

Final degree project

Project Alexandria:

“Development of a social networking site prototype”

Student: José Luis Besante Alcayna

Jobeal1@etsinf.upv.es
Computer Science degree

Prague, June 28th 2011

Director: Ing. Božena Mannová, Ph.D.
Czech Technical University in Prague

Codirector: Ing. Juan Carlos Ruíz García, Ph.D.

Universidad Politécnica de Valencia

mailto:Jobeal1@etsinf.upv.es

2 | P a g e

3 | P a g e

Index of contents

1. Software concept . 6

2. Requisite specification . 6

2.1. Introduction . 6

 2.1.1 Aim of this document

2.1.2 Application field
2.1.3 Definitions, acronyms and abbreviations
2.1.4 References
2.1.5 Global approach

 2.2. General description . 8

 2.2.1 Product approach
 2.2.2 Product functionality
 2.2.3 User expected skills
 2.2.4 General restrictions
 2.2.5 Assumptions and dependencies

 2.3 Specifical requirements . 10

 2.3.1 Functional requirements
 2.3.2 Interface requirements
 2.3.3 Efficiency requirements
 2.3.4 Design requirements

 3. Analysis of developed application . 35

 4. Data model . 47

 5. Implementation . 51

5.1. Technologies used during the coding phase
5.2. Implementation details

 6. Bibliography . 97

 Appendix I: Similar website reviews . 98

4 | P a g e

Index of images

Account management - Use case diagram 10

Message system – Use case diagram . 15

Notification system – Use case diagram . 20

Friend management – Use case diagram . 21

Group management – Use case diagram . 24

Book management – Use case diagram . 28

Site’s structure diagram: Site’s global organization . 36

Site’s structure diagram: Checking incoming messages . 39

Site’s structure diagram: Checking outgoing messages . 40

Site’s structure diagram: Checking notifications . 41

Site’s structure diagram: Checking friendship requests . 42

Site’s structure diagram: Looking for friends . 42

Site’s structure diagram: Checking user friends . 43

Site’s structure diagram: Checking user joined groups . 43

Site’s structure diagram: Checking user favourite books 43

Site’s structure diagram: Site’s menu bar . 44

Site’s structure diagram: Home . 44

Site’s structure diagram: Updating account details . 44

Site’s structure diagram: Managing books . 45

Site’s structure diagram: Managing groups . 46

Site’s database model . 47

Preliminary review – What’s on my bookshelf screenshot 1 99

5 | P a g e

Preliminary review - What’s on my bookshelf screenshot 2 100

Preliminary review – bookcrossing screenshot 1 . 102

Index of tables

Book ratings reference . 31

Database table description: Users . 48

Database table description: WallMessages . 48

Database table description: PrivateMessages . 48

Database table description: Notifications . 49

Database table description: Membership . 49

Database table description: Groups . 49

Database table description: FriendRequests . 50

Database table description: FriendList . 50

Database table description: BookShelf . 50

Database table description: Groups . 50

Database table description: BookReviews . 51

6 | P a g e

1. Software concept

As a result of, both the important development of web technologies during these

years and the generalization of the use of Internet web-services by almost all the

population, social networking has become more and more well-known and used.

While the most famous social networks are intended to a wide and heterogeneous

range of users, some of the smaller ones try to focus in a specific group of population

with some aspects or habits in common.

The aim of this project is to develop a web platform prototype following the

principles of social networking web-systems but intended to a specific range of users.

Project Alexandria is a social network prototype intended to users interested in

literature. Besides usual functionality and communication mechanisms available in

generic social network, the site tries to provide the user some tools to ease him the

management of his own library or the possibility to find and borrow the book he is

interested in reading.

2. Requisite specification

2.1 Introduction

2.1.1 Aim of this document

In the following pages of this document a list of the specified requirements

linked to the developed application “Project Alexandria” will be found. The writing
process has been done as precise as possible trying to avoid both redundancy and lack
of information in order to make it suitable of its purpose, on the one hand guiding the
development process, becoming a reference to check during the implementation
phase and, afterwards, during the validation of the product, once the development has
been completed. On the other hand, it can also be helpful for future users or
developers who can improve the application in the future.

2.1.2 Application field

 The developed application, which was called under agreement “Project
Alexandria” can be classified, attending to its functionality, among the ones usually
referred as social networks. Within these ones several classifications can be done,
according to different approaches. One of them could be the classification regarding to
the field they devote their functionality, once they have fulfilled the common
requirements all the social networks have (f.i. association and communication

7 | P a g e

mechanisms among users). Under this approach our application will be placed among
the ones linked to literature. Some existing examples can be found searching through
the network. This search was performed as a previous step to the development of the
current application, a brief report of this process can be found at the end of this
document (Appendix).

Since after years of development social networking applications have reach an
important complexity level, the product developed within this project is just a
prototype implementing the basic behavior all the social network PROPUESTAS have in
common.

2.1.3 Definitions, acronyms and abbreviations

Avatar: Graphical representation of the user. Both avatar and nickname become users
virtual alter ego.

Authorization: Process consisting of the definition of access control rules to decide
whether access requests from users shall be approved or disapproved. Defined rules
will control both resources and actions.

Authentication: Process whose aim is confirming the identity of a user. Information
which identifies uniquely a user will be required in order to confirm his identity.

IEEE: Institute of Electrical and Electronics Engineers.

JavaScript: Scripting language used at client-side, implemented as part of a Web
browser in order to provide enhanced user interfaces and dynamic websites.

MySQL: is a relational database management system that runs as a server providing
multi-user access to a number of databases.

Nickname: A name chosen by the user as his identity in the system. It is not required
this to be linked with user’s real name.

Notification: Special sort of message whose aim is let users know about changes in the
system being its administrators the ones who send it and its users its recipients.

Password: A secret word chosen carefully by the user that will have to be introduced
each time he wants to access the site as a part of the authentication process.

PHP: General-purpose server-side scripting language originally designed for web
development to produce dynamic web pages.

2.1.4 References

IEEE-STD-830-1998: ESPECIFICACIONES DE LOS REQUISITOS DEL SOFTWARE.

http://en.wikipedia.org/wiki/Client-side_JavaScript
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Website
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Web_development
http://en.wikipedia.org/wiki/Web_development
http://en.wikipedia.org/wiki/Dynamic_web_page

8 | P a g e

2.1.5 Global approach

Once the main context of the developed application has been detailed, our next

step will be setting an accurate description of the product and the specific
requirements linked to this one. This procedure will be performed following the rules
set by IEEE-830 standard referred in the previous section.

2.2 General description

2.2.1 Product approach

The application whose specification is being set constitutes an independent
software entity, it is not linked to any other application or a component of a bigger
software product, therefore the only functional requirements and constraints we have
to bear in mind are the ones directly related to the developed application and its
context.

On the other hand, correct and expected behavior can be granted only within
the technologies that have been chosen at the beginning of the process because they
are considered as the best solutions to fulfill the application needs. A list of selected
technologies that should be available either at the client side (user webbrowser) or at
the server side (hosting service) besides some reasons to justify their election can be
found in the following chapters of this document.

2.2.2 Product functionality

Main functionality :

 In the following list can be checked the main features of the system that is to
be developed.

- Allow user-profile creation where personal details, contact details and user
preferences and interests can be checked.

- Allow user association by groups they can create. A user will be able to check
easily which participants have joined the groups he belongs to. He will be able
to share information with all of them by a group-wall.

- Allow private user communication by providing a private message mechanism.

- Provide a mechanism to ease users cataloguing their favourite books.

 Searching and filtering features on system database are

required for this purpose.
 A book registration tool is required when a book has not been

registered in the system.

9 | P a g e

- Allow users to define a set of genres they are interested in reading and let the
system suggest them new books they might like.

- Allow users to write short book reviews and set a mark according to their
satisfaction after reading the book.

Extra functionality :

Following features will be implemented as an extra depending on temporary
constraints during the system development.

- Exchange book system among users living in the same area.

 Define a set of books a user would be willing to share.
 Define a set of books a user would like to borrow.
 Define a sort of exchanging rules.

