that may not be
immediately recognised at the beginning.

• Recording the results of interdisciplinary discussions: since many
people can be involved in the design of an interactive application
(user interface designers, software developers, managers, end-
users, experts of the application domain), it is important to
have a representation of the activities that can integrate all the
requirements raised and that can be understood by all of them;

• Documenting interactive software: the description of how
activities are supported by the application is a documentation
useful for users, to learn how to use it, and for developers, to have
an abstract description of the implementation.

• Designing user interfaces: task models can focus on how humans
interact with a particular user interface in a given context of use,
possibly interacting with other users at the same time.

104 Modelling User Behaviour Patterns

• Designing new applications consistent with the user conceptual
model: applications designed following a task-based approach are
usable and incorporate the user requirements captured in the task
model.

• Giving support for the interaction between users and system:
task modelling can be very useful for assisting end-users in
the execution of tasks through service provisioning and resource
allocation.

• Analysing and evaluating usability of an interactive system: task
models can be useful to predict the users’ performance in reaching
their goals or to support analysis of user behaviour to identify
usability problems.

Due to such different goals, numerous task model formalisms and
methodologies have been developed. Some of the most important are
GOMS (John & Kieras, 1996), UAN (Hartson & Gray, 1992), TKS
(Johnson et al., 1992), GTA (Veer et al., 1996), HTA (Shepherd, 2001),
or CTT (Paternò, 2002). These works show the growing usage of task
modelling and its remarkable results and possibilities to model user
interaction with the system. However, they have not been proposed with
the goal of automating this interaction (i.e., with the goal of automating
user behaviour patterns). Therefore, the proposed task models do not
provide enough expressivity either to specify whole behaviour patterns
(such as specific relationships between tasks, context awareness, etc.)
or to accurately describe them to be directly executed.

In this thesis, we base on Hierarchical Task Analysis (HTA), which
was date back to the late sixties and has proved to be successful, as can
be seen from its application in a big number of projects. The basic idea
of HTA is to describe the set of activities to be considered logically
structured in different levels as a task hierarchy. HTA views tasks
in a more abstract sense, as a set of interlinked goals, resources and
constraints (Shepherd, 2001). It allows us to represent tasks starting
from more general tasks and ending with more specific ones. Thus,
tasks can be described at different levels of abstraction and detail.

5.2 Modelling the Behaviour Patterns 105

In addition, HTA facilitates the representation of certain dependencies
defining the order of execution. Often, such dependencies are described
by a set of temporal equations, using predefined temporal operators,
which allow us to ordering and detailing how the tasks must be executed.
To define them, we base on the temporal relationships provided by
ConcurTaskTrees (CTT) (Paternò, 2002), which define a rich set of
temporal operators that can be used to temporally order the tasks.
These temporal operators are focused in the user interface design,
therefore, we extend them to properly allow the automation of tasks.
Thus, our task model can be seen as an extension of the combination
of HTA and the CTT temporal operators.

5.2.3 A Context-adaptive Task Model

To specify the behaviour patterns that users want to be automated, we
propose a context-adaptive task model. In this model, the behaviour
patterns are specified by using context information captured in the
context model. Specifically, a behaviour pattern is described by: the
context conditions whose fulfilment enables the pattern and the set of
tasks that compose the pattern and that must be carried out to perform
it. These tasks are also specified according to context and are related
between them using temporal relationships so that the tasks can be
properly executed. Thus, the automation of the behaviour patterns is
adaptive to context, which is essential to achieve that the automation
is performed unobtrusively. For this reason, we refer to the proposed
model as a context-adaptive task model.

This model attempts to be comprehensible enough so that people
without high-level training can understand it; but also attempts to
be expressive and precise enough so that the model can be directly
interpreted to automate the described behaviour patterns.

As we have said, the proposed context-adaptive task model is based
on the Hierarchical Task Analysis (HTA) technique (Shepherd, 2001),
which hierarchically refines more general tasks into more specific tasks.
Next, we detail the model using real examples of behaviour patterns
identified in the performed smart home case studies. These case studies,

106 Modelling User Behaviour Patterns

which will be explained in Chapter 8, attempt to improve users’ lives
and saving energy resources by automating users’ daily tasks. To detail
the model, we present how the behaviour patterns are represented, how
they are refined, how we achieve that they are adaptive to context, and
finally, we define the task model syntax by describing its metamodel.

Representation of behaviour patterns

Historically, HTA techniques have used tabular or graphical represen-
tations to specify tasks. In tabular representations, tasks are textually
specified by means of tables. Each task is represented by a row of a
table. Task refinements are indicated by using for instance a specific
task numeration (e.g., the Task 1.1 is a subtask of the Task 1). In
graphical representations, tasks are specified by a tree whose nodes
represent tasks and whose branches represent task refinements. Tasks
in a level of the tree constitute the subtasks of the task in the upper
level to which they are directly connected.

In this work, we use a graphical representation because we consider
it to be more intuitive and easier to manage by analysts than tabular
descriptions. Currently, there are several notations that allow us to
graphical represent tasks. Some of the most important notations are
CTT (Paternò, 2002), GTA (Veer et al., 1996) or TKS (Johnson et al.,
1992). These notations are usually focused on design interfaces and
they provide a myriad of notations to represent tasks of different types
as well as the refinement of them. They are very powerful tools to
achieve the purpose of facilitating the design of software. However,
our model only has to specify tasks to be automated; therefore, we can
define a simpler notation to facilitate the comprehension of the specified
behaviour patterns by users.

Thus, we based on a very simple notation (Valderas, 2008) in which
the task hierarchy is defined from ellipses and lines between them. Each
ellipse represents a task. Ellipses in upper levels in the taxonomy
indicate more general tasks. Ellipses in lower levels indicate more
specific tasks.

Since a behaviour pattern represents a set of tasks that are

5.2 Modelling the Behaviour Patterns 107

performed to achieve a common goal, we propose defining a task
hierarchy for each behaviour pattern. In this task hierarchy, the
root task represents a behaviour pattern. As examples, Figure 5.4
shows the modelling of three behaviour patterns named WakingUp,
which encapsulates the tasks to be performed for waking up users,
Leaving, which encapsulates the tasks to be performed when users
leave home, and StormSecurity, which encapsulates the tasks to be
performed when it starts raining. These behaviour patterns are real
examples identified for the developed case studies (see Chapter 8). Each
one of the behaviour patterns has an associated context situation that
defines the context conditions whose fulfilment enables the execution of
the behaviour pattern. It is represented by a note linked to the root
task. For instance, the behaviour pattern WakingUp is associated with
the context situation CurrentTime=7:50 and WorkingDay=true, i.e., at
7:50 in working days.

The root task has also a priority (High, Medium, and Low) to
establish the priority of execution of the pattern in case several patterns
are enabled at the same time. To make the model notation easier, this is
not graphically shown. From here, the elements that are not explicitly
said to be graphically represented in the model, it is because they are
not. These elements are not represented for not overloading the model
and facilitating its comprehension.

This root task can be broken down into composite tasks (which
are intermediate tasks) and/or system tasks (which are leaf tasks).
Composite tasks are used for grouping subtasks that share a common
behaviour or goal, such as the lighting task of the WakingUp pattern
or the manage home resources of the Leaving pattern. System tasks
represent atomic tasks that have to be performed by the system, such
as turn on bathroom heating or turn on the radio tasks of the WakingUp
pattern. Hence, each system task has to be related to a pervasive
service that can carry it out. The relation is established by means
of the name of the service and the name of its corresponding operation.
Note that a task represents a goal for accomplishing a user need, while
a service is the performance of this goal. For instance, the turn on the
radio system task is associated to the turnOn operation provided by

108 Modelling User Behaviour Patterns

Figure 5.4: Example of behaviour pattern modelling (graphical representa-
tion)

the Radio pervasive service, which executes this action by interacting
with the radio.

Both system and composite tasks can have a context precondition
(which is shown between brackets before the name of the task). It
defines the context conditions that must be fulfilled so that a task is
performed. If the precondition is not fulfilled, the task will not be
executed and the system will pass to execute the next task. For instance,
the turn on bathroom heating task of the WakingUp pattern is only
executed when its precondition BathroomTemperature<28 is fulfilled.

5.2 Modelling the Behaviour Patterns 109

In addition, tasks inherit the context preconditions of their parent task.

Also, system tasks can have input and output parameters. The input
parameters correspond to the parameters that the service related to the
task may require to be executed. For instance, the turn on the radio
task of the WakingUp pattern needs the radio channel input parameter.
The output parameter corresponds to the return value that the service
related to the task may have. This parameter can be used as an input
parameter in next tasks of the behaviour pattern. For instance, the
calculate rainfall task of the StormSecurity pattern returns the rainfall;
value that is needed by the update irrigation timetable task.

In addition, each task is defined by a task name (which is the text
that explains the goal of the task in a user comprehensible way and that
is shown inside the ellipse) and an internal task ID (which is a unique
identifier).

Refinement of Tasks

In order to refine a behaviour pattern or a composite task into simpler
tasks, we propose two types of refinement: the exclusive refinement and
the temporal refinement. A refinement is represented by a line that
connects a parent task with a subtask that is in the immediately lower
hierarchy level.

The exclusive refinement is represented by a solid line between a
parent task and a subtask. Using this refinement, a task is decomposed
into a set of subtasks, in such a way that only one subtask will be
executed (disabling the others). This refinement must be used when to
achieve a user goal, a different task must be carried out depending on
context. For instance, in the WakingUp pattern, the lighting task is
refined into two subtasks by exclusive refinements because only one of
these tasks must be executed depending on whether it is a sunny day
or not.

The temporal refinement is represented by a dashed line between a
parent task and a subtask. Using this refinement, a task is decomposed
into a set of subtasks that must be executed following a certain

110 Modelling User Behaviour Patterns

order. This refinement must be used when the user goals involved in
a task constitute a whole activity that can be partitioned in several
coordinated parts. Thus, in order to complete the whole activity, all
the parts in which it is partitioned must be completed. This is known
in HTA as a plan (Shepherd, 2001) (the plan indicates the way in which
subtasks must be performed). To define this plan, we propose the use
of temporal operators to link the subtasks of a parent task. The
temporal operator between two tasks will also be applied to their child
tasks.

We base the definition of these operators on CTT (Paternò, 2002),
which provides one of the richest sets of temporal operators. However,
our model has to be prepared to be executed. For this reason, every
operator must indicate precisely which task must be executed and when
it must be executed. This make us dismiss some operators, such as the
optional one, for not fulfilling these requirements. In addition, in this
work we focus on supporting stateless tasks, which are the most usual
and required tasks in behaviour pattern automation (as shown in the
developed case studies, in which tasks whose state has to be managed
have not been detected; see Chapter 8). This make us dismiss operators
that require to store the task state, such as [< or | <. Support for tasks
with state will be dealt with in further work (see more detail in Chapter
9).

In addition, tasks in a behaviour pattern may require or provide
information from and to any task of the pattern. This information
passing is supported by the input and output tasks parameters; for
this reason, we do not use the CTT temporal operator for information
passing, which restricts this action to two consecutive tasks. Therefore,
we use the following CTT operators:

• T1 >> T2, enabling: the T2 task is triggered when the T1
task finishes. For instance, the task of the Leaving pattern for
activating security is only triggered when the tasks for managing
the home resources have been performed.

• T1| = |T2, task independence: T1 and T2 can be performed in
any order. For instance, the execution order of the turn on the

5.2 Modelling the Behaviour Patterns 111

radio and lighting tasks of the WakingUp pattern is not relevant
because both of them are used to wake up the user.

To properly capture the pervasive system automation requirements,
we extend the enabling operator obtaining two additional ones:

• T1 t >> T2, enabling after t minutes: executed T1, T2 is enabled
after t minutes. For instance, in the WakingUp pattern, 10
minutes after the turn on bathroom heating task finishes, the turn
on the radio task is enabled. Thus, the bathroom is warm when
the user enters to take a shower.

• T1 >> [c] >> T2, enabling when c is fulfilled: after executing
T1, T2 is enabled when the condition c is fulfilled. For instance,
in the StormSecurity pattern, after the switch sprinklers off task
has finished, the calculate rainfall task is not enabled until it stops
raining (raining=false). For security, this task can have also an
associated temporal restriction, just in case the condition is never
satisfied or is satisfied when the execution of the task is not needed
any more. Thus, if the time specified in the temporal restriction
goes off before the context condition is satisfied, T2 is disabled.

We depict temporal operators by attaching them to an arrow that
connects the two related subtasks. These subtasks have to have the
same parent task and it has to be refined by means of temporal
refinements.

When should the refinement stop?

One of the most difficult aspects in hierarchical task modelling is the
following: when we know that the decomposition of tasks is finished.
This problem was already discussed at the beginnings of HTA (Annett
& Duncan, 1967). HTA was initially proposed to be a general method
for examining work. Annet and Duncan suggested a stopping rule
known as the PxC rule: analysts should finish the decomposition of
a task when the probability of failure (of performing an inadequate
decomposition) (P) multiplied (x) by the cost of failure (C) surpasses

112 Modelling User Behaviour Patterns

a specific predefined level of acceptance. In this case, analysts should
estimate P, should estimate C and should establish the predefined level
of acceptance. This is not always easy, as the authors Annet and Duncan
admit.

Other more recent approaches such as (Shepherd, 1993) or (Ormerod
& Shepherd, 2003) propose a rule based on the analysis of goals. They
propose to finish the refinement when the goal that must be achieved by
a task is of low level. They introduce different types of low-level goals
in order to facilitate their identification. For instance, they explain that
a low-level goal can be a goal that only implies an action which changes
the state of the system or those that only implies an observation of the
state of the system.

In this thesis, we are inspired by this last approximation. However,
we want to provide a more practical rule for the purpose of identifying
the set of the tasks that represent the user needs. To do this, we must
analyse the definition of task that is provided above. We consider a
task to be an activity done regularly that users want to be automated
to achieve a certain need or goal. According to this definition, a
task represents an activity that must be automated by the system.
Thus, we stop decomposing tasks when a subtask constitutes an atomic
action: if the system services are available before the task modelling,
decomposition stops when the system can directly execute the task
by using an operation of one of its services; if the system services
are developed after the task modelling, decomposition stops when
the granularity of the task is considered suitable and feasible to be
implemented in a service operation. We have called these atomic actions
as system tasks.

Context Adaptivity

Note that context adaptivity is achieved by means of: the context
conditions specified in the context situation that enables the execution
of a pattern, task preconditions, and relationships between tasks. In
order to specify these conditions, we use a logical expression. This
expression combines any number of basic expressions linked by the

5.2 Modelling the Behaviour Patterns 113

following logical connectives: and (AND), or (OR), equalities (=),
inequalities (!=) and greater (>), or less than (<). The context
properties used in these expressions have to be specified in the context
model.

The input parameters of system tasks can be context properties
and then can be also used for adapting the task execution to context.
Using them, the execution of the service related to the task is executed
according to the values of the context parameters.

To refer to a context property, the name of the context property
specified in the context model and the name of the individual to which
this property belongs have to be indicated (e.g., a context property
could be specified as the value property of the Temperature individual).
These two elements identify the needed context property in the context
model, which allows us to search for its value in the context model.

The Task Model Metamodel

To formalize the elements that can appear in the task model (i.e.,
its abstract syntax), we define its metamodel. Thus, the task model
is unambiguous at the syntactic level. The class diagram of this
metamodel is shown in Figure 5.5.

The main element of the task model metamodel is the Task class.
Tasks have a name and an ID. There are two types of task: System
Task and Composite Task.

System Tasks represent the tasks that have to be carried out by the
system. Thus, each system task has a service name, a service method
name and a set of arguments (each one of them has a name, a type
and a value) that may be needed for executing the indicated method.
In addition, a system task can also have an output argument, which
indicates the result of executing the corresponding method.

Composite Tasks are refined into other tasks (system or composite).
The refinement is performed by a Refinement. A refinement can only
refine one task into other task, i.e., a task can only have one parent task
in the task taxonomy, and for each new child task a new refinement must

114 Modelling User Behaviour Patterns

Figure 5.5: Overview of the task model metamodel

be created. A refinement has an order to indicate the order in which the
tasks has to be checked, and a type, which can be Exclusive Refinement
or Temporal Refinement as the enumeration indicates.

When a composite task has been refined by using the temporal
refinement, its subtasks are related by means of a Temporal Relation-
ship. Two tasks can only be related by one temporal relationship.
Temporal Relationships also present the attribute type which indicates
its type according to the enumeration TemporalRelationshipType: Task-
Independence, Enabling, Enabling when c is satisfied, Enabling after
time.

A Behaviour Pattern is defined as a type of composite task. Each

5.2 Modelling the Behaviour Patterns 115

Behaviour Pattern has to be related with a Context Situation element,
which is a Context Condition that must be fulfilled for activating the
behaviour pattern. Tasks can also have a Context Precondition, which
is also defined as a type of Context condition. In addition, temporal
relationships of the type Enabling when c is satisfied, has to be related
with a context condition that must be satisfied so that the system
continue executing the next task. A context condition can be any
number of basic expressions (equalities (=), inequalities (!=), and more
than (>), or less than (<)) that have a left part and a right part. The
left part is always a context property while the right part can be a
context property or a value. Thus, in the basic expressions, a context
property can be compared with another context property or with a
value. In addition, a condition can be composed by basic expressions
linked by the connectives: and (AND), or (OR). A Context Property
has the name of the instance and the name of the instance property
(which are needed for searching for the context property in the context
model). Thus, an expression can be formed by two context properties
or by a context property and a certain value. Since the task model must
be understood by end-users, we do not give support for forming more
complicated context conditions.

Furthermore, the following constraints need to be considered in
order to correctly define a task model:

• Constraint 1. Two tasks cannot have the same ID. In OCL:

Context Task

Inv: self.allInstances -> forAll(t1, t2 | t1<>t2
Implies t1.ID <> t2.ID)

• Constraint 2. Temporal Relationships can only be used to relate
tasks that are both child of a same parent task which is refined
using the temporal refinement. In OCL:

116 Modelling User Behaviour Patterns

Context TemporalRelationship
Inv:
self.temporalRelationshipFrom.
fromRefinement.type=’Temporal’
AND
self.temporalRelationshipTo.
fromRefinement.type= ’Temporal’
AND
self.temporalRelationshipFrom.

fromRefinement.refinementFrom=
self.temporalRelationshipTo.
fromRefinement.refinementFrom

• Constraint 3. A refinement cannot refine a task into a behaviour
pattern. In OCL:

Context Refinement

Inv: not self.refinementTo.isInstanceOf
(’BehaviourPattern’)

• Constraint 4. When a task is refined only one type of refinement
can be used to obtain child tasks. In OCL:

Context CompositeTask

Inv: self.refinements -> forAll(t1, t2 |
t1.type = t2.type)

• Constraint 5. Each task refined by using a temporal refinement,
has to be related using a temporal relationship. In OCL:

Context CompositeTask
Inv:
self.refinements -> forAll(t1 | t1.type =

5.2 Modelling the Behaviour Patterns 117

’Structural’)

xor

self.refinements -> forAll(t1 | t1.type =
’Temporal’)
and
self.refinements-> forAll(r1 | r1.refinementTo.
temporalRelationshipFrom<>null
or r1.refinementTo.temporalRelationshipTo<>null)

• Constraint 6. A behaviour pattern cannot have a context
precondition. In OCL:

Context BehaviourPattern
Inv: self.contextPrecondition=null

• Constraint 7. Each temporal relationship whose type is Enabling
when the condition is satisfied has to have a context condition. In
OCL:

Context TemporalRelationship
Inv:
self.allInstances -> select(t1 | t1.type=’Enabling
when the condition is satisfied’)-> forAll(t1
| t1.contextCondition<>null)

• Constraint 8. Each temporal relationship whose type is Enabling
after time has to have a temporal restriction with a time greater
than 0. In OCL:

Context TemporalRelationship
Inv:
self.allInstances -> select(t1 |

118 Modelling User Behaviour Patterns

t1.type=’Enabling after time’)
-> forAll(t1| t1.temporalRestriction>0)

5.2.4 Tool support

In order to support the graphical specification of the proposed context-
adaptive task model, we have developed a graphical tool based on the
tool developed in (Valderas, 2008), which defines the notation on which
ours is based.

The technology used to develop this tool is based on the Eclipse
platform (Eclipse, 2011). Specifically, the following Eclipse plugins have
been used:

• The Eclipse Modelling Framework (EMF) project provides us
with a modelling framework and code generation facilities for
building tools and other applications based on a structured
data model. The core of this framework includes both a
meta model (Ecore) for describing models and runtime support
for managing models, including change notification, persistence
support with default XMI serialization, and a very efficient
reflective API for manipulating EMF objects generically. Ecore
is an implementation of the Essential Meta-Object Facilities
(EMOF), which is a subset of the standard MOF 2.0 [MOF]
proposed by the Object Management Group (OMG) for describing
meta-models.

Furthermore, EMF provides mechanisms to generate Java files
from an Ecore metamodel. These files implement the different
elements of the metamodel (by means of Java classes) providing
support to create instances of them at runtime (i.e., objects of a
Java class that represent elements of the metamodel) as well as
to manage them.

• The Graphical Editing Framework (GEF) project allows devel-
opers to take an existing application model and quickly create a

5.2 Modelling the Behaviour Patterns 119

rich graphical editor. Basically, GEF provides an infrastructure
for developing graphical editors by following the pattern model-
view-controller (MVC). GEF itself provides support to develop
the controller part. In order to develop the model and view parts
GEF does not force to use specific libraries. However, the most
common way of using GEF is together with Draw2D for the view
part and EMF for the model part.

• The Eclipse Graphical Modeling Framework (GMF) project
provides us with a generative component and a runtime
infrastructure for developing graphical editors. GMF allows us to
declaratively describe the different associations among elements
of a model and their visual representation by means of models.
From these models GMF automatically generates a graphical
editor (view) implemented by means of GEF. This graphical editor
provides support for creating, modifying and deleting (controller)
each visual representation. The use of GMF provides us with an
abstract way of developing graphical editors, without the need of
considering the technological aspects introduced by GEF.

Using these plugins, the tool, which is shown in Figure 5.6, has
been performed following the next steps. First, we have specified the
metamodel of the context adaptive task model described in the previous
subsection (see Figure 5.5) in Ecore format (see Figure A.3). Next, we
have used the facilities provided by EMF in order to automatically
generate from the Ecore metamodel a set of Java classes that provide
support to manage instances of the metamodel elements at runtime.
These Java classes constitute the model part of model-view-controller
architecture in which the graphic editor is implemented. Finally, the
view and controller parts of the tool have been implemented using the
facilities provided by GMF.

It is important to note that using this tool, the proposed task model
not only can be graphically visualized and edited, but also, is stored
in XMI (XML Metadata Interchange), which is a machine-processable
language. Figure 5.7 shows part of the XMI representation of the
WakingUp pattern (see Figure 5.4), where the properties of the turn

120 Modelling User Behaviour Patterns

Figure 5.6: Snapshot of the behaviour pattern modelling tool

on bathroom heating and turn on the radio tasks are shown.

Figure 5.7: Part of the XMI representation of the WakingUp behaviour
pattern

In addition, this tool also provides model-based validations in the
task metamodel to ensure that the specified behaviour patterns are
valid prior to their construction. This allows automatically validate a
created task model. These validations check the constraints described
in the previous section.

5.3 Conclusions 121

5.3 Conclusions

In this chapter, we have studied some background of context and task
modelling to propose two suitable models for specifying the behaviour
patterns that users want to be automated: an ontology-based context
model and a graphical context-adaptive task model.

We have shown that these models meet the requirements needed for
properly achieving the automation of user behaviour patterns: 1) they
are intuitive enough to be user comprehensible, which facilitates user
participation in the specification of the behaviour patterns; 2) accurate
enough to provide all the needed information to automate the specified
behaviour patterns; and 3) machine-interpretable to be managed at
runtime.

Thus, the proposed models are design models, which allow us to
specify the behaviour patterns at a high level of abstraction, but also are
executable models, which allow us to execute the behaviour patterns and
evolve them when needed by directly managing the models at runtime.

122 Modelling User Behaviour Patterns

Chapter 6

Automating User Behaviour
Patterns

Smart environments are physical environments that are richly
and invisibly interwoven with sensors and actuators embedded

seamlessly in the everyday objects of our lives, and connected through a
continuous network (Weiser, 1991). In order to control these sensors and
actuators, smart environments provide us with services that function
invisibly and unobtrusively in the background with the final goal of
freeing people to a large extent from tedious routine tasks (Mattern,
2001, 2005). This is one of the main challenges of this thesis:
automating routine tasks, also known as behaviour patterns.

To achieve this challenge, this thesis applies the guidelines provided
by Model Driven Engineering (MDE) to raise the level of abstraction in
program specification and increase automation in program development.
In the previous chapter, we have explained two models to specify at
a high level of abstraction the behaviour patterns that users want to
be automated. These models not only provide abstract concepts that
facilitate the participation of end-users in the model specification, but

124 Automating User Behaviour Patterns

they also are machine-processable and precise-enough to be used as
executable models. In this chapter, we focus on explaining a software
infrastructure that directly executes these models to automate the
specified behaviour patterns in the opportune context.

Before explaining this software infrastructure, we first study the
requirements that it must satisfy for properly achieving the automation
of user behaviour patterns (Section 6.1). Next, we define the process
that must be followed for automating behaviour patterns (Section
6.2). This process is designed according to the requirements previously
identified. In the description of this process, the software components
that the software infrastructure must provide are identified.

We next explain the software infrastructure and describe in
detail its software components (Section 6.3). This infrastructure
automates behaviour patterns in the opportune context by following the
automation process described and satisfying the requirements identified.
In order to explain this infrastructure, we first introduce its software
components in an abstract way by explaining their functionality
without considering technological details. Afterwards, we describe how
these components are implemented in order to support the needed
functionality.

Finally, we explain the conclusions of the chapter (Section 6.4).

6.1 Requirements for Automating Behaviour
Patterns

The task and context models explained in Chapter 5 specify the
behaviour patterns that users want to be automated. Since these models
are machine-processable and precise-enough, they can be directly used
for automating the behaviour patterns. Two strategies can be used
in order to achieve this (see Chapter 2): code generation and model
interpretation.

To select the most suitable strategy, it is important to consider
that users’ behaviour may change over time. Therefore, the specified

6.2 Behaviour Patterns’ Automation Process 125

behaviour patterns may need to be changed after system deployment
to adapt to user behaviour changes; otherwise, system may become
useless, obsolete, or even intrusive. Thus, one of the main requirements
in the automation of the specified behaviour patterns is that they must
be easily evolved after system deployment.

Considering the advantages of code generation and model interpre-
tation, the latter provides more benefits regarding evolution. Model
interpretation enables faster changes because changes in the models do
not require an explicit regeneration, rebuild, retest, and redeploy phases.
In addition, this strategy facilitates to perform dynamic changes because
the models are interpreted at runtime. This makes possible to change
the model and consequenly the running application without stopping
it.

Furthermore, by automating the behaviour patterns using an engine
that directly interprets the models at runtime we achieve that these
models are the primary means to understand, interact with, and modify
the behaviour patterns. Thus, we achieve two important goals. First of
all, we ensure that the behaviour patterns are automated as specified
in the models because they are the only representation of the behaviour
patterns; consequently, we also ensure that the system automates
exactly what the users want because the behaviour patterns described in
the models are specified and validated with user participation. Secondly,
we allow the behaviour patterns to be evolved by simply updating the
models. This achieves the behaviour pattern evolution is performed by
using the own modelling language, i.e., using the high level concepts
defined in the metamodel of the task model and the context ontology.
Detailed information about how this evolution is addressed will be
explained in Chapter 7.

