
UNIVERSIDAD POLITÉCNICA DE VALENCIA

Dpto. Sistemas Informáticos y Computación

Máster en Inteligencia Arti�cial, Reconocimiento de Formas e Imagen Digital

TESIS DE MÁSTER

Multiagent Argumentation on

Cooperative Planning in DeLP-POP

Autor: Sergio Pajares Ferrando

Dirigida por: Dra. Eva Onaindia de la Rivaherrera

Grupo de Tecnología Informática - Inteligencia Arti�cial (GTI-IA)
Group of Reasoning on Planning and Scheduling (GRPS-AI)

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera, s/n
46022 Valencia, Spain

30 de Noviembre de 2010

A mis padres, Claudio y Pilar.

1

Acknowledgements

I would like to thank all people who have helped and inspired me during my
master thesis project.

I especially want to thank my supervisor, Dr. Eva Onaindia, whose en-
couragement, guidance and support from the initial to the �nal level enabled
me to develop the present work. Her perpetual energy and enthusiasm in
arti�cial intelligence research has motivated me. In addition, she was always
accessible and willing to help me with the present master thesis project.

I would like to thank Professor Vicente J. Botti for let me be part of
a Magentix2 development group, in which I learned a lot over the last two
years.

Dr. Inmaculada García and Dr. Laura Sebastiá deserve a special thanks
for introducing me to begin my research in this group two years ago.

My deepest gratitude goes to my family for their un�agging love and
support throughout my life; this master thesis project is simply impossible
without them. I am indebted to my parents, Claudio Pajares and MoPilar
Ferrando, for their care and love.

Last but not least, thanks to Irina Dionisio, who always supported me
and given me encouragement.

3

4

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Objectives . 11
1.3 Work overview . 12

2 Preliminaries 13
2.1 Arti�cial Intelligence . 13

2.1.1 Intelligent agents . 13
2.1.2 Multi-agent systems 14

2.2 Planning . 15
2.2.1 Partial Order Planning (POP) 16

2.3 Argumentation . 18
2.3.1 Defeasible argumentation in DeLP 18

2.4 Argumentation in Planning 26
2.4.1 A DeLP extension for POP planning 26

3 Multi-agent DeLP-POP 31
3.1 Concepts for a multi-agent DeLP-POP 31

3.1.1 The planning domain of the agents 32
3.1.2 Proto-states . 33
3.1.3 Pre-arguments . 35
3.1.4 Cost of the actions and inferences 35
3.1.5 Agent's learning ability 36
3.1.6 Absolute and non-absolute threats 36

3.2 Overview of Cooperative Planning 39

5

3.2.1 Extending the single-agent DelP-POP to multi-agent
DeLP-POP . 39

3.3 Dialogues for multi-agent DeLP-POP 40
3.3.1 Dialogue-based plan evaluation 42
3.3.2 Dialogue-based search in the space of plans 44

4 Validation 51
4.1 Representation of actions with defeasible e�ects 51
4.2 Introduction to the scenario 52
4.3 Scenario speci�cation . 52
4.4 Searching for a solution plan 55

5 Related Work 61

6 Conclusions and Future Work 63
6.1 Conclusions . 63
6.2 Future work . 64
6.3 Published papers . 64

6.3.1 Papers directly related to this work 65
6.3.2 Other papers . 65

6

List of Figures

2.1 An argument A for ` made up of two rules δ0, δ1. 21

2.2 An instantiated example. 22

2.3 Computing warrant for l: an undefeated argument exists. . . . 26

2.4 Threat types: (a) action-action, (b) action-argument and (c)
argument-argument. 28

2.5 Solutions to (a), (b). Promote: (a'), (b'); and Demote: (a�),
(b�). 29

2.6 Solutions to (c): Delay (c'), Defeat (c�) and Disable (c� '). . . . 29

3.1 An argument A applicable at the proto-state SΠ
α 34

3.2 How calculate the proto-states in the construction of the dif-
ferent plans. 34

3.3 An argument B re�ning an pre-argument A (I). 36

3.4 An argument B re�ning an pre-argument A (II). 37

3.5 Agents improving their beliefs and defeasible rules by means
of dialogues. 38

3.6 A selected plan Π. 44

3.7 A derived plan Π(n,Ann). 45

3.8 Evaluating a selected plan Π. 46

3.9 A selected plan Π. 48

3.10 A re�nement plan Π
(n,i)
r . 49

3.11 Agents proposing di�erent plans. 50

4.1 Scenario of the application example 53

7

4.2 Di�erent partial plans for the example scenario (I). (a), (b):
Joe's turns and (c): Ann's turn. 57

4.3 Di�erent partial plans for the example scenario (II). (d): Joe's
turn. 58

4.4 Search in the space of partial-order plans for the example sce-
nario. 60

8

1
Introduction

1.1 Motivation

Planning is the art of building control algorithms that synthesize a course of
action to achieve a desired set of goals. The mainstream in planning is that of
using heuristic functions to evaluate goals and choices of action or states on
the basis of their expected utility to the planning agent [Ghallab et al., 2004].
In classical planning, intelligent agents must be able to set goals and achieve
them, they have a perfect and complete knowledge of the world, and they
assume their view of the world can only be changed through the execution of
the planning actions. However, in many real-world applications, agents often
have contradictory information about the environment and their deductions
are not always certain information, but plausible, since the conclusions can
be withdrawn when new pieces of knowledge are posted by other agents.

Multi-Agent Planning (MAP) generalizes the problem of planning in do-
mains where several agents plan and act together, and have to share re-
sources, activities, and goals. In a cooperative approach, where the agents
are assumed to be cooperative, the emphasis is placed on how planning can
be extended to a distributed environment. The planning agents of a MAP
task exchange information about their plans, which they iteratively re�ne and

9

10 CHAPTER 1. INTRODUCTION

revise until they �t together [desJardins et al., 1999]. Typically, research in
MAP has been more concerned with the design of distributed planning ar-
chitectures, mechanisms for plan coordination, or solutions for merging the
resulting local plans of agents into a global plan [Durfee, 1999, Durfee, 2001,
Cox et al., 2005, de Weerdt et al., 2005]. Unlike these approaches, which em-
phasize the problem of controlling and coordinating a posteriori local plans of
independent agents, we propose an argumentation mechanism to allow agents
to jointly devise a global shared plan and carry out collective actions. In our
proposal we allow agents to plan concurrent actions through the adoption of
a partial-order planning (POP) paradigm [Barrett and Weld, 1994b].

On the other hand, argumentation, which has recently become a very ac-
tive research �eld in computer science [Bench-Capon and Dunne, 2007], can
be viewed as a powerful tool for reasoning about inconsistent information
through a rational interaction of arguments for and against some conclusion.
Systems that build on defeasible argumentation apply theoretical reason-
ing for the generation and evaluation of arguments, and they are used to
build applications that deal with incomplete and contradictory information
in dynamic domains ([Prakken and Sartor, 1997, García and Simari, 2004,
Prakken et al., 1997, Rahwan and Amgoud, 2006]).

Argumentation-based frameworks have been used for reasoning about
what actions are the best to be executed by an agent in a given situation.
Argumentation has been applied on reasoning about con�icting plans and
for generating consistent sets of intentions from a contradictory set of desires
[Amgoud, 2003, Hulstijn and van der Torre,]. The work in [García and Simari, 2004]
presents a defeasible argumentation framework for the de�nition of actions
and the combination of these actions into plans. Recently, a number of at-
tempts have been made to use argumentation to capture practical reasoning,
that is reasoning about which actions are the best for a particular agent
to do in a given situation [Rahwan and Amgoud, 2006]. Other approaches
like [Atkinson and Bench-Capon, 2007] propose undertaking practical rea-
soning through the instantiation of an argument scheme and associated crit-
ical questions [Walton, 1996, Atkinson et al., 2006]. None of these works,
however, apply to a multi-agent scenario. On the other hand, some exten-
sions to cooperative agents can be found in the work [Belesiotis et al., 2010],
an argumentation-based approach for coordinating several agents who discuss
plan proposals in the language of situation calculus.

Particularly, the application of an argumentation-based formalism to deal
with the defeasible nature of reasoning during the construction of a plan has
been addressed by Garcia and Simari [García et al., 2008].

We support that a model for argumentation-based multi-agent plan-
ning where di�erent agents are able to exchange reasons for or against how

1.2. OBJECTIVES 11

to support a open goal of the plan, could signi�cantly improve the currently
single-agent DeLP-POP framework. Despite all previous work, only one re-
cent work [Thimm, 2009, Thimm,] has attempted to realize argumentation
in multi-agent systems using defeasible reasoning but they are not particu-
larly concerned with the task of planning.

1.2 Objectives

This contribution proposes a model for argumentation-based multi-agent
planning, with a focus on cooperative scenarios. It is based on amulti-agent
extension of DeLP-POP, partial order planning on top of argumentation-
based defeasible logic programming.

This framework combines POP's minimal constraints on execution or-
dering (see [Penberthy and Weld, 1992a]), with DeLP inference based on in-
teractions between arguments (see [García and Simari, 2004]). A DeLP-POP
planner can enforce goals with a combination of actions and undefeated argu-
ments, if their conditions (are known to) apply. The advantages of DeLP-POP
towards reasoning about actions are clear: if planning techniques prevent the
well-known frame problem, by getting rid of the need to explicitly represent
what does not change after an action, DeLP-POP succeeds against the qual-
i�cation problem as well, since rules can encode defeasible e�ects of actions.
Arguments, though, are not like actions in that they apply even if unintended.
Thus, arguments will not only occur to intentionally support some step of
a plan, but also they will happen to defeat or defend some such supporting
argument and the plan containing it. The main challenge presented by multi-
agent DeLP-POP is collaborative plan search. We present some results about
dialogues for argumentative plan search that apply to cooperative planning
as a cooperative scenario. In this scenario, we have a group of agents aware
of a common set of goals (hence trustable), but ignorant of others' abilities
and beliefs, who must �nd a plan. Dialogues will be turn-based, since this
choice models typically cooperative scenarios where all agents are treated in
a uniform way. A dialogue consists in a series of exchanges of:

• Plan proposals addressing the current goal, and,

• Plan proposals involved in the discovering of new threats.

Atomic information (facts, rules, actions) contained in the above kind of
exchanged messages will be extracted and learned by the rest of agents.

Summarizing, our main contribution is to extend Simari's work [García et al., 2008]
and come up with the next features:

12 CHAPTER 1. INTRODUCTION

1. Collaborative plan search on DeLP-POP,

2. Argumentative dialogues for plan search, and,

3. Validation on cooperative scenarios.

1.3 Work overview

We present the main structure of this thesis at this point. Apart from this
�rst introductory chapter, the remaining chapters are organized as follows:

• Chapter 2 explains the fundamentals of Defeasible Logic and Partial
Order Planning,

• Chapter 3 is the key chapter of this dissertation and presents our multi-
agent argumentation model. An outline of the implemented algorithm
will be also shown in this chapter.

• Chapter 4 presents an example of application to show the behaviour of
our multi-agent argumentation model,

• Chapter 5 summarizes previous related work, and,

• Chapter 6 presents the conclusions and future work.

2
Preliminaries

2.1 Arti�cial Intelligence

Arti�cial intelligence (AI) is the intelligence of machines and the branch of
computer science that aims to create it. AI textbooks1 de�ne the �eld as the
study and design of intelligent agents where an intelligent agent is a system
that perceives its environment and takes actions that maximize its chances
of success. John McCarthy, who coined the term in 1956, de�nes it as the
science and engineering of making intelligent machines.

Two currently important topics in arti�cial intelligence are intelligent
agents and their integration towards to the design and development multi-
agent systems(MAS). In what follows, we introduce both topics.

2.1.1 Intelligent agents

In arti�cial intelligence, an intelligent agent [Wooldridge and Jennings, 1995,
Ferber, 1999, Wooldridge, 2009] is an autonomous entity which observes and
acts upon an environment (i.e. it is an agent) and directs its activity towards

1http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopics/Reference#texts

13

14 CHAPTER 2. PRELIMINARIES

achieving goals (i.e. it is rational). Intelligent agents may also learn or use
knowledge to achieve their goals. They may be very simple or very complex:
a re�ex machine such as a thermostat is an intelligent agent, as is a human
being, as is a community of human beings working together towards a goal.