- Allow users to share their own literary works with the community.

- Establish an event system.

 News, book signing, independent events, literary coffee shops.

2.2.3 User expected skills

The minimum skill level a possible user of the application should have in order
to enjoy and take advantage of the developed functionalities are the ones expected to
any user of other kind of websites.

The bunch of different technologies used during the development will be
masked either by the server or by the user web-browser so site’s appearance will not
look different than any of the other sites visited by our users.

Within these rules could be stated that our application does not add an upper
difficulty level to the ones usually found by internet or social networking users.

According to user’s expected knowledge, closely linked not to the way the site

is showed or the way a user interacts with it, but to the content itself, a simple and not
ambiguous language will be used to ensure people from different environments and
ages is able to use the site. Furthermore, as a further step in order to reach the
maximum amount of users, the developed site will be available in several languages,
offering Spanish and English at first but caring about the development of language
selection mechanisms in such a way more languages can be added quickly and easily.

2.2.4 General restrictions

10 | P a g e

As it was stated previously, the only requirement to grant system’s expected
behavior is the availability of the required hardware or software components either at
the client or the server side.

Client side:

- User has an Internet connection.
- User is using a web-browser supporting JavaScript to get access to the

website.

Server side:

- Server supports PHP language.
- Server is able to get access, send commands and fetch information from the

MySQL database hosting the site’s information.

2.2.5 Assumptions and dependencies

There are no more assumptions or dependencies besides the ones stated in the
sections 2.1, 2.3 and 2.4 of the current document.

2.3. Specifical requirements

2.3.1 Functional requirements

In the following pages, the complete list of agreed requirements to be fulfilled
by the developed application is showed:

User

Register an account

Validate an account

Change account
settings

«extends»
Change user details

Change password

Change description

«extends»

«extends»

*
*

* *

*

*

Register an account

General description:

11 | P a g e

Developed system will provide a registration system where interested internet
users will be able to enclose their personal details in order to ask for a personal
account and complete access to site’s features.

The details to be filled in by the applicants during the registration process, can

be divided in two groups depending on their compulsoriness:

- Mandatory details: Nickname, password, sex, current city,
current country, e-mail address.

- Optional details: Birthday.

Inputs:

User must provide the system the following information:

- Nickname: A name chosen by the user as his identity in the
system. It is not required this to be linked with user’s real name.

- Password: A secret word chosen carefully by the user that will
have to be introduced each time he wants to access the site.

- Sex: User’s sex.
- City: User’s current city.
- Country: User’s current country.
- E-mail address: User’s valid and working mail account.

Process description:

User will introduce the required information and, after that, the system
will perform several tests in order to find out if they fulfill all the preconditions
before creating the new account.
Defined preconditions to be fulfilled are:

- Nickname must be unique, not existing already in the system.
- Nickname must have a length of, at least, three characters.
- Both ‘Admin’ and ‘admin’ are forbidden as nicknames due to

security reasons.
- Since password will have to be introduced twice, both typed

words must be equal.
- Password’s length must be at least six characters.
- Password must be chosen in such a way there is at least one

letter and one number among the characters.
- User’s introduced e-mail will have to fit the usual structure

‘a@b.c’.
- User’s introduced e-mail must work and be owned by him. At the

end of the registration process a validation code will be sent by
mail to the user. Check 2.2.2 – Validate an account for more
information.

12 | P a g e

All of these preconditions must be satisfied in order to complete
successfully the account registration process. If required information has been
introduced correctly a user account will be created in the system if not the user
will be asked again for correcting the wrong fields.

Outputs:

If all the information is right, a new account will be added to the system

and a message will be showed to the user warning he has to activate his
account in order to complete registration process. Otherwise the system will
ask the user to introduce the wrong information again showing some messages
including the reasons previously typed information is not correct.

Validate an account

General description:

After registration process, user’s information will be stored in the
system and his account will be created, however, he will not be able to log in
the site since his account must be validated after its creation.

In order to validate user accounts some information must be sent to
user’s mail account to ensure he is the owner of that account. Once his mail is
checked he will be able to type again that information in the site validating his
account’s ownership.

Inputs:

A generated string of characters sent to user’s mail account.

Process description:

At the end of the registration process, the system will send an email to
user’s mail account. This mail will contain a multiple-seed generated string of
characters and a link besides a message encouraging the user to end the
registration process by typing sent string in the page showed following the link.

Once the system has the information the user has introduced through
the link, a test will be performed in order to find out if this information fits with
the one that was sent to his mail.
If the information was introduced correctly user’s account will be activated and
he will have access to the site.

Outputs:

A message will be showed informing the user about the situation of his
account.

13 | P a g e

Change account settings – Registration details

General description:

A user must be able to change the information he introduced during the
registration process in order to correct or adapt it to his new situation.

Nickname is excluded of this process since it must remain unchanged.

Inputs:

Modified information regarding password, sex, current city, current
country or e-mail address.

Process description:

User will introduce the information he would like to update and, after
that, the system will perform several tests in order to find out if changed
information fulfills all the preconditions and keeps being valid.

Defined preconditions to be fulfilled are:

- Nickname cannot be changed.

If a password modification has been requested:

- He must be required to type current password in order to avoid
another person to take advantage of a lonely computer or
unclosed session.

- Since password will have to be introduced twice, both typed
words must be equal.

- Password’s length must be at least six characters.
- Password must be chosen in such a way there is at least one

letter and one number among the characters.
-

If user’s e-mail address has been modified:

- User’s introduced e-mail will have to fit the usual structure
‘a@b.c’.

If introduced information fulfills the established requirements, pertinent
operations to update it will be performed. If not, no change will be performed.

Outputs:

14 | P a g e

Besides updating user’s account information when it is necessary, a
message will be displayed to inform about the situation of the update
operations he requested.

Change user details - User description

General description:

Each user will be able to write a short description in order to let other
users know more about his life and interests. This description will be available
in each user profile.
Developed system must provide a way users can read and modify this
description.

Inputs:

A short description written by the user.

Process description:

Once a user has finished writing his description and the system receives
it, proper operations will be performed in order to store this information. There
are no special requirements the text must fulfill.

Outputs:

A confirmation message will be displayed for the user to know his
description has been uploaded successfully.

Change user details – User avatar

General description:

Each user will be able to upload an image or avatar related to his
nickname to enrich his virtual identity.
Developed system must provide a way users can choose an image owned by
them and upload it to the system’s server. This procedure will be always
available in order to allow several avatar changes during the time.

Inputs:

An image owned by the user.

Process description:

15 | P a g e

Once a user has selected an image in his computer to be uploaded and
the system receives it, proper operations will be performed in order to store
the file.

Some restrictions or extra operations, related to pictures’ size or
dimensions could be added during implementation or validations phases in
order to ensure system’s stability and correct behavior.

Outputs:

Selected avatar will appear in user’s profile. System will display an
informative message for the user to know his request was completed
successfully if it is necessary.

User private message system

General description:

Since social networking main aim is to interconnect users and allow
them to interact among them the development of any kind of private message
system is required.

Each user will be able to send, receive and manage his messages by
accessing his account. Messages involved in the communication process must
remain private, they will be only readable by sender and recipient.

User

Send message
Reply message

Check messages

Outgoing messages

Delete message

Incomming messages

«extends»

«extends»

«extends»

A complete specification of requirements related to user’s private
message system is detailed in the following lines:

Send a message

General description:

16 | P a g e

 A user must be able to send a message to any other user of the system.

Inputs:

A message is composed of three fields to be filled in before it is sent:

- Recipient: Any other user of the system.
- Subject: As a title, sentence summarizing message’s aim or

content.
- Body: Whole message to be sent.

Process description:

When the system receives the information defined restrictions must be
checked:

- Recipient field is mandatory, an existing user must be specified in
this field.

- Either subject or body fields must be filled in. Both messages
without subject and messages without body are allowed, besides
the common ones.

If these conditions have been fulfilled proper operations will be performed in
order to send the message to recipient’s inbox.

Outputs:

A message will be showed informing the user about the situation of the action
he requested.

Reply a message

General description:

A user must be able to reply a message he has been sent.