6.2 Behaviour Patterns’ Automation Process

To execute the behaviour patterns as specified in the models, two
important things have to be considered: 1) the opportune context in
which each behaviour pattern has to be triggered, and 2) the tasks to be

126 Automating User Behaviour Patterns

Figure 6.1: Process for Automating User Behaviour Patterns

executed in each behaviour pattern taking into account their execution
order and the context in which they have to be executed.

The context in which each behaviour pattern has to be triggered
is specified in the task model as a context situation related to each
behaviour pattern. When this context situation is fulfilled, the related
behaviour pattern has to be carried out. To check whether or not a
context situation is fulfilled, the used context, which is stored in the
context model, has to be continually updated according to the context
changes.

When a context change is produced, the context situations related
to this change have to be checked. If a context situation is satisfied, its
related behaviour pattern specified in the task model is carried out by
executing their tasks in the adequate order and context.

All this information, which is needed to carry out the behaviour
patterns, is specified in the task and context models. These models are
directly interpreted at runtime by an engine to automate the behaviour
patterns as specified. Specifically, the process for automating the
specified user behaviour patterns consists of the following steps (see
Figure 6.1):

Detecting context changes: the execution of the specified behaviour
patterns depends on context information such as time, tempera-
ture, light intensity, etc. This context information is continuously
changing. Note that context changes are physically detected

6.2 Behaviour Patterns’ Automation Process 127

by sensors. These sensors are controlled by pervasive services
provided by the smart environment. Thus, to capture context
changes, these pervasive services are continuously monitored. To
do this, a context monitor is needed. For instance, the execution
of the WakingUp behaviour pattern described in Section 5.2.3
depends on the current time and date, the bathroom temperature,
the outside light intensity and the location where the user is. For
controlling each one of these properties, the environment provides
a service. All of them are monitored to check if the value of any
context property has changed.

Updating the context model: the context information on which the
behaviour patterns depend is managed using the context model;
therefore, when a context change is detected by the context
monitor, it updates the context model to reflect the change. To
do this, mechanisms for managing the context model at runtime
are needed. For example, since the WakingUp behaviour pattern
depends on the outside light intensity, the context model has
the sunnyDay property which is an instance of the environment
property class (see Section 5.1). When the outside light intensity
changes, the value of this property is updated.

Informing the automation engine: an automation engine is needed
to automate the behaviour patterns specified in the models
by interpreting them at runtime. This engine automates each
behaviour pattern when its context situation is fulfilled. For this
reason, when a context change is produced, the context monitor
informs the engine about this change.

Checking context situations: when the engine is informed about a
context change, it analyses the task model in order to check if
there is any context situation that depends on the updated context
information. To do this, mechanisms that allow the management
of the task model at runtime are needed. For instance, when time
changes, the currentTime property is updated and the engine is
notified. Then, it checks whether or not there is any context

128 Automating User Behaviour Patterns

situation specified in the task model that is satisfied with the new
value of the property.

Executing behaviour patterns: The behaviour patterns whose con-
text situation is satisfied are executed according to their priority.
To execute a behaviour pattern, the engine executes the system
tasks of the corresponding pattern according to their refinements,
their context conditions in the current context and their temporal
relationships specified among them. To obtain this information,
the engine uses the task model management mechanisms to
interpret the task model at runtime. For instance, if the context
situation of the WakingUp pattern is fulfilled (see Figure 5.4), if
the temperature of the bathroom is less than 28 oC, the bathroom
heating is turned on, ten minutes later, the radio is turned on.
Then, if it is sunny day, the bedroom blinds are raised; otherwise,
the lights are switched on. Finally, when the user enters in the
kitchen, the system makes a coffee. To execute each system task
the engine uses the pervasive service associated to that task.

6.3 Software Infrastructure

In order to carry out the automation process, we provide a software
infrastructure that automates the behaviour patterns in the opportune
context by using the models at runtime. This infrastructure allows that
the only task for achieving the automation of behaviour patterns is
specifying them using the proposed models.

Next, we first explain this infrastructure at the conceptual level, and
then we explain how we have developed it giving technological details.

6.3.1 Components of the Software Infrastructure

This section presents a technology-independent description of the
software infrastructure that carries out the automation process above
described. This infrastructure is built by a set of reusable and modular
components that collaborate to automate the behaviour patterns as

6.3 Software Infrastructure 129

ContextMonitor MAtE OCeanMUTate ContextModel TaskModel

detectedChanges
(changes)

contextChanged()

getBehaviourPatterns()

updateindividuals(properties, values)

retrievesBehaviorPatterns()

behaviourPatterns

cs=bp.getContextSituation()

checkCondition(cs)

activation

updateContext(changes)

[for each behavior pattern]

OPT [activation=true]

executeBehaviourPatternList()

checkCondition(cs)

LOOP

PervasiveService

checkCondition(cs)

result

behaviourPatternList.add(bp)

Figure 6.2: Automating User Behaviour Patterns

specified in the models. These components are: pervasive services, the
mechanisms for managing the models at runtime, a context monitor
and a Model-based Automation Engine. Figure 6.2 shows how these
components interact among them to perform the automation process.
More details about these components are given below:

Pervasive services. Every smart environment provides pervasive
services to control the devices of the environment and sense
context information. Specifically, we consider a service to be
an entity that provides a coherent set of functionality which is

130 Automating User Behaviour Patterns

described in terms of atomic operations (or methods). These
operations allow the system to control the devices of the
environment in order to change context and/or sense it. Our
approach uses these pervasive services in order to perform the
tasks of the behaviour patterns specified in the models and to
sense context changes.

Mechanisms for managing the models at runtime. In order to
manage the context model and the task model (see Chapter
5) at runtime, we have defined Ontology-based Context model
management mechanisms (OCean) and Model-based User Task
management mechanisms (MUTate).

• OCean: The context on which the behaviour patterns depend
is specified in the context model as OWL individuals. Thus,
in order to manage these individuals, a set of Ontology-
based Context model management mechanisms (OCean) is
needed. OCean allows, for instance, updating the individuals
of the context model, creating a new individual (e.g.,
the idealTemperature individual of the Preference ontology
class), reading its properties or modifying them when needed,
etc.

• MUTate: In order to support the management of the
task model, a set of Model-Based User Task management
mechanisms (MUTate) is needed. MUTate allows, for
instance, searching for a behaviour pattern that have to be
executed; obtaining its related context situation, adding new
tasks to a pattern; creating a new pattern; etc.

OCean and MUTate determine the vocabularies and calling
conventions used to access the models. Specifically, they provide
the same vocabulary defined in the context ontology and the task
model metamodel, respectively. It is important to note that, in
this way, they provide high-level abstraction mechanisms that
facilitate the interaction with the models without the need to
stop the system. Both, OCean and MUTate are needed in order

6.3 Software Infrastructure 131

to achieve the automation and evolution of the specified user
behaviour patterns.

Context monitor. In order to monitor context changes and update
the context model accordingly, a context monitor is used. Context
changes are physically detected by the pervasive services that
control the system devices. Thus, in order to capture context
changes, the monitor is continuously monitoring the execution
of the pervasive services. When a change in context is detected
by a pervasive service, the context monitor updates the context
model accordingly. Note that this update must be performed at
runtime. To do this, the context monitor uses OCean. Once the
context model has been updated, the context monitor informs the
automation engine about this change.

Model-based Automation Engine (MAtE). In order to carry out
the behaviour patterns as specified in the models, a Model-based
Automation Engine (MAtE) is needed. When a context change
is produced, MAtE checks the context situations specified in the
task model. If a context situation is fulfilled, MAtE automates
the related behaviour pattern. To perform these steps, MAtE
uses MUTate. To automate a behaviour pattern, MAtE executes
its system tasks by taking into account the current context, their
relationships and their refinements. Each system task is executed
by MAtE using the pervasive service related to it.

6.3.2 Implementation of the Software Infrastructure

As explained above, the provided software infrastructure is composed
by: 1) the pervasive services that control the devices of the environment,
2) OCean, the set of mechanisms that allows the context model to be
managed at runtime, 3) MUTate, the set of mechanisms that allows
the task model to be managed at runtime, 4) a context monitor that
manages the context information, and 5) MAtE, the automation engine
that is in charge of executing the behaviour patterns.

All these components are developed using Java/OSGi technology.

132 Automating User Behaviour Patterns

This technology is more and more used for developing pervasive
computing systems due to the numerous important benefits that it
provides (see Section 2.4). Using this technology, we achieve that
the software infrastructure is operative system independent and can be
dynamically constructed from reusable and collaborative components,
which are known in the OSGi terminology as bundles.

Thus, the infrastructure is developed to be run in an OSGi service
platform. An OSGi service platform is an instantiation of a Java virtual
machine, an OSGi framework, and a set of bundles.

The OSGi framework runs on top of a Java virtual machine and
provides a shared execution environment to install, update, run, stop
and uninstall bundles without needing to restart the entire system. To
minimize the coupling among bundles, the OSGi framework provides
a service-oriented architecture that enables bundles to dynamically
discover each other for collaboration. An installed bundle can register
services by publishing their interfaces using the framework’s service
registry. This registration makes the services discoverable through the
registry so that other bundles can use them. Thus, when a bundle
queries the registry, it obtains references to actual service objects
registered under the desired service interface. It allows us to search
for a certain service when needed, for instance, to search for a pervasive
service to execute a behaviour pattern task.

The framework also manages dependencies among services to facili-
tate coordination among them. These dependencies are implemented by
using Wire objects. A Wire object acts like a communication channel
between a Producer service and a Consumer service. When a wire
is created, the producer service can produce information to be used
by the Consumer service. For instance, a wire is created between the
context monitor and MAtE so that the context monitor can inform
MAtE about context changes. To enable this communication, the
Producer service must implement the OSGi Producer interface, while
the Consumer service must implement the OSGi Consumer interface.
There are two ways to establish communication using a wire: 1) the
Producer service can send information to the Consumer service or 2)
the Consumer service can request the Producer service for information.

6.3 Software Infrastructure 133

OSGi ServerOSGi Server

N t ti

Bundle

Notation

uses uses

uses

Wire
Connection

uses uses
registers

OSGi Looks for
a serviceregisters

…

Consumer Producer

Use
C i

Service
Registry

registers

Connectionregisters

Figure 6.3: Communication among the components of the software infras-
tructure

In our approach, the communication between services using a wire is
always produced from the producer to the consumer.

Figure 6.3 shows how the components of the software infrastructure
are connected. As the figure shows, MAtE uses MUTate, in order to
interpret the task model at runtime, and the context monitor uses
OCean, in order to read and update the context model at runtime.
MUTate also uses OCean in order to access to the context model,
e.g., for checking context conditions. In addition, MAtE makes use
of the pervasive services in order to execute the behaviour pattern
tasks. To make this possible, OCean, MUTate and the pervasive services
make their interfaces discoverable by publishing them using the service
registry.

Furthermore, MAtE and the context monitor are connected by a

134 Automating User Behaviour Patterns

wire. In this wire, the context monitor plays the role of producer,
because it informs MAtE about context changes, while MAtE plays
the role of consumer, because it needs to know the context changes
detected by the context monitor. The context monitor is also connected
with each one of the pervasive services by a wire. In these wires, the
pervasive services act as producers because they provide to the context
monitor information about context, while the context monitor acts as
a consumer, because it uses the information produced by the pervasive
services.

It is worth noting that the relationship of use (use connection in
Figure 6.3), is required when a service needs another service by demand;
while the relationship of dependency created by using a wire (wire
connection in Figure 6.3) is required if the communication has to be
established as soon as the producer has the information needed by the
consumer.

Next we explain how the components involved in the automation
process have been implemented in Java/OSGi technology. For more
implementation details, see Appendix A.

Pervasive Services

Our approach attempts to be as independent as possible from the
pervasive service implementation. However, so that these services can
be used for the current implementation of our approach, they must fulfil
the following requirements:

• They must be implemented using the OSGi/Java technology;
specifically, each service has to be provided as an OSGi bundle.

• Each service has to be registered as a service in the OSGi service
registry by using a unique service.pid. This registry actually stores
the interface that the service provides, which allows us to search
for a certain method of the service to be executed.

• Each service has to implement the OSGi Producer interface to be
prepared for informing the context monitor when context changes

6.3 Software Infrastructure 135

are produced.

• Each service must implement operations for: setting which
context properties the service manages; obtaining the values of
these context properties; checking if the values of these properties
have changed; and notifying its consumers when a context change
is produced.

To facilitate the implementation of these services, we provide
the Service class that implements all the needed methods except
the operation for setting which context properties the service
manages, which has to be implemented by each service. Detail
information about the implemented Service class can be found in
Appendix A.

public class Radio extends PervMLService {
…
public void turnOn(){

if(pre_turnOn()){
try{
disableNotificacions();
Implementation_turnOn();
if (post_turnOn()){

HashMap parameters = null;
this.updateSTDState("turnOn",parameters)}}

finally {
enableNotifications();
if (changedState()==true)

/*Notify the context monitor and other services that depend
on the state of this service*/

notifyConsumers();
}

}
}

protected void Implementation_turnOn() {
/*Search the binding provider that binds the service with the

driver that it uses*/
org.pervml.bproviders.interfaces.Radio.Interface radio;
radio =
frameworkSearcher.getBProvider(org.pervml.bproviders.interfaces.
Radio.Interface.class.getName(),"BindingProvider_Radio");

/*Call the turnOn operation of the radio binding provider, which
will call to the corresponding driver operation.*/

radio.turnOn();
}
…

}

Figure 6.4: Part of a PervML service model and an example of service code
generation

136 Automating User Behaviour Patterns

To implement the pervasive services used in the case studies
developed to test our approach (see Chapter 8), we have used a model-
driven development (MDD) method named PervML. This method was
presented in (Muñoz et al., April 2006; Serral et al., 2010). PervML
allows us to automatically generate Java/OSGi pervasive services that
provide the functionality above explained. This generation is achieved
by specifying the needed services using a set of high level abstraction
models.

For instance, Figure 6.4 shows an example of the PervML service
model. In this model, the services, their methods and their relationships
are specified. The model shows a service named Radio that provides
the operations: turnOn, turnOff, changeChannel, turnVolumeUp, and
turnVolumeDown. The figure also shows the implementation of the
turnOn service operation automatically generated from the PervML
models.

Ontology-based Context model management mechanisms
(OCean)

OCean must allow the interaction with the context model for both
interpreting it and modifying it. This interaction must respect
the vocabulary established in the context ontology to allow the
communication using the same high-level abstraction concepts, i.e., at
modelling level. For these reasons, we have implemented OCean as a
Java API based on the ontology concepts.

To implement this API, we first investigated if there were tools that
could help us to develop a Java API for managing an ontology model.
Nowadays, there are several free tools that automatically generate a
Java API from a given ontology for the handling of OWL instance data.
Examples of these tools are: Jastor1, Jaob 2, Protégé3 or OWL2Java4.

After studying and trying these tools, we use the Jastor tool because

1http://jastor.sourceforge.net/
2http://wiki.yoshtec.com/jaob
3http://protege.stanford.edu/overview/protege-owl.html
4http://www.incunabulum.de/projects/it/owl2java

6.3 Software Infrastructure 137

it was the only one that generates the methods that we need, avoiding
as much as possible concepts dependent of OWL technology in the API.
This facilitates the evolution of our approach to new model technologies.

Finally, the OCean API provides a Factory class for creating new
individuals in the context model and getting those that have already
been created. Also, the API provides an implementation class (and its
corresponding Java interface) for each one of the OWL classes defined
in the context ontology. Each class allows its individual to be created,
obtained, modified, and deleted. Thus, the instances of the context
model can be managed by using the same concepts defined in the context
ontology.

In addition, we have extended OCean with a Model class that
allows a context model to be opened and saved. To make easier the
update of the context model according to context changes, this class also
provides a more generic API that allows us to manage the individuals
of the ontology independently of its class. Specifically, this Model class
provides methods such as setProperty or getProperty to update and
obtain a property of any individual; or addRelatedInstance, to relate an
individual to another individual.

Furthermore, this Model class provides facilities for querying the
model using SPARQL (see Section 2.3), which is a graph-matching
query language recommended by the W3C that allows queries to be
built to search for certain individuals in the context model. Specifically,
the class provides the method checkCondition that receive a SPARQL
query in String format and is in charge of checking whether the query
is fulfilled or not.

To implement this class, we have used Jena 2.45, the OWL API
2.1.16, and the Pellet reasoner 1.5.2. (see Section 2.3). Jena is a
Java framework for building Semantic Web applications that provides a
programmatic environment for OWL and SPARQL and includes a rule-
based inference engine. We have used Jena to open the OWL model
and save the performed changes in it. The OWL API is an open-source

5http://jena.sourceforge.net/
6http://owlapi.sourceforge.net/

138 Automating User Behaviour Patterns

Figure 6.5: Overview of the OCean API

API that provides facilities for creating, examining and modifying an
OWL ontology. We have used the OWL API to access to and modify
the individuals of the context model. Pellet is an open-source tool
that provides reasoning services for OWL ontologies. Pellet facilitates
accessing to the information stored in the ontology and allows us to
launch a SPARQL query against the context model using Jena.

Figure 6.5 shows an overview of the classes provided by OCean and
a partial view of the source code of its Person class. Specifically, it
shows the methods getSurname, to obtain the surname of the person,
setSurname, to modify the surname of the person, and getSkills, to
obtain the skills of the person.

Model-Based User Task management mechanisms (MUTate)

Similar to OCean, MUTate must allow the interaction with the task
model for both interpreting it and modifying it. This interaction must
respect the vocabulary established in the task model metamodel to allow
the communication using the same high-level abstraction concepts,

6.3 Software Infrastructure 139

i.e., at modelling level. For these reasons, we have also implemented
MUTate as a Java API based on the concepts defined in the task model
metamodel.

Since the graphical tool for specifying the task model has been
developed using Eclipse (Eclipse, 2011), we have also used the modelling
plugins that it provides to implement MUTate.

In particular, we have used the EMF and EMF Model Query
(EMFMQ) plugins of the Eclipse Platform, which provide us with many
benefits for managing an XMI model at runtime.

From the metamodel of the task model in Ecore (see Figure A.3),
we use EMF to generate a Java API for managing a task model. The
generated API provides a Factory class for creating new instances of
the task model metamodel elements and getting those that have been
already created. In addition, MUTate provides a Java interface and
an implementation class for managing the instances of each one of the
classes of the metamodel. These generated classes provide get and set
methods to access and change the information of the instances specified
in the model.

Some of these Java classes represent context conditions, such as
the classes ContextSituation or ContextPrecondition. We have also
implemented in these classes the checkCondition method to check
whether the condition is fulfilled or not. This method interprets the
logical expression of the condition and builds a query in SPARQL. Once
the query has been built, the method uses the Model class of OCean to
launch it against the context model.

EMFMQ facilitates the process of search and retrieval of model
elements in a flexible, controlled and structured manner. To achieve
this, this plugin allows the construction and execution of queries in a
SQL-fashion. We use these queries to search for and get the instances
of the model that need to be accessed or modified.

Figure 6.6 shows an overview of the classes provided by MUTate
and a partial view of the source code of its implementation classes
TaskModel and BehaviourPattern. Specifically, the figure shows
the getBehaviourPatternByContextSituation method of the TaskModel

140 Automating User Behaviour Patterns

Figure 6.6: Overview of the MUTate API

class and the getContextSituation and setContextSituation of the
BehaviourPattern class. The getBehaviourPatternByContextSituation
method returns the behaviour pattern whose context situation is the
same than the BPContextSituation argument value. To find the
corresponding pattern, it searches for it by using a query statement built
with EMFMQ. The getContextSituation method obtains the context
situation of the behaviour pattern, while the setContextSituation
method modifies it.

The Context Monitor

The context monitor is in charge of updating the context model
according to the context changes. These context changes are physically
detected by the pervasive services (above explained) that control the
system devices. Thus, in order to capture context changes, the monitor
is continuously monitoring the execution of the pervasive services.

To do this, the context monitor implements the Consumer interface
and creates a wire with each service.

6.3 Software Infrastructure 141

Thus, when a change in a service is produced, the service notifies
the context monitor about this change, since the monitor is a consumer
of the service. In this notification, the service sends to the context
monitor a hashmap that contains the context variables whose value has
changed. It can be seen like if this data was sent through the wire from
the consumer to the producer.

When a change notification is produced, the updateContextModel
method is called in order to reflect the changes in the context model.
In order to update the context model, OCean is used. In a change
notification, the context monitor receives the name of each changed
individual, the changed properties and their new value. Using the
OCean Model class, the monitor changes the values of the corresponding
properties.

Finally, once updated the context model, the updated method of the
context monitor must inform MAtE about the context that has been
updated. To do this, the context monitor and MAtE are also related
by a wire. In this case, the context monitor plays the role of producer
(implementing also the Producer interface), while MAtE plays the role
of consumer (implementing the Consumer interface).

Thus, when the context monitor updates the context model, it
notifies MAtE about the corresponding context change by calling the
notifyConsummers method implemented in the context monitor. In
this notification, the context monitor sends to MAtE a hashmap that
contains the context properties whose value has changed.

MAtE

To automate the behaviour patterns in the opportune context, MAtE
must check if any behaviour pattern has to be executed when a change
in context is produced. For this reason, the context monitor notifies
MAtE about any context change. To allow this, MAtE implements the
Consumer interface and creates a wire with the context monitor.

When MAtE receives the notification, it carries out the following
steps (which are summarized in Figure 6.7):

142 Automating User Behaviour Patterns

Figure 6.7: MAtE process for automating the user behaviour patterns

1. Check the fulfilment of the context situations specified in the task
model. To do this, MAtE first obtains the behaviour patterns
specified in the task model by using the getBehaviourPattern
method of the TaskModel class of MUTate. MAtE then analyses
the context situation of each behaviour pattern to identify which
ones depend on the notified context change. If a context situation
depends on the notified context change, MAtE queries the context
model to check whether it is fulfilled by using the checkCondition
method of the ContextSituation class. Finally, when a context
situation is fulfilled, MAtE adds its behaviour pattern to a list
that stores the behaviour patterns that have to be executed.

2. If there is some behaviour pattern to be executed in the list,
MAtE analyses their priorities and starts to execute the behaviour
pattern with the highest priority. If there are several patterns with
the same priority, this means that their execution order does not
mind, therefore, the first one of the list is the first one that is
executed.

3. MAtE executes the behaviour pattern according to its refinements,
the temporal relationships specified among its tasks and the up-to-
date context information (stored in the context model) on which
tasks and relationships depend:

6.3 Software Infrastructure 143

3.1. Its first refinement is obtained by using the getRefinement
method (implemented in the CompositeTask class and
inherited by the BehaviourPattern class).

3.1.1. If it is an exclusive refinement, MAtE first gets all the
subtasks. Following the order of the refinements, MAtE
searches for the first subtask that can be executed and
executes it. If the task is a composite task, MAtE
executes its executeCompositeTask method, which goes
to the step 3.1 following a recursive process. If the
task is a system task, MAtE executes its method
executeSystemTask. This method first searches for the
pervasive service related to the task by using the OSGI
capabilities, which allow services to be searched at
runtime. Then, MAtE executes the service by using the
Java reflection capacities, which allow us to execute a
method by using its name, its arguments and its class
name (i.e., the service name). The process followed by
this step is summarized in the Algorithm 1.

3.1.2. If it is a temporal refinement, all the subtasks of the
composite task must be executed in the appropriate
order. MAtE gets all the subtask and performs them
following an iterative process and according to the order
established by the temporal relationships. Thus, MAtE
starts by carrying out the first subtask. If the subtask
has a context precondition, MAtE only executes it if this
precondition is satisfied. If the task is a composite task,
MAtE executes it by using its executeCompositeTask
method, which goes to the step 3.1 following a recursive
process. If the task is a system task, MAtE executes
it by using its method executeSystemTask. Once a
task is executed, MAtE checks the type of the temporal
relationship that associates it with the next task. If the
temporal relationship is >>[c]>> (enabling when C is
satisfied) MAtE waits until the condition c is satisfied to
carry out the next subtask; in the same manner, if the

144 Automating User Behaviour Patterns

relationship is t>> (enabling after T minutes) MAtE
waits t minutes. However, if the relationships are Task-
Independence or Enabling MAtE does not have to wait
and the next task is directly carried out. The process
followed by this step is summarized in the Algorithm 2.

4. If there are more behaviour patterns in the list of behaviour
patterns for being executed, MAtE gets the one with the next
highest priority. If its context situation is still satisfied, MAtE
goes to step 3 in order to execute the behaviour pattern. If the
situation is not satisfied, MAtE rules out the pattern and executes
again the step 4. This step is performed until all the behaviour
patterns obtained in the step 1 have been analysed.

Algorithm 1 Exclusive Composite Task Execution.

subtaskList=getSubtasks(ct)
for all subtask in subtaskList do

if subtask.precondition satisfied then
executeTask(subtask)
return

end if
end for

As an example, we next explain the process that MAtE follows
to execute the WakingUp behaviour pattern (see Figure 5.4). Every
minute, the context monitor updates the CurrentTime context property
and notifies MAtE about this change. Since the context situation of the
WakingUp pattern depends on this property, MAtE checks whether its
context situation is then satisfied.

When it is 7:50 a.m. and a working day, the context situation of the
WakingUp behaviour pattern is satisfied and MAtE has to carry out
the pattern. This behaviour pattern has 4 subtasks refined by temporal
refinements. This means that these tasks must be executed following
the order established by the temporal relationships between the tasks.
Thus, MAtE starts to perform them by getting the subtask refined

6.3 Software Infrastructure 145

Algorithm 2 Temporal Composite Task Execution.

subtaskList=getSubtasks(ct)
for all subtask in subtaskList do

if subtask.precondition satisfied then
executeTask(subtask)

end if
TempRel=subtask.getTemporalRelationship()
if TempRel is ENABLING AFTER T MINUTES then

Wait T minutes
else if TempRel is ENABLING WHEN C IS SATISFIED then

Wait until C is satisfied or the temporal restriction goes off
end if

end for
return

by the first refinement. This subtask is the turn on bathroom heating
task. It has a context precondition (BathroomTemperature<28) which
is first checked by MAtE using the checkCondition method. If this
method returns true, the task is executed. This task is a system task
and is related to the BathroomHeating service and its switchOnHeating
method whose execution carries out the task. Thus, MAtE executes its
method executeSystemTask to execute the switchOnHeating method of
the BathroomHeating service.

The turn on bathroom heating task is related to the next task
by the 10 min>> relationship. This means that MAtE must wait
10 minutes before executing the next task. This task is the turn
on the radio, which is also a system task and is related to the
Radio service, its turnOnRadio method, and the favouriteRadioChannel
context parameter. Thus, ten minutes later, MAtE executes the
task by calling the executeSystemTask. It searches for the Radio
service and executes its turnOnRadio method with the value of the
favouriteRadioChannel parameter previously obtained from the context
model.

The executed task is related to the next task by the | = |

146 Automating User Behaviour Patterns

relationship. This means that MAtE does not have to wait to execute
the next task. This task is the lighting composite task, which is refined
by exclusive refinements. This means that only the first task that can be
executed, must be executed. Thus, MAtE gets the subtask of the first
refinement, which is the raise the bedroom blinds and checks its context
precondition (sunnyDay=true). If it is satisfied, MAtE executes this
subtask by using the executeSystemTask method; otherwise, MAtE gets
the subtask of the next refinement, which is the switch bedroom light off
task. If its context precondition (sunnyDay=false) is satisfied, MAtE
performs this task by using the executeSystemTask method.

Then, MAtE passes to carry out the last task. This is related with
the previous task by the >>[BobLocation=Kitchen]>>, which means
that the last task must be executed when Bob enters in the kitchen.
This is checked by using the checkCondition method. Finally, when
this condition is satisfied, MAtE calls its executeSystemTask method
for executing the makeCoffee method of the CoffeeMaker service.