Intelligent agents are often described schematically as an abstract func-
tional system similar to a computer program. For this reason, intelligent
agents are sometimes called abstract intelligent agents to distinguish them
from their real world implementations as computer systems, biological sys-
tems, or organizations. Some de�nitions of intelligent agents emphasize their
autonomy, and so prefer the term autonomous intelligent agents. Still others
[Russell and Norvig, 2009] considered goal-directed behavior as the essence
of intelligence and so prefer a term borrowed from economics, rational agent.

Intelligent agents in arti�cial intelligence are closely related to agents
in economics, and versions of the intelligent agent paradigm are studied in
cognitive science, ethics, the philosophy of practical reason, as well as in many
interdisciplinary socio-cognitive modeling and computer social simulations.

Intelligent agents are also closely related to software agents (an autonomous
software program that carries out tasks on behalf of users). In computer sci-
ence, the term intelligent agent may be used to refer to a software agent
that has some intelligence, regardless if it is not a rational agent by Russell
and Norvig's de�nition. For example, autonomous programs used for opera-
tor assistance or data mining (sometimes referred to as bots) are also called
intelligent agents.

Hence summarizing the above, the features of an intelligent agent should
be autonomous, reactive, proactive, able to communicate, adaptive, goal-
oriented, capable to cooperate, reason and learn, and �exible [Ganzha et al., 2005].

2.1.2 Multi-agent systems

Quoting from [Ralston et al., 1993] multi-agent systems are computational
systems in which several arti�cial agents, which are programs, interact or
work together over a communications network to perform some set of tasks
jointly or to satisfy some set of goals. These systems may consist of ho-
mogeneous or heterogeneous agents. Examples of agents would be ones for
detecting and diagnosing network problems occurring on a segment of a lo-
cal area network; for scheduling the activities of a group of machines in a
workcell on a factory �oor; or for locating agents that are selling a speci�c
product and deciding on what price to pay. Agents may be characterized
by whether they are benevolent cooperative (agents are assumed to be fully
cooperative in this master thesis project) or self-interested (this topic ap-
pears to be a promising extension of this master thesis project according to

2.2. PLANNING 15

some reviewers). Cooperative agents work toward achieving a set of shared
goals, whereas self-interested agents have distinct goals but may still inter-
act to further their own goals. For example, in a manufacturing setting,
where agents are responsible for scheduling di�erent aspects of the manufac-
turing process, agents in the same manufacturing company would behave in
a cooperative way, while agents representing two separate companies, where
one company was outsourcing part of its manufacturing process to the other
company, would behave in a self-interested way. Agents often need to be
semi-autonomous and highly adaptive due to their open operating environ-
ments, where the con�guration and capabilities of other agents and network
resources change dynamically. Agent autonomy relates to an agent's ability
to make its own decisions about what activities to do, when to do them, and
to whom information should be communicated. Scienti�c research and prac-
tice in this area, which is also called Distributed Arti�cial Intelligence, focuses
on the development of computational principles and models for constructing,
describing, and analyzing the patterns of interaction and coordination in
both large and small agent societies.

2.2 Planning

Planning is the art of building control algorithms that synthesize a course
of action to achieve a desired set of goals. We consider planning problems en-
coded in a formal, �rst-order language such as STRIPS [Fikes and Nilsson, 1971],
particularly in a propositional version of STRIPS. We will denote the set of
all propositions by P (ground facts or literals). A planning state s is de�ned
as a �nite set propositions s ⊆ P . A (grounded) planning task is a triple
T = 〈A, I, G〉, where A is the set of deterministic actions of the agent's
model that describes the state changes, and I ⊆ P (the initial state) and
G ⊆ P (the goals) are sets of propositions. An action α ∈ A is a tuple
α = 〈P(α),X(α)〉, where P(α) ⊆ P is the set of propositions that repre-
sents the action's preconditions, and X(α) ⊆ P and X(α) ⊆ P are the sets
of propositions that represent the positive and negative e�ects, respectively.
We will represent an action α as follows:

{q1, . . . , qn,∼r1, . . . ,∼rm}
id←− {p1, . . . , pk} (1)

where id is the action name, ∀ki=1pi ∈ P(α), ∀ni=1qi ∈ X(α), and ∀mi=1ri ∈
X(α). An action α is executable in state s if P(α) ⊆ s. The state resulting
from executing α is de�ned as s′ = (s \X(α))∪X(α). That is, we delete any
proposition in s that belongs to X(α), and add the propositions in X(α). A
solution plan (Π) for a planning task T is a set of actions Π = {α1, . . . , αn} ⊆

16 CHAPTER 2. PRELIMINARIES

A such that when applied to I, it leads to a �nal state in which the goals G
are satis�ed. A planning task T is solvable if there exists at least one plan
for it.

2.2.1 Partial Order Planning (POP)

Forward and backward state-space search are particular forms of totally or-
dered plan search. They explore only strictly linear sequences of actions
directly connected to the start or goal. This means that they cannot take
advantage of problem decomposition. Rather than work on each subproblem
separately, they must always make decisions about how to sequence actions
from all the subproblems. We would prefer an approach that works on sev-
eral subgoals independently, solves them with several subplans, and then
combines the subplans.

Such an approach also has the advantage of �exibility in the order in
which it constructs the plan. That is, the planner can work on obvious
or important decisions �rst, rather than being forced to work on steps in
chronological order. For example, a planning agent that is in Valencia and
wishes to be in Monte Carlo might �rst try to �nd a �ight from San Francisco
to Paris; given information about the departure and arrival times, it can then
work on ways to get to and from the airports.

In what follows, we provide a brief introduction to the Partial-Order Plan-
ning (POP) paradigm ([Barrett and Weld, 1994a][Penberthy and Weld, 1992a]).
A more detailed tutorial can be found in [Weld, 1994]. In POP, search is done
through the space of incomplete partially-ordered plans as opposite to state-
based planning.

The general strategy of delaying a choice during search is called a least
commitment strategy. There is no formal de�nition of least commitment, and
clearly some degree of commitment is necessary, lest the search would make
no progress. Despite the informality, least commitment is a useful concept
for analyzing when decisions should be made in any search problem.

Note also the dummy actions called Start and Finish, which mark the be-
ginning and end of the plan. Calling them actions sympli�es things, because
now every step of a plan is an action. We start with an empty plan. Then
we consider ways of re�ning the plan until we come up with a complete plan
that solves the problem. The actions in this search are not actions in the
world, but actions on plans: adding a step to the plan, imposing an ordering
that puts one action before another, and so on.

A key concept in POP is that of partial-order plan.

2.2. PLANNING 17

De�nition 1. A partial-order plan is a tuple Π = 〈AΠ, OC,CL,G,Threats〉,
where:

• AΠ ⊆ A is the set of ground actions2 in Π,

• OC is a set of ordering constraints (≺) over A,

• CL is a set of causal links over A. A causal link is of the form
(αi, p, αj), and denotes that the precondition p of action αj will be sup-
ported by an X e�ect of action αi,

• G is the set of open conditions of Π. Let αi ∈ A; if ∃p ∈ P(αi)∧ 6
∃αj ∈ A/(αj, p, αi) ⊆ CL, then p is said to be an open condition, and,

• Threats is the set of unsafe causal links of Π, also called the threats. Let
(αi, p, αj) ⊆ CL; (αi, p, αj) is unsafe if there exists an action αk ∈ A
such that p ∈ X(αk) and OC ∪ {αi ≺ αk ≺ αj} is consistent.

Given a planning task T = 〈A, I, G〉, a POP algorithm starts with an
empty partial plan and keeps re�ning it until a solution plan is found. The
initial empty plan Π(0) = 〈AΠ, OC,CL,G,Threats〉 contains only two dummy
actions AΠ = {α0, αG}, the start action α0, and the �nish action αG, where
P(αG) = G, X(α0) = I, {α0 ≺ αG} ⊆ OC, CL = ∅, G = G and Threats = ∅.
The empty plan has no causal links or threats, but, has open condition cor-
responding to the preconditions of αf (the top-level goals G). A re�nement
step in a POP algorithm involves two things; �rst, selecting a �aw (an open
condition or a threat) in a partial plan Π, and then selecting a resolver for
the �aw. The di�erent ways of solving a �aw are:

• Supporting an open condition with an action step. If p is an open
condition, an action α needs to be selected that achieves p. α can be
a new action from A, or any action that already exists in AΠ. Solving
an open condition involves adding a causal link to Π to record that p
is achieved by the chosen action step.

• Solving a threat with an ordering constraint. When the �aw chosen is
an unsafe causal link (αi, p, αj) that is threatened by an action αk, it
can be repaired either by adding the ordering constraint αk ≺ αi, or the
ordering constraint αj ≺ αk, into OC. This solving method involves
reordering the action steps in Π.

2Partial-order planners are capable of handling partially instantiated action instances
and hence, the de�nition of a partial order plan typically includes a set of equality con-
straints on free variables in A [Penberthy and Weld, 1992a]. We will, however, restrict our
attention to ground action instances without any loss of generality for our purposes.

18 CHAPTER 2. PRELIMINARIES

De�nition 2. A plan Π = 〈AΠ, OC,CL,G,Threats〉 is complete if it has
no open conditions (G = ∅).

De�nition 3. A plan Π = 〈AΠ, OC,CL,G,Threats〉 is con�ict-free if it
has no unsafe causal links (Threats = ∅).

De�nition 4. A plan Π = 〈AΠ, OC,CL,G,Threats〉 is a solution if it is
complete and con�ict-free.

Compared with total-order planning, partial-order planning has a clear
advantage in being able to decompose problems into subproblems. This is
very useful in an environment where each agent is able to resolve a di�erent
problem. It is It also has a disadvantage in that it does not represent states
directly, so it is harder to estimate how far a partial-order plan is from
achieving a goal. At present, there is less understanding of how to compute
accurate heuristics for partial-order planning than for total-order planning.

2.3 Argumentation

Argumentation is the interdisciplinary study of how humans should, can,
and do reach conclusions through logical reasoning, that is, claims based,
soundly or not, on premises. It includes the arts and sciences of civil debate,
dialogue, conversation, and persuasion. It studies rules of inference, logic,
and procedural rules in both arti�cial and real world settings.

Argumentation includes debate and negotiation which are concerned with
reaching mutually acceptable conclusions. It also encompasses eristic dialog,
the branch of social debate in which victory over an opponent is the primary
goal. This art and science is often the means by which people protect their
beliefs or self-interests in rational dialogue, in common parlance, and during
the process of arguing. For instance, argumentation is used in law, in trials, in
preparing an argument to be presented to a court, and in testing the validity
of certain kinds of evidence. Also, argumentation scholars study the post hoc
rationalizations by which organizational actors try to justify decisions they
have made irrationally.

2.3.1 Defeasible argumentation in DeLP

In [García and Simari, 2004], the authors propose an argumentation-based
approach for defeasible logic in single-agent contexts. In these contexts,
an agent makes use of defeasible argumentation with an internal delibera-
tion purpose. The basic information is initially given and assumed to re-
main �xed throughout internal argumenation; it is the set of acceptable

2.3. ARGUMENTATION 19

conclusions which may vary as this argumentation is carried on and new
arguments are added into consideration. In this section, we summarize the
main concepts of the work on Defeasible Logic Programming (DeLP), a for-
malism that combines Logic Programming and Defeasible Argumentation
[García and Simari, 2004]. The basic elements in DeLP are facts and rules.
Let L denote a set of literals, where a literal h is a fact A or a negated fact
∼A, and, the symbol v represents the strong negation. The set of rules is
divided into strict rules, i.e. rules encoding strict consequences, and defea-
sible rules, which derive uncertain or defeasible conclusions. A strict rule
is an ordered pair head ← body, and a defeasible rule is an ordered pair
head −� body, where head is a literal, and body is a �nite non-empty set of
literals. For example, the strict rule animal ← bird is denoting the piece
of information "a bird is an animal". However, a defeasible rule is used to
describe tentative knowledge that may be used if nothing else can be posed
against it, e.g. "birds �y" (�y −� bird). Using facts, strict and defeasible
rules, an agent is able to satisfy some literal h as in other rule-based systems.
Let X be a set of facts in L, STR a set of strict rules, and DEF a set of
defeasible rules.