Inputs:

Even though a common message is composed of three fields in this case
only one of them will have to be filled in by the user.

- Recipient: Sender of the message being replied.
- Subject: Subject of the message being replied.
- Body: Reply to be sent.

Process description:

17 | P a g e

When the system receives the information proper operations will be

performed in order to send the reply to recipient’s inbox. No extra restrictions
have been defined.

Outputs:

A message will be showed informing the user about the situation of the
action he requested.

Check incoming messages

General description:

Users will be able to access their own inbox in order to check whether
they have been sent any message or not.

Inputs:

This action has not got any input.

Process description:

Once the operation is authorized, storage system will be accessed and
incoming messages will be displayed.
There is one restriction related to the way replied messages must be displayed
in the site.

- A message chain must be managed as a single message. Once a
message has been replied only the last one of its replies will be
showed in incoming messages.

In order to speed up the access to the inbox, only a defined amount of

the last received messages should be showed at once. There should be any
navigation or filtering facilities in order to ease the reading and management of
previously received messages.

Outputs:

 A list of fixed size (f.i. 10 units, 15 units) messages.

Check outgoing messages

General description:

Users will be able to access their own outbox in order to check the
messages they sent.

18 | P a g e

Inputs:

This action has not got any input.

Process description:

Once the operation is authorized, storage system will be accessed and
outgoing messages will be displayed.
In order to speed up the access to the outbox, only a defined amount of the
last sent messages should be showed at once. There should be any navigation
or filtering facilities in order to ease the reading and management of previously
sent messages.

Outputs:

A list of fixed size (f.i. 10 units, 15 units) messages.

Delete a message

General description:

Users will be able to delete messages they do not want to keep in their inbox.

Inputs:

Message or list of messages to be deleted.

Process description:

Once the operation is authorized, ensuring the requester of the action is
either sender of recipient of current message, storage system will be accessed
and selected message/s will be deleted.
System will be built in such a way sender/recipient can keep a message that
was already removed by recipient/sender.

Outputs:

A message will be showed informing the user about the situation of the
action he requested.

Mark a message as read

General description:

Users will be able to mark messages as read in order to keep them but
avoid being noticed again about their reception in the future.

19 | P a g e

Inputs:

Message or list of messages to be marked.

Process description:

Once the operation is authorized, storage system will be accessed and
selected message/s will be marked as read.

Outputs:

A message will be showed informing the user about the situation of the
action he requested.

Manage several messages at the same time

General description:

In order to save time and avoid repetitive operations users will be able
to apply available operations, as the ones described previously, to a selected
group of messages. These operations will be performed at once.

Inputs:

Selected messages.

Process description:

Process description is related to requested operation.

Outputs:

Output behavior depends on chosen operation.

Notification system

General description:

Sometimes a communication mean between system and users will be
required. In these situations a notification system will be used.
While private messages are a bidirectional way of communication, notifications
are unidirectional. System will be always the sender in a notification and
common users will be always recipients.

20 | P a g e

User

Check notifications

Delete
notifications

This system could be used in many different cases but from our
prototype’s approach only friend requests and friend confirmations will travel
through this channel.

Check notifications

General description:

Users will have access to their own notification box where they will be
informed about incoming friendship requests or friendship confirmations.

Inputs:

This action has not got any input.

Process description:

Once the operation is authorized, storage system will be accessed and
user’s notifications will be displayed.
In order to speed up the access to the inbox, only a defined amount of the last
received notifications should be showed at once. There should be any
navigation or filtering facilities in order to ease the reading and management of
previously received notifications.

Outputs:

A list of fixed size (f.i. 10 units, 15 units) notifications.

Delete notifications

General description:

Users will be able to delete remaining notifications they do not want to
keep in their inbox.

Inputs:

21 | P a g e

A notification or a list of notifications.

Process description:

Once the action is authorized, selected notifications will be deleted.

Outputs:

Selected notifications will disappear from user’s notification box.

Friend networks

Creation and management of friend networks are the first aim of social

networking besides providing communication mechanisms among them in
order to reach a real interconnection.

Adding users as friends will keep them in a closer level, they will be
easily accessible and their updates will be noticed soon.

User

Send friendship
request

Show friendlist

Confirm friendship
request

Loop a user up

On the other hand, as the amount of users increases keep users privacy
becomes more and more important. If privacy levels are implemented in the
future only user friends will be able to access his information and follow his
actions in the site.

Send friendship request

General description:

22 | P a g e

Users will be able to establish their own friend network by adding other
users as friends. The first step necessary to add another user as a friend will be
sending him a friendship request.

Inputs:

Recipient of the friendship request.

Process description:

This system will work in the same way it does in current social networks.
When a user is interested in having any other user as a friend, he will send a
friend request to him. After that he will have to wait until the recipient accepts
his request confirming their friendship relationship.

Outputs:

 System will send a notification to the requested user once a friend
request has been processed allowing him to accept requested friendship
relationship.

Confirm friendship request

General description:

Users will be able to establish their own friend network by adding other
users as friends. Once a friend request has been received, requested user must
finish the linking process by confirming his received request.

Inputs:

Friendship confirmation command.

Process description:

-

Outputs:

 System will send a notification to the user who request having the
friendship relationship confirming that has been already established.

Look up a user

General description:

23 | P a g e

Users will be able to look other users up in the system in order to
manage and expand their friend networks.
In order to ease this process several filtering options will be provided. Some
user characteristics as name, sex, current city or current country will be
available for this purpose.

Inputs:

Nickname, sex, current city and/or current country are used as filtering options.

Process description:

According to the filtering options selected by the user, searching
operations on system storage platform will be commit.
There could be some restrictions regarding privacy at this point, some users
could choose remaining hidden so some extra privacy rules could be discussed.
Privacy settings have not been included in this prototype but this could be an
interesting area to expand in future modifications.

Outputs:

 List of suitable users according to defined filtering settings.

Show friend list

General description:

Users will be able to check their own friend list. They will be able to
check any other user friend list as well.
If some privacy settings were defined in the future this statement should be
revised.

Inputs:

Name of the user whose friend list will be showed.

Process description:

Once the operation is authorized, storage system will be accessed and
user’s friend list will be displayed.
In order to speed up the access, only a defined amount of user friends should
be showed at once. There should be any navigation or filtering facilities in order
to ease this process.

Outputs:

 Selected user complete friend list.

24 | P a g e

Groups of users

Groups as gatherings of people sharing characteristics or interests are
common in real life.

In order to encourage users to establish connections among them and
expanding their friend networks with people they could be interesting in
knowing a virtual group system will be developed.
To ease communication among the participants of each group a shared wall
of posts will be implemented.

User

Register a group

Leave a group

Join a group

Look for a group

Show user joined
groups

This is not a new approach and several examples can be found in the

most important social networks as Facebook or twitter.

Register a group

General description:

Users will be able to create their own groups devoted to a topic or area
they would like to find people interested in.

Inputs:

Group name, a short description and an optional picture to be showed.

25 | P a g e

Process description:

Once all the information is collected, if there is not an existing group
with the same name, requested group will be created. Henceforth other
users will be able to apply and become participants of this group.

Groups created within our developed prototype will remain public
although some privacy settings could be added in the future.

Outputs:

A new group will be created. User who requested it will be displayed

message informing about the situation of his request.

Join a group

General description:

Users will be able to join groups already created in the system. This way
they will have an easier access to the information available in them.
On the other hand they will be also able to know and exchange information
with the users who joined that group previously.

Inputs:

Name of the group users want to join.

Process description:

According to users request proper operations will be commit in order to
register the user in the group.
Some notifications could be delivered to the participants of the group in
order to let them know about the arrival, however, there could be different
strategies to achieve the same goal.*

*User’s “What’s new” section has been implemented for this purpose.

Outputs:

 User who requests this action will become a member of selected group.

Leave a group

General description:

26 | P a g e

Users will be able to leave the groups they have joined. Notifications
related to that group or group participants will not be available any more.

Inputs:

Name of the group users want to leave.