6.4 Conclusions

In this chapter, we have explained how the user behaviour patterns
specified in the context and task models are automated at runtime in
the opportune context.

Specifically, we have first described the requirements that have to be
taken into account to perform this automation. Next, we have explained
the automation process. This process defines the steps that are followed
in order to automate the behaviour patterns by fulfilling the detected
requirements.

In addition, we have described the software infrastructure that
achieves the automation of the user behaviour patterns specified in the
models by carrying out the automation process. This infrastructure is
composed of 1) the set of pervasive services provided for controlling the
devices of the smart environment; 2) OCean and MUTate, the high-level
abstraction mechanisms for managing the context model and the task
model, respectively; 3) the context monitor that monitors the context

6.4 Conclusions 147

changes and updates the context model accordingly, and 4) MAtE, the
automation engine capable of automating the behaviour patterns as
specified in the models. Using these components, behaviour patterns
can be automated by only specifying them using the proposed models.

148 Automating User Behaviour Patterns

Chapter 7

Addressing the Evolution of
the User Behaviour Patterns

S
ome of the behaviour patterns specified to be automated by the
system might never change in user lives; however, most of them

will. Users’ context and circumstances usually change over time and the
automated behaviour patterns must evolve to adapt to these changes.
Otherwise, the automation of these behaviour patterns not only may
become useless for end-users but may also become a burden on them
instead of being a help in their daily life. Although the proposed
models specify the patterns to be automated in such a way that their
execution adapts to context, changes in user behaviour patterns cannot
be anticipated at design time. This makes that the evolution of the
automated behaviour patterns is a need to properly automate them.

In this chapter, we explain the mechanisms and tools that are defined
and implemented to address this evolution. First of all, it is important
to note that the model interpretation strategy used in our approach
facilitates to perform this evolution by directly changing the models
(i.e., at modelling level), which is one of the top challenges in software

150 Addressing the Evolution of the User Behaviour Patterns

evolution research (Ajila & Alam, 2009; Bennett & Rajlich, 2000; Mens,
2009). Using this strategy, the models are directly interpreted at
runtime by MAtE in order to execute the specified behaviour patterns
in the opportune context. Thus, as soon as the models are changed to
adapt the patterns, the changes are also taken into account by MAtE.
This strategy gives us three immediate benefits to perform the evolution
of the behaviour patterns:

1. We do not need to maintain the consistency between the
modelling of the behaviour patterns and their implementation
when modifications are applied.

2. The evolution can be managed more intuitively using concepts of
a high level of abstraction (i.e., modelling language).

3. The models can provide us with a richer semantic base for runtime
decision-making related to system adaptation.

From these premises, we address the behaviour pattern evolution by
adapting their specification in the context and task models.

In order to adapt these models at runtime, the OCean and MUTate
APIs explained in Section 6.3 can be directly used. However, although
these mechanisms use the same high-level concepts created in the
modelling language, only computer technicians could use them. Thus,
since the needed changes can be only detected after system deployment,
we also design and develop a graphical tool that provides end-users
with intuitive interfaces to facilitate the evolution of the automated
behaviour patterns at runtime and at a high level of abstraction.

Thus, the rest of the chapter is organized as follows. First, Section
7.1 precisely characterizes the evolution confronted in this work by
following the taxonomies published in (Buckley et al., 2003; Lientz &
Swanson, 1980). Next, Section 7.2 explains how OCean and MUTate
can be used for supporting the evolution of the specified behaviour
patterns. Section 7.3 describes the provided tool. Finally, Section 7.4
concludes the chapter.

7.1 Evolution Characterization 151

7.1 Evolution Characterization

Lientz and Swanson (Lientz & Swanson, 1980) classify the software
change by answering to the question why. They describe three intentions
for software change: to perfect the system (perfective), to adapt the
system (adaptive) and to correct the system (corrective). According to
their descriptions, our evolution is considered as adaptive because user
behaviour patterns need to be evolved to adapt to new users’ needs and
circumstances.

Buckley et al. (Buckley et al., 2003) complete the taxonomy of
Lientz and Swanson to characterize the software change answering to
the questions: when, where, what, and how.

The when dimension characterizes evolution from two main aspects:
(1) the phase of the software life-cycle on which it is performed, which
delimits three types of evolution: at compile-time (static), at load
time, and at run-time (dynamic); and (2) the anticipation of the
required evolution, which delimits two types of evolution: anticipated, if
evolution can be foresee at design time; and unanticipated, if evolution
needs arise from using the system.

According to this dimension, the confronted evolution is dynamic
and unanticipated. It is dynamic because the changes are made
on demand at runtime. Thus, we achieve that the costs and risks
associated with shutting down and restarting the system for an update
are mitigated. It is unanticipated because the changes arise over time
after the system deployment; therefore, they cannot be foreseen during
the design phase.

The where dimension characterizes the software artefacts where
changes are made (requirements, architecture, design, source code,
documentation or test suites). This dimension takes into account also
the following factors: granularity, which refers to the scale of the
artefacts to be changed and can range from very coarse to a very fine;
the impact of the change and the change propagation, which indicate
the process of synchronizing other artefacts that also depend on the
change.

152 Addressing the Evolution of the User Behaviour Patterns

In the confronted evolution, the artefacts that are changed are
the context model and the task model, and the changes that can be
performed in these models are of fine grained because any element of the
models can be changed. In addition, since the behaviour patterns are
automated by directly interpreting the models at runtime, the changes
in the models are automatically propagated in the system, having an
impact over all the system.

The what dimension characterizes evolution from the system
attributes that may condition it. These attributes are: availability
(whether the software system has to be permanently available or not);
activeness (evolution is either reactive, if system changes must be driven
by an external agent, or proactive, if the system is able to self-change
by using the information received from monitors); openness (whether
or not the system must allow extensions); and safety (whether or not
safety aspects must be considered at compile time and/or at runtime).
The attributes of this dimension of the confronted evolution are:

• The system has to be always available since it may be needed at
any time.

• The system is reactive to the evolution because it has to be driven
externally; otherwise, the evolution of the behaviour patterns may
bother users and make them lose system acceptance.

• The system is open because it is specifically built to allow its
evolution.

• The system must provide behavioural safety, which means that
the evolution mechanisms must prevent or restrict undesired
behaviour changes at runtime. A certain degree of static safety
is achieved at compiling time because the changes must be in
accordance to the task metamodel and the context ontology. For
dynamic changes, tests must be performed to ensure behavioural
safety.

The how dimension characterizes evolution from the degree of
automation and formalism that is introduced in the mechanisms

7.2 Mechanisms for Evolving the Behaviour Patterns 153

provided to support it. The confronted evolution is supported with a
high degree of automation and formality because the behaviour patterns
are evolved by updating the task and context models, which are of a
high level of abstraction.

Regarding the question who, it has not a taxonomy because it is
specific for each software change (Buckley et al., 2003). In our case,
the evolution of the automated behaviour patterns can be driven by the
system designers; however, it is convenient for end-users to be able to
drive the evolution since it is necessary after system deployment.

7.2 Mechanisms for Evolving the Behaviour
Patterns

As explained, as soon as the models are changed to adapt the
patterns, the changes are applied into the system because MAtE directly
interprets the models to execute the behaviour patterns. Thus, to evolve
the behaviour patterns, the mechanisms provided for managing the
models at runtime OCean and MUTate (see Section 6.3) can be directly
used. These mechanisms use the concepts of the language defined
for specifying the models (task, behaviour pattern, user, preference,
etc.), which facilitates the understanding, handling and evolution of the
automated behaviour patterns. In addition, these mechanisms ensure
that the changes are in accordance with their metamodel definition and,
therefore, syntactically correct. In this way, these mechanisms define
how the patterns can be changed over time and also maintain software
quality characteristics.

It is worth noting that the use of such mechanisms raise the evolution
level to the modelling level, which allows the system to be evolved by
using high level abstraction concepts instead of by changing lines of
code. Furthermore, the mechanisms are implemented in Java and are
provided as APIs; therefore, they can be imported and used by any Java
application.

Thus, using these high-level mechanisms, any change that respects
the task metamodel and context ontology syntaxes can be performed

154 Addressing the Evolution of the User Behaviour Patterns

to evolve the automated user behaviour patterns. These mechanisms
allow new behaviour patterns to be created, and also to enable/disable,
modify or delete those that are already specified. Next, we show
the types of evolution that may be needed to modify an automated
behaviour pattern. Evolutions for creating new behaviour patterns or
deleting them are performed in an analogous way.

Evolving the executed services. New tasks may be required to
be automated in a behaviour pattern, other tasks may be not needed
anymore, and some tasks may need to be slightly modified. For instance,
in the WakingUp pattern, the user may want that the system informs
them about the weather when s/he is in the kitchen. The user may also
want that the lights of the bedroom are not switched on and instead of
waking up with the radio he may want to be woken up with relaxing
music. To perform this type of evolutions, the tasks of a behaviour
pattern can be changed.

Figure 7.1: Evolving the executed services using OCean and MUTate

7.2 Mechanisms for Evolving the Behaviour Patterns 155

Figure 7.2: WakingUp model before and after evolving the executed services

Figure 7.3: Execution traces before and after evolving the executed services

156 Addressing the Evolution of the User Behaviour Patterns

Figure 7.1 shows how to modify the services executed in the
WakingUp behaviour pattern using OCean and MUTate. As shown,
the turn on the radio task has been modified to turn on relaxing music.
The lighting task and its subtasks have been removed; therefore, it
will not be executed anymore in the pattern. And a new task named
inform about the current weather has been created in the pattern and
has been related to the make coffee task using a temporal relationship
of the enabling type. Figure 7.2 shows how the WakingUp pattern
is modified by executing this code, while Figure 7.3 shows how the
execution of the pattern changes. These traces have been obtained by
executing the system in a debug manner and simulating the fulfilling
of the context situation of the WakingUp pattern. As we can see, the
pattern is executed according to the performed evolutions.

Modifying context conditions. The conditions where the
services must be executed may change over time. For instance, the
user may want to be woken up a half an hour later (his timetable may
change) and only if he is not sick. He may also want the heating to
be turned on in the bathroom for 15 minutes instead of 10 (so that the
bathroom is warmer when he takes a shower). To perform this type of
evolution, user information can be added in the context model and the
context conditions used in the specification of a behaviour pattern can
be changed. Figure 7.4 shows how to change the context conditions of
the Waking Up behaviour pattern using OCean and MUTate. As shown,
first of all, a new user property is added to indicate whether the user is
sick or not. Then, the context situation of the pattern has been changed
to make it dependent on the created context property. A new condition
has been added to the context situation so that the pattern only is
enabled if the user is not sick. Also, the time in which the pattern has
to be enabled has been changed to 8:15. Thus, the WakingUp pattern
will be enabled at 8:15, in working days and only when the user is
not sick. Also, the temporal restriction of the relationship between the
two first tasks of the pattern has been changed to 15 min. Figure 7.5
shows the WakingUp pattern and how this pattern is executed after
performing these evolutions. As we can see in the traces, the behaviour
pattern is executed according to the evolutions.

7.2 Mechanisms for Evolving the Behaviour Patterns 157

Figure 7.4: Modifying context conditions using OCean and MUTate

Figure 7.5: WakingUp model and execution trace after modifying the context
conditions

158 Addressing the Evolution of the User Behaviour Patterns

Modifying the execution order of the services. User may
want that the services of a behaviour pattern are carried out in another
order. For instance, the user may want to have breakfast before taking
a shower and that the coffee is made just before the radio is turned on,
thus, the coffee would not be so hot when he takes it. To perform this
type of evolution, the relationships between the tasks of a behaviour
pattern can be changed. Thus, the first task to be automated should be
the make coffee task, then the user must be woken up and after this, the
bathroom heating must be switched on (the time for having breakfast
is enough so that the bathroom is warm).

Figure 7.6 shows how to change the execution sequence of the
services executed in the WakingUp behaviour pattern using OCean and
MUTate. As shown, the first task is moved to be executed the last
task and the last task is moved to be executed the first task. The
relationships of these tasks have been also changed. In addition, the
context situation of the pattern has been also changed because the
pattern must start when the user must be woken up. Figure 7.7 shows
the WakingUp pattern and how this pattern is executed after performing
these evolutions. As we can see in the traces, the behaviour pattern is
executed according to the evolutions.

Figure 7.6: Evolving the service execution plan using OCean and MUTate

Thus, MUTate and OCean allow the behaviour patterns to be
evolved at runtime by using concepts of a high level of abstraction

7.3 Tool Support 159

Figure 7.7: WakingUp model and execution trace after evolving the service
execution plan

(Preference, ContextSituation, BehaviourPattern, etc.), which are easy
for developers to understand and use.

7.3 Tool Support

The above presented mechanisms can be used by any Java application
to adapt the automated behaviour patterns to user needs after system
deployment. In this section, we use these mechanisms to develop a
graphical tool that facilitates this adaptation. This tool provides user-
friendly interfaces that update the models according to the performed
changes by using MUTate and OCean. Thus, the tool can be also used
to evolve the behaviour patterns at runtime without the need to stop
or redeploy the system.

This tool provides users with the following functionalities:

• Context Management: the tool shows users the context
information for which they have permission according to their
permission policy (which is specified for each user in the context

160 Addressing the Evolution of the User Behaviour Patterns

model; see Section 5.1.3). Also, using this functionality, users
can modify this information or delete it if it is not used in the
task model. Thus, end-users could manage their information
(e.g., their preferences, contact information, etc.) and see the
system information; while an administrator could have permission
for managing all the context information (e.g., managing users,
services, environment properties, etc.).

• Behaviour Pattern Management: the tool allows users to
add, modify, or delete behaviour patterns by facilitating the
information necessary to do this. In addition, if users do not
want certain patterns to be executed during a period of time, our
tool also allows them to configure these patterns to be enabled or
disabled.

Figure 7.8: End-user toolkit architecture

To provide these functionalities, the toolkit is organized in layers
with well defined responsibilities following the Layers Architectural
Pattern (Gamma et al., 1994). Thus, the toolkit has been designed
in the following three layers, which are shown in Figure 7.8:

• The User Interface Layer: This layer provides users with

7.3 Tool Support 161

graphical user-friendly interfaces to adapt the behaviour patterns.

• The Logic Layer: This layer is composed by OCean and MUTate
(see Chapter 6), mechanisms that allows the interface layer to
retrieve and update the context information of the context model
and the behaviour pattern information of the task model at
runtime.

• The Persistence Layer: This layer provides persistence to the
managed information. It is composed of the models explained
in Chapter 5: the context model, where the context information
is stored in OWL (Ontology Web Language), and the context-
adaptive task model, where the behaviour pattern information is
stored in XMI (XML Metadata Interchange).

Since the Logic and Persistence Layers have been already explained
in previous chapters, in this section we focus on describing the User
Interface Layer in detail.

The User Interface layer is responsible for the interaction with
users. It provides a set of user graphical interfaces that have been
developed using the Natural Programming design process (Myers et al.,
2004). This process applies the principles of user-centred design
for the purpose of treating usability as a first-class design objective.
This avoids subordinating usability in favour of historical convention,
designer preference, or theoretical elegance. The steps of the Natural
Programming design process are as follows: step 1) identify the target
audience; step 2) understand the target audience’s language, techniques,
and thinking for problem solving; step 3) design the new tool; and step
4) evaluate it.

Following these steps, we first identified the target audience of the
tool as the end-user of the system. In this thesis, we focus on end-users
with computer knowledge (at least knowing how to use a computer and
common programs such as Microsoft Office Word or Excel1).

Second, we determined the language that these users commonly
use to describe a behaviour pattern. To do this, we first selected a

1http://www.microsoft.com/latam/office/

162 Addressing the Evolution of the User Behaviour Patterns

representative group of end-users, who also participated for developing
the case studies that will be introduced in Chapter 8. They were a total
of 18 people with different intellectual capacities and studies, covering
a wide variety of professions, ages and computers’ knowledge.

To determine how the target audience describe behaviour patterns,
we first asked these end-users to define a task. As stated in the
literature, this term was perfectly understood by them. They defined a
task as work to be done, like it is described in the common definition
of task. Then, we asked them to determine how they refer to a set of
tasks habitually performed. Most of them used the term routine and
described the context situation that triggers the routine by answering to
the question when or in which circumstances. Finally, we asked them to
define or put an example of the rest of concepts that we usually use, such
as behaviour pattern, condition and context. Generally, participants
understood a behaviour pattern as something that is composed by
several routines, like how a patient behaves. The concepts condition
and context were not familiar by everybody; however, all the users easily
understand them after explaining the meaning of these concepts.

In addition, we also observed the information of the scenarios
collected for performing the case studies (see Chapter 8) in which
users described tasks that they performed daily. To organize the tasks
participants used the words when, if, after, while, before and at a certain
time.

Once known the language used by the end-users to describe
behaviour patterns, we develop the interfaces of the tool according
to this language. To develop these interfaces we follow Visual
Programming approaches (Mellon, 2009; Pérez & Valderas, 2009) and
good-practices in End-user Development (Galitz, 2002; Lieberman et al.,
2006; Nielsen, 1993; Welie & Traetteberg, 2000). Next, we first explain
the main design interface decisions that we have applied, then we
describe the developed interfaces, and finally we explain how to use
them to evolve the behaviour patterns.

Regarding the evaluation of the tool, which is the last step of the
Natural Programming process, it will be explained in Chapter 8 where

7.3 Tool Support 163

the whole proposed approach is validated.

7.3.1 Interface Design Decisions

Several studies have published very useful and successful advices and
design patterns for greatly improving the usability of user interfaces.
We have tried to apply them for treating usability as a first-class design
objective. Specifically, the design patterns that we have applied in the
interfaces for managing the behaviour patterns are the following:

• Displaying the elements using a grid layout: to allow user to
quickly understand information, it is recommended to arrange all
objects in a grid using the minimal number of rows and columns,
making the cells as large as possible (Welie & Traetteberg, 2000).
Using a grid layout, the objects of the screen are clearly organized
and grouped conceptually. This improves the presentation of
the information minimizing the time to scan, read and view the
objects on the screen.

• Offering navigation buttons: to allow users to access an
amount of information which cannot be put on the available space,
it is recommended to show the information in several spaces and
allow the user to navigate between them (Welie & Traetteberg,
2000). Each one of these spaces can group the information into
categories that match the user’s conceptual model of the data.
In addition, navigation buttons suggest end-users that they are
navigating a path with steps. This improves the learning and
memorization of the task to be performed in each step. These
navigation buttons are recommended to be put at the top or left
to reduce the needed screen space and make it easier for users to
follow the steps.

• Using a tree representation: a tree view is a well-known
organization scheme to structure the information in a hierarchy of
generality or importance. This is a good scheme because people
are very familiar with, and have an excellent mental model of

164 Addressing the Evolution of the User Behaviour Patterns

this organization. Such a structure provides information about
information sequence, information quantity, and the relationships
existing between components. Thus, this scheme is recommended
when there is a lot of items to show that can be grouped into
a large number of categories. First, the information units are
identified and then they are organized in categories according to
importance or generality, from general to specific. Also, for not
overloading, it is recommended to include buttons to expand or
collapse the hierarchy. In addition, when an item is selected, it is
also recommended that its parameters and their actual values are
displayed (Galitz, 2002; Lieberman et al., 2006).

• Offering options to select rather than introduce text:
when it is needed that users supply the application with data, it
is recommended to use selection field from a set of options instead
of an entry field. This ensures that users enter data in the correct
syntax and allows information to become less subject to spell or
type errors (Galitz, 2002; Welie & Traetteberg, 2000).

7.3.2 Description of the Graphical User Interfaces

Applying the above design decisions, we have developed user-friendly
interfaces for providing the Behaviour Pattern Management and
Context Management functionalities by using Swing (Loy et al., 2002)
and the Eclipse Platform.

As determined in the second step of the natural programming
process, we use the term routine in the interfaces provided for managing
behaviour patterns. This term is more familiar to end-users than the
term behaviour pattern. We also avoid the use of the term context
information because it is not a term commonly used by end-users. Thus,
we separate the context management into:

• User Information Management: the tool shows users their
information managed by the system, such as preferences, contact
information, etc. The tool also allows users to add new properties
corresponding to his/her information, and modify the shown

7.3 Tool Support 165

properties, or delete them if they are not used in the automated
behaviour patterns.

• System Information Access: the tool shows users the context
information managed by the system and for which they have
permission according to their permission policy (see 5.1.3).
Specifically, the tool shows users information about the services,
the environment and temporal information.

All the interfaces designed to evolve the behaviour patterns share a
similar structure and are displayed using a grid layout. At the top of
the interface, we guide users by using navigation buttons that indicate
the previous, current, and next steps to perform in order to achieve
the corresponding goal. The rest of the interface is divided into two
columns:

• The left column is divided into two rows. The top and bigger
row of the column contains the working area. In this area, users
perform the corresponding step. It provides 1) instructions to help
users to complete the step; 2) auto completion to reduce errors and
user effort; and 3) warning messages to warn users about errors
committed when introducing the information (e.g., the user sets a
text value rather than a numeric value) and to warn them about
necessary information that has not been introduced. The bottom
row contains the information area. In this area, explanations
about what the user is doing are provided in natural language.
This give them feedback and also can help them to see possible
committed errors.

• The right column shows users all the information that they need
to be able to complete the step. Thus, end-users just need to
select the information from the right column and drag it to the
proper location in the working area.

With regard to the Behaviour Pattern Management functionality, it
is the most important functionality and the most frequently used. For
this reason, after logging in the system, the user sees this funcionality

166 Addressing the Evolution of the User Behaviour Patterns

Figure 7.9: Snapshot of the end-user tool for managing the user behaviour
patterns

as the initial interface of the tool. This interface shows to the user the
behaviour patterns for which s/he has permission, allowing the user to
navigate to the other offered functionalities (system information and
user information). This initial interface is shown in Figure 7.9. This
interface shows the name, the priority and the state of each behaviour
pattern, allowing users to change these properties. In addition, the
interface also provides users with the operators for modifying and
deleting a behaviour pattern, and for creating a new one. If the user
selects to modify a pattern, s/he can select to modify the context

7.3 Tool Support 167

situation or the tasks of the pattern. If s/he selects to add a new
behaviour pattern, end-users have to specify the context situation and
the tasks of the pattern. For each one of these steps, we have developed
an interface like the one described above.

Figure 7.10: Snapshot of the end-user tool for specifying the context
situation of a pattern

For instance, Figures 7.10 and 7.11 show snapshots of the interfaces
for creating a new behaviour pattern. The steps to be accomplished
are shown as tabs at the top of the interfaces. Figure 7.10 shows the
interface to specify the context situation whose fulfilment will trigger
the execution of the pattern. Specifically, the figure shows a snapshot
of the context situation specification of the WakingUp pattern. The
working area shows the specification of its two conditions: 1) the time
property equals to 07:50 and 2) the workingDay property equals to true.

Once the user has specified the context situation of the pattern, s/he
must navigate to the task specification step, which is shown in Figure

168 Addressing the Evolution of the User Behaviour Patterns

7.11. The working area allows users to specify the tasks that the pattern
must execute. To achieve this, a table with the following columns (one
for each property of a task) is shown: 1) Order, which provides a clearer
view of the order in which the tasks will be executed; 2) Name of the
task, which contains a representative name for the task; 3) Service,
which contains the name of its related pervasive service (selected on
the right frame) and the attributes needed to execute it (which are
requested from the user when the service is selected); and 4) Wait,
which represents the temporal constraint or the context conditions that
must be accomplished to execute the next task (its value is 0 by default;
if the cell is empty, only one of the tasks will be executed as in the
exclusive refinement).

Figure 7.11: Snapshot of the end-user tool for specifying the tasks of a
pattern

The operators needed to add a new task or to delete a task selected
from the table are shown on the left. When the user adds a new task,
a new row in the table is added to allow users to specify the task
properties. The Order column is auto-completed, although the user

7.3 Tool Support 169

Figure 7.12: Snapshot of the end-user tool for managing context information

can change the order of tasks using the vertical arrows displayed in the
working area. The Service column only has to be specified if the task
is simple (i.e., there is a service that can carry it out); if the task is
complex, the user must break it down into simpler subtasks until they
can be executed by a provided service. To create a new subtask, the user
can use the ⇒ operator, which creates a new row in the table forming
a hierarchical form. To return to the parent task level, the user can use
the ⇐ operator. As an example, Figure 7.11 shows the tasks that are
executed in the WakingUp pattern. At the bottom of the interface the
explanation of the behaviour pattern is shown as follows: When time
is 7:50 and workingDay is true, if bathroomTemperature is lower than
28, turn on bathroom heating, wait 10 minutes and turn on the radio.
If sunnyDay is true, raise bedroom blinds, if sunnyDay is false, switch

170 Addressing the Evolution of the User Behaviour Patterns

on bedroom lights. When UserLocation is Kitchen, make coffee.

With regard to the context management functionality, as said,
it is divided into System Information Access and User Information
Management.

Figure 7.13: Snapshot of the end-user tool for managing user information

Figure 7.12 shows a snapshot of the interface developed for managing
the system information. It shows the user the context information
related to time, the environment and the system services for which
the user has permission. Figure 7.13 shows the interface developed
for managing the user information. It allows the user to see his/her
information (personal information, preferences, etc.) and to modify it.
As shown in the figures, a general view of the information is displayed
on the right in a tree representation. In the working area, the properties
of the selected context information are detailed. These properties can

7.3 Tool Support 171

be managed using the available operations add and delete, which are
shown with representative images. Using these interfaces, the end-user
can, for instance, see the state of the home services or easily change the
value of his/her preferences.

In all the interfaces, the last step is always the validation step.
The user must navigate to the validation step so that the changes
are validated before they are applied to the system. This step is
essential to preserve software quality characteristics. Up to date, this
validation focus on fulfilling the metamodel constraints (see Section
5.2.3) and checking data type matching in comparisons. If any problem
is found, the system notifies the user about the possible mistakes so
that they can be corrected. In the future, we plan to extend this tool
for also checking that there are no loops in the execution of the patterns
and there are no inconsistencies with other patterns. To achieve this,
the services provided by the AmI system should provide information
about which operations perform contradictory tasks and also about the
context properties that each service operation modifies to know if its
execution can cause the execution of other patterns. Furthermore, we
plan to provide the evolution tool with simulation capacities so that
user can simulate the execution of the changed behaviour patterns to
check beforehand if these patterns actually do what they want. More
detail about this further work will be explained in Chapter 9.

Finally, if the validation is successful, the tool updates the task
model and the context model according to the changes made by the
users. The tool uses MUTate and OCean to do this at runtime.

7.3.3 Evolving the Behaviour Patterns

Using the same examples described in Section 7.2, we next explain the
different ways in which a user behaviour pattern can be modified using
the presented tool. Evolutions for creating new behaviour patterns or
deleting them are performed in an analogous way.

Evolving the executed services. Figure 7.14 shows how the
executed services of the WakingUp behaviour pattern are changed to
fulfil the new user requirements. As shown, a new task named inform

172 Addressing the Evolution of the User Behaviour Patterns

Figure 7.14: Evolving the executed services using the end-user tool

about the current weather has been created in the pattern and has been
related to the make coffee task using a temporal relationship of the
enabling type (wait column with the value 0). The lighting task has been
removed. This has automatically removed its subtasks and made that
the relationship of the previous task takes the value of the relationship
of the removed task (i.e. the make coffee task is still performed when
Bob is in the kitchen). The turn on the radio task has been modified
to turn on relaxing music by changing the name of the task and the
service that executes it, which turns on relaxing music now.