Given a set of ground atoms pn, we introduce �rst strong negation ∼
to represent con�ict between pieces of information p and ∼ p. The set Lit
of ground literals consists of ground atoms plus its ∼-negations; in addi-
tion, the complement function · : Lit → Lit assigns the con�icting literal `
corresponding to each literal `, i.e. p 7−→∼ p and ∼ p 7−→ p.

In [García and Simari, 2004], the authors propose a non-monotonic con-
sequence relation, called warrant, built upon the relation of defeat between
constructible arguments for or against a literal. A defeasible logic program
(or de.l.p., henceforth) is a pair T = (Ψ,∆) consisting of a strict and a
defeasible part:

• a consistent set Ψ of facts, i.e. literals ` ∈ Lit of the form p (for some

p ∈ Var) or its negation p (also, ∼ p), where ` = `, and,

• a set ∆ of defeasible rules, where a defeasible rule is denoted as δ =
{`−�`0, . . . , `k},

with rule ` −�`0, . . . , `k expressing that a warrant for `0, . . . , `n provide a
(defeasible) reason for ` to be warranted. We denote body(δ) = {`0, . . . , `n}
and head(δ) = ` representing the body and head of δ, respectively.

Derivability in T is closed under modus ponens : literals in Ψ are derivable
and, given a rule δ, if each ` ∈ body(δ) is derivable, then head(δ) is derivable.
An argument for ` in a de.l.p. (Ψ,∆), denoted 〈A, `〉 or simply A, is a set of
rules A ⊆ ∆ such that:

20 CHAPTER 2. PRELIMINARIES

• (i) ` is derivable from (Ψ,∆),

• (ii) the set Ψ ∪ A is non-contradictory, and,

• (iii) A is a minimal subset of ∆ satisfying with respect to (i) and (ii).

Intuitively, an argument A is a minimal set of rules used to derive a
conclusion. We denote Rul(A) as the set of rules of A. The set of arguments
constructible in (Ψ,∆) is denoted Args(T). A derivation of a literal ` from
(Ψ,∆), still, does not su�ce for its being warranted in (Ψ,∆). This actually
depends on the interaction among relevant arguments.

More speci�cally, the argument A for ` may be formed by:

Rul(A) = {δ0, δ1}
body[δ0] = {p0, p1, q2}
body[δ1] = {q0, q1, q2}
head[δ0] = `
head[δ1] = p1

concl(δ0) = `
concl(δ1) = p1

concl(A) = `
base(A) = body[Rul(A)] r head[Rul(A)]

literals(A) = body[Rul(A)] ∪ head[Rul(A)]

In short, an argument A for `, is a minimal non-contradictory set of
defeasible rules, obtained from a defeasible derivation for a given literal `.
The literal ` will also be called the conclusion (concl(A)) supported by A.
For instance �gure 2.1 shows the proposed argument A.

Figure 2.2 shows an instantiated example of a penguin, a chicken and a
bird, and, shows a consistent set Ψ of facts and a set ∆ of defeasible rules.
The next arguments can be derived taking into account T = (Ψ,∆) by an
agent:

• 〈{flies(tina)−�chicken(tina)}, f lies(tina)〉

• 〈{flies(tina)−�bird(tina)}, f lies(tina)〉

• 〈{flies(tina)−�chicken(tina), scared(tina)}, f lies(tina)〉

The process to derive a conclusion of an argument A is as easy as going
through the set of rules defeasible of the A from behind forward, or simply
take the head of the last defeasible rule of the argument A. Observe that
in DeLP the construction of arguments is non-monotonic. That is, adding

2.3. ARGUMENTATION 21

Figure 2.1: An argument A for ` made up of two rules δ0, δ1.

facts or strict rules to the agent may cause some arguments to be invali-
dated because they become contradictory. More examples can be found in
[García and Simari, 2004].

Given two arguments A,B, we say A attacks B if the conclusion of A
contradicts some fact used in B, that is, if concl(A) ∈ literals(B). This attack
relation may roughly be seen as symmetric, in the sense that each attacked
argument B contains a sub-argument B′ attacking A. (A sub-argument of
B is a subset B′ ⊆ B supporting some inner conclusion `′ of B, i.e. with
`′ ∈ literals(B).) To decide which contending argument prevails, a notion for
preference among pairs of con�icting arguments is needed. A formal crite-
rion for this lies in a comparison of information used in each argument: an
attacking argument which makes use of more precise rules (or more infor-
mation) is a proper defeater for -is preferred to- the contending argument.
If two contending arguments are not comparable in these terms, they are a

22 CHAPTER 2. PRELIMINARIES

Figure 2.2: An instantiated example.

blocking defeater for each other3.
Given an argument A0 for `, an argumentation line Λ = [A0, . . . ,An]

in (Ψ,∆) is a sequence of arguments constructible in (Ψ,∆), where each
argument Ak+1 is a defeater for its predecessor Ak. Some further conditions
are needed to rule out circular or inconsistent argumentation lines; brie�y,

• arguments supporting (respectively interfering with) A0, i.e. of the
form B2n (respectively B2n+1) must form a consistent set, and

• no sub-argument B′ of an argument B2m ∈ Λ may appear later in Λ (i.e.
it cannot be that B′ = Bm′ with m′ > m) see [García and Simari, 2004,
García et al., 2008].

3Alternatively, one can specify by hand a preference between rules and then induce a
defeat relation for arguments out of it.See [Simari and Loui, 1992] for details.

2.3. ARGUMENTATION 23

Since in a de.l.p. (Ψ,∆) an argument can have several defeaters, di�erent
argumentation lines rooted in A0 can exist. This gives rise to a tree-like
structure, the dialectical tree for A0, denoted TA0(Ψ,∆). To check whether
A0 is defeated, the following procedure on TA0(Ψ,∆) is applied:

• label with a U (for undefeated) each terminal node in the tree (i.e. each
non-defeated argument).

Then, in a bottom-up fashion, we label a node with:{
U if each of its successors is labeled with a D

D (for defeated) otherwise

A literal ` is warranted in (Ψ,∆), denoted ` ∈ warr(Ψ,∆), iff exists an
argument A in (Ψ,∆) with concl(A) = ` and A labeled U in TA(Ψ,∆).

In what follows we will specify more formally the set of introduced con-
cepts of defeasible logic. In this way, we will detail a new de�nition for each
new introduced concept. Note that this set of concepts represent the basis
on which this thesis has been developed.

De�nition 5. A set Ψ∪∆ is non-contradictory if no literal and its comple-
ment `, ` ∈ {pn,∼ pn} can be derived from Ψ ∪∆.

Brie�y, a literal ` is warranted from (Ψ,∆) if there is a non-defeated
argument A supporting `.

De�nition 6. Let ` be a literal, and (Ψ,∆) a defeasible logic program. 〈A, `〉
is an argument for ` if A ⊆ ∆ with

(i) there exists a derivation for ` from Ψ ∪ A,
(ii) the set Ψ ∪ A is non-contradictory, and
(iii) A is ⊆-minimal with respect to (i) and (ii)

Comparison between con�icting arguments is induced from some com-
parison between rules occurring in them. This can be de�ned by (1) using
some particular relation of preference4 > ⊆ ∆ × ∆, or (2) using a a gen-
eral formal method based on quantitative aspects of information occurring
in arguments involved: given two con�icting arguments, the preferred ar-
gument the one that makes use of less rules (hence it is more speci�c), or
makes use of more information (it is more precise). The suggested option in
[García and Simari, 2004] is to combine these two criteria in a lexicographic

4This preference relation between rules will be based on the particular application
domain.

24 CHAPTER 2. PRELIMINARIES

way: we might use method (1) �rst, and if there is no preference, then apply
method (2). In the present contribution, though, we opt for a more general
choice relying on method (1) above.

In the examples below, we opt whenever possible for the general choice
(1) above which captures the natural usage of defeasible logics. The formal
de�nitions for these criteria are as follows. We consider �rst the general
method (1):

De�nition 7. Let (Ψ,∆) and F the set of literals derivable from (Ψ,∆). Let
〈A, `〉 and 〈A′, `′〉 be arguments with A,A′ ⊆ ∆. We say 〈A, `〉 is strictly
more speci�c than 〈A′, `′〉 iff

(1) For all H ⊆ F , if ` derives from H ∪ A, then `′ derives from H ∪ A′,
and

(2) For some H ′ ⊆ F , `′ derives from H ′ ∪ A′ but ` does not derive from
H ′ ∪ A.

If an argument 〈A, `〉 is more precise than another argument 〈A′, `′〉 then the
former is preferred.

For (2), the domain-dependent preference relation between arguments is
induced from preference between rules as follows.

De�nition 8. Let > be a priority relation between rules >⊆ ∆×∆ (where
δ > δ′ means δ is preferred to δ′). We de�ne the following relation > between
arguments : an argument 〈A, `〉 is preferred over 〈A′, `′〉 iff

(i) for some δ ∈ A, δ′ ∈ A′ we have δ > δ′, and

(ii) no element of A′ has priority over some element of A.

Having a notion of preference using the above de�nitions for (1) or (2), we
are in position to de�ne a relation of defeat (relating con�ict with preference).

A �xed (Ψ,∆) may give rise to con�icting arguments, e.g. arguments
whose conclusions are in con�ict (i.e. complementary). But it is not nec-
essary that the con�ict lies between arguments' conclusions: an argument
may include a subargument whose conclusion con�icts with that of another
argument.

De�nition 9. An argument 〈A1, `1〉 attacks or is a counterargument for
〈A2, `2〉 iff there exists a sub-argument 〈A, `〉 of 〈A2, `2〉 such that ` = `1.
Argument 〈A1, `1〉 is a proper defeater for 〈A2, `2〉 iff 〈A1, `1〉 both attacks
and is preferred to 〈A2, `2〉.

2.3. ARGUMENTATION 25

This notion of defeat permits us to de�ne argumentation lines:

De�nition 10. For a given (Ψ,∆) and an argument 〈A0, `0〉 with A ⊆ ∆, an
argumentation line for 〈A0, `0〉 is a sequence of arguments Λ = [〈A0, `0〉, 〈A1, `1〉,
. . . , 〈An, `n〉] such that each of its elements 〈Ak, `k〉 (for k > 0) is a defeater
of its predecessor 〈Ak−1, `k−1〉.

We say that subsequences of even elements [〈A0, `0〉, 〈A2, `2〉, . . .] in an
(acceptable) argumentation line Λ are the supporting arguments for 〈A0, `0〉,
while the subsequence of odd arguments [〈A1, `1〉, 〈A3, `3〉, . . .] in Λ are the
interfering arguments for 〈A0, `0〉 in Λ.

In general, circular counterargument relations are problematic; this in-
cludes self-defeating arguments (whose conclusions are defeated by some of
its sub-arguments), pairs of reciprocal arguments (each containing a subar-
gument contradicting the other argument's conclusion), as well as subtler
cases. The former case is ruled out in DeLP (see [García and Simari, 2004]
Proposition 4.2). For the remaining cases, the next restriction is enough.

De�nition 11. (Adapted from [García and Simari, 2004, García et al., 2008])
An argumentation line

Λ = [〈A1, `1〉, . . . , 〈An, `n〉]

is acceptable iff

(1) Λ is �nite, i.e. n ∈ ω

(2) The set of supporting arguments [〈A2k+1, `2k+1〉]2k<n is consistent (that
is,
⋃

2k<nA2k+1 is consistent); similarly, for the set of interfering ar-
guments [〈A2k, `2k〉]2k≤n.

(3) No argument 〈Ak, `k〉 in Λ is a subargument of an argument 〈Ai, `i〉
appearing earlier in Λ (i.e. with i < k), and

(4) For all k with 1 < k < n, 〈Ak+1, `k+1〉 is a defeater of 〈Ak, `k〉.