Process description:

According to users request proper operations will be commit in order to
unregister the user in the group.
Selected group will be removed from user’s favourite group list. Group
notifications will no longer be showed in user’s “What’s new” page.

Outputs:

User who requests this action will stop being a member of selected group.

Look for a group

General description:

In order to let users know about the groups already registered in the
system and allow them to look for the ones they would be interested in join
a look up system will be developed.

To ease this process several filtering options will be provided. Some
group characteristics as name or short description will be available for this
purpose.

Inputs:

Name or short description of the group users want to look up.

Process description:

Once the operation is authorized, storage system will be accessed and a

group list will be displayed.
In order to speed up the access, only a defined amount of groups should be
showed at once. There should be any navigation facilities in order to ease
the checking through all the results found.

Outputs:

A list of groups that match selected filtering settings will be displayed.

27 | P a g e

Show user joined groups

General description:

Users will be able to check their own joined group list. They will be able
to check any other user’s as well.
If some privacy settings were defined in the future this statement should be
revised.

Inputs:

Name of the user whose group list will be showed.

Process description:

Once the operation is authorized, storage system will be accessed and
selected user’s group list will be displayed.
In order to speed up the access, only a defined amount of user groups
should be showed at once. There should be any navigation or filtering
facilities in order to ease this process.

Outputs:

Selected user’s complete group list.

Books

As it was described before, Project Alexandria is a prototype of a social
networking site devoted to literature. Therefore, besides providing a set of
common communication or interconnection mechanisms, some extra
functionality make this project different to major and generalist social
networks.

28 | P a g e

User

Register a book

Review a book

Mark a book as
favourite

Unmark book as
favourite

Show user
favourite books

Show user
favourite books

Within the site users will be able to link their favourite books to their
own profile pages. This way they will be able to find other users with a
similar reading taste, gathering with them in groups or pick up advices
about which books should we read according to their interests.

Register a book

General description:

Users will be able to register books in the system if they have not been
already registered.

A book in developed system is defined according to its main attributes:
title, author and genre it belongs to.

Inputs:

Book title, author, genre and an optional picture of its cover, owned by
the user who is registering the book.

29 | P a g e

Process description:

Once all the information is collected, if there is not an existing book with
the same title, requested book will be introduced in site’s storage system.
Henceforth other users will be able to access this book’s profile, mark it as
favorite or publish a review about their experiences when they read it.

Outputs:

A new book will be added. User who requested its addition will be
displayed a message informing about the situation of his request.

Mark a book as favourite

General description:

Users will be able to add their favourite books to their user profile.

Inputs:

Title of the book user wants to mark as his favourite.

Process description:

According to users request proper operations will be commit in order to
add requested book to user’s list of favourite books.

Outputs:

A new book will be added to user’s list of favourite books. User who
requested its addition will be displayed a message informing about the
situation of his request.

Unmark a book as favourite

General description:

Users will be able to unmark the books they have marked as their
favourites.

Inputs:

Title of the book user wants to mark as his favourite.

Process description:

30 | P a g e

According to users request proper operations will be commit in order to
remove requested book from user’s list of favourite books.

Outputs:

Selected book will be deleted from user’s list of favourite books.

Look a book up

General description:

In order to manage and expand their user’s list of favourite books users
will be able to look the books up in the system as a previous step to access
their book profiles.

Inputs:

A book title, short description or author.

Process description:

Once the operation is authorized, storage system will be accessed and a
book list will be displayed according to defined filtering settings.
In order to speed up the access, only a defined amount of books should be
showed at once. There should be any navigation facilities in order to ease
the checking through all the results found.

Outputs:

A list of books that match selected filtering settings will be displayed.

Show user favourite books

General description:

Users will be able to check their own list of favourite books. They will be
able to check any other user’s as well.
If some privacy settings were defined in the future this statement should be
revised.

Inputs:

Name of the user whose list of favourite books will be showed.

Process description:

31 | P a g e

Once the operation is authorized, storage system will be accessed and

selected user’s list of favourite books will be displayed.
In order to speed up the access, only a defined amount of user books
should be showed at once. There should be any navigation or filtering
facilities in order to ease this process.

Outputs:

Selected user’s list of favourite books.

Publish a book review

General description:

Users will be able to publish their own book reviews. This way, besides
sharing their experiences when they read a book, they will be helping other
users to choose a book to read according to their reading interests.

Inputs:

The following fields have to be filled in order to review a book successfully:

- Title of the book to be reviewed.
- Review to be published.
- Mark of reviewed book according the following table:

* Not recommended

** Not as a first option

*** Interesting

**** Recommended

***** A must read

Process description:

Once the information has been picked up proper operations will be
commit in order to publish the review. There are no extra requirements
linked to these operations.
A notification will be showed in every user “What’s new” to let them know
there is another review available to read.

Outputs:

A new review will be published.

32 | P a g e

Security and privacy

Authentication

General description:

Project Alexandria is a private virtual community. All the information
within the site is reserved to its members therefore a mechanism to
authenticate users access into the site must be established.

Inputs:

Nickname and password of the user trying to access the site.

Process description:

Once both words have been collected, introduced password will be
compared to the one stored in system’s storage platform for current user. If
they match access will be granted.

Additional details about authentication process can be checked in
Implementation Details section.

Outputs:

If authentication ends up successfully user access to the site will be
granted and user’s profile will be showed.
If an error arises at the end of the authentication process an access denied
notification will be showed.

Authorization

General description:

Besides authentication, an authorization layer must be applied once a
user has gained access to the site to check whether requested operation
can be done or not by him.

Inputs:

User’s nickname

Process description:

System will have to check if current user has enough privileges to
commit the operations he is requesting.

33 | P a g e

Any kind of operation within the site must be subject to some
authorization rules which will either allow or deny user requests according
to his privileges.

Additional details about authorization process can be checked in
Implementation Details section.

Outputs:

If authorization ends up successfully, requested operation will be
allowed.
If an error arises at the end of the authorization process an access denied
notification will be showed.

Data validation

General description:

Since social networks are systems conceived to have a huge and
heterogeneous range of users some precautions should be taken so as to
ensure integrity and stability of the system against human errors or unfair
behavior.

Users interaction with the site is performed mainly by introducing
information, either text or files, to complete their profiles and communicate
to each other. However among this introduced information there could be
some expressions the system could interpret as commands leading it to its
collapse or, at least, to perform some undetected and so unauthorized
operations. All system entries will become, therefore, site’s Achilles’ heel.

In order to prevent problems to arise due to this reason incoming
information must be checked before being used or stored.

Inputs:

Users’ incoming data.

Process description:

After collecting the information, several operations should be
performed so as to revise incoming data, focusing in expressions or
suspicious strings which could be potentially dangerous, removing them
before data are stored in the system.

Additional details about data validation process can be checked in
Implementation Details section.

34 | P a g e

Outputs:

Revised and corrected or modified, if it is necessary, data to be stored
safely.

Accessibility

Language selection

General description:

Achieving as many users as possible is one of the main aims of any social
network. This way user network will be able to enlarge and user experience
will improve since the amount of choices and possibilities to meet people
with the same interests will increase.

In order to expand the range of users of the website, multi-language
support will be implemented. Website will be fully translated both in
English and Spanish as a first step. More languages may be added in the
future.

Inputs:

User’s language selection.

Process description:

Since this description would be deeply linked to implementation step and
should include some low level details it can be checked in Implementation
Details section.

Outputs:

Website content translated according to user language preferences.

2.3.2 Interface requirements

 2.3.2.1 User interface requirements

 About how a user interacts with the developed application:

- Visual interaction by means of a computer/laptop screen in which the
application will be showed.

- User input information will require just a keyboard and a mouse.

35 | P a g e

There is no need of this kind of devices at the server’s side, besides a way to
manage and update the application’s files.

2.3.2.2 Hardware interfaces

Both classical computers and laptops are able to use our platform, however,

this one is not intended to mobile phones. Besides an uncomfortable visual experience
some extra problems could arise because of the special configuration, security policies
or lack of components usual in mobile web-browsers.