Modifying context conditions. Figure 7.15 shows how the
context conditions of the specified behaviour patterns are changed. At
the top, the interface for managing the user information is shown. Using
this interface, a new user property named Sick has been created. This
property has been used to change the context situation of the pattern
adding a new condition that makes the pattern be enable only when the
user is not sick (see in the figure the table where the context conditions
are specified). Also, the time of the first context condition has been

7.3 Tool Support 173

Figure 7.15: Modifying the context conditions using the end-user tool

changed to 8:15. Thus, the pattern starts at 8:15 in working days when
the user is not sick. In addition, at the bottom of the figure, it is shown
how the temporal restriction of the relationship between the two first
tasks of the pattern has been changed to 15 min.

Evolving the execution order of the services. Figure 7.16
shows how the service execution plan of the specified behaviour pattern

174 Addressing the Evolution of the User Behaviour Patterns

is changed. As shown, the last task is now executed the first task, and
the first task in now executed the last task. This change has been easily
performed using the up and down arrows that allow the execution order
of a task to be changed. The relationships of these tasks have been also
updated so that each task is executed when the previous one finishes. In
addition, the context situation of the pattern has been changed because
the pattern must start when the user must be woken up.

Figure 7.16: Evolving the service execution plan using the end-user tool

7.4 Conclusions

In this chapter, we have explained how the user behaviour patterns
specified in the context and task models can be evolved at runtime.

Specifically, we have described the type of evolution that is
confronted in this thesis. Next, we have explained how OCean and
MUTate, which are the model management mechanisms, can be used to
evolve the behaviour patterns. Finally, we have described the designed
evolution tool that facilitates the evolution of the specified behaviour
patterns by providing intuitive graphical interfaces.

Chapter 8

Evaluation of the Approach

This chapter describes the evaluations performed for validating the
approach presented in this thesis. According to the confronted

research goals (see Section 1.3), we want to validate the following
contributions:

Models. The task model and the context model must provide enough
expressivity to specify the behaviour patterns that users want to
be automated. Also, this specification must be understandable
enough for the end-users so that the models become artefacts
for discussion between analysts and users. Thus, the models can
properly represent the behaviour patterns to be automated, and
do this according to users’ demands and desires. Furthermore,
the models must allow the behaviour patterns to be specified in a
precise way in such a way that they can be automated by directly
interpreting the models.

Automation Infrastructure. The provided infrastructure must au-
tomate the behaviour patterns in the opportune context as

176 Evaluation of the Approach

specified in the models by interpreting them at runtime.

Evolution of the Automated Behaviour Patterns. The mechanisms
and tools provided for evolving the automated behaviour patterns
must allow them to be easily evolved at runtime according to users
needs.

In order to validate these contributions, we put the approach in
practice carrying out a case study based evaluation. The philosophy of
our approach can be used in any domain where routine tasks are carried
out. In this work, we put into practice the approach in several smart
home case studies and a nursing home case study.

Since it has been proven that case studies provide deeper
understanding of the phenomena under study if proper research
methodology practices (Flyvbjerg, 2007; Lee, 1989) are applied, to
develop the case studies, we follow the research methodology practices
provided in (Runeson & Höst, 2009). These practices describe how to
conduct and report case studies and recommend to design and plan the
case studies before performing them.

Next two sections describe the pursued evaluation by developing the
smart home case studies and the nursing home case study, respectively.
Following the recommended reporting structure, each on of these section
explains the design and results of the case studies’ performance, and
provides a summary of the extracted conclusions. After these two
sections, we also validate the scalability of our approach, which is
a critical problem in pervasive computing (Satyanarayanan, 2001).
Finally, we conclude the chapter.

8.1 Smart Home Case Studies

The overall purpose of the development of smart home case studies is
to improve users’ lives and saving energy resources by automating daily
tasks of the users. We applied our proposal to 14 smart home case
studies. Following the reporting structure, we first describe the design

8.1 Smart Home Case Studies 177

of these case studies. Then, we describe the results obtained from them.
Finally, we explain the conclusions extracted from the evaluation.

8.1.1 Design of the Smart Home Case Studies

In order to design the smart home case studies, we follow the guidelines
provided by Runeson and Höst in (Runeson & Höst, 2009). According to
the reporting guidelines, we first determine the research questions that
we want to validate. Second, we describe the case and subject selection.
Third, we determine the selected procedures to collect the data. Fourth,
we explain the procedures and techniques used to analyse the collected
data. Finally, we describe the validity procedures.

Research Questions

By developing the smart home case studies we want to evaluate the
following research questions:

1. Do the models provide enough expressivity to describe the
behaviour patterns that the users of the case studies want to be
automated?

2. Are the models understandable for the users involved in the case
studies and useful for discussing the specified behaviour patterns?

3. Does the infrastructure correctly automate the behaviour patterns
as specified in the models by directly interpreting them?

4. Are the provided mechanisms and the graphical evolution tool
useful for evolving the specified behaviour patterns?

Case and Subjects Selection

In a case study based evaluation it is important to use several data
sources in order to limit the effects of one interpretation of one single
data source. It is recommended to take into account viewpoints of

178 Evaluation of the Approach

different roles or personalities, or develop several case studies of the
same characteristics. If the same conclusion can be drawn from several
sources of information, this conclusion is stronger than a conclusion
based on a single source.

Thus, to validate these research questions, we selected 14 smart
home systems covering different number of inhabitants (families, couples
and single people). We selected smart homes because their development
is an issue in which industry is very interested. This is because home is
a fertile ground for offering products and services to improve the lives
of people.

The subjects of the evaluation were the clients of the case studies.
We selected them taking into account that they covered a wide variety
of professions, ages, intellectual capacities, studies, and computers’
knowledge.

Data Collection Procedures

Before starting the process of collecting data, the participants completed
a questionnaire with a few questions to find which vocabulary they use
to describe a behaviour pattern. The questions asked for the definition
of the task concept first. Then, we asked them to determine how they
refer to a set of tasks habitually performed. Finally, questions were
asked for the definition of other important concepts such as condition,
service or context.

We then prepare and set up the data collection within the following
four steps:

Step 1: Identify the behaviour patterns to be automated.
To perform this step, we designed a semi-structured interview
to know the behaviour patterns that the subjects wanted to
be automated by the system. A semi-structured interview
is composed of planned questions, but they have not to be
necessarily asked in the same order as they are listed. Thus,
we could decide in which order the different questions should be
handled according to the development of the conversation in the

8.1 Smart Home Case Studies 179

interview. Also, we could use the list of questions to be certain
that all questions were handled. Additionally, semi-structured
interviews allow for improvisation and exploration of the studied
objects; therefore, we could improvise more questions if needed.

The process for identifying the behaviour patterns is not a
contribution of this work. Thus, in this section we only summarize
this process; more detail information about its design and results
can be found in Appendix B.

Step 2: Specify the models and check their comprehensibility
by users. After identifying the behaviour patterns that had to be
automated, we specified them using the task and context models.
After teaching the subjects about the main components of the task
model notation, we refined the models until the subjects agreed
with the behaviour patterns specified. In this process, we checked
the comprehension of the models by the subjects. To do this, we
used a short semi-structured interview. According to (Gemino
& Wand, October 2003), in order to evaluate the understanding
of a modelling technique, tasks that require reasoning about the
models are needed. Thus, we asked questions to the subjects that
make them reason about the task model. For instance, some of
these questions were: how many tasks will be executed in this
routine?; when will this routine be activated?; when will this task
be executed?.

Step 3: Testing the provided software infrastructure. Once the
models were validated, we developed the services that support the
functionality needed to execute the system tasks of the patterns.

Next, we put the system into operation. To do this, we used a
scale environment with real devices1 to represent the Smart Home.
This execution environment is made up of a PC and a network
of KNX devices2 connected to the PC by a USB port. In the
PC, an Equinox distribution (which is the OSGi implementation

1http://oomethod.dsic.upv.es/labs/projects/pervml
2http://www.knx.org

180 Evaluation of the Approach

of Eclipse) was run. The pervasive services, MAtE, MUTate,
OCean and the graphical evolution tool were installed and started
in Equinox. Since the device network did not provide us with all
the needed devices for the case studies, we also used a simulator
for simulating the behaviour of the rest of needed devices. This
simulator was presented in (Muñoz et al., 2005) and allows us
to define virtual devices and control them using an intuitive user
interface. In addition, the specified models were copied in the
folder were Equinox was installed.

Once the system was running, we used the device simulator to
simulate the fulfilment of the context situations specified in the
task model. Then, we checked using JUnit tests, whether the
behaviour patterns were automated as they were specified in the
models. We repeated this simulation after evolving the automated
behaviour patterns using OCean and MUTate and the graphical
tool. Some of the evolutions that were performed have been
explained in sections 7.2 and 7.3.

Step 4: Usability evaluation of the graphical tool. We made the
subjects of the case studies perform a series of scenarios using
the graphical evolution tool. To do this, we first designed the
scenarios that should be performed. We then arranged several
sessions in which the users carried out these scenarios under our
supervision. In these sessions, we grouped the users according to
their level of computer knowledge. Thus, before performing the
scenarios, we could explained them how the tool works according
to their computer knowledge (using a few minutes for explaining
the tool to those users with high computer knowledge and a detail
explanation for those users with very basic computer knowledge).
In any case, we did not expend more than half an hour to explain
them the tool.

Some examples of the evolutions that they performed were
described in sections 7.2 and 7.3. In total, the scenarios that
they performed included:

• delete, modify, and add a context property;

8.1 Smart Home Case Studies 181

• enable/disable and delete a behaviour pattern

• modify a behaviour pattern by changing its context situation
and its tasks (service in charge of executing them, temporal
relationships, etc.);

• add a new simple behaviour pattern (without composite
tasks): create the context situation and specify the tasks
to be executed;

• add a new complex behaviour pattern (with composite
tasks): create the context situation and specify the tasks
from more complex to simpler.

Once the users completed the scenarios, they sent us the result
task and context models so that we can check whether the
users had correctly performed the scenarios. Then, they filled
out the Post-Study System Usability Questionnaire (PSSUQ)
published by IBM in (Lewis, 1995). This questionnaire is a
19-item instrument for assessing user satisfaction with system
usability. Specifically, it allows us to measure the overall
satisfaction (OVERALL) of the system, its usefulness (SYSUSE),
its information quality (INFOQUAL), and its interface quality
(INTERQUAL). In addition, we extended this questionnaire to
know: general information about the users (such as the age of
the subjects, their computer knowledge, etc.); how long users
take to perform the scenarios; whether participating in the model
specification helps them to use the tool or not; and their general
opinion about the interfaces (what they like about the interfaces,
what they would change, what is the most difficult step to
perform, etc.).

Analysis Procedures

The analysis of the obtained data was conducted as follows in order to
answer the established research questions:

• The first research question was whether models provide us with
enough expressivity to describe the behaviour patterns that the

182 Evaluation of the Approach

users of the case studies want to be automated. To answer
this question, we analysed the behaviour patterns identified to
be automated, the obtained models for specifying them and our
experience using the models. Using these artefacts, we analysed
whether the models could properly represent all the needed
behaviour patterns.

• The second research question was whether the models were
understandable by the users involved in the case studies and useful
for discussing the specified behaviour patterns. To answer this
question, we use our experience in the model refinement with the
end-users and analysed the results of the questionnaires in Step 2
of the data collection, obtaining statistical data from them.

• The third research question was whether the infrastructure
correctly automates the behaviour patterns as specified in the
models by directly interpreting them. To answer this question, we
analysed the results obtained from Step 3 of the data collection.

• The fourth research question was whether the provided evolution
mechanisms and the graphical tool were useful for evolving the
specified behaviour patterns. To answer this question, we analysed
the results obtained in Step 3 of the data collection. We also
analysed the results of the questionnaires performed in Step 4,
obtaining statistical data from them.

Validity Procedures

The selection of case studies for different number of inhabitants and the
selection of participants with a wide variety of personalities, capacities,
etc., maximize the external validity of the results.

In addition, we presented and discussed the results of each interview
and questionnaire with the corresponding subjects of the case studies
and also discussed the results of the overall analysis with other
researchers.

8.1 Smart Home Case Studies 183

8.1.2 Results of the smart home case studies

To develop the smart home case studies, we follow the process proposed
in this thesis, which is described in detail in Chapter 4: first, we
identified the behaviour patterns to be automated; we then specified
the identified behaviour patterns using the proposed context and task
models; using these models and the provided software infrastructure,
we ran the system; finally we evolved some of the specified behaviour
patterns at runtime by using the provided mechanisms and tools.

To explain the results of the development of the smart home case
studies, we first describe the involved participants, and then organize
the section according to the steps designed in the data collection
procedures. In each one of these steps we analyse the data following
the designed analysis procedures, which allow us to answer the proposed
research questions.

Subjects’ Description

The involved participants were: 3 families (one family with two little
kids and two families with 1 kid), 1 couple and 10 single people.
They had a wide variety of professions including 10 engineers, an
administrative, a teacher, a housewife, two nurses, a farmer, a carpenter
and a student. Since the kids were too little to be able to participate
in the development of the case studies, they were represented by their
parents. Finally, the total of participants was 18 which ranged from 26
to 57 years of age. From them, 10 were men and 8 women. Also, those
that were engineers have a medium-high level of computers’ knowledge,
while the rest only have basic computer knowledge.

Identify the Behaviour Patterns to be Automated

Before identifying the behaviour patterns to be automated, the subjects
of the case study completed the prepared questionnaire to find which
vocabulary they used to describe a behaviour pattern. The questions
asked for the definition of the task concept first. As stated in the

184 Evaluation of the Approach

literature (Johnson, 1999; Paternò, 2002), this term was perfectly
understood by them. They defined a task as work to be done or work
that has to be performed habitually, like it is described in the common
definition of task. Then, we asked them to determine how they refer to
a set of tasks habitually performed. Most of them, over a 83% use the
term routine, and the rest use the term habit or daily tasks.

Then we followed the designed semi-structured interview to know
which behaviour patterns users want to be automated. We analysed
the provided information and identified the behaviour patterns that
could be useful for the users. We identified from 6 to 12 behaviour
patterns to be automated in each case study, with a total of 97 behaviour
patterns. In essence, from these behaviour patterns we detected 15
that were different (i.e., those that had different goals). The rest of
behaviour patterns were variations of them. For instance, most users
wanted automatically room lighting taking into account outside light
intensity and user presence. If the user slept alone, he or she wanted
the room was always illuminated, however, if users were a couple or
have babies, they usually wanted the light in the bedroom was not
switched on when there was someone sleeping. In contrast, another
couple wanted the lights were not switched off while her daughter was
playing in the house.

More detail information about the results of these interviews can be
found in Appendix B.

Specify the Models and Check their Comprehensibility by
Users.

We specified the identified behaviour patterns using the context and
task models. The context needed for automating the identified
behaviour patterns was specified in the context model. Figure 8.1
shows part of a context model specified for one of the case studies. The
behaviour patterns were specified in the task model using the context
of the context model. We next describe some representative examples
of these patterns. Their specification using the task model is shown in
Figure 8.2. In the behaviour pattern examples, we use false names to

8.1 Smart Home Case Studies 185

Figure 8.1: A context model examples of the smart home case studies

keep user privacy:

1. Waking up: At 6:50 a.m. on working days, the system switches
on the bathroom heating. 10 minutes later, the system puts the
radio quietly on in the bedroom to wake up Bob. At 07:30 a.m.,
the system puts the radio again to wake up Sarah. Afterwards,
when the users are in the kitchen to have breakfast, the system
recommends them the best transport to go to work.

2. Airing home: The first time users leave home, the system airs
the house. To do this, the system raises blinds and opens windows.

186 Evaluation of the Approach

Figure 8.2: Examples of the models specified in the smart home case studies

After 10 minutes, the system lowers blinds if the temperature is
greater than 30oC, and closes windows.

3. Lighting control: When movement is detected in a room and its
light intensity is low, the room is illuminated provided that it is
not the bedroom. If it is the bedroom, it is only illuminated if it is
between 7:30 and 20:30. For illuminating a room, if it is a sunny
day, the system raises the blinds; otherwise, the system switches
on the lights. Afterwards, when movement is not detected any
more, the lights are switched off.

4. Intruder security: If the security system is activated and an
intruder is detected, the system makes the house alarm go off,

8.1 Smart Home Case Studies 187

notify the police, switches on the lights to simulate presence, and
starts to record by using the installed cameras.

5. Watering garden: At night, when the land humidity is low and
nobody is in the garden, the sprinklers are switched on. When
the proper land humidity is achieved, the sprinklers are switched
off.

6. Storm security: If it starts to rain, the system lowers all the
blinds, winds up all the awnings and switches off the garden
sprinklers. When it stops raining, the system calculates the cubic
meters of rainfall and updates the irrigation timetable according
to it.

All the identified behaviour patterns to be automated could be
specified using the proposed context and task models; however, although
the following aspects could be represented, the way in which them had
to be specified was not very direct and intuitive:

• Perform some task only a certain number of times at day, a certain
number of times at week, etc. This aspect can be modelled by
adding a context property in the context model that counts the
times that has been executed the task. This property is used in
context conditions of the task model to control the times that the
task must be carried out. An example of the specification of this
aspect is shown in the behaviour pattern Airing home in which
the AiredHome context property is used so that the pattern is
executed only once (see Figure 8.2).

• Perform a task during a period of time. In our approach, system
tasks are atomic tasks and we consider that they do not have
a duration (i.e., we consider them as stateless tasks). For this
reason, to specify that a task has to be executed for a period of
time, we specify the start of the task and its end, relating both
events using a temporal relationship with a temporal restriction
equivalent to the duration that the task must have. For instance,

188 Evaluation of the Approach

in the behaviour pattern Airing home, windows are opened during
10 minutes (see Figure 8.2).

• Loops. Tasks such as switching lights or raising blinds in a gradual
manner can be specified by several tasks in which the argument
was higher and higher (e.g., with light intensity 100, 200, 300,
etc.). These tasks would be related by temporal relationships
with the needed wait time (e.g., 1 min, 2 min, etc.).

Once specified the identified behaviour patterns, we validated them
with the end-users. To do this, we first taught the users about the main
concepts of the task model, and then checked the model comprehension
using the prepared short questionnaire. This questionnaire made users
reason about the model. We found that 14 from the 18 users perfectly
understood the behaviour specified in the task model. The other 4 users,
those with a lower level of studies, understood very well the structure
of the model (task hierarchy and task relationships); however, they had
difficulties to know what meant the used context conditions. To solve
this problem, we describe them in natural language. We eliminated
the task preconditions adding this information to the name of the task
(e.g., instead of specifying [LandHumidity=low] switch sprinklers on,
we specified: if the humidity of the land is low, switch sprinklers on)
and also replaced the >> [c] >> temporal relationship with text (e.g.,
instead of specifying >> [UsersLocation = Kitchen] >>, we specified
when users arrive to the kitchen).

Afterwards, we explained to the users the specified behaviour
using the model, which results very useful to discuss and validate the
behaviour patterns to be automated. If something was not specified
as users wanted to be automated, we refined the model to fulfil their
requirements. We repeated this process until the users agreed with the
patterns specified in the task model.

Testing the Provided Software Infrastructure

To support the functionality needed to execute the system tasks of the
patterns, we obtained the code of the required services by using the

8.1 Smart Home Case Studies 189

MDD strategy presented in (Muñoz et al., April 2006; Serral et al.,
2010). We had already many of these services developed from previous
case studies (Muñoz et al., April 2006; Serral et al., 2010), therefore, we
could reuse them. At the end, we had a total of 26 different services.
More detail about them can be found in Appendix B.

We then evaluated the feasibility of our approach. Using the running
system, we validated that the behaviour patterns were automated as
they were specified in the models. Specifically, the following aspects
were validated before and after evolving the behaviour patterns:

• All the behaviour patterns are triggered only when its context
situation is fulfilled.

• When a behaviour pattern is executed, all the required services
are executed in the correct order and in the correct conditions.

To perform this, we based on the fact that the Context Monitor
registers in the ontology each execution of a service (see Section 5.1.3
and 6.3.2). Thus, the proposed validation consisted in: (1) simulating
the fulfilment of specific context conditions in order to trigger the
execution of several behaviour patterns, and (2) checking that all the
services that must be executed were registered by the context monitor in
the correct order, respecting the corresponding temporal relationships
between the tasks. Before performing this validation, we validated:
that MUTate and OCean properly retrieved and saved data (see Section
A.1 for more detail), and that the Context Monitor registered service
execution in a proper way.

In order to perform all these validations, we used simulations and
JUnit tests3. We developed a set of JUnit tests that allow us to
evaluate the behaviour of OCean and MUTate, and also MAtE and the
Context Monitor. For instance, as a representative example, Figure 8.3
shows the JUnit method that evaluates the behaviour pattern execution.
This method compares the tasks executed when a behaviour pattern is
triggered (i.e., those registered by the context monitor) with the real

3http://www.junit.org/

190 Evaluation of the Approach

Figure 8.3: JUnit test for evaluating that all the pattern tasks are executed

execution plan of that behaviour pattern (i.e., the tasks that should be
executed).

To perform this evaluation, we implemented the getExecution-
Plan(id) method. It returns the execution plan of the behaviour pattern
whose ID is the received id. This execution plan is a list of names of the
system tasks that will be executed according to context. We manually
initialized the executed plan of 15 different behaviour patterns (i.e., one
for each different goal), which were a representative set to test that the
behaviour patterns were properly executed.

After executing a pattern, we retrieved the last registered automated
operations from the context model (i.e., we retrieved the individuals of
the AutomaticOperation class) by using OCean. We retrieved as many
automated operations as tasks the obtained execution plan has. Finally,
we created an equal assertion to check if the automated operations
retrieved from the context model were the same as the tasks that
contained the execution plan.

This JUnit test was executed for the 15 selected behaviour patterns
after simulating the context conditions in which each pattern should
be executed in the same manner than its manual introduced execution
plan.

After evaluating that the behaviour patterns were correctly
automated, we evolved them according to the planned evolutions. For

8.1 Smart Home Case Studies 191

each evolution, we applied again the JUnit tests and checked that the
behaviour patterns were correctly executed according to the performed
evolution. We performed these evaluations in an iterative way, which
allowed us to detect and resolve some mistakes. For instance, we realized
that the behaviour patterns dependent on time, made the system enter
in a loop. This was because the system updates time every second and
the smallest time unit considered in the behaviour patterns was minutes.
Thus, the context situation of these patterns was continuously fulfilled
until a minute went off. To solve this problem, we needed to use the
same time unit in both cases. Considering that updating each second
the context model could overload the system, we updated the context
monitor so that the time was updated every minute.

Usability Evaluation of the Graphical Tool

The complete PSSUQ questionnaire results are shown in Figure 8.4.
According to the results of the questionnaire, the tool received the
following ratings on a scale of 1 (the highest score) to 7 (the lowest
score): overall satisfaction was 2.158, usefulness was 2.041, information
quality was 2.056, and interface quality was 2.092. These results
revealed that although some aspects of the tool have to be improved, it
was clear enough and simple to use for most of the subjects of the case
studies, allowing them to evolve the behaviour patterns.

In the arranged sessions, all the subjects could correctly perform all
the evolution scenarios without much difficulty. This perception was
also observed by the users as the answers to the question 3 of PSSUQ
shows. Also, the users noticed that they did not need too much time
to perform the scenarios (see the answers to the questions 4 and 5 of
PSSUQ). For instance, the first scenario was to create a simple routine
with two conditions and two tasks, which took the users from 4 to 10
minutes. The last scenario was to modify all the aspects of a created
behaviour pattern. Although the latter was a longer scenario, it took the
users from 30 seconds to 4 minutes. We observed and validated with the
users that the first scenario took more time than the others because the
users were also understanding how the tool worked; however, the results

192 Evaluation of the Approach

Figure 8.4: Results of the PSSUQ Questionnaire

revealed a tendency to need less and less time to perform the scenarios.
This is because all the interfaces of the tool follow a similar structure and
provide users with all the needed functionalities and information (see
the answers to the questions 14, 15 and 18 of PSSUQ), which helped
the users to quickly be more efficient. In fact, all the users believed
that they could become productive quickly using the tool (question 8
of PSSUQ) and most of them answered that it was easy to learn to use
the tool (question 7 of PSSUQ).

The worst score obtained from the questionnaire was for the

8.1 Smart Home Case Studies 193

questions 9 and 10, which determine the information quality of the
message errors. Users commented that the help messages that were
shown in the interfaces helped them to complete the tasks; however,
when they committed an error, the error messages were not clear enough
to correct them. To improve this aspect, we are currently working to
make these messages clearer for users by showing examples of solutions
to correct the possible errors.

Regarding the participation in the task model specification, the 72%
of the users commented that this process helped to familiarize them
with the tool, and above all, facilitate them to modify the automated
patterns and create new ones because they already knew how they were
structured.

Regarding what users did not like or they would change, some
users, essentially those with a low level of studies and people older
than 50 years old, commented that designing the context conditions
was still difficult. They commented that they would like to have a list
of predefined conditions in which they could change some parameters
(i.e., when it is -day of week-, at -time-, in a working day, when nobody
is at home, etc.). After explaining them how a condition is formed in
depth, we observed that the interface design helped them to correctly
specify the conditions since it provided all the context properties and
the operators that they could use and helped the users to fill the values.

In addition, some users also commented that they preferred forms
instead of filling out tables, because they said that forms would facilitate
to change the automated behaviour patterns. We have extended the tool
to support this aspect. We have created forms for adding and modifying
a condition, a task and a context property. As examples, Figures 8.5
and 8.6 show the forms created for modifying a context condition and
a task, respectively. These forms offer users a better guide for entering
the required information. This has allowed us to simplify the interface
instructions. Also, the created forms make much clearer the description
of context condition unions and task relationships for users that it was
in the tables. Furthermore, in the new interfaces, we have substitute the
information tree shown on the right for combo trees in the forms. In this
way, the place where the tree information must be used is completely

194 Evaluation of the Approach

Figure 8.5: Interface extended with forms for modifying a context condition

delimited, considerably facilitating to fill the required information.

Regarding the validation step, many users mentioned that they liked
it because it guaranteed them that the changes were correct. However,
some users said that they usually forgot to navigate to this step and
tried to finish before. Although the tool did not allow users to exit
without validating or reject the changes, it needed the user navigated
to the validation step. To avoid this, we have improved this aspect
by eliminating the validation step placed at the top and moving this
funcionality to the save and close button (see Figure 8.7). When users
try to exit, a message is shown to ask them whether they want to save
the changes or not. If they decide to save them, change validation is
automatically done, just like when users save the changes by using the
save button. In the example shown, the user is trying to save a routine

8.1 Smart Home Case Studies 195

Figure 8.6: Interface extended with forms for modifying a behaviour pattern
task

without a context situation; therefore, the system reports her the error
and does not let her to save the changes (until the error is solved). Thus,
the validation is performed unconsciously by users.

Regarding what users like the most, many users indicated that they
liked the functionality that the tool provided them with because it
easily allowed them to change the automated tasks. Some users also
commented that they liked the structure of the interface because it was
very similar over all the interfaces, it was clear and its information was
well organized. Also, some users said that they liked the instructions
provided in the interfaces because these instructions guided them in the
tasks to be performed.

196 Evaluation of the Approach

Figure 8.7: Interface that shows the change validation

8.1.3 Conclusions of the Smart Home Case Studies’
Validation

The development of the smart home case studies has allowed us to
validate the four research questions presented at the beginning of the
section.

First of all, we specified the behaviour patterns that the users wanted
to be automated. This has allowed us to validate that, although some
aspects could be improved, the models proposed in this thesis provide
enough expressivity to describe the behaviour patterns needed for all the
smart home case studies (Research Question 1). In addition, we refined
the models with the user participation, checking that these models are
mainly understandable by the users and can be very useful for discussing

8.2 Nursing Home Case Study 197

and validating the specified behaviour patterns with the users (Research
Question 2).