From the set of acceptable argumentation lines with root 〈A1, `1〉, one
builds a dialectical tree T (〈A1, `1〉), with the property that each node 〈Ak+1, `k+1〉
is a defeater of 〈Ak, `k〉. To decide whether ` is warranted from (Ψ,∆), we
label the nodes with a �U � (undefeated) or a �D� (defeated). We start with
the leaves 〈An, `n〉 marked as U and then, in a bottom-up manner, we mark
a node 〈Ak, `k〉 as U iff every child node has been marked as D (is defeated);
otherwise (i.e. if some child is marked as U) 〈Ak, `k〉 is marked as D. Finally,
we say that (〈A, `〉) warrants ` (or ` is warranted, or ` ∈ warr(Ψ,∆)) if the
root 〈A, `〉 is marked as U. For instance �gure 2.3 shows the warrant process
for `.

26 CHAPTER 2. PRELIMINARIES

Figure 2.3: Computing warrant for l: an undefeated argument exists.

2.4 Argumentation in Planning

As we introduced in section 1.1, argumentation-based frameworks have been
used in planning for reasoning about what actions are the best to be exe-
cuted in a given situation. Argumentation has been applied on reasoning
about con�icting plans and for generating consistent sets of intentions from
a contradictory set of desires. Moreover, argumentation mechanisms allow
agents to jointly devise a global shared plan and carry out collective actions
and inferences.

2.4.1 A DeLP extension for POP planning

We recall here state-based and POP planning methods, before introducing
DeLP-POP. In state-based planning, a solution is a linear sequence of actions,
and thus before each action αk, we know which state σk ⊆ Lit holds, with σ
consistent.

In backward planning, the starting point is the set of goal G. Let g be

2.4. ARGUMENTATION IN PLANNING 27

an open goal in G, and α an action that solves g; then, g is replaced in the
set of open goals G by the set of preconditions of action α, i.e. P(α).

Partial orderings also give rise to the notion of threat : an action step
potentially interfering with some causal link. When detected, threats are to
be solved by some threat resolution step. Thus in POP, the set of �aws to
be solved in a plan Π includes threats and goals (the latter denoted by G(Π),
this set initially being G). Similarly, plan re�nement steps refer in POP to
ways to solve an open goal or an unsolved threat.

An extension of POP with DeLP-style argumentation, denoted DeLP-
POP, was introduced in [García et al., 2008]. A DeLP-POP planner can ap-
peal both to arguments and actions as a way to resolve goals or threats; so
the original POP notions of planning domain, causal link and threat must
be modi�ed accordingly. As discussed at the beginning of Section 2.2, an ac-
tion is a tuple of the form α = 〈P(α),X(α)〉, described by, respectively, sets
of preconditions and e�ects. If literals in P(α) are enforced (or warranted),
then action α is applicable and its execution will enforce each ` ∈ X(α) (thus
deleting ` if holding previously). An argument A is applicable if base(A) is
enforced; in which case concl(A) is derivable to support some precondition
of α5.

The notions of link and threat between action or argument steps of a POP
become more complex in DeLP-POP. Let ` be an open goal, i.e. ` ∈ P(β) for
some β ∈ AΠ, or ` ∈ base(A), for some argument A ⊆ ∆. If goal ` is planned
to be enforced by an action α, this is encoded as a causal link of Π, in a
set denoted CL(Π): (α, `, κ) ∈ CL(Π) ⊆ AΠ × G(Π) × (AΠ ∪ P(∆)), with
κ = β or κ = A. If goal ` ∈ P(β) is to be enforced by an argument, this is
encoded as a support link of Π, in a set denoted SL(Π): (A, `, β) ∈ SL(Π) ⊆
P(∆)×G(Π)×AΠ. Additional ordering constraints between action steps are
encoded simply as (α, β) ∈ OC(Π) ⊆ AΠ×AΠ. If we abstract from the goals
addressed in CL(Π) and SL(Π), the union of causal links, support links and
ordering constraints OC(Π) induce (by taking their transitive closure) the
partial order of Π, i.e. the order between its steps, denoted ≺:

≺= tc(OC(Π) ∪ π1̂(CL(Π)) ∪ π1̂(SL(Π)))

For a given agent, this search starts with an empty plan Π(0), only con-
taining two dummy actions αΨ ≺ αG; these encode respectively Ψ as e�ects
of αΨ, and G as preconditions of αG (and otherwise empty). At each it-
eration, the algorithm nondeterministically selects an unsolved �aw and a

5See [García et al., 2008]'s backward planning algorithm for a full description of an
instance of an action- or argument-steps, or an open goal in a plan Π. Each such instance
κ is labeled by its full path of links up to some g ∈ G: 〈κ, . . . , g〉.

28 CHAPTER 2. PRELIMINARIES

re�nement step for it (action-, argument- or threat resolution step); after
this re�nement, the algorithm updates the set of unsolved �aws, so goals and
threats are added (if unsolved) or deleted (if solved).

Three kinds of threats must be checked during plan construction in DeLP-
POP, see also Figure 2.4:

(a) action-action: (β, (α0, `, α1)) ∈ AΠ × CL(Π), s.t. ` ∈ X(β); here β
threatens the link between α0 and α1

(b) action-argument: ((β, n), (B, b, α1)) ∈ (AΠ×Lit)×SL(Π), with X(β)∩
literals(B) ⊇ {n}, where β contradicts some step used in B to derive b,
and

(c) argument-argument ((β, ck, C), (B, b, α1)) ∈ (AΠ×Lit×P(∆)×SL(Π),
with C defeating B.

Figure 2.4: Threat types: (a) action-action, (b) action-argument and (c)
argument-argument.

Di�erent maneuvers, consisting in new ordering constraints for the threat,
and/or new plan steps against it, may be tried to resolve each kind of threat.
These maneuvers are inspired by threat resolution steps in standard POP.
See Figure 2.5 for resolution steps to action-action threats (a') and (a�), and
action-argument threats (b') and (b�). See Figure 2.6 for resolutions steps to
argument-argument threats. Note that in (c�) and (c� ') action α1 must be
modi�ed with a new precondition p; this allows to create a link between A
and α1 in the resolution step.

We refer the reader to the algorithm described in [García et al., 2008] for
a more detailed account.

Under this new perspective, we reformulate the de�nition 1 as follows:

2.4. ARGUMENTATION IN PLANNING 29

Figure 2.5: Solutions to (a), (b). Promote: (a'), (b'); and Demote: (a�), (b�).

Figure 2.6: Solutions to (c): Delay (c'), Defeat (c�) and Disable (c� ').

De�nition 12. A partial-order plan is a tuple Π = 〈AΠ∪ASΠ, OC,CL∪
SL,OC,Threats〉, where AΠ, OC, CL and Threats have the usual meaning,
ASΠ is the set of argument steps included in Π and SL is the set of support
links.

30 CHAPTER 2. PRELIMINARIES

3
Multi-agent DeLP-POP: a new

general framework based on

Cooperative Planning

In this section, we survey the main problems a multi-agent extension of DeLP-
POP must face and present an extension of the single-agent framework to
cope with these problems. The novelty of our work is the combination of the
next aspects:

• Defeasible reasoning,

• Decentralized planning, and,

• Multi-agent systems.

3.1 Concepts for a multi-agent DeLP-POP

The main modi�cations we have performed to extend a single-agent DeLP-
POP to a multi-agent scenario are:

31

32 CHAPTER 3. MULTI-AGENT DELP-POP

1. a process for a collaborative detection of existing threats,

2. a process for a collaborative proposal of plans, and,

3. a process for a collaborative construction of arguments.

Let us to introduce a set of concepts that we have implemented with the
objective of addressing the multi-agent DeLP-POP framework. The following
concepts are modi�cations needed for extending the single-agent framework
[García et al., 2008] presented in section 2.4.1.

3.1.1 The planning domain of the agents

An agent x ∈ Ag from our multi-agent DeLP-POP framework is initially
endowed with a planning domain Mx. A planning domain is a tuple Mx =
(Tx, Ax, G) where Tx ⊆ Lit represents (beliefs about) the initial world, Ax is
a set of actions and G ⊆ Lit is the set of goals of the agent. A solution is a
plan Π composed of a set of actions AΠ leading a T -world into a G-world by
means of the actions in the plan AΠ ⊆ Ax. Instead of Tx being just a set of
literals, Tx is now de�ned as a tuple (Ψx,∆x) where:

• Ψx contains the literals that are initially true in the initial world, i.e.,
facts or indisputable statements, and,

• ∆x contains the defeasible rules that may apply anywhere in the plan.

Summarizing, the planning domain of an agent is composed of the fol-
lowing components:

• Ψx: a consistent set of initial facts (literals),

• ∆x: a set of defeasible rules,

• Ax:, a set of actions, and,

• G: a set of goals.

Note that we do not consider private goals in this �rst approach of a
multi-agent DeLP-POP framework. Therefore, multi-agent DeLP-POP is not
able to work with non-cooperative agents. In fact, we will assume that all
agents are fully cooperative and they have only a set of common goals. Con-
sideringThe study the choice of having non-cooperative agent is mentioned
as a future work of this master thesis project (see section 6.2).

3.1. CONCEPTS FOR A MULTI-AGENT DELP-POP 33

3.1.2 Proto-states

A partial order plan (henceforth: plan) Π is a set of actions whose execution
ordering (i.e. links on action pairs) is only partially speci�ed, thus encoding
multiple linear plans. Hence, instead of states, a plan Π determines a (possi-
bly inconsistent) set of facts that are potentially achievable before action α.
This set, which here is called the proto-state of α, is denoted as SΠ

α . Infor-
mally, a proto-state SΠ

α is referred to be the set of facts which could be true
before the action α.

Threat detection is based on the concept of proto-states in our multi-
agent DeLP-POP model, de�ned next. More formally, for a �xed M =
((Ψ,∆), A,G), a plan Π and α ∈ AΠ, the proto-state S

Π
α denotes the set of

literals that can be potentially true before executing α, if we extend ≺Π with
an arbitrary new constraint1:

SΠ
α = {` ∈ Lit | ∃α′ ∈ AΠ s.t. ` ∈ X(α′) and ≺Π ∪{〈α′, α〉}

is consistent, and ∀β ∈ AΠ, if ` ∈ X(β) then
{〈α′, β〉, 〈β, α〉} * tc(≺Π ∪{〈α′, α〉})}

We use the proto-state SΠ
α to compute which arguments A ⊆ ∆ might unin-

tentionally be triggered in the Π.
An argument A is applicable at SΠ

α (see Figure 3.1) if base(A) is enforced
in SΠ

α ; in which case concl(A) is derivable and it may support some precon-
dition of α.

In what follows, we explain an example which shows the content of a
proto-state at di�erent times during the search in the space of plans. The
example allows us to understand how evolution in the construction of the
plan Π implies an updating process in the proto-states. On the one hand, if
we focus our attention on the action α on the left side in Figure 3.2, we can
distinguish two types of actions in the plan Π:

• Actions that must necessarily occur before α: α′ and α′′, and,

• Actions that may occur before α: β and β∗.

Thus, the set of facts which could be true before the action α (proto-state
SΠ
α) is S

Π
α = {p, q, q}. Note that α′′ is ordered before α, and α′′ deletes p, so

p 6∈ SΠ
α .

On the other hand, if we focus our attention on the action α on the right
side in Figure 3.2, we can distinguish two types of actions in the plan Π′:

1Note that SΠ
α is computed as if α were actually applicable. In particular, arguments

occurring before α play no role for SΠ
α .

34 CHAPTER 3. MULTI-AGENT DELP-POP

Figure 3.1: An argument A applicable at the proto-state SΠ
α .

Figure 3.2: How calculate the proto-states in the construction of the di�erent
plans.

• Actions that must necessarily occur before α: α′, α′′ and β, and,

• Actions that may occur before α: β∗.

Although the plan Π has changed to Π′, the proto-state SΠ
α does not

3.1. CONCEPTS FOR A MULTI-AGENT DELP-POP 35

change. However, if β∗ were ordered before α, SΠ
α would change.