2.3.2.3 Software interfaces

There is no other software interface required rather than a web-browser

installed in the computer, however, some visualization problems could arise
depending on the web-browser used to get access to the website.

* A successful visualization has been checked under Mozilla Firefox and

1280x800 pixels resolution during the validation test at the end of the development
process. Some visualization problems have arisen when Internet Explorer was used as a
web-browser to get access to the site.

2.3.3 Efficiency requirements

 No directly related efficiency requirements have been set after the analysis
phase besides expecting a correct behavior of the servers and components required to
run the application successfully.

3. Analysis of the developed application

After setting the requirements that must be fulfilled by the prototype, the next

step in the process would be the definition of a valid application structure able to

reach that goals.

In the following pages the complete structure of the site will be explained by the

use of flow diagrams. Since the application complexity level is too high, the complete

diagram has been split in several sub-diagrams.

36 | P a g e

Site main structure

Index.php

Registration.php

memberArea.php accessDenied.php

commitRegistration.ph
p

Autentication.php

showMessages.php showNotifications.php
showFriendRequests.ph

p
changeProfile.php

myGroups.php myFavouriteBooks myFriends.php searchFriend

Database

showMessage
Diagram

showNotifications
Diagram

showFriendRequests
Diagram

changeProfile
Diagram

myGroups
Diagram

showMessage
Diagram

myFriends
Diagram

searchFriend
Diagram

changeLanguage

In this first diagram the main structure of the site is presented. While the action

flow can be checked in the upper diagram, a brief explanation of the showed files is

provided in the next lines:

- Index.php: Unique gateway to gain access to the site, must be accessible to all

the users, either they are registered or unregistered ones. Depending on your

situation you can get access to the site or register a new account.

37 | P a g e

- Register.php: Page whose aim is to collect all the required information about

the user that wants to register a new account. As it was stated before, during

the definition of requirements’ phase a username, password, sex, date of birth

and current city and country are required to complete the registration.

- CommitRegistration.php: This page receives the information coming from

register.php and performs both the validation of it correctness and the

registration of the user in the site’s database if all the requested information

was introduced correctly. If some errors have been found, this page will let the

user know about what is wrong and will display again the proper forms to

collect the invalid information again. This process will be repeated until all the

information is collected properly.

- Authentication.php: Server side script in charge of checking whether a user has

enough privileges to access the site or not. A registered account that has not

been validated by its owner will not be allowed to get access to the site.

- AccessDenied.php: This page is reached each time an invalid operation has

been requested. If the authentication process has not been completed

successfully, the script in charge of performing that procedure will redirect the

user to this page.

- MemberArea.php: Main page for incoming users. User information (profile) is

displayed here.

In the left side user’s menu will be displayed. Within it user’s profile picture will

be shown besides information about new messages, friend requests and

notifications together with its corresponding access links.

In the main area user’s personal information is displayed. Besides information

introduced during the registration process, a user description, and his favourite

books, literary genres and joined groups will be accessible through this page. If

he has not added yet the latter information, some links to changeProfile page

will be displayed to help him to complete his profile.

Finally, in the right side a random selection of user friends are shown. Friend

suggestions are displayed here as well.

As it is shown in the diagram above, within this page are displayed the links to

get access to different areas of the website, among them:

38 | P a g e

o The pages where private messages, friend requests and notifications are

can be checked and managed from user menu.

o The pages where the complete list of user joined groups, favorite books

or friends can be checked and filtered.

o Friend profile pages of the friends randomly selected and shown in the

right side.

o Page where user information can be updated.

Each one of the pages that were not quoted here (leaves of memberArea.php

node) will be explained in the explained together with their own diagrams.

User’s menu

 User’s menu is displayed during almost all the time the user spend logged in the

site. While the information displayed in the middle and right areas of the pages use to

change depending on the requested content, user’s menu, placed in the left side,

remains visible because behaves as a bridge to the user to get access to his private

messages, notifications and friend requests as soon as they are received.

39 | P a g e

Checking received private messages.

showReceivedMessages

pmMarkasReaded.php

pmDeleteSelected.php

sendMessage.php

Received messages

showProfile.php

showMessage.php

memberArea.php
‘User menu’

- ShowReceivedMe
ssages.php: This
page shows the
incoming
messages to the
user.

Some tools to
manage them or
send new ones are
displayed as well.

By clicking on a
message the user
will be redirected
to
showMessage.php
where he will be
able to read its full
content.
Each message
contains a link to
the sender’s
profile as well.

- PmMarkasReaded.php: Server script that changes selected message/s’ status

from unread to read.

- PmDeleteSelected: Server script that deletes selected message/s’ from user’s

inbox folder. Deleted messages will not be shown again.

- SendMessage: Server script in charge of sending a message if all the required

fields has been filled in correctly.

- ShowProfile: Shows sender’s profile.

- ShowMessage: Displays the whole message in a different page. Message’s

information shown in showReceivedMessages.php can be cut to fit in the box

that must contain it.

40 | P a g e

Checking sent private messages.

- ShowSentMessages.php:
This page shows the
outgoing messages to the
user.

Some tools to manage them
or send new ones are
displayed as well.

By clicking on a message the
user will be redirected to
showMessage.php where he
will be able to read its full
content.
Each message contains a link
to the recipient’s profile as
well.

- PmDeleteSelected: Server
script that deletes selected
message/s’ from user’s
inbox folder. Deleted
messages will not be shown
again.

showSentMessages.php

pmMarkasReaded.php

pmDeleteSelected.php

memberArea.php
‘User menu’

Sent messages

showProfile.php

showMessage.php

sendMessage.php

41 | P a g e

- SendMessage: Server script in charge of sending a message if all the required

fields has been filled in correctly.

- ShowProfile: Shows recipient’s profile.

- ShowMessage: Displays the whole message in a different page. Message’s

information shown in showReceivedMessages.php can be cut to fit in the box

that must contain it.

Checking notifications

showNotifications.php

nDeleteSelected.php

Notifications

showProfile.php

memberArea.php
‘User menu’

- ShowNotifications: This
page shows the
notifications received by
the user.

An option to delete the
notifications that have
been already read is
included as well.

- nDeleteSelected.php:
Server script that deletes
selected notification/s’.
Deleted messages will
not be shown again.

- showProfile: If current
notification implies
another person (as it
occurs when a friend
confirmation is shown),
it will show his/her
profile.

42 | P a g e

Checking friend requests

- ShowFriendRequests.php:
This page shows pending
friend requests to the user.

User will have to choose
whether ignoring the request
or confirm their friendship.

- ConfirmFriend: Server script
that confirms the relationship
between current user and the
requester of the friendship.

- IgnoreFriend: Server script
used when a friendship
request must not be
attended.

- ShowProfile: Shows
requester’s profile.

showFriendRequests.php

Friend requests

showProfile.php

confirmFriend.php

memberArea.php
‘User menu’

ignoreFriend.php

Looking for friends

searchFriends.php

Users

showProfile.php

- SearchFriends.php: This page performs
search operations into database
according to some filtering parameters
customized by the user and displays the
results. Results are shown in groups of
ten elements.

- ShowProfile.php: Shows selected user
profile.

43 | P a g e

Checking user friends

- MyFriends.php: Displays current user
friends.
Shown results can be filtered according to
several parameters. Results are shown in
groups of ten elements.

- ShowProfile.php: Shows selected user

profile.

myFriends.php

Users

showProfile.php

Checking user favourite groups/interests

myGroups.php

Groups

showGroup.php

- MyGroups.php: Displays current user
groups.
Shown results can be filtered according to
several parameters. Results are shown in
groups of ten elements.

- ShowGroup.php: Shows selected group
profile.

Checking user favourite books

- MyFavouriteBooks.php: Displays current
user favourite books.
Shown results can be filtered according to
several parameters. Results are shown in
groups of ten elements.

- ShowBook.php: Shows selected book

profile.