After validating the models with the end-users, we made some
simulations and passed a set of JUnit tests checking that the models are
correctly executed by the the provided software infrastructure. We have
also validated that after evolving the specified behaviour patterns, the
software infrastructure correctly automates all the behaviour patterns
applying the corresponding performed evolutions (Research Question
3).

Finally, we have validated that the provided tool is useful for the
users in order to evolve the specified behaviour patterns according
to their needs. However, it needs to be improved for facilitating the
evolution by end-users with a low level of computer knowledge or skills
(Research Question 4).

8.2 Nursing Home Case Study

To validate our approach, we also developed the automations needed
for the ACube4 research project. This project aims at designing an
automated user intensive system to be deployed in nursing homes as a
support to medical and assistance staff. The ACube consortium has
a multidisciplinary nature, involving software engineers, sociologists
and analysts, and it is characterized by the presence of professionals
representing end-users directly engaged in design activities.

Following the reporting structure, we first describe the design of the
case study. Then, we describe the results obtained from it. Finally, we
explain the conclusions extracted from this evaluation.

8.2.1 Design of the Nursing Home Case Study

In order to design the nursing home case study, we follow the guidelines
provided by Runeson and Höst in (Runeson & Höst, 2009). According to

4The ACube project was founded by the local government of the Autonomous
Province of Trento in Italy; see http://acube.fbk.eu/en/node/57

198 Evaluation of the Approach

the reporting guidelines, we first determine the research questions that
we want to validate. Second, we describe the case selection. Third, we
determine the selected procedures and techniques to collect the data,
and to analyse it. Finally, we describe the validity procedures.

Research Questions

The requirements specifications of the ACube case study were already
available (see a detailed explanation of them in Appendix B). This
means that the quality of the captured data of this case study is not
under our control. However, the purpose of capturing this data was to
design an automated system to support and automate the medical and
assistance staff tasks. Thus, although we could not actually interact
with the subjects during the development of the case study, we consider
it a valuable case study for validating the following research questions:

1. Do the models provide enough expressivity to describe the
behaviour patterns that automate medical and assistance staff
tasks?

2. Does the software infrastructure correctly automate and evolve
the specified behaviour patterns?

Case Selection

The main goal of automating the behaviour patterns performed by
medical and assistance staff is to help them to make their work more
efficiently in order to enhance the quality of life of their patients.

By automating behaviour patterns, the tasks of medical and
assistance staff can be greatly reduced freeing them so that they can
spend more time with their patients. In addition, the routine tasks
that medical and assistance staff perform can be improved to be more
efficiently because they can be previously analysed and also can be
automated even when none of the staff is present.

8.2 Nursing Home Case Study 199

Data Collection Procedures

As said, in this case study we cannot directly interact with the users.
For this reason, the data collection was performed only by using archival
data. Specifically, we used: the requirement specification of the ACube
project, the context and task models in which the behaviour patterns
that must be automated were specified, and the results obtained by
performing different simulations of the system in execution. Thus, we
prepared and set up the data collection within the following three steps:

Step 1: Identify the behaviour patterns to be automated.
From the requirements of the ACube case study, we identified
several behaviour patterns that could be automated to support
the automation of medical and assistant staff.

The process for identifying the behaviour patterns is not a
contribution of this work. Thus, in this section we only summarize
this process; more detail information about the requirement
artefacts and how the behaviour patterns were identified can be
found in Appendix B.

Step 2: Specify the behaviour patterns to be automated. After
identifying the behaviour patterns that had to be automated, we
specified them using the task and context models.

Step 3: Testing the provided software infrastructure. Once
the models were validated, we developed the services needed to
execute the system tasks of the patterns.

We then put the system into operation. We used a PC with an
installed Equinox. To run the system, the pervasive services,
MAtE, MUTate, OCean and the device simulator (presented in
(Muñoz et al., 2005)) were installed and started in Equinox. The
models were copied in the folder were Equinox was installed.

Once the system was running, we simulated the fulfilment of the
context situations specified in the task model and checked using
JUnit tests, if the behaviour patterns were automated as they
were specified in the models.

200 Evaluation of the Approach

We repeated this simulation after evolving the automated
behaviour patterns using OCean and MUTate and the graphical
tool. Some of the type of evolutions that were performed have
been explained in sections 7.2 and 7.3.

Analysis Procedures

The analysis of the obtained data was conducted in the following steps
organized in order to answer the established research questions:

• The first research question was whether the models provide us
with enough expressivity to describe the behaviour patterns that
have to be automated for the case study. To answer this question,
we analysed the identified behaviour patterns (Step 1 of the data
collection) and the models specified for automating them (Step 2
of the data collection). Using these artefacts, we analysed if the
models could represent the behaviour patterns that were identified
in the requirements of the case study.

• The second research question was whether the infrastructure
correctly automates and evolves the behaviour patterns specified
in the models. To answer this question, we analysed the results
obtained from the Step 3 of the data collection.

Validity Procedures

We presented, discussed and validated the specified models with the
researchers in charge of performing the requirement elicitation of the
ACube project. In addition, we discussed the results of the overall
analysis with them and other researchers.

8.2.2 Results of the the Nursing Home Case Study

As we did for the smart home case studies, to develop the nursing
home case study, we followed the process proposed in this thesis
(see Chapter 4): first, we identified the behaviour patterns to be

8.2 Nursing Home Case Study 201

Scenario: Gianna  has  just  started  her  turn.  It  is 
summer and a few social workers are in the ins7tute. 
She  is  alone  in  the  great  restora7on  room  where 
there is a group of Alzheimer people. Today common 
room is noisy and Gianna can't oversee everyone.
Carlo  is  stressed  and  disquieted  and  his  behaviour 
becomes aggressive. A camera in the room iden7fies 
Carlo's behaviour and the system puts on some soE 
lights  around  him,  and  plays  his  preferred  song  in 
the background. In the meanwhile the system alerts 
the nearest caregiver Gianna about the trouble […] 
At  the  end  of  the  turn,  Gianna  is  in  her  office  and 
validates  the  automa7c  report  that  describes  what 
happened […]

to reduce
aggressive
behavior

alert the nearest
operator

change the
environment for
stimulating relax

put soft light

AND

AND

switch on
environment

music
get user

preferences

Name: Gianna, 38 years 
old
Job: nurse
Goal: to assist and 
control pa7ents

Name: Carlo, 93 years 
old
Role: pa7ent with 
Alzheimer desease
He dislikes to stay in the 
ins7tute User profile

Figure 8.8: Three produced artefacts: a couple of relevant Personas, the
scenario of aggressive behaviour in which they are involved and
the slice of correspondent goal model.

automated; we then specified the identified behaviour patterns using the
proposed context and task models; using these models and the provided
software infrastructure, we ran the system; finally we evolved some
of the specified behaviour patterns at runtime by using the provided
mechanisms and tools.

To explained the results of the development of this case study,
we organize the section according to the steps designed in the data
collection procedures. In each one of these steps we analyse the data
following the designed analysis procedures, which allow us to answer
the proposed research questions.

Identify the Behaviour Patterns to Be Automated

The capture of requirements of the expected system was already done
by the Fondazione Bruno Kessler IRST of Trento in Italy (see Appendix
B for a detail description of these requirements). We had four scenarios,
a set of Personas (Cooper et al., 2007) and a Tropos model (Bresciani
et al., 2004) at our disposal to obtain the behaviour patterns that
must be automated. Figure 8.8 shows examples of these artefacts.
Particularly, this figure shows the following:

• A couple of Personas. Personas are powerful instruments
for creating descriptive models of system-to-be users based on

202 Evaluation of the Approach

behavioural data. Personas are derived from patterns observed
during interviews, with the aim of representing the diversity
of observed motivations, behaviours, and mental models. Two
examples are given in the figure: Carlo, who is a patient with
Alzheimer disease, and Gianna, who is a nurse.

• A technological scenario. Technological scenarios are short
narrative stories that represent people (Personas) acting in a
specific context and supported by the envisage technology. They
increase the insight on requirements of the system but also are
useful for communicating and validating requirements with non-
technical people. The figure shows a technological scenario that
describes the tasks to be performed to control the aggressive
behaviour of a patient.

• Part of the tropos goal model. This model describes the behaviour
of the system using a hierarchy of goals (from more general to more
specific) and the tasks that must be performed for achieving the
goals. The figure shows the decomposition of the goal [to reduce

aggressive behaviour]. The model specifies that the system plans
for achieving the goal [to reduce aggressive behaviour] are: [alert the

nearest operator] and [change the environment for simulating relax] (e.g.,
put soft light and play music).

From the available requirements, we identified 4 behaviour patterns.
Specifically, from the information shown in Figure 8.8, we identified the
Controlling aggressive behaviour pattern that tries to relax a patient
when s/he starts to behave aggressively. A detailed description of
the behaviour patterns identified for the case study can be found in
Appendix B.

Specify the Behaviour Patterns to Be Automated

We specified the identified behaviour patterns using the context and
task models. To do this, we extended the context ontology with the
type of users of the ACube project. The Tropos actor model and the

8.2 Nursing Home Case Study 203

Figure 8.9: Overview of the context model created for the nursing home case
study

set of Personas provided useful information for creating the needed
hierarchy of users as subclasses of the User class in the context ontology.
For instance, the actor model identified the roles caregiver and patient,
while the Personas instrument identified more specific type of users:
Carlo, who is a patient with Alzheimer disease, and Gianna, who is a
nurse which is a type of caregiver. Thus, real users were specified in the
user hierarchy as individuals of the class that better represented their
characteristics. Figure 8.9 shows an overview of the context model of
the case study.

Extended the context ontology, we could specify the four behaviour
patterns identified for the ACube case study in the task model. Figure
8.10 shows the specification of these patterns using the task model.
These patterns can be described as follows:

Controlling aggressive behaviour: This pattern is activated when
a patient starts to behave aggressively. When this happens, the
system captures the current context state (to be able to create the
report at the end of the behaviour pattern execution). Then, the
system alerts the nearest caregivers. To do this, it first searches
for the caregivers that are nearest to the patient location and
then sends them a message to warn that aggressive behaviour has
been detected in the corresponding location. Then, the system
changes the environment for simulating relax by putting soft lights
and playing the preferred song of the patient that is behaving

204 Evaluation of the Approach

aggressively. Five minutes later, if the patient is still behaving
aggressively, the system warns the security officers. Afterwards,
the system creates a report specifying: the context state in which
the behaviour pattern was triggered, and the tasks carried out by
the execution of the behaviour pattern. Finally, the report is sent
to the involved staff so that they can validate it.

Avoiding Patient Escaping: This pattern is activated when it is
detected that a patient is leaving the nursing home. When this
happens, the system captures the current context state and then
activates the emergency state and alerts the nearest caregivers.
To do this, it first searches for the caregivers that are nearest to
the patient location and then send them a message to warn that a
patient is escaping. Then, the system starts to record the patient
to see where s/he is going. Finally, a report about the incidence
is created and sent to the involved staff so that they can validate
it.

Dealing with a Fall: This pattern is activated when it is detected
that a patient falls and none of the caregivers is around. When this
happens, the system captures the current context state and then
activates the emergency state and alerts the nearest caregivers.
Finally, a report about the incidence is created and sent to the
involved staff so that they can validate it.

Dealing with Health Emergencies : This pattern is activated
when a health anomaly is detected in a patient. When this
happens, the system captures the current context state and the
nurses and the doctor of the patient are alerted. The external
emergency light in the room is then switched on. When the
situation is controlled, messages are sent to the involved personal
staff to inform them about their next tasks. Finally, a report
about the incidence is created in the health diary and sent to the
involved staff so that they can validate it.

Since ACube is a user-intensive system, the behaviour patterns
had to be specified for each user. To avoid this, we extended the

8.2 Nursing Home Case Study 205

Figure 8.10: Specified behaviour patterns in the nursing home case study

checkCondition method in charge of checking the context conditions
of the task model so that context ontology classes could be used in the

206 Evaluation of the Approach

condition. Thus, if the name of a class appears in the condition, it is
checked for all the individuals of the class. The condition is satisfied if
one of the individuals fulfils the condition. For instance, the Controlling
aggressive behaviour pattern has to be executed for every patient in
which aggressive behaviour is detected. As shown in Figure 8.10, instead
of specifying the same behaviour pattern for each patient, we specified
the behaviour pattern once and used the aggressiveBehaviour context
property of the PATIENT class in its context situation, indicating by
using capital letters that it is an ontology class and not an individual.
Thus, the context condition has to be checked for every individual of
the Patient class and the pattern is activated if any patient fulfils the
condition.

Testing the Provided Software Infrastructure

After the specification of the context and task models, we ran the
system to check the automation and evolution of the specified behaviour
patterns.

To support the functionality needed to execute the system tasks of
the patterns, we developed the required services. Some of them, such
as lighting or multimedia, were reused from the smart case studies. The
other required services were implemented as simulated services in order
to simulate the functionality of the needed devices because we did not
have the real technology (t-shirt for monitoring patient health, user
position detectors, etc.). Thus, we used a total of 17 different pervasive
services. For more detail about these services, see Appendix B.

We then evaluated the feasibility of our approach. Using the running
system, we passed the JUnit tests developed to check that the specified
behaviour patterns were correctly automated as specified in the models
(see 8.1.2). Since the automation of the behaviour patterns are triggered
as a response to context changes, we caused these context changes by
changing the state of the sensors using the simulator. We changed
the state of the sensors simulating the scenarios of the requirement
elicitation phase. For instance, to enable the Controlling aggressive
behaviour pattern, we simulate that most of the patients were in the

8.2 Nursing Home Case Study 207

dinning room and one of them start to behave aggressively. This makes
the context situation of the behaviour pattern fulfil (see Figure 8.10).

In the same way, we simulated the rest of the scenarios of the case
study and executed the prepared JUnit tests (see Section 8.1.2). For all
of them, we checked that they were executed as specified in the models.

Figure 8.11: Example of a behaviour pattern evolution

We also performed some evolutions in the specified behaviour
patterns. Figure 8.11 shows an example of these evolutions. It shows
how the Controlling aggressive behaviour pattern has been extended to
execute two tasks more, which return the environment to a normal
state by switching lights on and turning on relax music. For each
performed evolution, we applied again the JUnit tests checking that
all the behaviour patterns were correctly executed.

8.2.3 Conclusions of the Nursing Home Case Study
Validation

The development of the ACube Nursing Home case study has allowed
us to answer the two research questions established at the beginning.

First of all, it is important to note that, the main goal of the ACube
project was not specifically automating user behaviour patterns but to
create an automated user intensive system. Thus, the requirements
were not captured focusing on specifying behaviour patterns. However,
in these requirements we could identify several behaviour patterns that
could improve the medical and assistance staff tasks. Using these
patterns, we have validated that the models proposed in this thesis

208 Evaluation of the Approach

provide us with enough expressivity to describe them. However, since
the developed case study is a user intensive system, we had to extend
the notation of the context conditions specified in the task model
to facilitate the specification of patterns that must be automated for
several users (Research Question 1).

In addition, we developed the pervasive services that were needed to
automate the patterns. We then ran the case study using these services,
the specified models, and the provided software infrastructure. Testing
the system in execution, we have validated that the behaviour patterns
are automated as they are specified in the models (Research Question
2).

8.3 Scalability of Using Models at Runtime

Our software infrastructure manipulates models at runtime. This is
subject to the same efficiency requirements as the rest of the system
because the execution of model operations impacts overall system
performance.

The developed case studies have required 12 behaviour patterns at
most. Thus, we still have to validate whether our approach scales
to large systems. To do this, we quantified the temporal cost of the
operations of MUTate and OCean (the APIs that access models), for
randomly generated large models.

We used our context model (in which the classes presented in Section
5.1 were defined) and an empty task model to be randomly populated by
means of an iterative process. The context model was populated with
100 new individuals each iteration, while the task model was populated
with one new pattern whose task structure formed a perfect binary tree,
varying its depth and the width of the first level each iteration.

After each iteration, we tested all the model operations of MUTate
and OCean 20 times and calculated the average temporal cost of each
one. As an example, the operation over the context model with the
highest temporal cost was the checkCondition operation, which took
7 milliseconds with 100 individuals and 10 milliseconds with 6000

8.4 Conclusions 209

0

20

40

60

0 500 1000 1500 2000 2500

Task Model

addPattern

0

50

100

150

200

250

4

12
4

1
0

2
7

1
2

6
3

3
0

6
2

3
4

1
4

6
1

0
9

6
5

7
7

10
16

8

10
75

2

15
23

9

15
93

9

21
32

2

22
13

8

28
41

7

29
34

9

36
52

4

37
57

2

getTask

updateTask

deleteTask

Figure 8.12: Temporal cost of task model operations

individuals. This is because this operation executes a SPARQL query,
which determines the temporal cost of the operation. Figure 8.12 shows
the temporal cost of the task model operations with the highest cost.
At the top of the figure, we show the time required to add a behaviour
pattern according to the number of tasks. This operation took less
than 50 milliseconds to add a pattern of 2296 tasks. At the bottom, we
show the getTask, updateTask and deleteTask operations. Their costs
are very similar since all of them make the same query to obtain the
corresponding task. Even with a model population of 45612 tasks, these
model operations provided a fast response (<250 milliseconds). These
results show that the response time is not drastically affected as the size
of the models grows.

8.4 Conclusions

In this chapter, we have validated the proposal of this thesis for
automating user behaviour patterns. To achieve this, we have evaluated

210 Evaluation of the Approach

each one of the contributions of the work by using a case study based
evaluation.

This evaluation allows us to conclude the following:

• The proposed task and context models provide us with enough
expressivity to describe the behaviour patterns to be automated.
However, as explained in this chapter, some aspects of the models
can be improved to facilitate this specification. In addition,
the proposed models are understandable enough for end-users
to become into artefacts for discussion and for validating the
behaviour that is going to be automated.

• The developed software infrastructure correctly automates the
behaviour patterns as specified in the models by directly
interpreting them at runtime and in a scalable way.

• The behaviour patterns can be correctly evolved by using OCean
and MUTate and also using the graphical tool. In addition, this
tool is usable enough to be used by end-users with computer
knowledge.

Thus, we have shown that our approach is capable of automating
the behaviour patterns that users want to be automated the way they
want them to be.

Chapter 9

Conclusions

The present work has introduced a context-aware model-driven
approach for confronting the challenge of automating user

behaviour patterns. Confronting this challenge from a context-aware
modelling perspective has allowed us to provide different and important
contributions in the Pervasive Computing field that have resulted in
relevant publications. In addition, the research line in which this work
is aligned is by no means completed here. As it will be explained in this
chapter, further work can complement and extend this thesis.

This last chapter introduces the conclusions of the work developed
in this thesis. First, Section 9.1 presents the main contributions of our
approach. Section 9.2 provides an overview of the publications that
have emerged from this work. Finally, Section 9.3 outlines the ongoing
and future work that can extend this line of research.

212 Conclusions

9.1 Contributions

The present work has introduced a novel approach from a modelling
perspective that confronts the challenge of automating user behaviour
patterns. To achieve this, the work provides the following contributions:

Modelling Language. We have proposed a context model and a
context-adaptive task model that allow behaviour patterns to
be specified in a context-adaptive way. By specifying behaviour
patterns whose execution adapts to context, the intrusiveness
that this execution may cause is considerably reduced. Also, to
achieve a seamless automation of behaviour patterns, the models
provide abstract concepts that facilitate the participation of end-
users in the model specification. This favours that users’ desires
and demands are taken into account achieving the automation
of the behaviour patterns that users want in the way they want
it. Furthermore, the proposed models are specified in machine-
processable languages and are precise enough to be used as
executable models.

Behaviour Pattern Automation. Since the proposed models are
machine-processable and precise enough, they can be directly used
for automating the behaviour patterns (Pastor & Molina, 2007).
Thus, we have designed and developed a model interpretation
technique that interprets these models at runtime to execute
the specified behaviour patterns. To achieve this, we have
developed a software infrastructure that provides the following
main components: 1) a set of mechanisms for managing the
models at runtime; 2) a context monitor that is in charge of
managing context so that the automation of behaviour patterns is
performed unobtrusively; 3) MAtE, which is a model-based engine
capable of executing the behaviour patterns as specified in the
models.

Runtime Evolution of the Automated Behaviour Patterns.
The developed model interpretation strategy facilitates the further
evolution of the specified behaviour patterns to a large extent.

9.2 Publications 213

This is because the patterns can be evolved by simply updating
the models. Since they are interpreted at runtime, as soon as
the models are changed, the changes are applied into the system.
In addition, we have developed high-level mechanisms to support
the evolution of the behaviour patterns by modifying the models
at runtime. These mechanisms, which we refer to as OCean and
MUTate, use the same high-level concepts for creating the models.
Furthermore, we have developed a graphical tool that allows end-
users to change the patterns by using user-friendly interfaces and
without the need to stop the system or redeploy it. According
to the changes described in these interfaces, the tool updates the
task and context models by using OCean and MUTate.

In summary, we do believe that using a context-aware model-driven
approach is a promising proposal to automate user behaviour patterns.
This approach brings the following important benefits: user demands
and desires are taken into account; tasks to be automated can be
performed in a more pleasant manner for users and more efficiently
regarding time and energy (since analysts define how the tasks must be
performed with user participation); the cold-start problem is improved;
and the runtime evolution of the automated tasks is greatly facilitated.
Moreover, since the proposed models are not only used at design time
but also at runtime, they can provide us with a rich semantic base for
runtime decision-making. However, as the validation has revealed (see
Chapter 8), some aspects of the models and the evolution tool have to
be improved if our approach is to be used by end-users with a low level
of computer knowledge or skills.

9.2 Publications

This approach has produced innovative and different contributions that
have resulted in several relevant publications being discussed at different
peer-review forums. In this section, we present the articles where this
research has been published. In each one of the publications, the
position of the name of the author of this thesis is used as an indicator

214 Conclusions

of the degree of contribution:

• Estefańıa Serral, Pedro Valderas, Vicente Pelechano. Automat-
ing Routine Tasks in AmI Systems by Using Models at Runtime.
International Joint Conference on Ambient Intelligence (AmI-10).
In LNCS 6439, pp. 1-10. Málaga, Spain, November 10-12, 2010.
ISBN: 978-3-642-16916-8

• Estefańıa Serral, Francisca Pérez, Pedro Valderas, Vicente
Pelechano. An End-User Tool for Adapting Home Automation
to User Behaviour at Runtime. IV International Conference on
Ubiquitous Computing and Ambient Intelligence (UCAmI 2010),
pp 201-210. Valencia, SPAIN, September 7-10, 2010. ISBN: 978-
84-92812-61-5

• Estefańıa Serral, Pedro Valderas, Vicente Pelechano. Improving
the Cold-Start Problem in User Task Automation. 19th
International Conference on Information Systems Development
(ISD 2010), pp. 648-659. Prague, Czech Republic, August 25-
27, 2010. ISBN: 978-1-4419-9645-9

• Estefańıa Serral, Pedro Valderas, Vicente Pelechano. Support-
ing Runtime System Evolution to Adapt to User Behaviour. The
22nd International Conference on Advanced Information Systems
Engineering (CAiSE’10). In LNCS 6051, pp. 378-392. June 9-11,
2010. ISBN: 978-3-642-13093-9

• Estefańıa Serral, Pedro Valderas, Vicente Pelechano. Towards
the Model Driven Development of Context-Aware Pervasive.
Special Issue of Pervasive and Mobile Computing (PMC) Journal
on Context Modelling, Reasoning and Management. Vol. 6, no.
2, pp. 254-280. February 2010

• Estefańıa Serral, Pedro Valderas, Vicente Pelechano. A
Model Driven Development Method for developing Context-Aware
Pervasive Systems. Ubiquitous Intelligence and Computing (UIC-
08). In LNCS 5061/2008. pp. 662-676. Oslo, Norway, June 23-25,
2008. ISBN 978-3-540-69292-8

9.2 Publications 215

• Estefańıa Serral, Pedro Valderas, Javier Muñoz, and Vicente
Pelechano. Towards a Model Driven Development of Context-
aware Systems for AmI Environments. International Conference
on Ambient Intelligence Developments (AmI.d’07), pp. 114-124.
Sophia Antipolis, French Riviera, September 17-19, 2007. ISBN:
978-2-287-78543-6

• Estefańıa Serral, Carlos Cetina, Javier Muñoz, and Vicente
Pelechano. PervGT: Herramienta CASE para la Generación
Automática de Sistemas Pervasivos. XII Jornadas de Ingenieŕıa
del Software y Bases de Datos (JISBD 2007), Zaragoza, Spain,
September 11-14, 2007. ISBN: 978-84-9732-595-0

• Carlos Cetina, Estefańıa Serral, Javier Muñoz, and Vicente
Pelechano. Tool Support for Model Driven Development of
Pervasive Systems. In 4th International Workshop on Model-
based Methodologies for Pervasive and Embedded Software
(MOMPES 2007), pp. 33-44. In IEEE Computer Society. Los
Alamitos, CA, USA, March 31, 2007. ISBN: 0-7695-2769-8

• Javier Muñoz, Vicente Pelechano and Estefańıa Serral.
Aplicación del Desarrollo Dirigido por Modelos a los Sistemas
Pervasivos: Un Caso de Estudio. II Congreso IberoAmericano
sobre Computación Ubicua (CICU 2006). pp: 171-178. Alcalá de
Henares (Spain), June 7-9, 2006. ISBN/ISSN: 84-8138-703-7

• Javier Muñoz, Estefańıa Serral, Carlos Cetina, and Vicente
Pelechano. Applying a Model-Driven Method to the Development
of a Pervasive Meeting Room. ERCIM News, April 2006 vol. 65,
pp: 44-45. ISBN/ISSN: 0926-4981

• Javier Muñoz, Carlos Cetina, Estefańıa Serral, and Vicente
Pelechano. Un Framework basado en OSGi para el Desarrollo de
Sistemas Pervasivos. 9o Workshop Iberoamericano de Ingenieria
de Requisitos y Ambientes Software (IDEAS’06), pp: 257-270. La
Plata, Argentina. Apr 24-28, 2006. ISBN/ISSN: 950-34-0360-X

216 Conclusions

• Javier Muñoz, Vicente Pelechano and Estefańıa Serral.
Providing platforms for developing pervasive systems with MDA.
An OSGi metamodel. X Jornadas de Ingenieŕıa de Software y Base
de Datos (JISBD 2005), pp: 19-26. Granada, Spain. September
2005. ISBN/ISSN: 84-9732-434-X

9.2.1 Detail and Relevance of the publications

This section provides some information about the relevance of some of
the journals and conferences where different aspects of this work have
been published.

CAiSE and ISD. Both conferences are recognized as being one of the
most important conferences in the area of information systems
engineering. According to the CORE conference ranking, they
are Tier-A conferences. In ISD, we published an overview of the
approach focusing on the important benefits that it provides and
the problems of other approaches that it attempts to solve.

The 22nd CAiSE conference had as special theme Information
Systems Evolution. In this conference, we focus on the evolution
of user behaviour patterns describing: the application of model
interpretation and its benefits for evolving the patterns, OCean
and MUTate, and the evolution tool. Moreover, this conference
received 296 submissions, and only around 13% of the papers
submissions were accepted.

PMC Journal. Pervasive and Mobile Computing is one of the most
important journals in the Pervasive Computing Field. This jour-
nal is peer-reviewed and publishes high-quality scientific articles
covering all aspects of pervasive computing and communications.
Specifically, we published the specification and management
of context information in the Special Issue Context Modelling,
Reasoning and Management of this journal. According to the
CORE conference ranking, this journal is a Tier-B journal.

UIC, AmI.d and AMI The Ubiquitous Intelligence and Computing

9.3 Future work 217

(UIC) conference and the International Joint Conference on
Ambient Intelligence (AMI), which was previously known as the
International Conference on Ambient Intelligence Developments
(AmI.d), are international conferences that are very important
in the area of Pervasive and Ubiquitous Computing. The initial
development of the context ontology and context management
was published in UIC and AmI.d. The proposed approach for
automating behaviour patterns in which we explained the models
and the designed software infrastructure was published in AMI.
These conferences are peer-reviewed and, according to the CORE
conference ranking, UIC is a Tier-B conference and AmI.d and
AMI are Tier-C conferences.