3.1.3 Pre-arguments

Multi-agent DeLP-POP introduces the concept of pre-argument A. A pre-
argument A is a tuple of literals and rules (pbase(A),A), where pbase(A)
contains all literals from base(A) but some of them are underlined: ` ∈
pbase(A), which means that:

1. the agent does not know that ` holds in the corresponding proto-state,
and,

2. the agent cannot infer the literal through the actions so it will attempt
to support the literal with an argument step.

Otherwise, if ` occurs non-underlined, we say ` ∈ base+(A). We denote
the set of pre-arguments in a proto-state SΠ

α as PArgs(SΠ
α ,∆) := {(X,A) |

X ⊆ SΠ
α ,A ⊆ ∆ and for each ` ∈ base(A), X(`) ∈ {`, `}}.

Informally, a pre-argument is an argument with a partial knowledge base
which is to be supplemented by:

• the facts known by other agents, and,

• the conclusions derived through the defeasible rules of other agents.

For example, in Figure 3.3, A is a pre-argument proposed by some agent
x1 ∈ Ag, and B is an argument proposed by some other agent x2 ∈ Ag, which
appears to complete A. It is the set of literals (also known as in the set of
underlined literals) base of an argument proposed by an agent, and that the
agent cannot solve by himself, i.e. the agent has not the su�cient knowledge
(actions) to deduce such a literal. For this reason, other agents are allowed
to help the agent support the literal through the use of arguments. Thus, a
collaborative argument construction process is implemented by the concept
of pre-argument in multi-agent DeLP-POP. Figure 3.4 shows this example
executed between the agent x1 and x2.

3.1.4 Cost of the actions and inferences

We introduce the cost of an action, e.g. de�ne action α as 〈P(α),X(α), cost(α)〉
where cost(α) ∈ R. Given two plans Π0 and Π1, we say Π0 is cost-preferred
to Π1 i� cost(Π0) < cost(Π1), where cost(Π) is the aggregated cost function
of Π1. We will consider cost(Π) =

∑
α∈Π cost(α).

36 CHAPTER 3. MULTI-AGENT DELP-POP

Figure 3.3: An argument B re�ning an pre-argument A (I).

As we have previously introduced, an open condition of the plan can be
satis�ed by means of an action or an inferences process about the environ-
ment. Given a non-defeated argument A inferring a open goal `, we consider
that the cost of the argument A as cost(A) = 0.

3.1.5 Agent's learning ability

Communication of facts, rules or actions from agent x to an agent y will be
assumed as an expansion with respect to Ψy, ∆y, and Ay of My.

This aspect allows agents in a multi-agent DeLP-POP to learn (see Figure
3.5) and improve their beliefs and defeasible rules based on dialogues (see
sections 3.3.2 and 3.3.1) with other agents. However, we do not consider a
speci�c learning model [Carmel and Markovitch, 1996] in this master thesis
project, thus learning is as easy as incorporating to the planning model which
new information from a dialogue that not has been previously considered by
an agent.

3.1.6 Absolute and non-absolute threats

As we detail in section 2.4.1, three kinds of threats must be checked during
plan construction in DeLP-POP:

3.1. CONCEPTS FOR A MULTI-AGENT DELP-POP 37

Figure 3.4: An argument B re�ning an pre-argument A (II).

1. action-action,

2. action-argument, and,

3. argument-argument.

We keep these three kinds of threats in a multi-agent DeLP-POP. We sus-
tain that the fact of considering more agents during the plan search does not
increase these three kinds of threats. However, it is important to disntinguish
between absolute threats and not absolute threats.

• Absolute threats: This is the set of threats which do not change under
an increase in the number of agents who are part of a dialogue phase;
in other words, these are the threats that always remain in the plan no
matter the number of agents neither the defeasible knowledge of the
agents. (see sections 3.3.2 and 3.3.1):

� action-action, and

� action-argument.

38 CHAPTER 3. MULTI-AGENT DELP-POP

Figure 3.5: Agents improving their beliefs and defeasible rules by means of
dialogues.

• Non-absolute threats: This is the set of threats that can change ac-
cording to the number of agents who are part of a dialogue phase.

� argument-argument.

The sets of action-action threats and action-argument threats are absolute
under expansions of T . In contrast, expanding Ψ or ∆ (i.e. by learning new
facts or rules) may activate a new argument that defeats (the derivation of)
a literal previously thought to hold. Moreover, such a new arguments might
constitute new argument-argument threat to some step in SL(Π).

Therefore only some class of threats (argument-argument) is not absolute,
and hence discussion between agents for this type of threats makes sense
(see section 3.3.1). An argumentative exchange will su�ce for agents to
agree on the presence of threats. On the other hand, for other types of
threats, discussion would not increase the set of detected threats: they can
be discovered by each agent with the only help of the knowledge implicitly
communicated with the plan itself.

Following the same idea as before, the proto-states SΠ
α are absolute under

expansions of T ; i.e., the proto-state SΠ
α is not changed by the expansion of

T , but by the evolution of the plan Π.

3.2. OVERVIEW OF COOPERATIVE PLANNING 39

3.2 Overview of Cooperative Planning

The previous section introduced the general concepts of the multi-agent
DeLP-POP. Now, we present an overview of cooperative planning algorithm.
In this section, we detail the design and speci�cation of a DeLP-POP frame-
work as an extension of the traditional POP algorithm by considering, among
other things, the introduction of argument steps and corresponding support
links, and multiple agents involved in the discovering of new threats.

The traditional POP algorithm works as follows: starting with the initial
empty plan Π(0) (step 1 in Algorithm 1), it works through the application of
successive re�nement steps at each iteration. First, it chooses a partial-order
plan from the list of candidates (step 3 in Algorithm 1), and then it applies
a re�nement step that involves selecting a �aw (threat or open condition) in
the partial-order plan or it evaluates the selected plan.

The two non-determinist choose steps (see step 3 and step 15 in the algo-
rithm 1) determine that the algorithm has to make a choice among di�erent
alternatives:

• Selecting the next partial-plan to work on (the next re�nement plan
solving it), and,

• Selecting the next open condition/threat to study in the partial plan,
i.e the selection of next �aw to solve in the partial plan chosen in the
above step.

Typically, the selected choice will be the result of the application of a
speci�c heuristic [Ghallab et al., 2004] for selecting of plans, and a di�erent
heuristic to select the next �aw.

3.2.1 Extending the single-agent DelP-POP to multi-
agent DeLP-POP

Algorithm 1 shows an outline of the multi-agent DeLP-POP model which has
been developed in this master thesis project. On the one hand, in contrast
with the traditional POP algorithm, algorithm 1 considers argument steps,
besides action steps, to support unsatis�ed preconditions (�aws). On the
other hand, in contrast with Simari's work [García et al., 2008], algorithm
1 considers multiple agents involved in the detection of new threats, and
multiple agents dialoguing about new re�nement proposals.

In the following, we assume we have a set of agents {x0, x1, ...} ∈ Ag,
each one with a planing domain Mx = ((Ψx,∆x), Ax, Gx) (see section 3.1.1).

40 CHAPTER 3. MULTI-AGENT DELP-POP

In purely cooperative scenarios, agents have no individual interests (i.e.
Gx0 = Gx1 for any x0, x1 ∈ Ag) and hence no incentives to retain relevant
information. Moreover, we assume

⋃
i∈Ag Ψi is a consistent set. Multi-agent

DeLP-POP takes
n⋃
x=0

Mx, where n is the amount of agents to cooperate in

the planning search.

flaws(Π) = G(Π) ∪ Threats(Π) in step 3 represents the set of open goals,
and threats of the plan Π, respectively; Threats(Π) addresses the three types
of threats that can appear in a plan and that we mentioned in section 2.4.1.

A plan Π is added to the set SolutionPlans in step 5, if Π has not unsolved
�aws. Note that the proposed algorithm 1 does not end with the �rst solution
found, but it searches the full space of solutions. Thereby, Algorithm 1 is
guaranteed to �nd an optimal solution (if there is a solution), regardless of
the choice heuristics used in step 3 and step 15.

We can greatly simplify multi-agent planning, at least in cooperative sce-
narios, by using a dialogue-based plan search procedure. On the one hand,
steps from 8 to 13 in algorithm 12 show a dialogue-based plan evaluation
phase where multiple agents are involved in the detection of new threats (see
section 3.3.1). On the other hand, steps from 15 to 21 in algorithm 1 show a
dialogue-based plan search phase where new re�nement plans are proposed to
continue the joint process of building a plan that solves G (see section 3.3.2).
The process ends when the set Plans is empty, in whose case SolutionPlans is
the set of solution plans.

To sum up, two kinds of dialogue are clearly di�erentiated in the algo-
rithm 1:

1. Dialogue-based plan evaluation, and,

2. Dialogue-based plan search.

The main novelty of these two dialogues is that such a dialoguing group of
planner agents actually implements a search procedure. In the next sections,
we will explain in more detail each step of the algorithm 1.

3.3 Dialogues for multi-agent DeLP-POP

The previous section introduced an overview of cooperative planning and an
outline of the multi-agent DeLP-POP algorithm. Now, we present the two

2(n, i) denotes the turn to the agent i in the iteration n in Algorithm 1.

3.3. DIALOGUES FOR MULTI-AGENT DELP-POP 41

1: Plans := Π(0) := {α0 ≺ αG}
n:=0

2: while Plans 6= ∅ do
3: choose Π ∈ Plans

flaws(Π) = G(Π) ∪ Threats(Π)
4: if (flaws(Π) = ∅) then
5: SolutionPlans := SolutionPlans

⋃
Π

go to 3
6: else
7: MultiThreats := 0
8: for each i | (i ∈ Ag) do
9: MultiThreats := MultiThreats

⋃
{Π(n,i)},∀ Π(n,i) that re�nes Π

{Each Π(n,i) is a new 'derived plan' including the threats envis-
aged by the rest of agents}

10: for each x | ((x ∈ Ag) & (x 6= i)) do
11: Update ψx, Update ∆x

12: if (MultiThreats 6= ∅) then
13: Plans := Plans

⋃
MultiThreats

go to 3
14: else
15: choose Φ ∈ flaws(Π)
16: for each i | (i ∈ Ag) do
17: Relevant := Relevant

⋃
{Π(n,i)

r },∀ Π
(n,i)
r that resolves Φ {Each

r is a choice (partial-order planning) to solve Φ}
18: for each x | ((x ∈ Ag) & (x 6= i)) do
19: Update ψx, Update ∆x, Update Ax
20: if Relevant 6= ∅ then
21: Plans := Plans

⋃
Relevant

n← n+ 1
22: if (SolutionPlans = ∅) then
23: return fail {Not exists plan}
24: else
25: return SolutionPlans

Algorithm 1: Outline of the multi-agent DeLP-POP algorithm

42 CHAPTER 3. MULTI-AGENT DELP-POP

types of dialogues, for multi-agent plan evaluation and plan search. Cor-
responding formal results of agreement among agents after these dialogues
terminate are also shown.

More precisely, the purpose of the multi-agent argumentative dialogues
is to let agents:

• Agree upon evaluation of a plan by means of an argument-argument
threat detection. This kind of threats are labeled as non-absolute
threats (see section 3.1.6), and for this reason they are detected through
a dialogue process between agents as we will see in Section 3.3.1.

• Support decentralized plan search, allowing agents to re�ne or revise
plans or to persuade other agents to accept a plan as we will see in
Section 3.3.2.

3.3.1 Dialogue-based plan evaluation

This section introduces a �rst simple dialogue (from steps 7 to 14 in the
algorithm 1) to evaluate a �xed plan. Roughly, the problem stems from
di�erent agents discussing about a particular given plan; since these agents
may have di�erent beliefs (initial facts, rules) they need not agree on the
evaluation of the plan at some step. This evaluation dialogue will conduct
the resolution of future threats.

Algorithm 1 presents a turn-based dialogue (an agent talking only during
her turns) from step 8 to 11, allowing agents {x0, x1} ∈ Ag to collaborate to
discover threats to a �xed argument step A of SL(Π), where Π is a selected
plan in step 3 in algorithm 1. Both agents may contribute to argue pro and
against A in SΠ

α .
The input to this dialogue is the selected plan Π in step 3 in Algorithm 1.