Site’s menu bar

In order to ease user’s experience without affecting the site’s growth a menu-bar has

been added above the content area. The content within this bar is organized and

grouped regarding to several categories. The following diagram shows this structure:

myFavouriteBooks.php

Books

showBook.php

44 | P a g e

menuBar.html

Home.php memberArea.php

changeProfile.php

myFavouriteBooks.php

searchBook.php

searchFriends.php

searchGroup.php

aboutUs.html

FAQ.html

Contact.html

What’s new My profile Books Community About us

What’s new

- Home.php: This page informs users
about the last events happened in
the site: last registered users, last
groups created, last books
registered and last reviews
uploaded.
There will be links to get access to
all the shown elements
(showBook.php, showProfile.php,
showGroup.php, viewReviews.php)

Last posted wall-posts from groups
where current user is a member will
be displayed as well.

Home.php

showBook.php

showProfile.php

showGroup.php

viewReviews.php

Wall posts

showProfile.php

showGroup.php

My profile

Updating user personal information

changeProfile.php

updatePersonalDetails.
php

updateDescription.php

uploadAvatar.php

updatePassword.php

- changeProfile.php: Page displaying
some forms showing user’s current
data.
From this page personal details and
account’s password can be changed.
There is also a special tool to upload
user’s profile picture.

45 | P a g e

- updatePersonalDetails.php: This page receives the information coming from

changeProfile.php and performs both the validation of it correctness and the

update of user’s personal details (sex, birthday, city, country) if all the

requested information was introduced correctly.

- updatePassword.php: This page receives the introduced passwords (current

and new ones) coming from changeProfile.php and performs both the

validation of it correctness and the update of user’s password.

- updateDescription.php: This page receives the introduced description coming

from changeProfile.php and stores it in the database.

- uploadAvatar.php: Server script in charge of getting and storing in the server

the picture selected by user in changeProfile.php proper form.

Books

Managing books

- SearchBook.php: Displays
system’s existing books in
groups of ten elements.
Each element includes a link
to its main page
(showBook.php) and an
option to add it to user’s
favorite book list
(addBook.php)

- ShowBook.php: Shows

selected book’s main page.

- AddBook.php: Add current
book to user’s favourite book
list.

searchBook.php

Books

showBook.php

registerBook.php

commitBookRegistratio
n.php

addBook.php

- RegisterBook.php: Allows users to register new books in the system by filling in

the requested information.

- CommitBookRegistration.php: This page receives the information coming from

registerBook.php and performs both the validation of it correctness and the

registration of the book in the site’s database if all requested information was

introduced correctly. If some errors have been found, this page will let the user

know about what is wrong and will display again the proper forms to collect the

46 | P a g e

invalid information again. This process will be repeated until all the information

is collected properly.

-

Community

Managing groups

searchGroup

Groups

showGroup.php

registerGroup

commitGroupRegistrati
on.php

addGroup.php

- SearchGroup.php: Displays
system’s existing groups in
groups of ten elements.
Each element includes a link
to its main page
(showGroup.php) and an
option to add it to user’s
favorite group list
(addGroup.php)

- ShowGroup.php: Shows

selected group’s main page.

- AddGroup.php: Add current
group to user’s favourite
group list.

- RegisterGroup.php: Allows users to register new groups in the system by filling

in the requested information.

- CommitGroupRegistration.php: This page receives the information coming

from registerGroup.php and performs both the validation of it correctness and

the registration of the group in the site’s database if all requested information

was introduced correctly. If some errors have been found, this page will let the

user know about what is wrong and will display again the proper forms to

collect the invalid information again. This process will be repeated until all the

information is collected properly.

About us

- AboutUs.html: Shows information related to the site.

- FAQ.html: Frequent asked questions document.

- Contact.html: Staff contact directions.

47 | P a g e

4. Data model

In the following diagram is shown the data model used in Project Alexandria

prototype.

Users

PK,FK2,FK3,FK4,FK5,FK6,FK7,FK8 id

 enabled
 username
 password
 sex
 birthday
 city
 country
 email
 avatar
 description
 timestamp

walMessages

PK id

 senderID
 groupID
 content
 timestamp

privateMessages

PK id

 senderID
 recipientID
 topic
 content
 timestamp
 readed
 reply
 deletedBy

notifications

PK id

 senderID
 recipientID
 issue
 content
 extra
 timestamp
 readed

membership

PK id

 userID
 groupID
 timestamp

groups

PK,FK1 id

 name
 description
 createdBy
 avatar
 timestamp

friendRequests

PK id

 senderID
 recipientID
 idFriendList
 timestamp

friendList

PK,FK1 id

 member1ID
 member2ID
 status
 timestamp

bookShelf

PK id

 bookID
 userID
 timestamp

books

PK,FK1,FK2 id

 title
 author
 genre
 picture
 timestamp

bookReviews

PK id

 bookID
 userID
 title
 content
 rating
 timestamp

48 | P a g e

Description of database’s tables:

Table: users

Stores personal information of the site’s users.

Field identifier Type Default value Description

Id Integer - Primary key

Enabled Integer 0 Flag. Shows whether an account has
been activated (1) or not (0)

Username Char - User’s login name

Password Char - User’s password

Sex Enum - Enum(‘male’,’female’)

Birthday Datetime NULL User’s birthday

City Char - User’s city

Country Char - User’s country

Email Char - User’s email

Avatar Char Default_avatar Location of user’s profile picture

Description Char - User’s personal description

Timestamp Datetime - User’s registration date and time

Table: wallMessages

Stores group’s wall-posts

Field identifier Type Default value Description

Id Integer - Primary key

SenderID Integer - Foreign key: Users – Id of the
sender

groupID Integer - Foreign key: Groups – Id of the
group in which current message
was posted

Content Char - Content of the message

Timestamp Datetime - Posting date and time

Table: privateMessages

Stores user’s private messages

Field identifier Type Default value Description

Id Integer - Primary key

senderID Integer - Foreign key: Users – Sender’s id

recipientID Integer - Foreign key: Users – Recipient’s id

Topic Ingeter - Subject of the message

Content Integer - Content of the message

Timestamp Datetime - Sending date and time

49 | P a g e

Read Integer 0 Flag – Shows whether a message
has been read (1) or not (0)

Reply Integer -1 Flag – Shows message status:
 Value= -1 -> Non replied message
 Value= -2 -> Replied message
 Value> 0 -> Reply of a message

deletedBy Integer -1 Foreign key: Users – ID of the first
user (sender/recipient) who
deleted the message.

Table: notifications

Stores system notifications

Field
identifier

Type Default
value

Description

Id Integer - Primary key

recipientID Integer - Foreign key: Users - Recipient’s id

Issue Enum - Enum(‘friend_request’,’friend_confirmation’)

Content Char - Notification’s content

Extra Char - Extra field if required

Timestamp Datetime - Sending date and time

Readed Integer 0 Flag – 0: non read – 1: read

Table: membership

Stores relations between users and groups.

Each record can be considered as a subscription of a user to a group.

Field identifier Type Default value Description

Id Integer - Primary key

userID Integer - Foreign key: Users - Member id

groupID Integer - Foreign key: Groups - Group id

Timestamp Datetime - Sending date and time

Table: groups

Stores registered groups/interests.

Field identifier Type Default value Description

Id Integer - Primary key

Name Char - Group name

Description Char - Group description

createdBy Integer - Foreign key: Users

Avatar Char Default_avatar Location of group avatar

50 | P a g e

Timestamp Datetime - Group registration date and time

Table: friendRequests

Stores generated friend-requests.

Temporary information, record is deleted when a friendship relationship is confirmed.

Field identifier Type Default value Description

Id Integer - Primary key

Sender Integer - Foreign key: Users – Requester id

Recipient Integer - Foreign key: Users – Recipient id

idFriendList Integer - Foreign key: friendList

Timestamp Datetime - Friendship requesting date and
time

Table: friendList

Stores pairs users.id:users.id. Two records are needed for each single friendship

relationship.

Field identifier Type Default value Description

Id Integer - Primary key

Member1ID Integer - Foreign key: Users

Member2ID Integer - Foreign key: Users

Status ENUM ‘pending’ Enum(‘pending’,’confirmed’)

Timestamp Datetime - Friendship confirmation date and
time

Table: bookShelf

Stores generated pairs users.id:books.id. A record is created each time a user mark a

book as favourite.