International journals, conferences and workshops as well as
national conferences. In addition to the above-mentioned
conferences, the evolution tool was published in the international
event UCAmI, which has special relevance for the Spanish research
community focused on Ubiquitous computing and AMI systems.

Furthermore, this work has built upon previous research that
had the goal of automatically building pervasive services. The
research results and tools obtained resulted in three important
international publications (MOMPES and CICU conferences and
ERCIM News Journal) and two national conferences (JISBD and
IDEAS). Essential knowledge for the development of the present
work in pervasive computing (such as very relevant technologies
and modelling techniques) was obtained from this collaboration.
This has also helped to achieve diffusion for the work.

9.3 Future work

The research presented here is not a closed work and there are several
interesting directions that can be taken to provide the proposal with
a wider spectrum of application. The following list summarizes the
research activities that are planned to continue this work.

218 Conclusions

9.3.1 Combination with Machine-learning Algorithms

As stated in Chapter 3, machine-learning approaches have done
excellent work by providing prediction algorithms that infer user
behaviour patterns from past user actions. These approaches have some
important drawbacks such as the cold-start problem, loss of system
control by users, users’ desires and demands are not properly taken
into account, etc. (see Chapter 3 for more details). However, we think
that the integration of our approach with prediction algorithms could
not only solve these drawbacks but also provide more automation in the
evolution of behaviour patterns to adapt them to user behaviour.

In this work, we design behaviour patterns according to user
requirements in a context model and a task model. The context model
is continuously updated by the context monitor, which stores every
context change and user action performed. When a change in context is
detected, MAtE interprets the models and automates the corresponding
behaviour patterns as specified.

Note that our work is made up of: (1) the models and the APIs to
manage them at runtime; (2) MAtE and the context monitor, which
use the models and the APIs to automate the user behaviour patterns
specified in the models; and 3) the evolution tool, which provides end-
users with graphical interfaces to allow them to update the automated
behaviour patterns.

The integration of our work with prediction algorithms could use the
task and context models as an initial knowledge base. This knowledge
base, which is created at design time, would describe the behaviour
that users need to be automated. This would avoid the cold-start
problem because the system would start to automate actions from the
system deployment. The access to this initial knowledge base would be
managed by the MUTate and Ocean APIs. In addition, the knowledge
base defined by models would provide prediction algorithms with initial
data that can help them to make predictions. Furthermore, the models
would allow this analysis to be performed using high-level concepts such
as task, location, user, context condition, and so on, instead of analysing
the raw data captured by sensors.

9.3 Future work 219

Once the system starts to run, the provided context monitor updates
the context model according to context changes. The events that
happen in the system are also considered as context. Thus, the context
monitor not only updates the context properties whose value changes,
but also the events produced that cause these changes. Prediction
algorithms could use this information to automatically infer changes
in the specified behaviour patterns or even infer new ones. In order to
prevent users from losing control of the system and in order to take into
account their desires, our evolution tool could periodically show these
inferred changes to users instead of automatically applying them. Using
the tool, end-users could make the changes that they consider opportune
and add them to the system if they so desired. Thus, by combining our
approach with machine-learning algorithms, the evolution of behaviour
patterns could be performed in a more automatic way and users could
keep control of the system.

9.3.2 Providing Adaptive User Interfaces

We plan to extend our evolution tool so that it provides interfaces that
automatically adapt to each user. Thus, the evolution tool can better fit
the needs of the end-users. Specifically, the tool interfaces could adapt
to user preferences, skills, and knowledge of the system (Pribeanu et al.,
2001) changing how the functionalities are provided in the interfaces.

For instance, for users with little mathematics or computer skills,
the context conditions definition can be difficult, as shown in Section
8.1.2. For these users, the corresponding interface could show them a
list of already specified conditions, such as when no one is at home,
when the user enters the room, when it is cold, etc. Thus, the user
would only have to select the needed conditions from this list. However,
this limits the conditions that can be formed because showing all
the possible conditions would be unmanageable. Therefore, for users
with mathematics or computer skills the current way of specifying the
conditions would be better.

To achieve this adaptation, Feature Modelling techniques (Czarnecki
et al., 2004) can be used to describe adaptive interfaces (Gil et al.,

220 Conclusions

2010a). Feature Modelling is a technique to specify the variants of
a system in terms of features (coarse-grained system functionality).
The relevant aspects of each platform and the possibilities for their
combinations are captured by means of the feature model. Features
are hierarchically linked in a tree-like structure through variability
relationships such as optional, mandatory, single-choice, and multiple-
choice.

Besides describing the relevant aspects to the system, feature models
have proven to be effective in hiding much of the complexity in the
definition of the adaptation space (Cetina et al., 2009). Thus, we can use
Feature Models to describe the commonalities and differences between
the tool interfaces in a declarative manner. In this way, the interfaces
could be adapted to each user without explicitly defining how.

A designer should describe the possibilities for providing the
functionalities in the interfaces according to context conditions (i.e.,
preferences, skills, etc.). In this way, interfaces are described
using abstract aspects that can be mapped into different concrete
representations depending on the device used. Thus, Feature models
would allow us to compose the interface that is the most appropriate for
each user without explicitly having to define it. This avoid duplicating
efforts in the development.

9.3.3 Interactive and Iterative Tasks and Tasks with
State

Although most of the behaviour patterns to be automated can be
specified using the proposed task model, some behaviour patterns may
require more expressiveness to be automated. Specifically, we consider
that the extension of our approach would be of interest in supporting:

Interactive tasks: Tasks that require user attention may be needed
in the automation of behaviour patterns because a complete
automation may not always be desired. Users may want to know
what is happening around them, or they may want the system to
ask them to take some decision. For example, when the favourite

9.3 Future work 221

program of a user begins, the system should consider whether
to start recording and/or informing the user depending on the
context. If the system decides to inform the user first, it must
choose the most adequate mechanism from all the ones available
(i.e., sound, mobile vibration, a mobile text message, an email, a
pop up, etc.).

Our approach can be extended to support interactive tasks. A
new type of task should be created in the task metamodel, and the
modelling tool should support the specification of this type of task.
In addition, MAtE (the automation engine that interprets the task
model) should be extended to manage this task adequately. To
achieve this, when an interactive task must be executed, MAtE
should create an interface that adapts its level of intrusiveness to
the context of use (Gil et al., 2010b). Thus, we could create a
behaviour pattern that acts, for instance, as follows: 2 minutes
before his/her favourite TV series starts, if the user is busy,
the system could record the series (without informing the user);
however, if the user is at home, the system could ask him/her
whether the series should be recorded or the channel should be
changed to show the series. This question may be done by voice if
the user is alone on the sofa or by sending a mobile text message
if there are other people in the room.

Iterative tasks: A behaviour pattern may require a set of tasks to be
executed a certain number of times or while a certain condition
is satisfied. Our approach can be easily extended to support this
iteration. Every type of task might need to be iteratively executed;
therefore, one way to support this would be to specialize the task
class of the task model metamodel into an iterative task with two
optional arguments: one argument to indicate how many times
the task has to be executed and other argument to indicate the
condition that must be satisfied to execute the task again. We
would also need to extend the modelling tool to support the
specification of iterative tasks. In addition, MAtE should be
extended to manage this task adequately.

222 Conclusions

Tasks with state: In a behaviour pattern, it may be necessary to
interrupt a task to start to execute another one. This is
represented in the CTT temporal operators that need task
interruption: [<, | <, |||, |[]|. To support these temporal operators,
we need to consider tasks with state, i.e., we need to store the state
of the tasks that are being executed. Moreover, we would have
to consider the implications of interrupting a task in an ambient
intelligence context, in which the tasks involved are usually tasks
for controlling the state of the environment. According to these
implications, we would have to give the operators the needed
semantics and precision to be executed by model interpretation.

Thus, we would have to analyse what it means to interrupt each
type of task in our approach. For instance, a system task cannot
be interrupted because it is executed in an atomic way. However,
this interruption may mean that the execution of another tasks is
required to counteract the task that must be interrupted (record a
film/stop recording, raise blinds/lower blinds, listen to music/stop
music or turn down the volume, etc.). If the tasks are composite
tasks, their interruption may mean that they must be stopped:
no more of their system tasks must be executed (ever or until
other task finishes). However, their interruption may also mean
the counteracting of the already executed tasks.

Once the semantics of the relationships are precisely defined, we
would need to extend MAtE to support them.

9.3.4 Facilitating the Routine Task Evolution by End-
users

More facilities have to be provided to allow end-users to evolve the
automated behaviour patterns over time. The designed evolution tool
has shown to be effective in achieving this; however, some aspects of the
interfaces have to be improved. Above all, more validations have to be
developed in order to check that loops are not formed in the execution
of the patterns and there are no inconsistencies with other patterns. To
do this, the services provided by the pervasive system should provide

9.3 Future work 223

information about which operations perform contradictory tasks and
also about the context properties that each service modifies in order to
know if the execution of the services of a behaviour pattern can cause
the execution of other patterns.

In addition, we plan to provide the evolution tool with simulation
capacities so that the user can simulate the execution of the changed
behaviour patterns to check beforehand if these patterns actually do
what they want.

Figure 9.1: Snapshot of an iPhone interface for specifying a behaviour
pattern

Furthermore, we plan to develop other types of interfaces that are
easier and more accessible for every end-user, such as interfaces for
mobile devices. Figure 9.1 shows examples of iPhone interfaces to allow
users to create or modify a behaviour pattern.

224 Conclusions

Bibliography

Ajila, Samuel A., & Alam, Shahid. 2009. Using a Formal Language
Constructs for Software Model Evolution. Pages 390–395 of: Third
IEEE International Conference on Semantic Computing.

Annett, J., & Duncan, K. D. 1967. Task analysis and training design.
Occupational Psychology, 41, 211–221.

Ayed, Dhouha, Delanote, Didier, & Berbers, Yolande. 2007.
Mdd approach for the development of context-aware applications.
Modeling and Using Context - 6th International and Interdisciplinary
Conference, CONTEXT’07, Lecture Notes in Computer Science
4635, 15–28.

Baldauf, M., Dustdar, S., & Rosenberg, F. 2007. A Survey on Context-
Aware Systems. International Journal of Ad Hoc and Ubiquitous
Computing.

Bardram, J. E. 2005. The Java context awareness framework (JCAF)
- a service infrastructure and programming framework for context-
aware applications. Pages 98–115 of: Third International Conference
on Pervasive Computing.

Bennett, Keith, & Rajlich, Vaclav. 2000. Software Maintenance

226 BIBLIOGRAPHY

and Evolution: A Roadmap. Pages 75–87 of: 22nd International
Conference on Software Engineering.

Biegel, G., & Cahill, V. 2004. A framework for developing mobile,
context-aware applications. The 2nd IEEE Conference on Pervasive
Computing and Communication (PerCom), 361–365. cortex, context
model.

Blair, Gordon, Bencomo, Nelly, & France, Robert B. 2009.
Modelsrun.time. IEEE Computer, 42, 22–27.

Bohn, Jürgen, Coroama, Vlad, Langheinrich, Marc, Mattern,
Friedemann, & Rohs, Michael. 2005. Social, Economic, and Ethical
Implications of Ambient Intelligence and Ubiquitous Computing.
Pages 5–29 of: Weber, W., Rabaey, J., & Aarts, E. (eds), Ambient
Intelligence. Springer-Verlag.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J.
2004. Tropos: An agent-oriented software development methodology.
AAMAS, 203–236.

Buckley, J., Mens, T., Zenger, M., Rashid, A., & Kniesel, G. 2003.
Towards a taxonomy of software change. Journal of Software
Maintenance and Evolution: Research and Practice.

Card, S.K, Moran, T.P., & Newell, A. 1983. The Psychology of Human
Computer Interaction. Lawrence Erlbaum Associates. Cambrige
Dictionaries Online.

Cetina, Carlos, Giner, Pau, Fons, Joan, & Pelechano, Vicente. 2009.
Autonomic Computing Through Reuse of Variability Models at
Runtime: The Case of Smart Homes. IEEE Computer, 42(10), 37–43.

Chen, H., Finin, T., & Joshi, A. 2004. An ontology for context-aware
pervasive computing environments. Special Issue on Ontologies for
Distributed Systems, Knowledge Engineering Review, 197–207.

Chin, J.S.Y, V.Callaghan, & G.Clarke. 2008. A Programming-
Byexample Approach to Customising Digital Homes. IET
International Conference Intelligent Environments.

BIBLIOGRAPHY 227

Cook, D. J., Youngblood, M., Heierman, III E. O., Gopalratnam, K.,
Rao, S., Litvin, A., & Khawaja, F. 2003. MavHome: An agent-
based smart home. Pages 521–524 of: In First IEEE International
Conference on Pervasive Computing and Communications.

Cook, Diane J., & Das, Sajal K. 2005. Smart environments:
technologies, protocols, and applications.

Cooper, A., Reimann, R., & Cronin, D. 2007. About face 3: the
essentials of interaction design. Wiley India Pvt. Ltd.

Crowley, J. L., Coutaz, J., Rey, G., & Reignier, P. 2002.
Perceptual Components for Context Aware Computing. International
Conference on Ubiquitous Computing (UBICOMP 2002).

Czarnecki, K., Helsen, S., & Eisenecker, U. 2004. Staged configuration
using feature models. Third Software Product Line Conference.

David Wright, Elena Vildjiounaite, Ioannis Maghiros Michael Friede-
wald Michiel Verlinden Petteri Alahuhta Sabine Delaitre Serge
Gutwirth Wim Schreurs, & Punie, Yves. 2005. The brave new world
of ambient intelligence: A state-of-the-art review. In: A report of
the SWAMI consortium to the European Commission under contract
006507.

Dey, Anind K. 2001. Understanding and Using Context. Personal
Ubiquitous Computing.

Dey, Anind K., Hamid, Raffay, Beckmann, Chris, Li, Ian, & Hsu,
Daniel. 2004. a CAPpella: Programming by Demonstration of
Context-Aware Applications. ACM Conference on Human Factors
in Computing Systems (CHI 2004), 33–40.

Eclipse. 2011. www.eclipse.org.

Flyvbjerg, B. 2007. Five misunderstandings about case-study research.
Qualitative Research Practice: Concise Paperback Edition, 390404.

France, Robert, & Rumpe, Bernhard. 2007. Model-driven Development
of Complex Software: A Research Roadmap.

228 BIBLIOGRAPHY

Gajos, Krzysztof. 2001. Rascal - a resource manager for multi agent
systems in smart spaces. CEEMAS 2001.

Gajos, Krzysztof, Fox, Harold, & Shrobe, Howard. 2002. End
User Empowerment in Human Centered Pervasive Computing.
International Conference on Pervasive Computing (Pervasive 2002).

Galitz, O. Wilbert. 2002. The Essential Guide to User Interface Design:
An Introduction to GUI Design Principles and Techniques. New York,
NY, USA: John Wiley & Sons, Inc.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley.

Garćıa-Herranz, Manuel, Haya, Pablo A., & Alamán, Xavier. 2010.
Towards an ubiquitous end-user programming system for Smart
Spaces. Journal of Universal Computer Science (JUCS).

Gemino, Andrew, & Wand, Yair. October 2003. Evaluating Modeling
Techniques Based on Models of Learning. Communications of the
ACM, 46(10). modeling comprehensibility.

Gil, Mı́riam, Giner, Pau, & Pelechano, Vicente. 2010a. Designing
context-aware mobile interactions. In: 4th Symposium of Ubiquitous
Computing and Ambient Intelligence 2010.

Gil, Mı́riam, Giner, Pau, & Pelechano, Vicente. 2010b. Service
obtrusiveness adaptation. International Joint Conference on Ambient
Intelligence (AmI-10), LNCS 6439, 11–20.

Google. 2007. How To Design A Good API and Why it Matters.

Gruber, T. R. 1993. A Translation Approach to Portable Ontology
Specifications. Pages 199–220 of: Knowledge Acquisition.

Gu, T., Pung, H. K., & Zhang, D. Q. 2005. A service-oriented
middleware for building context-aware services. Journal of Network
and Computer Applications, 28(1), 1–18.

BIBLIOGRAPHY 229

Guy, Marieke. 2009. Report 2: API Good Practice Good practice for
provision of and consuming APIs. Tech. rept. UKOLN.

Haarslev, V., & Möller, R. 2003. Racer: An OWL reasoning agent for
the semantic web.

Hagras, Hani, Callaghan, Victor, Colley, Martin, Clarke, Graham,
Pounds-Cornish, Anthony, & Duman, Hakan. 2004. Creating an
Ambient-Intelligence Environment Using Embedded Agents. IEEE
Intelligent Systems, 19(6), 12–20.

Hartson, R., & Gray, P. 1992. Temporal Aspects of Tasks in the User
Action Notation. Human Computer Interaction, 7(1-45). UAN.

Heijden, Hans van der. 2003. Ubiquitous computing, user control, and
user performance: conceptual model and preliminary experimental
design. A Research Agenda for Emerging Electronic Markets (RSEEM
2003).

Henricksen, Karen, & Indulska, Jadwiga. 2004. A Software Engineering
Framework for Context-Aware Pervasive Computing. In: PerCom.

Henricksen, Karen, & Indulska, Jadwiga. 2006. Developing context-
aware pervasive computing applications: Models and approach.
Pervasive and Mobile Computing (PMC).

Henricksen, Karen, Indulska, Jadwiga, & Rakotonirainy, Andry. 2006.
Using context and preferences to implement self-adapting pervasive
computing applications. Sofware-Practice and Experience.

Hervás, Ramón, Bravo, José, & Fontecha, Jesús. 2010. A Context
Model based on Ontological Languages: a Proposal for Information
Visualization. J. UCS, 16(12), 1539–1555.

Hirschfeld, Robert, Kawamura, Katsuya, & Berndt, Hendrik. 2004.
Dynamic Service Adaptation for Runtime System Extensions.
Software: Practice and Experience.

230 BIBLIOGRAPHY

Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., & Altmann,
J. 2002. Context-awareness on mobile devices - the hydrogen
approach. The 36th Annual Hawaii International Conference on
System Sciences, 292–302.

Huang, Runcai, Cao, Qiying, Zhou, Jiliang, Sun, Daoqing, & Su,
Qianmin. 2008. Context-Aware Active Task Discovery for Pervasive
Computing. In: International Conference on Computer Science and
Software Engineering.

Jochen Burkhardt, Thomas Schaeck, Horst Henn Stefan Hepper,
& Rindtor, Klaus. 2002. Pervasive Computing: Technology and
Architecture of Mobile Internet Applications.

John, B., & Kieras, D. 1996. The GOMS Family of Analysis Techniques:
Comparison and Contrast. ACM Transactions on Computer-Human
Interaction, 3(4), 320–351.

Johnson, P. 1999. Tasks and situations: considerations for models and
design principles in human computer interaction. Pages 1199–1204
of: HCI International.

Johnson, P., Markopoulos, M., & H, Johnson. 1992. Task Knowledge
Structures: A Specification of user task models and interaction
dialogues. Proceedings of Interdisciplinary Workshop on Informatics
and Psychology.

Kulkarni, Ajay. 2002. A reactive behavioral system for the Intelligent
Room.

Lauesen, S. 2003. Task Description as Functional Requirements. IEEE
Software, 20(2), 58–65.

Lee, A. S. 1989. A scientific methodology for MIS case studies. MIS
quarterly, 3354.

Lenat, D. 1998. The Dimensions of Context Space. Tech. rept. Invited
talk at the conference Context 99. Technical report, CYCorp.

BIBLIOGRAPHY 231

Lewis, J. 1995. IBM Computer Usability Satisfaction Questionnaires:
Psychometric Evaluation and Instructions for Use. International
Journal of Human-Computer Interaction, 7 (1), 57–78.

Lieberman, H., & Selker, T. 2000. Out of Context: Computer Systems
That Adapt To, and Learn From, Context. IBM Systems Journal,
39, 617–631.

Lieberman, Henry, Paternò, Fabio, & Wulf, Volker. 2006. End User
Development. Springer.

Lientz, B. P., & Swanson, E. B. 1980. Software maintenance
management: a study of the maintenance of computer application
software in 487 data processing organizations.

Limbourg, Quentin, & Vanderdonckt, Jean. 2004. Comparing Task
Models for User Interface Design. Pages 135–154 of: Diaper, D., &
Stanton, N.A. (eds), The Handbook Of Task Analysis.

Loy, Marc, Eckstein, Robert, Wood, Dave, Elliott, James, & Cole,
Brian. 2002. Java Swing. O’Reilly, second edition.

March, Salvatore T., & Smith, Gerald F. 1995. Design and natural
science research on information technology. Decis. Support Syst.,
15(4), 251–266.

Mattern, Friedemann. 2001. The Vision and Technical Foundations of
Ubiquitous Computing. Upgrade, 2(5), 2–6.

Mattern, Friedemann. 2005. Ubiquitous Computing: Scenarios from an
informatised world. Springer-Verlag. Pages 145–163.

M.B. Juric, B. Mathew, & Sarang, P. 2006. Business Process Execution
Language for Web Services: BPEL and BPEL4WS.

Mellon, University Carnegie. 2009. Alice: a programming environment
for education.

Mellor, S.J., & Balcer, M.J. 2002. Executable UML: A Foundation for
Model Driven Architecture.

232 BIBLIOGRAPHY

Mens, Tom. 2009. The ERCIM Working Group on Software Evolution:
the Past and the Future. In: IWPSE-Evol̈ı¿1

209.

Mens, Tom, Wermelinger, Michel, Ducasse, Staephane, Demeyer, Serge,
& Hirschfeld, Robert. 2005. Challenges in Software Evolution: Report
of the ChaSE 2005 workshop organised by the ERCIM Working Group
on Software Evolution. Tech. rept.

Miller, G. 1956. The magical number seven plus or minus two: some
limits on our capacity for processing information. Psychological
Review 63, 81–97.

Mitchell, K. 2002. Supporting the Development of Mobile Context-Aware
Computing. Ph.D. thesis, Lancaster University.

Mozer, Michael C. 1998. The Neural Network House: An Environment
that Adapts to its Inhabitants. American Association for Artificial
Intelligence Spring Symposium on Intelligent Environments, 110–114.

Muñoz, Javier, Ruiz, Idoia, Pelechano, Vicente, & Cetina, Carlos. 2005.
Un framework para la simulación de sistemas pervasivos. Pages 181–
190 of: UCAmI’05.

Muñoz, Javier, Serral, Estefania, Cetina, Carlos, & Pelechano, Vicente.
April 2006. Applying a Model-Driven Method to the Development of
a Pervasive Meeting Room. Pages 44–45 of: ERCIM News.

Myers, Brad A., Pane, John F., & Ko, Andy. 2004. Natural
programming languages and environments. Commun. ACM, 47(9),
47–52.

Neal, David T., & Wood, Wendy. 2007. Automaticity in Situ: The
Nature of Habit in Daily Life. In: J. A. Bargh, P. Gollwitzer, and E.
Morsella (Eds.), Psychology of action: Mechanisms of human action.,
vol. 2.

Nicholas Hanssens, Ajay Kulkarni, Rattapoom Tuchinda, & Horton,
Tyler. 2002. Building agent-based intelligent workspaces. ABA 2002.

BIBLIOGRAPHY 233

Nielsen, Jakob. 1993. Usability Engineering. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Ormerod, T.C., & Shepherd, A. 2003. Using task analysis for
information requirements specification: The SGT method. In:
Diaper, D., & Stanton, N. (eds), The Handbook of Task Analysis
for Human-Computer Interaction. London: Lawrence Erlbaum
Associates.

OSGI. 2011. http://www.osgi.org.

Pastor, Oscar, & Molina, Juan Carlos. 2007. Model-Driven
Architecture in Practice: A Software Production Environment Based
on Conceptual Modeling. Secaucus, NJ, USA: Springer-Verlag New
York, Inc.

Paternò, Fabio. 2001. Task Models in Interactive Software Systems.
Handbook of Software Engineering & Knowledge Engineering. World
Scientific.

Paternò, Fabio. 2002. ConcurTaskTrees: An Engineered Approach to
Model-based Design of Interactive Systems.

Paternò, Fabio. 2003. From Model-based to Natural Development. HCI
International, 592–596.

Pérez, F., & Valderas, P. 2009. Allowing End-users to Actively
Participate within the Elicitation of Pervasive System Requirements
through Immediate Visualization. In: REV’2009.

Preuveneers, D., Bergh, J. V. den, Wagelaar, D., Georges, A., Rigole,
P., Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., & Bosschere,
K. D. 2004. Towards an extensible context ontology for ambient
intelligence. 2nd European Symp. Ambient Intelligence, LNCS 3295,
148–159.

Pribeanu, Costin, Limbourg, Quentin, & Vanderdonckt, Jean. 2001.
Task Modelling for Context-Sensitive User Interfaces. Pages 49–68
of: DSV-IS. Springer-Verlag Berlin Heidelberg 2001.

234 BIBLIOGRAPHY

Rashidi, Parisa, & Cook, Diane J. 2009. Keeping the Resident in the
Loop: Adapting the Smart Home to the User. IEEE Transactions on
Systems, Man, and Cybernetics, 39.

Runeson, P., & Höst, M. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software
Engineering, 14(2), 131–164. case study research.

Ryan, N. S., Pascoe, J., & Morse, D. R. 1998. Enhanced Reality
Fieldwork: the Contextaware Archaeological Assisstant. Applications
in Archaeology.

Satyanarayanan, M. 2001. Pervasive Computing: Vision and
Challenges. IEEE Personal Communications.

Schilit, W. N., Adams, N. I., & Want, R. 1994. Context-aware
Computing Applications. In: Proceedings of the IEEE Workshop
on Mobile Computing Systems and Applications.

Selic, Brian. 2003. The Pragmatics of Model-Driven Development.
IEEE Software.

Serral, Estefańıa, Valderas, Pedro, & Pelechano, Vicente. 2010. Towards
the Model Driven Development of context-aware pervasive systems.
Special Issue on Context Modelling, Reasoning and Management of
the Pervasive and Mobile Computing (PMC) Journal.

Sheng, Q. Z., & Benatallah, B. 2005. ContextUML: a UML-based
modelling language for model-driven development of context-aware
web services. Proceedings of the International Conference on Mobile
Business (ICMB’05), 206–212.

Shepherd, A. 1993. An approach to information requirements
specification for process control tasks. Ergonomics, 36, 807–819.

Shepherd, A. 2001. Hierarchical Task Analysis. London: Taylor &
Francis.

Silberschatz, A., Galvin, P.B., & Greg, G. 2004. Operating System
Concepts.

BIBLIOGRAPHY 235

Sirin, Evren, Parsia, Bijan, Grau, Bernardo Cuenca, Kalyanpur, Aditya,
& Katz, Yarden. 2007. Pellet: A practical OWL-DL reasoner. Journal
of Web Semantics.

Smith, Welty, & McGuinness. 2004. OWL Web Ontology Language
Guide.

Sousa, JP, Poladian, V, Garlan, D, & Schmerl, B. 2006. Task-
based Adaptation for Ubiquitous Computing. IEEE Transactions
on Systems, Man, and Cybernetics, 36, 3, 328–340.

SPARQL. 2010. SPARQL Query Language.
http://www.w3.org/TR/rdf-sparql-query/.

Stalling, W. 2000. Operating Systems: Internals and Design Principles.
Prentice Hall.

Truong, Khai N., & Abowd, Gregory D. 2004. INCA: A Software
Infrastructure to Facilitate the Construction and Evolution of
Ubiquitous Capture and Access Applications. Pervasive Computing.