Basically, the dialogue consist of discovering new argument-argument threats
based on the facts and defeasible rules of the agents. In this dialogue, each
agent, at his turn, informs about the threat discovered in the plan, and this
dialogue ends when all agents have received their turn. Note that detecting
threats in the plan Π simply consists in sending an argument B which defeats
some argument A which supports the precondition of some action in Π.

At each turn n, an agent i sends a set of pre-arguments which defeat the
argument A used as a support link in the plan Π. For each detected threat
the agents has to derive the selected plan Π to a plan Π(n,i), where Π(n,i)

is simply Π with the detected argument-argument threat by the agent (see
section 2.4.1):

• n represents the current iteration in Algorithm 1, and,

3.3. DIALOGUES FOR MULTI-AGENT DELP-POP 43

• i represents the agent.

We use the following graphical representation to denote arguments and
actions:

• Arguments are depicted as triangles. The upper vertex of the triangle is
labeled with the argument's conclusion, and the bottom of the triangle
is labeled with the argument's base. An argument is identi�ed by a
letter of {Ax,Bx, Cx, ...}, where the superscript x indicates the agent
who proposed the argument.

• Actions are depicted as rectangles. The top of the rectangle is labeled
with the e�ects of the action α, i.e., X(α), and the bottom of the triangle
is labeled with the preconditions of the action α, i.e., P(α). An action α
is identi�ed by a short name. For example, the short name mP denotes
'moving plane'.

For instance, Figure 3.6 shows a selected plan Π in step 3 in Algorithm
1 as the input to this dialogue, and Figure 3.7 shows a derived plan Π(n,i)

including the discovered argument-argument threat (by the agent Ann) as
the output of this dialogue.

As shown in step 10 and step 11, for each proposed pre-argument B, the
other agents, learn as initial facts those literals stated in B that are not in
the their view of the proto-state, i.e. with ` ∈ base+(B) and ` ∈ Sα.

Informally, the agents learn (see Section 3.1.5) those literals from each
proto-state which are not known by them. Hence, so-learned literals ` must
have come from the other agent's ψ-set and propagated to this proto-state.
All rules from B which are novel to the agent are learned as well.

The output of this dialogue is a set of plans MultiThreats where each
Π(n,i) ∈ MultiThreats derives Π. In multi-agent DeLP-POP, two types of
outputs from this dialogue are di�erentiated:

• MultiThreats = ∅: there is not any detected threat to the plan Π by the
agents, and then Algorithm 1 jumps to step 15 to start the dialogue-
based search in the space of plans.

• MultiThreats 6= ∅: at least there is one detected threat by the agents,
the set of new plans MultiThreats is added to Plans, and the Algorithm
1 jumps to step 3.

Figure 3.8 intends to be a scene that shows graphically the activity carried
out by a set of �ve agents ({x0, x1, x2, x3, x4} ∈ Ag) during the dialogue-based

44 CHAPTER 3. MULTI-AGENT DELP-POP

Figure 3.6: A selected plan Π.

plan evaluation. A plan Π is selected by step 3 of algorithm 1, and a set of
agents start an argumentative discussion to evaluate the feasibility of the
plan.

Since the the set of facts ψ and defeasible rules ∆ of each agent is �nite,
the dialogue-based plan evaluation will always terminate in a �nite number of
iterations (see step 8 in the algorithm 1). Note that one evaluation dialogue
is required for each selected plan.

3.3.2 Dialogue-based search in the space of plans

This section introduces a second dialogue (from steps 16 to 21 in the Al-
gorithm 1) to propose di�erent re�nement plans which support the selected
�aw Φ, such that Φ ∈ flaws(Π). When we say �aw we refer to both an open

3.3. DIALOGUES FOR MULTI-AGENT DELP-POP 45

Figure 3.7: A derived plan Π(n,Ann).

goal or a threat in the plan Π. Each re�nement, indicated as 'r' in Algorithm
1, gives rise to a re�nement plan that is included in the set 'Relevant'.

Multi-agent DeLP-POP works on a planning process distributed among
several planning/executing agents who devise a joint, non-linear plan which
be later executed by the same agents. We assume that agents are speci�cally
designed to be cooperative, so the agent's decisions must only be derivative
from the collective goals G. Domain knowledge is usually distributed among
agents, so agents typically works with an incompletely known domain, i.e.,
the set of actions that an agent can propose is di�erent from other agents'.

The overall goal of this dialogue is to enable agents to propose di�erent
plans. The main di�erence with respect to traditional POP planners is that
DeLP-POP uses two ways to support the �aw Φ:

• Supporting the �aw Φ with an action step: the semantics is the same

46 CHAPTER 3. MULTI-AGENT DELP-POP

MultiThreats

Turn (n,x0)

Evaluation 0

Turn (n,x1)

Evaluation 1

Turn (n,x2)

Evaluation 2

Turn (n,x3)

Evaluation 3

Turn (n,x4)

Evaluation 4

Figure 3.8: Evaluating a selected plan Π.

as in classical planning; a precondition Φ is achievable by some action
α ∈ A, or the threat is solved by imposing an ordering constraint
between two actions, and,

• Supporting the �aw Φ with an argument step: Φ is derivable by some
proposed argument A.

Thus, a plan Π can be re�ned with an argument step or an action step.
This dialogue refers to multiple agents planning and acting also collabora-

tively. More speci�cally, agents interact to design a devised plan in algorithm
1 that none of them could have generated individually in most cases. This
dialogue during the plan construction is also (see section 3.3.1) realized as a
turn-based dialogue between the agents. The agents keep in mind that the
devised plan will be jointly executed by themselves such that they collec-

3.3. DIALOGUES FOR MULTI-AGENT DELP-POP 47

tively achieve the common goals G (G is known by all of the agents) of the
problem.

Following, we explain the steps involved in this dialogue:

1. The input to this dialogue is the selected plan Π in step 3 in Algo-
rithm 1 and the selected �aw Φ according to some heuristic function
[Gerevini and Schubert, 1996, Ge�ner, 2005, Penberthy and Weld, 1992b]
in step 15 in Algorithm 1.

each agent, at his turn, informs about the threat discovered in the plan,
and

2. The turns round (steps from 16 to 21) between the agents start in the
same way that the previous dialogue-based plan evaluation (see section
3.3.1). In this dialogue, each agent, at his turn, proposes proposals as
alternatives to achieve3 or derive4 the selected �aw Φ, and this dialogue
ends when all agents have had a turn. The set of proposals (by the

agent) which re�ne the selected plan Π are also labeled as Π
(n,i)
r , where

n also represents the current iteration in Algorithm 1, i represents the
agent, and r represents the re�nement proposal by the agent.

At each turn i, an agent can propose as many plans as possible from
their knowledge.

• To update one's set of initial facts, an agent will, as before, extract
literals from (pre-)arguments' bases, but also will learn those liter-
als ` in received plan proposals. Unlike the previous dialog where
the agent's learning ability is focused exclusively on the facts or
literals and defeasible rules, here multi-agent DeLP-POP intro-
duces also update of non-initial actions, i.e., this actions which
were not known at the beginning of the problem by the agent.

3. The output of this dialogue is a set of plans Relevant where each
Π

(n,i)
r ∈ Relevant extends Π. In multi-agent DeLP-POP, two types

of outputs for this dialogue are also di�erentiated:

• Relevant = ∅: there is not any proposal to resolve the �aw Φ in
Π by the agents. The algorithm 1 implicitly prunes Π due to this
reason that the selected plan Π has not been re�ned by the agents,
and then the algorithm jumps to step 2.

3action steps and causal links
4argument steps and support links

48 CHAPTER 3. MULTI-AGENT DELP-POP

• Relevant 6= ∅: at least there is re�nement proposed by the agents,
the set of new plans Relevant is added to Plans, and the Algorithm
1 jumps to step 3.

For instance, Figure 3.9 shows a selected plan Π in step 3 in Algorithm
1 as the input to this dialogue, where Φ = µp, and Figure 3.10 shows a

re�nement plan Π
(n,i)
r to Π as the output of this dialogue.

Figure 3.9: A selected plan Π.

Figure 3.115 intends to be a scene that shows graphically the activity
carried out by a set of three agents who propose three di�erent sets of plans
to support a selected precondition Φ during the dialogue-based search in the
space, and where H1 represents the amount of proposed plans by the �rst
agent, idem for H2 and H3. .

5The number of agents will be de�ned at the beginning of the problem.

3.3. DIALOGUES FOR MULTI-AGENT DELP-POP 49

Figure 3.10: A re�nement plan Π
(n,i)
r .

50 CHAPTER 3. MULTI-AGENT DELP-POP

Selected
Flaw:

Figure 3.11: Agents proposing di�erent plans.

4
Validation

In this chapter we develop a case study of travel between two cities from
Taiwan, using the multi-agent DeLP-POP proposed in this work with the
aim to validate our proposal. A scenario analysis, a scenario speci�cation,
and �nally a scenario implementation of Cooperative Planning, using the
di�erent types of dialogue (see section 3) will be detailed in this section.

4.1 Representation of actions with defeasible

e�ects

Suppose we want to represent an action α having irrevocable e�ects p0, p1, . . .
as well as n defeasible e�ects d0, d1, . . ., which are defeated by conditions
d′0, d

′
1, . . . respectively. At its turn, these arguments might be defeated by

other arguments (thus restoring the defeasible e�ect after the action's exe-
cution), and so on.

We represent this action α as follows:

• introduce an instrumental irrevocable e�ect µ′ (meaning α was just
executed),

51

52 CHAPTER 4. VALIDATION

• then we de�ne X(α) = {p0, p1, . . . , µ
′}, and,

• and expand the set of rules ∆ with {dk −�µ′}k<n ∪ {dk −�µ′, d′k}k<n.

Following this way it is not necessary to specify all the preconditions of
an action. This way multi-agent DeLP-POP may code actions so as to deal
with the quali�cation problem1.

4.2 Introduction to the scenario

The next example (see Figure 4.1)2 shows a scenario to Cooperative Plan-
ning. There are three di�erent locations in this scenario Bejing, Fuzhou and
Taipei. Our multi-agent systems is composed of two agents, Joe and Ann,
who wish to travel to Taipei to attend the AAMAS conference as invited
speakers. As can be seen, there are several direct or indirect connections
between Bejing and Taipei: via car and ship, train and ship, or plane. The
agents, the car, the train and the plane are initially located at Bejing, and
the goal (G) is to have the two agents at Taipei subject to the restriction
that they must always travel together. Agents have di�erent knowledge and
two pieces of information from each agent can appear to be contradictory.
Let's assume that Joe uses TV as a source of information, but Ann prefers
Internet to keep up to date, and both agree in �nding a plan that minimizes
the time units.

4.3 Scenario speci�cation

For x ∈ Ag = {Ann, Joe}, Mx = ((Ψx,∆x), Ax, G), i.e., two agents are
considered3:

The following abbreviations can be assumed:

• l1, l2, l3 - Bejing, Fuzhou and Taipei,

• car, tra, pl, shi - a car, a train, a plane, a ship,

• r, rl, al, ml - a road, a railway, an airline company, a maritime line,

1The quali�cation problem [Ginsberg and Smith, 1988] is concerned with the impossi-
bility of listing all the preconditions required for a real-world action to have its intended
e�ect

2Get Directions on Google maps, http://maps.google.es
3We consider propositional STRIPS planning representation, and the default proposi-

tion (have p) to any literal p that does not have an associated proposition.