Field identifier Type Default value Description

Id Integer - Primary key

bookID Integer - Foreign key: Books – Favourite
book

userID Integer - Foreign key: Users – User’s id

Timestamp Datetime - Adding date and time

Table: groups

Stores registered books in the system.

Field identifier Type Default value Description

51 | P a g e

Id Integer - Primary key

Title Char - Book title

Author Char - Book author

Genre Char - Book genre

Picture Char Default_cover Location of book’s cover picture

Timestamp Datetime - Registration date and time

Table: bookReviews

Stores book reviews made by users.

Field identifier Type Default value Description

Id Integer - Primary key

bookID Integer - Foreign key: Books – Reviewed
book

userID Integer - Foreign key: Users - Reviewer id

Title Char - Review title

Content Char - Review content

Rating Float - User’s rating for current book

Timestamp Datetime - Review publishing date and time

5. Implementation

5.1 Technologies used during the coding phase

All technologies included in Project Alexandria were agreed at the beginning of its

development.

Although several options were discussed at the beginning of the process only one

seemed both feasible and suitable: building a HTML-PHP site.

A lot has been already written about the advantages of using this scripting

language instead of any of its main competitors, however, this issue is not among this

document’s aims.

As for database management Mysql was the most suitable solution according to

selected scripting language.

On the other hand, in order to save useless connections to the site, it was decided

to perform some data validations at client-side. This way all forms filled in wrongly will

not be submitted until its information is properly introduced. For this purpose some

JavaScript scripts have been added to site’s pages. To avoid unexpected behavior due

to a JavaScript failure during data validation, all incoming data will be validated once

again at server-side.

52 | P a g e

Finally, to improve a simple html site’s design, cascading style sheets have been

used. Site’s base style sheet has been provided by http://www.pixabella.com/.

5.2 Implementation details

Language detection/selection

As it was stated in previous chapters of this document, Project Alexandria has

included language settings among their functionalities, being available both in English

and Spanish.

Each time a non logged user access the site, a language detection is done in

order to adapt site’s information to a language comfortable for him according to his

preferences. For this purpose HTTP headers are checked and visualization language is

set depending on them.

The following code shows how described action takes place:

if($_SERVER['HTTP_ACCEPT_LANGUAGE']!='')

{

 $languages =

explode(",",$_SERVER['HTTP_ACCEPT_LANGUAGE']); (1)

 $lang = 'en'; (2)

 for($i=0;$i<count($languages);$i++) (3)

 {

 if(substr($languages[$i],0,2)=="es")

 {

 $lang = 'es';

 break;

 }

 }

 require('lang/'.$lang.'/registration.php');

}

Code from registration.php

1. Information is gotten from HTTP header “Accept Language”. Content is stored

in an array using “,” as delimiter to split read string of characters.

2. English is set as default language

3. If a language appearing in HTTP Accept language is available system will switch

to it becoming visualization language. Only Spanish is available as an

alternative.

This system has been added to save users from configuring their language

preferences, however, there could be some especial circumstances under which due to

http://www.pixabella.com/

53 | P a g e

an inaccurate detection or user preferences the result of this detection does not fit

user interests. In these cases a manual language selection can be used, being available

in every page of the website.

As many links as available languages are in the site will be displayed at the top part

of it, below site’s banner.

<a class="postLink"

href="http://localhost/changeLanguage.php?lang=en"

style="display: inline-block;">ENG

<a class="postLink"

href="http://localhost/changeLanguage.php?lang=es"

style="display: inline-block;">ESP

Code from navigationBar.html

By clicking on the links proper operations will be performed to change current

language to the chosen one.

If($_GET['lang']=='es')

$_SESSION['lang'] = 'es'; (1)

else $_SESSION['lang'] = 'en';

Code from changeLanguage.php

(1) Once a language has been set for a logged user this information will be stored

in a variable within user’s session. This way its selection will remain until the

end of this one.

Once it has been explained how a user can change the variable which controls

visualization language only the explanation about how the site manages this situation

and shows the information in the proper language in each case is left. In order to

achieve it without having to rewrite anything from source code each time a new

language is added, php constants (1)(2) have been used in the places where a

translated text should appear.

<?php echo $username.", ";

 if($sex=='male') echo (1)constant('profile-header-

sex-male');

 else echo (2)constant('profile-header-sex-female');

Code from memberArea.php

view-source:http://localhost/changeLanguage.php?lang=en
view-source:http://localhost/changeLanguage.php?lang=es

54 | P a g e

By replacing these constants with the expressions in the proper language all

possible versions of the site can be obtained without having to adapt code for each

case.

On the other hand a set of text files containing the translations of these

constants has been created. This way, for each php or html file containing constants

which should be substituted, there are as many text files containing these translated

substitutions as languages are supported by website.

//Middle content

define('profile-header-sex-male','male');

define('profile-header-sex-female','female');

Code from /lang/en/memberArea.txt

//Middle content

define('profile-header-sex-male','usuario');

define('profile-header-sex-female','usuaria');

Code from /lang/es/memberArea.txt

Registering an account

Before being granted access to Project Alexandria users must register their

personal account in the site.

As a first step a form must be filled in by applicants.

Once data are collected some tests are performed in order to validate all the

restrictions established during analysis of requirements phase. Incoming information

must fulfill all of them prior creating requested account.

According to “Analysis of requirements” document, these are the established

restrictions and the code which ensures its fulfillment:

“Nickname must be unique, not existing already in the system”
“Both ‘Admin’ and ‘admin’ are forbidden as nicknames due to security reasons”

These two restrictions are checked at the same time in the following code.
After querying site’s database about user’s chosen nickname ($username):

- Its uniqueness would not be ensured if site’s database had found any match
after querying USERS table (1).

- On the other hand, if no match was found but $username is equal to a
forbidden word process must me stop as well (2).

55 | P a g e

$SQL = "SELECT * FROM users WHERE users.username=\"$username\"";

$result = mysql_query($SQL) or die('Error: '.mysql_error());

$row = mysql_fetch_row($result);

if(mysql_num_rows($result)!=0 (1) || $username==admin (2)||
$username==Admin (2))
{

 $e_login = constant('error-repeated-username');

 $username="";

 $n_errors++;

}

Code from commitRegistration.php

“Nickname must have a length of, at least, three characters”

if(strlen(trim($username))<2)

 {

 $e_login = constant('error-wrong-username');

 $username="";

 $n_errors++;

 }

Code from commitRegistration.php

“Since password will have to be introduced twice, both typed words must be equal”

if($passwd1!=$passwd2)

 {

 $e_passwd = constant('error-password-unequal');

 $passwd1="";

 $passwd2="";

 $n_errors++;

 }

Code from commitRegistration.php

“Password’s length must be at least six characters” (1)
“Password must be chosen in such a way there is at least one letter and one number
among the characters” (2)

if(strlen($passwd1)<6 (1) || preg_match('[^0-9]',$passwd1) (2))
 {

 $e_passwd = constant('error-password-length');

 $passwd1="";

 $passwd2="";

 $n_errors++;

 }

56 | P a g e

Code from commitRegistration.php

About this code just a comment is required, preg_match() is a php function
whose aim is ensuring the syntax of a text (second parameter) fulfills a regular
expression (first parameter)

“User’s introduced e-mail will have to fit the usual structure ‘a@b.c’”

Again, preg_match() function is used to ensure introduced e-mail direction
fulfills expected structure.

if(!preg_match("/^([a-zA-Z0-9])+@([a-zA-Z0-9_-])+(\.[a-zA-Z0-

9_-]+)+/", $mail))

 {

 $e_mail = constant('error-wrong-mail');

 $mail = "";

 $n_errors++;

 }

Code from commitRegistration.php

If all the previous restrictions have been fulfilled system will create requested
user’s account although this one will remain disabled until account validation is
completed.