Truong, Khai N., Huang, Elaine M., & Abowd, Gregory D. 2004.
CAMP: A Magnetic Poetry Interface for End-User Programming of
Capture Applications for the Home. 6th International Conference
on Ubiquitous Computing (UbiComp), 3205 of Lecture Notes in
Computer Science, 143–160.

Uwe Hansmann, Lothar Merk, Martin S. Nicklous, & Stober, Thomas.
2001. Pervasive Computing Handbook.

Vaishnavi, V., & Kuechler, W. 2004 (January). Design Research
in Information Systems. http://desrist.org/design-research-in-
information-systems.

Valderas, Pedro. 2008. A requirements engineering approach for
the development of web applications. Ph.D. thesis, Universidad
Politécnica de Valencia.

236 BIBLIOGRAPHY

Veer, G.C. van der, Lenting, B.F., & Bergevoet, B.A.J. 1996. GTA:
GroupWare Task Analysis - Modelling Complexity. Acta Psychologica
91, 297–322.

Want, Roy, Hopper, Andy, Falcao, Veronica, & Gibbons, Jonathan.
1992. The Active Badge location system. ACM Transactions on
Information Systems, 10, 91–102.

Want, Roy, Schilit, Bill, Adams, Norman, Gold, Rich, Petersen, Karin,
Goldberg, David, Ellis, John, & Weiser, Mark. 1995. An overview
of the parctab ubiquitous computing experiment. IEEE Personal
Communications, 2(6), 28–43.

Weiser, M. 1991. The Computer of the 21st Century. Scientific
American, 265, 66–75.

Welie, Martijn van, & Traetteberg, Hallvard. 2000. Interaction Patterns
in User Interfaces. Pages 13–16 of: Seventh Pattern Languages of
Programs Conference.

Westland, J. 2003. Project Management Guidebook.

Ye, Juan, Coyle, Lorcan, Dobson, Simon, & Nixon, Paddy. 2007.
Ontology-based models in pervasive computing systems. The
Knowledge Engineering Review, 22:4, 315–347.

Youngblood, G. Michael, Cook, Diane J., & Holder, Lawrence B. 2005.
Managing Adaptive Versatile Environments. Pervasive and Mobile
Computing.

Appendix A

Software Infrastructure

This appendix provides detail on the implementation of the developed
software infrastructure. The appendix is organized as follows:
Section A.1 describes how the management mechanisms have been
implemented. Section A.2 explains the implementation of the pervasive
services. Section A.3 describes the context monitor in detail. Finally,
Section A.4 presents detail information about the implementation of
MAtE, the automation engine.

A.1 Model Management Mechanisms Imple-
mentation

In order to manage the context model and the task model (see Chapter
5) at runtime, we have defined and implemented two Java Application
Programming Interfaces (APIs): OCean, which allows context models
to be managed, and MUTate, which allows task models to be managed.
OCean and MUTate provide the same vocabulary defined in the
ontology and the task model metamodel, respectively. Thus, they

238 Software Infrastructure

provide high-level abstraction mechanisms that facilitate the interaction
with the models in order to achieve the automation and evolution of the
specified user behaviour patterns.

OCean and MUTate are provided as java APIs to facilitate that
they can be used by other software components in any software
platform. The javadocs of these APIs can be downloaded from
http://www.pros.upv.es/art/. To develop these APIs, we have applied
the following best practices that have been recommended for developing
APIs (Google, 2007; Guy, 2009):

• Planning: Before gathering data or developing something new,
it is strongly recommended to check that there is not already a
similar API available and if there are technologies that can provide
us with a similar API.

• Keep it simple and easy to learn: The specifications must be
simple and documented. Also it is recommended to avoid having
too many fields and too many method calls. The API must offer
simplicity, or options with simple or complex levels.

• Follow standards: It is advisable to follow standards where
applicable. If possible it makes sense to use well-know standards
from international authorities: IEEE, W3C, OAI or from
successful and established companies.

• Use consistent naming structures: It is recommended to
use consistent, self explanatory method names and parameter
structures, explicit name for functions and follow naming
conventions.

• Test the API: The API has to be checked and tested. It should
be scalable, extendible and designed for updates.

Next, we explain the developed APIs and how we test their
functionality.

A.1 Model Management Mechanisms Implementation 239

A.1.1 Managing the Context Model: OCean

The context on which the behaviour patterns depend is specified in
the context model as OWL individuals. Thus, in order to manage
these individuals, we have implemented a set of Ontology-based
Context model management mechanisms (OCean). OCean provides an
implementation API that allows any individual of the context model to
be created, obtained, modified, and deleted. For instance, OCean allow
us to create a new user preference (e.g., idealTemperature), reading its
value or modifying it when needed.

The API consists of a Model class that allows a context model
to be opened and saved. Also, this Model class allows us to manage
the individuals of the opened context model in a generic way. To
achieve this, we have defined the Instance class that is composed of
four elements: name of instance, name of the class which it is instance
of, set of attributes and set of related instances. The names are
defined as Strings; the set of attributes is defined as hashmap<String,
String>, which stores the name and the value of the attribute,
respectively; and the set of instances is also defined as a hashmap
<String, Set<instance>>, which stores the name of the relationship
and the instances related using this relationship, respectively. Using
this Instance class, the Model class provides the following methods for
managing the individuals in a generic way:

• addInstance: adds a new instance to the context model receiving
the four elements which an Instance is composed of.

• deleteInstance: deletes the instance that is identified with the uri
that receives as argument in String format.

• setAttribute: modifies the value of the corresponding attribute.
To do this, the method receives as arguments the URI of
the instance which the property belongs to, the URI of the
corresponding property and the new value in String format.

• getProperty: returns the value of the property whose URI is
received as argument in String format.

240 Software Infrastructure

• setRelatedInstances: modifies the set of related instances. To do
this, the method receives as arguments the URI of the instance
which the relationship belongs to, the URI of the corresponding
relationship and the set of instances that must be related.

• addRelatedInstance: add a new related instance. To do this, the
method receives as arguments the URI of the instance which the
relationship belongs to, the URI of the corresponding relationship
and the new instance to be related.

• deleteRelatedInstance: delete a related instance. To do this, the
method receives as arguments the URI of the instance which the
relationship belongs to, the URI of the corresponding relationship
and the URI of the related instance to be removed.

This Model class also provides facilities for querying the model
using SPARQL (see 2.3), which is a graph-matching query language
recommended by the W3C that allows queries to be built to search
for certain individuals in the context model. Specifically, the class
provides the methods checkCondition and selectElements that receive
a SPARQL query in String format. The checkCondition method checks
whether the query is fulfilled or not (it receives an ASK query), while
the selectElements method obtains the corresponding elements that are
selected with the SPARQL query (it is a SELECT query).

To implement this class, we have used Jena 2.41, the OWL API
2.1.12, and the Pellet reasoner 1.5.2. (see 2.3). Jena is a Java framework
for building Semantic Web applications that provides a programmatic
environment for OWL and SPARQL and includes a rule-based inference
engine. We have used Jena to open the OWL model and save the
performed changes in it. The OWL API is an open-source API that
provides facilities for creating, examining and modifying an OWL
ontology. We have used the OWL API to access to and modify the
individuals of the context model. Pellet is an open-source OWL reasoner
that provides reasoning services for OWL ontologies. Pellet facilitates

1http://jena.sourceforge.net/
2http://owlapi.sourceforge.net/

A.1 Model Management Mechanisms Implementation 241

Figure A.1: Class diagram of the context ontology in ecore format

accessing to the information stored in the ontology and allows us to
launch a SPARQL query against the context model using Jena.

In addition, OCean also provides a Factory class for creating new
individuals in the context model and getting those that have already
been created, and an implementation class (and its corresponding Java
interface) for each one of the OWL classes defined in the context
ontology so that the instances of the context model can be managed
by using the same concepts defined in the context ontology. The class
diagram of these classes is shown in Figure A.1. Each one of these Java
classes provides:

• An attribute for each one of the properties and relationships of its
OWL class; e.g., the User OWL class has DNI and preferences as
attributes.

242 Software Infrastructure

• Get, set and remove methods for each one of these attributes; e.g.,
getDNI or getPreferences.

• An add method for the attributes whose type is a List. This
method allows an element to be directly added to the list; e.g.,
addPreferences method.

Several tools, such as Jastor3, Jaob 4, Protégé or OWL2Java5, have
been developed for automatically generating a Java API (similar to
the above described) from a given ontology for the handling of OWL
instance data. After studying and trying these tools, we use the Jastor
tool because it was the only one that generates most of the methods
that we need, avoiding as much as possible concepts dependent of OWL
technology in the API. From this generated code, we implemented
the get method for the attributes whose type is a List, which was
not generated. Also, the new methods generated by Jastor use the
parameters Model and Resource from the Jena code; therefore, we add a
new method that creates the new element only using the corresponding
identifier to facilitate the use of the API and make it more independent
of ontology technologies.

Figure A.2 shows an overview of the classes provided by OCean
and a partial view of the source code of its Person class. Specifically, it
shows the methods getSurname, which allows the surname of the person
to be obtained, setSurname, which allows the surname of the person to
be modified, and getSkills, which allows the skills of the person to be
obtained.

A.1.2 Managing the Task Model: MUTate

In order to support the management of the task model, we have
developed a set of Model-Based User Task management mechanisms
(MUTate). For instance, MUTate allows searching for a behaviour

3http://jastor.sourceforge.net/
4http://wiki.yoshtec.com/jaob
5http://www.incunabulum.de/projects/it/owl2java

A.1 Model Management Mechanisms Implementation 243

Figure A.2: Overview of the OCean API

pattern that have to be executed; adding new tasks to a pattern;
creating a new pattern; etc. To do this, MUTate consists of a Java
API that allows any elements of the specified task model (which are
those specified in its metamodel, such as Behaviour Patterns, Tasks,
Relationships between tasks, Conditions, etc.), to be created, obtained,
modified, and deleted. Specifically, this API consists of a Factory class
for creating new instances (of the classes defined in the task metamodel)
in a task model, and a Java class for each one of the elements of the
task model metamodel (see Figure 4). Each class provides:

1. An attribute for each one of the properties and relationships
of the metamodel element that the class represents; e.g., the
BehaviourPattern class has name and refinements as attributes.

2. Get, set and delete methods for each one of these attributes; e.g.,
getName.

3. An add method for the attributes whose type is a List. This
method allows an element to be directly added to the list; e.g.,
addRefinement method.

244 Software Infrastructure

Figure A.3: Class diagram of the task model metamodel in ecore format

In order to implement this API, we have used the EMF, EMF Model
Query (EMFMQ), and EMF Model Transaction (EMFMT) plugins
of the Eclipse Platform (Eclipse, 2011), which provide us with many
benefits for managing an XMI model at runtime.

From the metamodel of the task model in ecore shown in Figure A.3,
we use EMF to generate a basic Java API for managing a task model
that includes change notification, persistence support with default XMI
serialization, and an efficient reflective API for manipulating EMF
objects generically. This API provides the Factory class, as well as
a Java interface and an implementation class for each one of the classes
of the metamodel. These classes provide get and set methods to access
and change the information of the instances specified in the model. We
have extended these classes by implementing those methods explained
in the last two points of the enumeration.

A.1 Model Management Mechanisms Implementation 245

In addition, some of these Java classes represent context conditions,
such as ContextSituation or ContextPrecondition. We have also
implemented in these classes the checkCondition method to check
whether the condition is fulfilled or not. This method interprets the
logical expression of the condition and builds a query in SPARQL. Once
the query has been built, the method uses the Model class of OCean to
launch it against the context model.

EMFMQ facilitates the process of search and retrieval of model
elements in a flexible, controlled and structured manner. To achieve
this, this plugin allows us the construction and execution of queries
in a SQL-fashion. The SELECT statement requires two clauses, a
FROM and a WHERE. The former clause describes the source of model
elements where SELECT can iterate in order to derive results. The
latter clause describes the criteria for a model element that matches.
Queries are first constructed with their query clauses and then executed
against the model. We use the SELECT statements provided by this
plugin to search for and get the instances of the model that need to be
accessed or modified.

EMFMT provides us with mechanisms for making transactions,
reading and writing models on multiple threads, and validating the
semantic integrity of the modified model by detecting invalid changes.
We have also extended the implementation classes provided by EMF
with these mechanisms in order to: 1) add, modify, and delete a
complete behaviour pattern as a unique transaction; 2) allow the reading
and writing of the task model at the same time; and 3) semantically
validate the changes in the task model.

Figure A.4 shows an overview of the classes provided by MUTate
and a partial view of the source code of its implementation classes
TaskModel and BehaviourPattern. Specifically, the figure shows
the getBehaviourPatternByContextSituation method of the TaskModel
class and the getContextSitation and setContextSituation of the
BehaviourPattern class. The getBehaviourPatternByContextSituation
method returns the behaviour pattern whose context situation is the
same than the BPContextSituation argument value. To find the
corresponding pattern, it searches for it by using a query statement

246 Software Infrastructure

Figure A.4: Overview of the MUTate API

built with EMFMQ. The getContextSitation and setContextSituation
methods obtains and modifies, respectively, the context situation of the
behaviour pattern.

A.1.3 APIs’ Testing

OCean and MUTate have to be tested to ensure that they provide the
expected behaviour. Since the most part of MUTate and OCean have
been generated by using code generation strategies already validated,
we do not have to validate this code again. However, we have to validate
the operations added to the generated code.

To test these operations, we used JUnit6 tests. JUnit is an
open-source unit testing framework for Java programs that provides
functionality for writing and running unit test cases. A test case is a test
class that describes test data, invokes the methods to test the methods of
a class, and determines test results. To determine whether the method
results are correct, assertions are provided. An assertion is a condition

6http://www.junit.org/

A.1 Model Management Mechanisms Implementation 247

that should hold true after executing the method. JUnit provides the
Equal, Not Equal, Same, Not Same, True and False assertions. After
executing a test, the unit testing framework compares the actual value
(the value returned after executing the code) with the expected value
to determine the success or failure of the test.

Thus, we develop a JUnit test for each one of the operations that
must be validated.

For instance, in order to check whether the setProperty method of
the Model class of OCean was correct, we implemented a test method
in the ModelTest class that call the setProperty to change the value of
an attribute of a certain individual. The method then searches for the
changed attribute by using the getProperty. This method returns the
searched property value if it exists. Then, the method checks whether
the returned value is equal to the new value set in the property by using
an Equal assertion. Finally, we ran the implemented test method using
the behaviour patterns and the context specified for the developed case
studies (which will be explained in 8) as entry data. As shown in the
figure, the time for running the test was 1,91 seconds, in which the time
for opening the context model is included. We ran all implemented test
classes in Eclipse. After correcting some errors, all the test methods
were successful.

Figure A.5: JUnit test example

248 Software Infrastructure

A.2 Pervasive Services

In order to automate the behaviour patterns specified in the models,
our approach uses the pervasive services that every smart environment
provides to control the devices of the environment. We consider a service
to be an entity that provides a coherent set of functionality which is
described in terms of atomic operations (or methods). These operations
allows the system to change context and/or sense it.

Our approach attempts to be as independent of these service
implementation as possible. However, so that these services can be
used for the current implementation of our approach, they must fulfil
the following requirements:

• They must be implemented using the OSGi/Java technology;
specifically, each service has to be provided as an OSGi bundle.
This technology is more and more used for developing pervasive
services due to the numerous important benefits that it provides
(see 2.4).

• Each service has to be registered as a service in the OSGi service
registry by using a unique service id. This registry actually stores
the interface that the service provides, which allows us to search
a certain method of the service to be executed.

• Each service has to implement the OSGi Producer interface to be
prepared for informing other services when it is used. For enabling
uncoupled communication, OSGi allows communication channels,
which are named wires in OSGi, to be established between
bundles. An OSGI Wire is an enhanced implementation of the
publish-subscribe pattern that is oriented to dynamic systems.
In the OSGi framework, a Wire object connects a Producer
service with a Consumer service, in such a way that they can
communicate with each other via the wire. The Producer service
may send updated values to the Consumer service by calling
the update method of the wire (this method calls the updated
method that must be implemented by the Consumer service).

A.2 Pervasive Services 249

Also, the Consumer service may request an updated value from
the Producer service by calling the poll method of the wire (this
method calls the polled method that must be implemented by the
Producer service). In our approach, we need to automatically
inform the consumers when a change is detected, therefore, we
always use the wire update method.

• Each service must implement the following operations:

– The initializePersistentVariables and getPersistentVariables
operations, which initialize and returns, respectively, the
values of the context properties that the service sense
and that must be managed in the context model. This
information is stored in a HashMap, in which the key is the
individual and each key stores a hashmap with the name of
the property as key and the property value as the key value.

– The hasChange operation, which indicates whether the value
of the context properties that the service manages has
changed. If some properties has changed, this method
returns them using the same structure used for storing the
persistent variables.

– The consumersConnected and polled operations, which are
the operations that must be implemented for the OSGi
Producer interface. The consumersConnected is used to
know the OSGi bundles that are connected with the
corresponding service and that must be warned when there
some change detected by the service. The polled method
implementation can be empty, since the communication in
our approach is always produced from the producer to the
consumer.

– The notifyConsumers operation, which warns the context
monitor if a change in some context property of the service is
produced. This method must be called when a change can be
produced (e.g., after the switch on operation of the Lighting
service is executed). The notifyConsumers operation checks

250 Software Infrastructure

/****
The method initializePersistentVariables must be implemented by every
pervasive service to establish which context properties are managed
by the service.
****/
protected void initializePersistentVariables() {
persistentVariables.put("Temperature",

new HashMap().put("value", getTemperature()));
persistentVariables.put("TemperatureLevel",

new HashMap().put("value", getTemperatureLevel()));
}

Figure A.6: An example of initializePersistentVariables operation that the
pervasive services must implement

whether some change has been produced by calling the
hasChange method. If some change has been produced, the
operation calls the consumersConnected method to obtain
all the wires that must be warned about the changes and
executes the update method of these wires (this update
method calls the updated method of the consumer service).

To facilitate the implementation of these methods, we provide
the Service class that implements all of these methods except the
initializePersistentVariables method that has to be implemented
by each service. Thus, the pervasive services only have to inherit
from this class and implement the initializePersistentVariables
operation. Figure A.6 shows an example of the implementation
of this operation for the service TemperatureMeasurement. This
service senses the temperature of the environment and provides
the exact temperature in Celsius degrees and its level according
to the ranges high, medium, or low.

A.3 Context Monitor

The context monitor is in charge of updating the context model
according to the context changes. These context changes are physically
detected by the pervasive services (above explained) that control the

A.3 Context Monitor 251

system devices. Thus, in order to capture context changes, the monitor
is continuously monitoring the execution of the pervasive services.
To do this, the context monitor implements the Consumer interface
and creates a wire with each service (which implements the Producer
interface). In a similar way than the Producer interface, the Consumer
interface provides also two methods: producersConnected, which is used
to know the OSGi bundles that are connected with the corresponding
service and that warn it when they are used; updated, which is executed
when some producer related with the service is used.

This OSGi implementation makes that when a change in a service
is produced, the service notifies the context monitor about this change,
since it is a consumer of the service. In this notification, the service
sends to the context monitor a hashmap that contains the context
variables whose value has changed. It can be seen like if this data
was sending through the wire from the consumer to the producer.

When a change notification is produced, the updated method of the
context monitor is called. This method, calls the updateContextModel
method in order to reflect the changes in the context model by using
OCean. In a change notification, the context monitor receives the
name of each changed individual, the changed property and its new
value. Using the OCean Model class, the monitor changes the values of
the corresponding properties. The code implemented for reflecting the
context changes in the context model is shown in Figure A.7.

Finally, once updated the context model, the updated method of the
context monitor must inform MAtE about the context that has been
updated. To do this, the context monitor and MAtE are also related
by a wire. In this case, the context monitor plays the role of producer
(implementing also the Producer interface), while MAtE plays the role
of consumer (implementing the Consumer interface).

Thus, when the context monitor updates the context model, it
notifies MAtE about the corresponding context change by calling the
notifyConsummers method implemented in the context monitor. In
this notification, the context monitor sends to MAtE a hashmap that
contains the context variables whose value has changed.

252 Software Infrastructure

/****
The updateContextModel method of the ContextMonitor is called
for updating the context model when a change in context is
detected by the pervasive services.
The method receives the detected context changes and updates
the context model by using the contextModel, which is an instance
of Model class provided by OCean.
****/
void updateContextModel(HashMap changes){
String instance, property, value;
Set changedInstances= changes.keySet();
Iterator it_changedInstances=changedInstances.iterator();
HashMap changedProperties;
Iterator it_changedProperties;

while (it_changedInstances.hasNext()){
instance= (String)it_changedInstances.next();
changedProperties= (HashMap) changes.get(instance);
it_changedProperties=changedInstances.iterator();
while (it_changedProperties.hasNext()){
property=(String)it_changedProperties.next();
value= (String)changedProperties.get(property);
contextModel.setAttributeValue(instance, property, value);

}
}

/****
The setAttribute method of the Model OCean class receives the ID of the
individual, the ID of its property and the new value that it must take,
and updates the value of the property.
****/
public void setAttribute (String individualID, String propertyID,

String newValue) {
OWLIndividual individual=

factory.getOWLIndividual(URI.create(prefixURI+individualID));

OWLDataProperty dataProperty=
factory.getOWLDataProperty(URI.create(prefixURI+ propertyID));

OWLDataType type= factory.getOWLDataType(URI.create(
"http://www.w3.org/2001/XMLSchema#String"));

OWLConstant value=factory.getOWLTypedConstant(newValue, type);

OWLDataPropertyAssertionAxiom assertion_data= factory.
getOWLDataPropertyAssertionAxiom(individual, dataProperty, value);

AddAxiom addAxiomData = new AddAxiom(ontology, assertion_data);

manager.applyChange(addAxiomData);
}

Figure A.7: Code for updating the context model

A.4 MAtE 253

A.4 MAtE

MAtE is the engine in charge of automating the behaviour patterns in
the opportune context by directly interpreting the models at runtime.
To interpret the models, MAtE uses MUTate and OCean.

Figure A.8: MAtE process for automating the user behaviour patterns

As said above, to automate the behaviour patterns in the opportune
context, MAtE is a consumer of the context monitor, since MAtE must
check if any behaviour pattern must be executed when a change in
context is produced.

Thus, MAtE implements the Consumer interface and creates a wire
with the context monitor. This allows that when a context change is
produced, the context monitor notifies MAtE about this change. When
MAtE receives this notification, its updated method is executes. This
method starts the automation process for automating those behaviour
patterns whose context situation is fulfilled. This process consists of
the following steps (which are summarized in Figure A.8):

1. Check the fulfilment of the context situations specified in the
task model. Figure A.9 shows the code for performing this step.
As shown in this code, to check the fulfilment of the context
situations, MAtE first obtains the behaviour patterns specified in
the task model by using the getBehaviourPattern method of the

254 Software Infrastructure

TaskModel class of MUTate. MAtE then analyses the context
situation of each behaviour pattern. To do this, MAtE first
checks if the context situation is related to the performed context
changes (i.e., if it contains some of the context properties that
have been modified). If so, MAtE queries the context model
to check whether this context situation is fulfilled by using the
checkCondition method of the ContextSituation class. Finally, if
a context situation is not fulfilled, MAtE removes its behaviour
pattern form the list of behaviour patterns.

/****
Code for getting the behaviour patterns that must be executed (because
their context situation is now fulfilled).
****/
List behaviourPatternList= taskModel.getBehaviourPattern();
Iterator it_behaviourPatternList = behaviourPatternList.iterator();

ContextSituation CS;
while (it_behaviourPatternList.hasNext()){

BP=(BehaviourPattern) it_behaviourPatternList.next();
CS=(ontextSituation P.getContextSituation);

if (CS.contains(changedContextProperties))
if (!CS.checkCondition()) behaviourPatternList.remove(BP));

}

Figure A.9: Code for carrying out the first step of MAtE by using MUTate

2. If there is some behaviour pattern to be executed, MAtE analyses
their priorities and starts to execute the behaviour pattern with
the highest priority.

3. MAtE executes the system tasks of the corresponding pattern
according to its refinements, temporal relationships specified
among its tasks and the up-to-date context information (stored
in the context model) on which tasks and relationships depend:

3.1. Its first refinement is obtained by using the getRefinement-
ByOrder method (implemented in the CompositeTask class
and inherited by the BehaviourPattern class).

3.1.1. If it is an exclusive refinement, this means that only

A.4 MAtE 255

one subtask of the composite task must be performed.
This subtask is the first one (following the order of the
refinements) that can be executed. Thus, MAtE gets the
subtask of the refinement.

3.1.1.1. This task may have a context precondition, which
means that the task must be only executed if this
precondition is satisfied. Thus, if the task has a
context precondition, MAtE checks it by using the
checkCondition method of the ContextPrecondition
class. If it is not satisfied, MAtE searches for the
next refinement of the behaviour pattern and starts
the step (3.1.1.1). However, if the task has not
a precondition or it is satisfied, the task must be
executed. If the task is a composite task, MAtE
goes to the step 3.1 following a recursive process.
If the task is a system task, it can be directly
executed. To execute it, MAtE searches for the
pervasive service related to the task to be carried out
by using the OSGI capabilities, which allow services
to be searched at runtime. Then, MAtE executes the
service method associated to the task by using the
Java reflection capacities, which allow us to execute
a method by using its name, its arguments and its
class name (i.e., the service name). The code for
executing a system task is shown in Figure A.10.

3.1.2. If it is a temporal refinement, this means that all the
subtasks of the composite task must be executed in the
appropriate order. Thus, MAtE gets the subtask of the
refinement:

3.1.2.1. MAtE executes the step 3.1.1.1.

3.1.2.2. MAtE checks if the task has a temporal relationship
that links it to another task to be executed. If it has
a temporal relationship, according to its temporal
operator, MAtE executes the next task (NT) if its
context precondition (if it has) is satisfied. If the

256 Software Infrastructure

/****
The executeSystemTask method of MAtE executes the system task that
receives as argument by searching the pervasive service related to
the task and executing the corresponding service method.
****/
static Object executeSystemTask(SystemTask st){
Object res=null;
PervasiveService service= (PervasiveService)
serviceSearcher.getService(PervasiveService.class.getName(),

st.getServiceName());
try{

Class serviceClass=service.getClass();
Method[] metodos =serviceClass.getMethods();
for (int i=0;i<metodos.length;i++){

if (metodos[i].getName().equals(st.getServiceMethodName()))
res=metodos[i].invoke(service,st.getParameters());

}
}catch(Exception e){System.out.print("Excepcion: " + e.getMessage());}

return res;
}

Figure A.10: Code for executing a system task

temporal operator is >>[c]>>, MAtE will wait until
the condition c is satisfied to execute NT, however,
if the temporal operator is >> or |||, MAtE will not
wait and directly will execute NT checking before its
context precondition if had. To execute NT, the step
3.1.1.1 is carried out.

4. MAtE gets the behaviour pattern with the next highest priority.
If its context situation is still satisfied, MAtE performs the step
3. If the situation is not satisfied, MAtE rules out the pattern
and executes again the step 4. This step is performed until all the
behaviour patterns obtained in the step 1 have been analysed.

Appendix B

Case Study Requirements

B.1 Smart Home Requirements

The objective of the smart home case studies was to improve users’ lives
and saving energy resources by automating daily tasks of the users. In
order to capture the automation requirements for these case studies, we
design an interview for interviewing the end-users of the case studies.
From these interviews, we identified the routines that users want to
be automated. Finally, we detected the services that were required for
automating the identified routines.