4.3. SCENARIO SPECIFICATION 53

Bejing

Taipei

Fuzhou

tra

car

pl

shi

Figure 4.1: Scenario of the application example

• bw, sn, wg, ss - bad weather, snow, wind gusts, stormy sea,

• br, ll, esf , aeo - bad railroad, landslides, electrical supply failure, air-
plane engines work well,

• va, ds, ip, gw - volcano ash cloud, dangerous situation, risk of increased
pollution, contribution to global warming,

• h, tj, kudTV , kudI - holidays, tra�c jam, kept up to date by TV news,
kept up to date by Internet news,

• µC , µP , µT , µS - moved car, moved plane, moved train and moved ship

Following, we present the objects de�ned in this problem:

54 CHAPTER 4. VALIDATION

AJoe =


1. {µC , ip}

fMc←−− {(link r l1 l2), (at car l1),
(at Ag l1)}

2. µP
mP←−− {(link al l1 l3), (at pl l1),

(at Ag l1)}



AAnn =


4. µT

mT←−− {(link rl l1 l2), (at tra l1),
(at Ag l1)}

5. µS
mS←−− {(link ml l2 l3), (at shi l2),

(at Ag l2)}


G =

{
(at Ag l3)

}

1. mP (pl, j, k): moving plane 'pl' from location 'j' to 'k'. It is necessary
an airline company to travel from 'j' to 'k', the plane in 'j' and both
Joe and Ann in 'j'. Moving a plane takes 2 time unit and 400 cost
units.

2. mT (tra, j, k): moving train 'tra' from location 'j' to 'k'. This action
takes 6 time units and 200 cost units.

3. mS(shi, j, k): moving ship 'shi' from location 'j' to 'k'. This action
takes 3 time units and 100 unit cost.

4. fMc(car, j, k): fast-moving car 'car' from location 'j' to 'k'. This
action takes 8 time units and 80 cost units.

ΨJoe =

{
wg; aeo; kudTV ; (at Ag l1);

(at pl l1); (link al l1 l3); (link r l1 l2);

}

ΨAnn =

{
kudI; (at Ag l1); (at tra l1); (at shi l2)

(link rl l1 l2); (link ml l2 l3)

}

4.4. SEARCHING FOR A SOLUTION PLAN 55

∆Joe =



{(at pl l3), (at Ag l3)} −�µP ;
{(at car l2), (at Ag l2)} −�µC ;

{∼(at tra l2),∼(at Ag l2)} −�{µT , br};
{∼(at shi l3),∼(at Ag l3)} −�{µS, ss};
br −�ll; ll −�wg; br −�esf ; esf −�sn;
sn−�kudTV ; tj −�h; h−�kudTV ;
ss−�bw; bw −�wg; ∼va−�aeo;



∆Ann =



{∼(at pl l3),∼(at Ag l3)} −�{µP , ds}
{∼(at car l2),∼(at Ag l2)} −�{µC , tj}
{(at tra l2), (at Ag l2)} −�µT ;
{(at shi l3), (at Ag l3)} −�µS;

ds−�va; va−�kudI; ∼ss−� ∼bw;
∼bw −�h; h−�kudI; ∼ll −� ∼bw; ∼br −� ∼bw;

∼bw −�kudI; ∼sn−�kudI; gw −�ip;


In what follows, we explain how our proposal works to obtain a complete

plan Π that satis�es the goal G.

4.4 Searching for a solution plan

In what follows, we show, step by step, how the algorithm 1 works. Each
number represents the behaviour to a selected plan. As we mentioned in
section 3.3.1, arguments will be depicted as triangles. The upper vertex of
the triangle will be labeled with the argument's conclusion, and the set of
defeasible rules in the argument will be associated with the triangle itself.
Sub-arguments will be represented as smaller triangles contained in the tri-
angle which corresponds to the main argument at issue.

1. The planning process starts with an empty plan selected Π(0) in step 3
in algorithm 1, essentially {α0 ≺ αG}:

• Since the plan Π(0) is only composed by dummy actions, no threats
are detected in the dialogue-based plan evaluation (steps from 8
to 11 in algorithm 1) and no no updates are made (steps from 10
to 11 in algorithm 1), and, MultiThreats = ∅. Thus, the algorithm
1 jumps to step 15.

56 CHAPTER 4. VALIDATION

• flaws(Π(0)) in step 3 returns (at Ag l3), and Φ = (at Ag l3) in step
15 in algorithm 1.

• A dialogue-based search in the space of plans starts in step 15 in
algorithm 1. Joe takes the �rst turn process and puts forward
(among others, not discussed in this example) a re�nement plan
Π(0,Joe) where:

Π(0,Joe) = {AJoe, αG} andAJoe = ({(at Ag l3)}, {(at Ag l3)−�µP})
(see Figure 4.2(a)). Ann learns that µP ∈ SmP , and she skip her
turn.

• We jump to step 3 in algorithm 1.

2. Suppose Π(0,Joe) is the plan selected, so we move to (1, ·) turns.

• No threats are detected in the dialogue-based plan evaluation, and
the algorithm 1 jumps to step 15.

• flaws(Π(0,Joe)) in step 3 returns µP , and Φ = (µP) in step 15 in
algorithm 1.

• A dialogue-based search in the space of plans starts in step 15 in
algorithm 1.

� At (1, Ann) turn4, Ann sends more plans.

� At (1, Joe) turn, Joe re�nes his previous plan. Since µP is not
included in (ψAnn∪ψJoe), he proposes the actionmP (pl, l1, l3)
to support µP (see Figure 4.2(b)). Hence, Π(1,Joe) = {mP,Π(0,Joe)}.
Ann learns action mP . We jump to step 3 in algorithm 1.

3. Suppose Π(1,Joe) is the plan selected, so we move to (2, ·) turns.

• A dialogue-based plan evaluation starts. Now its Ann's turn
(2, Ann). She �nds an argument-argument threat to AJoe (i.e.
to the support link containing AJoe, and to Joe's plan), based on
his initial knowledge of kudI. Π(2,Ann) = {mP, (BAnn, (AJoe, αG))}
where BAnn = ({ ∼(at Ag l3)}, { ∼(at Ag l3)−� {µP , ds}; ds −
�va; va −�kudI}) (see Figure 4.2(c)). The initial fact kudI and
these rules are learnt by Joe. Assume that nothing relevant hap-
pens in next (2, ·) turns.
• We jump to step 3 in algorithm 1.

4As we mentioned in Section 3.2, (n, i) denotes the turn to the agent i in the iteration
n in Algorithm 1.

4.4. SEARCHING FOR A SOLUTION PLAN 57

Figure 4.2: Di�erent partial plans for the example scenario (I). (a), (b): Joe's
turns and (c): Ann's turn.

4. Suppose that Π(2,Ann) is the plan selected, and we move to (3, ·) turns.

• No new threats are detected in the dialogue-based plan evaluation,
and the algorithm 1 jumps to step 15.

• flaws(Π(2,Ann)) in step 3 returns the argument-argument threat,
and Φ = (argument-argument threat) in step 15 in algorithm 1.

• A dialogue-based search in the space of plans to resolve this threat
starts in step 15 in algorithm 1.

� At Ann's turn (3, Ann), she �nds nothing relevant.

� At Joe's turn (3,Joe), he selects a Defeat-the-defeater 5 move
against ds, based on her knowledge. Π(3,Joe) = {mP, (CJoe,BAnn,
(AJoe, αG))} where CJoe = ({∼ va}, {∼ va −�aeo}). It is a

5See Section 2.4.1 for resolutions steps to argument-argument threats.

58 CHAPTER 4. VALIDATION

Defeat-the-defeater move since concl(CJoe) ∈ literals(BAnn)) (see
Figure 4.3(d)), and aeo ∈ SαG

.

• We jump to step 3 in algorithm 1.

The plan Π(3,Joe) represents a solution plan. However, the algorithm 1
would continue to �nd all possible solutions.

To sum up, Joe suggested to take the plane to arrive to Taipei, but Ann
defeated the proposal because the volcano ashes are expected according to
the Internet information, and Joe replied that this situation will not a�ect
the �ight between Beijing and Taipei. Then the plan Π(3,Joe) can re�ned
into a solution.

Figure 4.3: Di�erent partial plans for the example scenario (II). (d): Joe's
turn.

Figure 4.4 shows the search in the space of partial-order plans for the
example scenario, where:

4.4. SEARCHING FOR A SOLUTION PLAN 59

• Π(0,Joe) is the output of the �rst dialogue-based search in the space of
plans,

• Π(1,Joe) is the output of the second dialogue-based search in the space
of plans,

• Π(2,Ann) is the output of the �rst dialogue-based plan evaluation, and,

• Π(3,Joe) is the plan to resolve the argument-argument threat, and is the
output of the third dialogue-based search in the space of plans.

Note that, a dialectal tree is implicitly built to each detected argument-
argument threat, and in the above case the dialectal tree consists of a single
argumentation line Λ = [AJoe,BAnn, CJoe].

We do not show the rest of the example, but recall the planning process
would not end until the full space of solutions is explored, in order to select
the optimal solution (according to either economic or temporal cost).

60 CHAPTER 4. VALIDATION

40.625

40.625

40.625

...…
..

…
..

Figure 4.4: Search in the space of partial-order plans for the example scenario.

5
Related Work

In this section, we present a comparison with other works in the literature
and justify our choice for multi-agent planning with defeasible argumentation
in DeLP-POP.

The work presented in this master thesis project is similar to several pro-
posals found in the literature: multi-agent argumentation (in non-dynamic
scenarios), cooperative planning (without defeasible argumentation) and cen-
tralized planning.

Some systems that build on argumentation apply theoretical reasoning for
the generation and evaluation of arguments to build applications that deal
with incomplete and contradictory information in dynamic domains. Some
proposals in this line focus on planning tasks, or also called practical reason-
ing, i.e. reasoning about what actions are the best to be executed by an agent
in a given situation. Dung's abstract system for argumentation [Dung, 1995]
has been used for reasoning about con�icting plans and generate consistent
sets of goals [Amgoud, 2003, Hulstijn and van der Torre,]. Further exten-
sions of these works present an explicit separation of the belief arguments
and goals arguments and include methods for comparing arguments based on
the worth of goals and the cost of resources [Rahwan and Amgoud, 2006]. In
any case, none of these works apply to a multi-agent environment. A proposal

61

62 CHAPTER 5. RELATED WORK

for dialogue-based centralized planning is that of [Tang et al., 2010], but no
argumentation is made use of. The work in [Belesiotis et al., 2010] presents
a dialogue based on an argumentation process to reach agreements on plan
proposals. Unlike our focus on an argumentative and stepwise construction
of a plan, this latter work is aimed at handling the interdependencies between
agents' plans.

On the other hand, we can also �nd some systems that realize argumen-
tation in multi-agent systems using defeasible reasoning but are not particu-
larly concerned with the task of planning [Thimm and Kern-Isberner, 2008,
Thimm, 2009]. All in all, the novelty of our approach is the combination of all
these aspects: defeasible reasoning, decentralized planning and multi-agent
systems.

6
Conclusions and Future Work

This latter chapter contains the main conclusions of this work, the future
lines of research and related publications, produced as a result of this research
work.

6.1 Conclusions

In this thesis, we have presented a defeasible argumentation-based model
built on the approximation of Garcia et al [García et al., 2008] that extends
their work by incorporating multiple agents with partial and contradictory
knowledge articulate reasons for and against. Speci�cally, we presented a de-
centralized A∗ plan search algorithm for multi-agent argumentative planning
in the framework of DeLP-POP. This search is implemented as a dialogue
between agents, which cooperate to criticize or defend alternative plans by
means of defeasible arguments. Only potentially relevant information is ex-
changed in the dialogue process, which terminates in a provably optimal
solution upon which agents cannot disagree.

Along the work, we have introduced the necessary modi�cations to include
a defeasible reasoning into a POP algorithm. This new and enriched model
opens up many possibilities to be applied to a multi-agent planning context.

63

64 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Our work is also related to conformant planning [Ho�mann and Brafman, 2006],
an approach to deal with planning with incomplete information in which the
purpose is to generate plans given uncertainty about the initial state and
action e�ects, and without any sensing capabilities during plan execution.
However, unlike conformant planning, our approach is a powerful planning
mechanism for reasoning about contradictory information coming from dif-
ferent sources or agents. In this sense, in the literature of classical planning
we can hardly �nd approaches to deal with contradictory information be-
cause, among other reasons, there are very few attempts to extend planning
to a multi-agent environment, being a notably exception the work of Bren-
ner and Nebel [Brenner and Nebel, 2009]. Hence, the present work is a novel
approach regarding the consideration of incomplete and contradictory infor-
mation of multiple reasoning entities, i.e. agents.