B.1.1 An Interview for Identifying the Behaviour Pat-
terns

In order to identify the behaviour patterns that users want to be
automated, we designed a semi-structured interview. A semi-structured
interview is composed of planned questions, but they have not to
be necessarily asked in the same order as they are listed. Thus,

258 Case Study Requirements

we could decide in which order the different questions should be
handled according to the development of the conversation in the
interview. Also, we could use the list of questions to be certain that all
questions were handled. Additionally, semi-structured interviews allow
for improvisation and exploration of the studied objects; therefore, we
could improvise more questions if needed.

To prepare the interview, we followed the advices published in
(Runeson & Höst, 2009). We first presented the objectives of the
interview and the case study, and explained how the data from the
interview will be used. Then, a set of introductory questions that are
relatively simple to answer were asked to the subject, such as his/her
name, what he or she does, etc. After the introductory questions, we
performed the main interview questions following a time-glass model,
i.e., beginning with open questions, moving towards more specific ones
focusing on the routines performed by the subject and opens up again
towards the end of the interview. Although the interview was individual,
when the subjects of the case study were a family or a couple, all the
members were present to avoid hitches. The questions that we prepared
for the interview were the following:

• Do you perform routine tasks?

• Would you like that they were automated as you want?

• Which routines/habits do you perform on a working day that you
would like to be automated? What do you usually do on a working
Monday, Tuesday, etc.?

• Do you perform routine tasks in weekends? Which routines do
you perform?

• Do you think that the automation of these routines would improve
your quality of life? How?

• Do you think that the automation of these routines would reduce
energy and water consumption?

B.1 Smart Home Requirements 259

Using this interview, we interviewed the participants recording the
conversation as recommended(Runeson & Höst, 2009). In the answers
of the interview questions we observed that users described the context
situation that triggers the routines and the context conditions of the
tasks by using the word when. Also, they naturally describe the context
conditions by answering to the question in which circumstances. In
addition, we noted that, in general, married respondents had family
focused responses while single people, even not living alone, described
their tasks in an individual manner.

After they described the routines that they performed, we also
proposed them some behaviour patterns that may be very useful, such as
presence simulation for getting away thieves when users are not at home,
tasks to preserve security, control of blinds to save energy, watering the
garden by saving energy, etc. We found that most of the interviewed
users would like to have automated many of the proposed behaviour
patterns; however, everyone had its own small variations.

Regarding the last general questions of the interview, all the users
commented that they would love the routines that they wanted were
automated. All of them said that this automation would improve their
quality of life. Some of the reasons that they argued were: 1) this
automation would make me avoid worrying of the tasks to be done;
2) this automation would let me more free time; 3) this automation
would make my life more comfortable. Also, all of the interviewed
subjects thought that the automation of their routines would reduce
their resource consumption.

B.1.2 The Identified Behaviour Patterns

We analysed the information obtained from the interviews and identified
the behaviour patterns that could be useful for the users. We identified
from 6 to 12 behaviour patterns to be automated in each case study,
with a total of 97 behaviour patterns. In essence, from these behaviour
patterns we detected 15 that were different, i.e., that had different
goals. The rest of behaviour patterns were variations of them. For
instance, most users wanted automatically room lighting taking into

260 Case Study Requirements

account outside light intensity and user presence. If the user slept
alone, he or she wanted the room was always illuminated when s/he
wakes up, however, if users were a couple or have babies, they usually
wanted the light in the bedroom was not switched on when there was
someone sleeping. In contrast, another couple wanted the lights were
not switched off while her daughter was playing in the house.

The 15 different behaviour patterns that were identified can be
described as follows:

Presence simulation: It simulates that users are at home when they
are going to stay out (e.g., holidays, weekends, etc). To perform
this simulation, the pattern executes the tasks for controlling
lighting, TV and radio that users usually perform when they are
at home.

Home Security: When an intruder, a gas leak, a water leak, or a fire
is detected, all lights in the house blink to alert any occupants of
the house. All audio and video components are switched off to
avoid distractions,. The system could also call the home owners
on their mobile phone to alert them, or call the fire department
or alarm monitoring company.

Lighting Control: Lights and blinds are controlled to light the room
when needed and to save energy when possible.

Storm Security: Blinds, awnings, windows and sprinklers are con-
trolled to avoid water gets into the house and windows are got
dirty when it starts raining.

Waking Up: This pattern executes the tasks that users want for
waking them up in a more comfortable way.

Leaving Home: This pattern executes the tasks to be done when users
leave home (e.g., switching off lights, controlling heating and air
conditioning for saving energy, etc.).

Going to Bed: This pattern executes the tasks to be done when users
go to bed (e.g., switching off lights, controlling heating and air

B.1 Smart Home Requirements 261

conditioning for saving energy, etc.).

Getting a Comfortable Temperature: Air and heating conditioner
and windows are automatically controlled to achieve the best
temperature in each room according to: user presence, user
preferences, inside temperature and outside temperature; saving
energy as much as possible.

At Night: When users are at home, blinds are lowered to preserve
privacy.

Watering the Garden: The garden is watered when recommended
without bothering users and until it achieves the appropriate
humidity.

Stop Watering: If someone goes out to the garden, the sprinklers
are switched off. When no presence is detected in garden, the
sprinklers are switched on again if needed.

Faucets Control: The taps are opened and closed when needed to
save water.

Watching a Movie: Home cinema is prepared, the blinds are lowered
in the living room and its light intensity is lowered.

Door Control: Doors are opened when users are detected to go
through them. If there are little children in home, certain doors,
like the kitchen door, will not be opened for children security.

Answering a Call: This pattern turns on volume of the sound devices
that are producing sound when the telephone rings. When the
phone call finishes, the pattern puts again the normal state. It
can be configured depending on the person that calls, even it could
reject phone calls of numbers that users had previously predefined.

B.1.3 Required Services

In order to support the automation of the identified behaviour patterns,
the services shown in Figure B.1 were required.

262 Case Study Requirements

Figure B.1: Services required for the smart home case studies

B.2 Nursing Home Requirements 263

B.2 Nursing Home Requirements

The ACube1 project has been designed to be deployed in a nursing
home in Trento. ACube is a large research project funded by the local
government of the Autonomous Province of Trento in Italy with the aim
of designing a highly technological smart environment to be deployed
in nursing homes as a support to medical and assistance staff. The
system is based on a network of sensors distributed in the environment
or embedded in users’ clothes.

In this appendix, we explain in detail the artefacts obtained from the
requirement elicitation process, the behaviour patterns identified using
these artefacts, and the services required for supporting these patterns.

B.2.1 ACube Requirement Elicitation Artefacts

In this section we explain the requirement elicitation artefacts that we
had at our disposal: a tropos model, a set of personas and a set of
scenarios.

Tropos Model

The Tropos Model is used for modelling the set of domain entities
when the system is not yet existing. It includes a bird-eye view
over the domain in which actors and roles are specified together with
their responsibilities and delegations. This view provides an intuition
of which interactions occur in the environment. Subsequently each
actor is exploited in a goal model, in order to provide details about
human behaviour, highlighting the rationale by relating each activity
to institutional motivations. The Tropos model designed for the ACube
case study is shown in Figure B.2.

Personas

The personas identified for this case study were the following:

1http://acube.fbk.eu/

264 Case Study Requirements

ca
re

gi
ve

r
AC

ub
e

m
on

ito
r g

ue
st

in

 h
er

 v
isu

al

ar
ea

in
te

rv
en

e
wh

en
 g

ue
st

da

ng
er

ou
s

sit
ua

tio
ns

id
en

tif
y

wh
en

 a

gu
es

t l
ea

ve
s

th
e

gr
ou

p

in
cr

ea
se

aw

ar
en

es
s

of

ev
en

ts

in
cr

ea
se

 c
ar

eg
ive

r
pe

rc
ep

tio
n

ra
ng

e

re
ce

ive
 a

le
rt

fo
r

re
qu

es
t o

f i
nt

er
ve

nt
io

n

in
te

rv
en

e
wh

en
 g

ue
st

is

in
 d

an
ge

ro
us

 a
re

as
in

te
rv

en
e

fo
r g

ue
st

's
da

ng
er

ou
s

be
ha

vio
rs

pr
ed

ict

sit
ua

tio
ns

id
en

tif
y

gu
es

t
in

te
nt

io
n

to
 a

pp
ro

ac
h

th
e

ex
it

ga
te

id
en

tif
y

wh
en

 a
 g

ue
st

is

ap
pr

oa
ch

in
g

th
e

st
ai

rs

id
en

tif
y

wh
en

 a
 g

ue
st

is

ex
ite

d
wi

th
ou

t
au

th
or

iza
tio

n
id

en
tif

y
wh

en

a
gu

es
t i

s
fa

lle
n

do
wn

id
en

tif
y

gu
es

t
is

ou
t t

he

sy
st

em
 c

on
tro

l

re
du

ce
 g

ue
st

di

st
re

ss

ch
an

ge
 th

e
en

vir
on

m
en

t t
o

st
im

ul
at

e
re

la
x

wa
rn

 th
e

ne
ar

es
t

ca
re

gi
ve

r

de
te

ct
 d

ist
re

ss

de
te

ct
 p

ro
xim

ity
 to

th

e
ga

te

ch
ec

k
th

e
id

en
tit

y

br
oa

dc
as

t a
 h

ig
h

pr
io

rit
y

al
er

t

lo
ck

 th
e

ga
te

tra
ck

 tr
aj

ec
to

rych
ec

k
th

e
id

en
tit

y
se

nd
 a

n
al

er
t t

o
th

e
ne

ar
es

t
ca

re
gi

ve
r

de
te

ct
 a

cc
el

er
at

io
n

to
wa

rd
s

th
e

flo
or

de
te

ct
 im

m
ob

ilit
y

se
ar

ch
 fo

r e
sc

ap
e

hi
st

or
y

in
 th

e
pr

ofi
le

se
nd

 a
n

al
er

t t
o

th
e

ne
ar

es
t

ca
re

gi
ve

r

re
qu

es
t a

ut
ho

riz
at

io
n

au
th

or
ize

 s
ys

te
m

 to

ac
t i

n
th

e
en

vir
on

m
en

t

ca
re

gi
ve

r

de
te

ct
 ri

sk
y

ev
en

ts

de
te

ct

an
om

au
lo

s
ev

en
ts

se
nd

 a
n

al
er

t t
o

th
e

ne
ar

es
t

ca
re

gi
ve

r

de
te

ct
 g

ue
st

pa

ss
ed

 th
ro

ug
h

th
e

ga
te

ch
ec

k
th

e
id

en
tit

y

su
pp

or
t

ca
re

gi
ve

rs
 in

da

ily
 o

pe
ra

tio
ns

+
+

re
co

rd

be
ha

vio
r

hi
st

or
y

as
so

cia
te

 b
eh

av
io

r
pa

tte
rn

s
to

 p
ro

file

pu
t s

of
t l

ig
ht

s
sw

itc
h

on

en
vir

on
m

en
ta

l
m

us
ic

ge
t u

se
r

pr
ef

er
en

ce

co
m

pi
le

 re
po

rt re
co

rd
 d

ai
ly

re
le

va
nt

ev

en
ts

re
qu

es
t t

o
co

m
pl

et
e

re
po

rt
wi

th
 a

dd
itio

na
l

in
fo

rm
at

io
n

de
te

ct
 h

ea
lth

em

er
ge

nc
y

de
te

ct
 a

no
m

al
ou

s
bi

o-
pa

ra
m

et
er

s
re

qu
es

t v
al

id
at

io
n

Figure B.2: Tropos model of the ACube case study.

B.2 Nursing Home Requirements 265

Name: Sabrina

Age: 40 years old

Description: She has been working as a caregiver in the nursing home
for 5 years

Goal: To assist guests in all their daily activities

Problems: She likes the social side of her work. She complaints to
have not time for establishing good relationships and to know
guests The night turn is the most difficult since she is alone for 8
hours with 36 guests She is not comfortable with technology and
thinks the computer is too difficult to use. Wishes: She would
like to have more time for improve the knowledge of her guests.
She would work in a more friendly structure, in which guests are
free to move in and out.

Name: Gianna

Age: 38 years old

Description: She has been working as a nurse for 2 years in the nursing
home

Goal: To provide sanitary assistance and administer therapies to guests

Problems: She complains the lack of time to carry out all duties. The
bureaucracy is too heavy. She would use new technologies.

Name: Maria

Age: 78 years old

Description: She has been in the nursing home for three months
and is affected by senile dementia. She has problems with
memory and disorientation. She is not under specific monitoring
because she have never tried to escape. She can walk though the
recent assessment made by the physiotherapist gives some balance

266 Case Study Requirements

problems. She moves by the sustain of the handrails or by using
the stick.

Wishes: Maria wants to remain independent even if she is in the
nursing home. She would like to be able to move in the centre
without the help of operators, see her family more often and do
more recreational activities

Name: Carlo

Age: 93 years old

Description: Carlo has been in the nursing home for 1 year. He is
suffering from Alzheimer’s disease, memory deficits, disorientation
in time and space and behavioural problems. He once tried
to escape, so operators should give special attention to his
movements. He has been aggressive in past; this crisis had been
handled promptly by the operators who must appease him by
distracting him away from other guests and by means of its
interests (e.g., singing).

Wishes: Carlo smokes and would like to stay outside at fresh air. He
often complains because he does not like to stay in nursing homes.

Name: Piera

Age: 90 years old

Description: Piera has been in the nursing home for 6 years. She has
mobility problems which prevent her from walking. She also has
health issues (blood glucose and cardiac problems that require
constant monitoring, trauma to the femur). In addition, she is
impaired in cognitive deficits: memory and depression. She needs
for constant assistance.

Wishes: Piera has problems with depression. The situation leads her
to loose motivations. She would like to have a more human
relationship with operators, doctors and nurses.

B.2 Nursing Home Requirements 267

Scenarios

The following scenarios have been identified in the ACube project:

Scenario 1: Fall monitoring and prevention. Maria is leaving
the restoration room, and the sensor on the door sends a signal
to Sabrina’s PDA that alerts with a vibration. Sabrina knows
that a vibration means Maria is moving out from the room, but
she cannot follow her in that moment because she must oversee
the room. Whether Maria leaves the room with other guests or
with a caregiver, the alarm would not be sent. Maria is going
upstairs in order to reach her private room but when she is on
the staircase, she falls. The camera identifies the event and sends
warning signals to caregivers’ PDA. Sabrina’s PDA displays an
unknown person is fallen down in the staircase between second
and third floors. The nurse, Gianna, receives this signal and she
is available to go, so she notifies (by PDA) that she is taking
the event in account. Also Sabrina decides to go, she imagines
that Maria is fallen, so she sends a message to other caregivers
that restoration room is currently not overseen. Renato (that is
about to finish his turn) receives the message and suddenly goes
to the restoration room where guests are alone. Sabrina reaches
Maria and soothe her. Maria is active and she talks and reasons
perfectly, she is afraid but she is not in pain for the hit. Gianna
rapidly understands that all is OK and she press the orange button
on her PDA (emergency is off). Maria is helped to stand and to
return in her room. Sabrina comes back to other guests thus
Renato is free to go home. At the end of their turn, Sabrina
and Gianna have to write the report for the next turn colleagues.
They turn on their computer and find an automatic report with
all data relative to the event. Cameras, audio and RFID sensors
have collaborated to collect data and to compile the report.

Scenario 2: Escape monitoring and prevention. Carlo is in the
garden and follows some visitors going through the gate with the
intention to run away. Carlo’s bracelet sends Carlo’s position

268 Case Study Requirements

to the system. The alert signal comes to Sabrina’s PDA who
reads ”Carlo is leaving the institute”, thus she decides to go. She
communicates by using the PDA that is is taking in account the
emergency. Other caregivers receive only a warning message. The
camera near the gate activates and: 1) tries to follow Carlo’s path
2) automatically locks the gate to prevent the escape Whether
Carlo goes through the gate a second RFID sensor sends a message
to Sabrina (who takes in account the event) alerting that the
emergency is now serious. The camera records all the activities
thus to allow caregivers to see what happened. All the events are
collected in order to write the report at the end of the turn.

system knows that in last days Carlo is quite, likes to stay in the
garden and smokes less.

Scenario 3: Aggressive behaviour. Sabrina has just started her
turn. She is alone in the great restoration room where there is
a group of Alzheimer people (8-10). Today it is noise and Sabrina
can not oversee everyone. It is summer and a few social workers
are in the institute. Piera begins to disquiet and her behaviour
becomes aggressive. A camera in the room identifies Piera’s state
and the system switch on some soft lights around Piera, and plays
her preferred song. In the meanwhile the system alerts the nearest
caregiver Sabrina about the trouble who decide whether to go, to
call help or to ignore it.

At the end of the turn, Sabrina is in her office and validates
the automatic report that describes what happened: Piera’s
behaviour, and the action activated (lights and music) and Piera’s
response. The report also contains that the room was full and
maybe this is the cause of Piera’s stress. The system learns
something new.

Scenario 4: Night monitoring. Two caretakers are working in
couple during the night to oversee and support guests during the
night. They must move each guest every three hours. In the
institute only a doctor is present. They are in Piera’s room and all
is OK, thus they continue their work. Suddenly Piera is suffering

B.2 Nursing Home Requirements 269

a heart attack; the t-shirt identifies the event. The PDA soon
alerts Sabrina and Manuela (and the nurse and the doctor) with
a vibration and the text: heart attack on room. . . The external
light in the room silently switches on to drive caregivers to the
right room. This signal can be switched off manually. In the
meanwhile Maria coughs and microphones identify the event. In
this case only Sabrina and Manuela receive the warning because
Maria’s T-shirt estimates a regular breath and ECG (it is not a
health emergency). When the nurse and the doctor are in the
room, the caretakers can leave the room and continue their work.
They can ask the system the last guest they have supported so
to avoid to forget someone. The system replies that room 123 is
completed but in 124 Ugo must be moved. The health emergency
is automatically reported in the health diary.

B.2.2 The Identified Behaviour Patterns

We analysed the requirement artefacts that we had available and
identified 4 behaviour patterns that could be useful for supporting the
tasks of medical and assistant staff. These patterns can be described as
follows:

Controlling Aggressive Behaviour: When a patient starts to be-
have aggressively, the system alerts the nearest caregivers. Then,
the system puts soft lights and plays the preferred song of the
patient that is behaving aggressively. Five minutes later, if the
patient is still behaving aggressively, the system warns the security
officers. Finally, a report is created and sent to the involved staff.

Avoiding Patient Escaping: If it is detected that a patient is leaving
the nursing home, the system activates the emergency state, alerts
the nearest caregivers and starts to record the patient. Finally, a
report is created and sent to the involved staff.

Dealing with a Fall: If it is detected that a patient falls and no one
of the caregivers is around, the system activates the emergency

270 Case Study Requirements

state and alerts the nearest caregivers. Finally, a report is created
and sent to the involved staff.

Dealing with Health Emergencies: When a health anomaly is
detected in a patient, the nurses and the doctor of the patient
are alerted. The external emergency light in the room is then
switched on. When the doctor and the nurses arrive to the room,
the emergency light is switched off. If the situation is controlled,
messages are sent to the involved personal staff to inform them
about their next tasks. The health emergency is automatically
reported in the health diary.

From Requirement Models to Executable Models

In order to automate the process of obtaining the context and task
models from the requirement artefacts (personas, scenarios and Tropos
models), we proposed a methodology in collaboration with the research
group in charge of the ACube project in the Fondazione Bruno Kessler.
The steps of the proposed methodology are described as follows:

Step 1: Detect the behaviour patterns to be automated.
The step consists in identifying the behaviour patterns that can
be automated by the system. To identify them, the Tropos goal
model is used. A one-to-one relationship is identified between goals
delegated to the system and behaviour patterns (e.g. the goal [to

reduce aggressive behaviour] could be transformed into a behaviour pattern
named Controlling aggressive behaviour).

Step 2: Model the task hierarchy of each behaviour pattern.
Each behaviour pattern is specified using a task hierarchy, from more
general to more specific tasks. This hierarchy is obtained from the task
decomposition of the corresponding goal in the tropos goal model. This
can is completed with the information provided by the technological
scenarios: the action verbs whose subject is the system represent tasks
to be automated (e.g., the system plays his (Carlo) preferred song). An
example of task hierarchy obtained following this guideline is shown in
Figure B.3.

B.2 Nursing Home Requirements 271

change the
environment for
stimulating relax

put soft light

AND

switch on
environment

music

get user
preferences

...  the  system  puts  on  some  so-  lights 
around him, and plays his preferred song in 
the background...

change environment
for stimulating relax

put soft lights
play song(

PATIENT.preferredSong,
PATIENT.location)

|||

2. Task hierarchy

5. Relationship

8. Task parameters

Figure B.3: Transformation performed following the provided guidelines

Step 3: Specify users. The users involved in the tasks to be
automated are identified. The Tropos actor model and Personas provide
useful information for creating a hierarchy of users, which has to be
specified in the ontology as subclasses of the User class. For instance,
the actor model identifies the roles caregiver and patient, while the
Personas instrument identifies more specific type of users: Carlo, who
is a patient with Alzheimer disease, and Gianna, who is a nurse which
is a type of caregiver. Real users will be specified in the hierarchy as
individuals of the class that better represent their characteristics.

Step 4: Specify context. Tasks to be automated usually
depend on context information. This context information appear in the
scenarios as adjectives (e.g. noisy), locations (e.g., restoration room),
temporal aspects (e.g., season), etc. Also, the motivations of the goals
specified in the Tropos goal model can be used for detected needed
context information (e.g. aggressive behaviour). The identified context
properties must be specified in the context model as individuals of the
corresponding ontology classes (e.g., noisy should be an instance of the
EnvironmentProperty class).

Step 5: Specify temporal relationships. If a behaviour
pattern, or a composite task, has been refined by temporal refinements,
its subtasks have to be related between them by using temporal
relationships that rigorously specify the execution order of these
subtasks. Scenarios can help to define these relationships. For instance,

272 Case Study Requirements

as shown in Figure B.3, in the scenario it is explained that the systems
puts soft lights and plays Carlo’s preferred song, meanwhile, the system
alerts the caregivers. From this information, we can deduce that the
order of execution of these tasks is not important, then, the | = |
relationship must be used.

Step 6: Specify the context situation. Each behaviour pattern
has to be related with a context situation whose fulfilment activates the
execution of the pattern. The meaning of the goal to be achieved as well
as the technical scenarios can help to define these context situations. For
instance, to achieve the goal [to reduce aggressive behaviour] the identified
controlling aggressive behaviour pattern must be activated when an
aggressive behaviour is detected, as also is explained in the scenario 3
(. . . his behaviour becomes aggressive. A camera in the room identifies
it and the system . . .).

Step 7: Specify context dependencies. The specified tasks may
have to be executed only when some context conditions are satisfied.
Thus, these conditions are specified as task preconditions by using
the context properties identified in Step 3. For instance, the call
security task will be executed if the user continues behaving aggressively
after executing the previous tasks, then, the context precondition
aggressiveBehaviour=true must be added to this task.

Step 8: Specify task parameters. If a system task need
parameters to be performed. To detect these parameters, resources in
goal models and technological scenarios are used. An example from the
scenarios is shown in Figure B.3: the text the system plays his (Carlo)
preferred song, is used for detecting the ’PATIENT.preferredSong’
parameter of the task play song.

B.2.3 Required Services

In order to support the automation of the identified behaviour patterns,
the services shown in Figure B.4 were required.

B.2 Nursing Home Requirements 273

Figure B.4: Services required for the nursing home case studies

274 Case Study Requirements

www.pros.upv.es

Centro de Investigación en Métodos
de Producción de Software
Universidad Politécnica de Valencia
Camino de Vera s/n
Building 1F
46007 Valencia
Spain

Tel: (+34) 963 877 007 (Ext. 83530)
Fax: (+34) 963 877 359

	Portada_de_fani_tiva_2_2_solo_portada
	blank
	document.pdf
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Thesis Goals
	1.4 Design Methodology
	1.5 Thesis Context
	1.6 Outline

	2 Background and Technological Overview
	2.1 Ubiquitous Computing vs Pervasive Computing vs Ambient Intelligence
	2.2 Model Driven Engineering
	2.2.1 Development Models, Executable Models & Runtime Models
	2.2.2 Code Generation vs Model Interpretation

	2.3 Ontology, Ontology Languages and Ontology Reasoners
	2.3.1 Web Ontology Language (OWL)
	2.3.2 Pellet: an OWL-DL Reasoner
	2.3.3 SPARQL

	2.4 Open Services Gateway initiative (OSGi)
	2.5 Conclusions

	3 State of the Art
	3.1 Analysis Criteria
	3.2 Machine Learning Approaches
	3.2.1 Analysis and Discussion

	3.3 Rule-based Context-aware Approaches
	3.3.1 Analysis and Discussion

	3.4 End-user Centred Approaches
	3.4.1 Analysis and Discussion

	3.5 Benefits of our Proposal
	3.6 Discussion and Conclusions

	4 Overview of the Proposal
	4.1 Introduction
	4.2 Process for Automating User Behaviour Patterns
	4.2.1 SPEM notation
	4.2.2 The Process Activities

	4.3 Software Infrastructure
	4.4 Validation
	4.5 Conclusions

	5 Modelling User Behaviour Patterns
	5.1 Modelling Context
	5.1.1 The Context Concept
	5.1.2 Context Modelling in Pervasive Systems
	5.1.3 An Ontology-based Context Model
	5.1.4 Tool Support for Creating a Context Model

	5.2 Modelling the Behaviour Patterns
	5.2.1 The Task Concept
	5.2.2 Task Modelling in Software Engineering
	5.2.3 A Context-adaptive Task Model
	5.2.4 Tool support

	5.3 Conclusions

	6 Automating User Behaviour Patterns
	6.1 Requirements for Automating Behaviour Patterns
	6.2 Behaviour Patterns' Automation Process
	6.3 Software Infrastructure
	6.3.1 Components of the Software Infrastructure
	6.3.2 Implementation of the Software Infrastructure

	6.4 Conclusions

	7 Addressing the Evolution of the User Behaviour Patterns
	7.1 Evolution Characterization
	7.2 Mechanisms for Evolving the Behaviour Patterns
	7.3 Tool Support
	7.3.1 Interface Design Decisions
	7.3.2 Description of the Graphical User Interfaces
	7.3.3 Evolving the Behaviour Patterns

	7.4 Conclusions

	8 Evaluation of the Approach
	8.1 Smart Home Case Studies
	8.1.1 Design of the Smart Home Case Studies
	8.1.2 Results of the smart home case studies
	8.1.3 Conclusions of the Smart Home Case Studies' Validation

	8.2 Nursing Home Case Study
	8.2.1 Design of the Nursing Home Case Study
	8.2.2 Results of the the Nursing Home Case Study
	8.2.3 Conclusions of the Nursing Home Case Study Validation

	8.3 Scalability of Using Models at Runtime
	8.4 Conclusions

	9 Conclusions
	9.1 Contributions
	9.2 Publications
	9.2.1 Detail and Relevance of the publications

	9.3 Future work
	9.3.1 Combination with Machine-learning Algorithms
	9.3.2 Providing Adaptive User Interfaces
	9.3.3 Interactive and Iterative Tasks and Tasks with State
	9.3.4 Facilitating the Routine Task Evolution by End-users

	Bibliography
	A Software Infrastructure
	A.1 Model Management Mechanisms Implementation
	A.1.1 Managing the Context Model: OCean
	A.1.2 Managing the Task Model: MUTate
	A.1.3 APIs' Testing

	A.2 Pervasive Services
	A.3 Context Monitor
	A.4 MAtE

	B Case Study Requirements
	B.1 Smart Home Requirements
	B.1.1 An Interview for Identifying the Behaviour Patterns
	B.1.2 The Identified Behaviour Patterns
	B.1.3 Required Services

	B.2 Nursing Home Requirements
	B.2.1 ACube Requirement Elicitation Artefacts
	B.2.2 The Identified Behaviour Patterns
	B.2.3 Required Services