6.2 Future work

For future work, several directions seem promising: extending the present
approach to other multi-agent scenarios, like Argumentation-based Group
Recommendation, Argumentation-based Negotiation, or an extension into
Temporal Planning.

In this context, we will also study the choice of having non-cooperative
agents [Axtell, 2002] in multi-agent DeLP-POP.

Although, multi-agent DeLP-POP guarantees an optimal solution (if some
solution exists) by exploring the full space of plans, it would be important
to study a heuristic h [Gerevini and Schubert, 1996, Ge�ner, 2005] A?1 for
selecting of plans, and a di�erent heuristic to select the next �aw, which
reduce the search space. This would imply that the number of dialogues
between agents would be signi�cantly reduced.

In addition, we are interested in studying a more sophisticated model of
learning to the agents.

6.3 Published papers

In this section we present the papers that the author published during his
master thesis project.

1A? uses a best-�rst search and �nds the least-cost path from a given initial node to
one goal node (out of one or more possible goals).

6.3. PUBLISHED PAPERS 65

6.3.1 Papers directly related to this work

This work has been published in an international conferences and a e-book
chapter.

1. S. Pajares and E. Onaindia. DefPlanner: A defeasible argumentation-
based planner. Proceedings of 2nd International Workshop / Special
Track on Combinations of Intelligent Methods and Applications (CIMA
2010). pp. 34-42 (2010).

2. S. Pajares and E. Onaindia. Defeasible Planning through Multi-Agent
Argumentation. Modelling Machine Emotions For Realizing Intelli-
gence, Smart Innovation Systems and Technologies Series, Springer.
In Press(2011).

Moreover, a shorter version of this work was submitted to the AAMAS
2011 conference2, and comments in the rebuttal phase of AAMAS 2011 are
quite hopeful.

6.3.2 Other papers

1. I. Garcia, L. Sebastia, S. Pajares and E. Onaindia. The generalist
recommender system GRSK and its extension to groups. Lecture Notes
in Business Information Processing (LNBIP), Springer. In Press(2011).

2. I. Garcia, L. Sebastia, S. Pajares and E. Onaindia. GRSK: A Generalist
Recommender System. Proceedings of the 6th International Conference
on Web Information Systems and Technology. Vol.I. pp.211-218(2010).

2http://www.aamas2011.tw/

66 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[Amgoud, 2003] Amgoud, L. (2003). A formal framework for handling con-
�icting desires. In ECSQARU, pages 552�563.

[Atkinson and Bench-Capon, 2007] Atkinson, K. and Bench-Capon, T.
(2007). Practical reasoning as presumptive argumentation using action
based alternating transition systems. Arti�cial Intelligence, 171:855�874.

[Atkinson et al., 2006] Atkinson, K., Bench-Capon, T. J. M., and McBurney,
P. (2006). Computational representation of practical argument. Synthese,
152(2):157�206.

[Axtell, 2002] Axtell, R. (2002). Non-cooperative dynamics of multi-agent
teams. In Proceedings of the �rst international joint conference on Au-
tonomous agents and multiagent systems: part 3, pages 1082�1089. ACM.

[Barrett and Weld, 1994a] Barrett, A. and Weld, D. (1994a). Partial-order
planning: evaluating possible e�ciency gains. Arti�cial Intelligence,
67(1):71�112.

[Barrett and Weld, 1994b] Barrett, A. and Weld, D. S. (1994b). Partial-
order planning: Evaluating possible e�ciency gains. Arti�cial Intelligence,
67(1):71�112.

[Belesiotis et al., 2010] Belesiotis, A., Rovatsos, M., and Rahwan, I. (2010).
Agreeing on plans through iterated disputes. In AAMAS, pages 765�772.

67

68 BIBLIOGRAPHY

[Bench-Capon and Dunne, 2007] Bench-Capon, T. and Dunne, P. (2007).
Argumentation in arti�cial intelligence. Arti�cial Intelligence, 171(10-
15):619�641.

[Brenner and Nebel, 2009] Brenner, M. and Nebel, B. (2009). Continual
planning and acting in dynamic multiagent environments. Journal of Au-
tonomous Agents and Multiagent Systems, 19(3):297�331.

[Carmel and Markovitch, 1996] Carmel, D. and Markovitch, S. (1996).
Learning models of intelligent agents. In Proceedings of the National Con-
ference on Arti�cial Intelligence, pages 62�67.

[Cox et al., 2005] Cox, J., Durfee, E., and Bartold, T. (2005). A distributed
framework for solving the multiagent plan coordination problem. In AA-
MAS'05, pages 821�827.

[de Weerdt et al., 2005] de Weerdt, M., ter Mors, A., and Witteveen, C.
(2005). Multi-agent planning. an introduction to planning and coordina-
tion. In Handouts of the European Agent Systems Summer School (EASSS-
05), pages 1�32.

[desJardins et al., 1999] desJardins, M., Durfee, E., Ortiz, C., and Wolver-
ton, M. (1999). A survey of research in distributed continual planning. AI
Magazine, 20(4):13�22.

[Dung, 1995] Dung, P. M. (1995). On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic programming and
n-person games. Arti�cial Intelligence, 77(2):321�358.

[Durfee, 1999] Durfee, E. H. (1999). Distributed problem solving and plan-
ning, volume In Gerhard Weiss editor, pages 118�149. The MIT Press,
San Francisco, CA.

[Durfee, 2001] Durfee, E. H. (2001). Distributed problem solving and plan-
ning. In Multi-agents Systems and Applications (EASSS 2001), volume
LNAI 2086, pages 118�149. Springer-Verlag.

[Ferber, 1999] Ferber, J. (1999). Multi-agent systems: an introduction to
distributed arti�cial intelligence, volume 222. Addison-Wesley New York.

[Fikes and Nilsson, 1971] Fikes, R. and Nilsson, N. (1971). STRIPS: A new
approach to the application of theorem proving to problem solving. Arti-
�cial intelligence, 2(3-4):189�208.

BIBLIOGRAPHY 69

[Ganzha et al., 2005] Ganzha, M., Paprzycki, M., Pirvanescu, A., Badica,
C., and Abraham, A. (2005). JADE-based Multi-Agent E-commerce En-
vironment: Initial Implementation. Analele Universitatii din Timisoara,
Seria Matematica-Informatica.

[García and Simari, 2004] García, A. and Simari, G. (2004). Defeasible logic
programming: An argumentative approach. Theory and Practice of Logic
Programming, 4(1+ 2):95�138.

[García et al., 2008] García, D., García, A., and Simari, G. (2008). Defeasi-
ble reasoning and partial order planning. In Proceedings of the 5th interna-
tional conference on Foundations of information and knowledge systems,
pages 311�328. Springer-Verlag.

[Ge�ner, 2005] Ge�ner, H. (2005). Search and Inference in AI Planning. In
Principles and practice of constraint programming�CP 2005: 11th interna-
tional conference, CP 2005, Sitges, Spain, October 1-5, 2005: proceedings,
page 1. Springer-Verlag New York Inc.

[Gerevini and Schubert, 1996] Gerevini, A. and Schubert, L. (1996). Accel-
erating partial-order planners: Some techniques for e�ective search control
and pruning. Arxiv preprint cs/9609101.

[Ghallab et al., 2004] Ghallab, M., Nau, D., and Traverso, P. (2004). Auto-
mated Planning. Theory and Practice. Morgan Kaufmann.

[Ginsberg and Smith, 1988] Ginsberg, M. and Smith, D. (1988). Reason-
ing about action II:: The quali�cation problem. Arti�cial Intelligence,
35(3):311�342.

[Ho�mann and Brafman, 2006] Ho�mann, J. and Brafman, R. I. (2006).
Conformant planning via heuristic forward search: A new approach. Artif.
Intell., 170(6-7):507�541.

[Hulstijn and van der Torre,] Hulstijn, J. and van der Torre, L. Combinin-
ing goal generation and planning in an argumentation framework. In Proc.
Workshop on Argument, Dialogue and Decision at the International Work-
shop on Non-monotonic Reasoning (NMR'04).

[Penberthy and Weld, 1992a] Penberthy, J. and Weld, D. (1992a). UCPOP:
A sound, complete, partial order planner for ADL. In proceedings of the
third international conference on knowledge representation and reasoning,
pages 103�114. Citeseer.

70 BIBLIOGRAPHY

[Penberthy and Weld, 1992b] Penberthy, J. and Weld, D. (1992b). UCPOP:
A sound, complete, partial order planner for ADL. Proceedings of the
International Conference on Principles of Knowledge Representation and
Reasoning, pages 103�114.

[Prakken et al., 1997] Prakken, H., Gordon, T., Walton, D., Bench-Capon,
T., Bex, F., van den Braak, S., van Oostendorp, H., Prakken, H., Verheij,
H., and Vreeswijk, G. (1997). Logical tools for modelling legal argument:
a study of defeasible reasoning in law. Dordrecht, Boston.

[Prakken and Sartor, 1997] Prakken, H. and Sartor, G. (1997). Argument-
based extended logic programming with defeasible priorities. Journal of
Applied Non-Classical Logics, 7(1).

[Rahwan and Amgoud, 2006] Rahwan, I. and Amgoud, L. (2006). An
argumentation-based approach for practical reasoning. In International
Workshop on Argumentation in Multi-Agent Systems (ArgMAS), pages
74�90.

[Ralston et al., 1993] Ralston, A., Reilly, E., Hemmendinger, D., and (Firm),
X. (1993). Encyclopedia of computer science.

[Russell and Norvig, 2009] Russell, S. and Norvig, P. (2009). Arti�cial intel-
ligence: a modern approach. Prentice hall.

[Simari and Loui, 1992] Simari, G. and Loui, R. (1992). A mathematical
treatment of defeasible reasoning and its implementation. Arti�cial intel-
ligence, 53(2-3):125�157.

[Tang et al., 2010] Tang, Y., Norman, T., and Parsons, S. (2010). A model
for integrating dialogue and the execution of joint plans. pages 60�78.
Springer.

[Thimm,] Thimm, M. Realizing Argumentation in Multi-Agent Systems
using Defeasible Logic Programming.

[Thimm, 2009] Thimm, M. (2009). Realizing argumentation in multi-agent
systems using defeasible logic programming. In International Workshop
on Argumentation in Multi-Agent Systems (ArgMAS), pages 175�194.

[Thimm and Kern-Isberner, 2008] Thimm, M. and Kern-Isberner, G. (2008).
A distributed argumentation framework using defeasible logic program-
ming. In International Conference on Computational Models of Argument
(COMMA), pages 381�392.

BIBLIOGRAPHY 71

[Walton, 1996] Walton, D. (1996). Argumentation Schemes for Presumptive
Reasoning. Lawrence Erlbaum Associates, Mahwah, NJ.

[Weld, 1994] Weld, D. (1994). An introduction to least commitment plan-
ning. AI magazine, 15(4):27.

[Wooldridge, 2009] Wooldridge, M. (2009). An introduction to multiagent
systems. Wiley.

[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. (1995).
Intelligent agents: Theory and practice. The knowledge engineering review,
10(02):115�152.

72 BIBLIOGRAPHY

	Introduction
	Motivation
	Objectives
	Work overview

	Preliminaries
	Artificial Intelligence
	Intelligent agents
	Multi-agent systems

	Planning
	Partial Order Planning (POP)

	Argumentation
	Defeasible argumentation in DeLP

	Argumentation in Planning
	A DeLP extension for POP planning

	Multi-agent DeLP-POP
	Concepts for a multi-agent DeLP-POP
	The planning domain of the agents
	Proto-states
	Pre-arguments
	Cost of the actions and inferences
	Agent's learning ability
	Absolute and non-absolute threats

	Overview of Cooperative Planning
	Extending the single-agent DelP-POP to multi-agent DeLP-POP

	Dialogues for multi-agent DeLP-POP
	Dialogue-based plan evaluation
	Dialogue-based search in the space of plans

	Validation
	Representation of actions with defeasible effects
	Introduction to the scenario
	Scenario specification
	Searching for a solution plan

	Related Work
	Conclusions and Future Work
	Conclusions
	Future work
	Published papers
	Papers directly related to this work
	Other papers