$passwd1 = md5($passwd1); (1)

$unixTime = time();

$sqlTime = gmdate("Y-m-d H:i:s", $unixTime);

//Connection to DB

include('dbAlexandria1.php');

include('connect.php');

//Starting a SQL transaction to ensure all operations will be

committed atomically

mysql_query('BEGIN');

//Registering user in DB

$SQL = "INSERT INTO users

(username,password,sex,birthday,city,country,email,timestamp)

VALUES

(\"$username\",\"$passwd1\",\"$sex\",\"$birthday\",\"$city\",\"$

country\",\"$mail\",\"$sqlTime\")";

mysql_query($SQL);

if(mysql_error())

 {

 mysql_query('ROLLBACK');

 die();

 }

Code from commitRegistration.php

57 | P a g e

(1) In order to ensure users privacy, users’ password will not be directly stored in

database but a checksum of it, This way nobody except its owner will be able to
know it and it will remain protected even if database is accessed without
authorization.

Validating an account

After completing registration process, account validation is left prior being
allowed to access the site. Account validation procedure has been created to fulfill the
last one of the registration restrictions defined in “Analysis of requirements”
document.

“User’s introduced e-mail must work and be owned by him”

In order to fulfill this restriction users should be “encouraged” to check their

email accounts so as to get some information they are required to introduce before

getting access to the site for the first time.

The following code shows how an email is sent to the users whose accounts

have just been created. Among its content a unique string of characters is enclosed.

For its generation some user details are used as seed (1), this way there is no need of

storing this string in database since it can be easily reproduced knowing the way it can

be generated.

$to = $mail;

$subject = constant('validation-mail-subject');

$body = constant('welcome')."

".$username."!".constant('validation-mail-

content').md5("alwayslookatthebrightsideoflife".$username.$mail.

$passwd1.$id) (1)." \n\n URL: ".$rootURL."validationForm.php (2))
";

mail($to, $subject, $body)

Code from commitRegistration.php

After generated string, a link to the validation page is attached as well (2). Users

will be able to access it with no deadline to validate their accounts. Once there they

will have to introduce their nickname and the character string they were sent. By

reproducing the same generation procedure another character string will be generated

and compared to the introduced one, if they match account will be enabled (3) and

user will be able to access the site.

if($introducedString == $generatedString)
{
 $SQL = "UPDATE users SET users.enabled=1 (3) WHERE

58 | P a g e

users.username = \"$postLogin\"";

 mysql_query($SQL) or die('Error: ' . mysql_error());

}

Code from validateAccount.php

Authenticating a user

According to “Analysis of requirements”:

“Project Alexandria is a private virtual community. All the information within

the site is reserved to its members therefore a mechanism to authenticate users

access into the site must be established”

To fulfill this requirement a simple password-based identification system is

used each time a user requests an access to the site. This way before allow a user to

access the site his password will be requested.

Once information, including nickname and password, is collected an

authentication script (authentication.php) will be in charge of checking whether

introduced password match the one stored in site’s database or not.

The following lines show how this checking is performed:

$SQL = "SELECT * FROM users WHERE username =\"$postLogin\" (1)
AND password =\"$postPassword\" (2) AND enabled =\"1\" (3)";

$result=mysql_query($SQL) or die('Error: '.mysql_error());

if((mysql_num_rows($result))!=0) //User-pass match has been

found: user is succesfully authenticated

{

 //Successful access code

}

else

{

 header('Location: accessDenied.php') (4);
}

Code from authentication.php

Notice that $postLogin and $postPassword contain either nickname or

password introduced by user to request access to the site.

As it can be read, besides a nickname (1)-password (2) matching it is required

that user’s account has been already validated (3). If any of both conditions is not

fulfilled user attempt to log in will be denied and an access denied page will be showed

(4).

59 | P a g e

On the other hand, if identification process ends up successfully, proper

operations will be performed so as to create a new session under which user will be

able to surf through the site without having to retype his password. For this purpose,

PHP sessions are used.

$_SESSION['username'] = $postLogin;

$_SESSION['userID'] = $row[constant("users::id")];

(6)
session_name($postLogin); (5)

/* Getting user default language */

/* This code was already explained in “Language

detection/selection” section */

/* … $_SESSION['lang'] = $lang; (7) … */

header('Location: memberArea.php') (8);

Code from authentication.php

A session identified by user’s nickname will be created (5). Notice PHP sessions

allow programmers to store as many variables as they need to keep information till

session expiration. These variables are used, for instance, to store users’ id number (6)

(which is the index of their record in database) or user’s language preferences (7). To

use this information, session_start() command will have to be written at the very

beginning of all the documents composing the site.

Once a user has been successfully authenticated he will be redirected to his

own profile (8).

Authorizing a user

“Besides authentication, an authorization layer must be applied once a user has

gained access to the site to check whether requested operation can be done or not

by him”

Authorization procedure, once a session has been established during

authentication phase, is reduced to a simple check.

session_start();

if(!isset($_SESSION['username']) || $_SESSION['username']=="")

{

 header('Location: accessDenied.php');

}

Code from authorisation.php

60 | P a g e

If no session with user’s nickname is found, it means that current user did not

identify himself properly and all kind of access must be denied to him. This check is

performed each time a user requests access to any of the site’s pages by the following

expression:

require('authorisation.php');

Code from memberArea.php

On the other hand, notice that all authenticated users are able to access all the

pages composing Project Alexandria, since there is not any kind of users hierarchy. This

approach could be useful in bigger or more complicated social networks, with different

types of users. Adapting this site to that situation would not be so complicate, an extra

variable could be added to each user session containing the level or privilege ring that

current user belongs to. Variable’s content would be loaded during users

authentication phase as it is done with other variables (6)(7).

Changing account details

Each user account will contain information related to its owner. Among

customizable details the following ones can be found:

(1) User registration details as sex, birthday, city, country and email.

(2) User password.

(3) User avatar.

(4) User description.

(1) Changing registration details.

This process will be performed in a similar way it was done when data were

collected for the first time during user’s registration. In fact, defined restrictions are

almost the same. The only difference lies on password definition which will be

performed in a different section. Splitting the restrictions associated with password

updates the following ones remain:

“Nickname cannot be changed”

Website will not allow nickname changes, there will not be any place in
“changeProfile.php” to request this operation.

“User’s introduced e-mail will have to fit the usual structure ‘a@b.c’”

Preg_match() function will be used to ensure introduced e-mail direction fulfills
expected structure.

61 | P a g e

if(!preg_match("/^([a-zA-Z0-9])+@([a-zA-Z0-9_-])+(\.[a-zA-Z0-

9_-]+)+/", $mail))

 {

 $e_mail = constant('error-wrong-mail');

 $mail = "";

 $n_errors++;

 }

Code from updatePersonalDetails.php

Notice that the rest of fields do not require a validation since they are
introduced in such a way no errors can arise.

After this check, updatePersonalDetails.php will update changed details in database.

include('dbAlexandria1.php');

include('connect.php');

$SQL = "UPDATE users SET sex=\"$sex\", birthday=\"$birthday\",

city=\"$city\", country=\"$country\", email=\"$mail\" WHERE

username=\"$username\"";

mysql_query($SQL) or die('Error: '.mysql_error());

mysql_close();

Code from updatePersonalDetails.php

Notice that all the fields are included in the query and not only the altered ones
as it should be expected. This is due to all variables have been initialized with their
correct values so if user did not make any change their correct value will be put back in
database.

 (2) Changing password.

Users will be able to change their password at any time. Some fields to be filled
in will be displayed in changeProfile.php for this purpose.

After collecting required information in changeProfile.php,

updatePassword.php will start working.

Current password (1), requested password (2) and requested password retyped

(3) will be collected and stored in three variables.

(1) $passwd0 = trim($_POST[tb_passwd0]);
(2) $passwd1 = trim($_POST[tb_passwd1]);
(3) $passwd2 = trim($_POST[tb_passwd2]);

Code from updatePassword.php

Once done, some conditions must be checked.

62 | P a g e

(4) “User must be required to type his current password in order to avoid another
person to take advantage of a lonely computer or unclosed session”

(5) “Since password will have to be introduced twice, both typed words must be
equal”

(6) “Password’s length must be at least six characters”

(7) “Password must be chosen in such a way there is at least one letter and one
number among the characters”

(4) if($aPasswd==(8) md5($passwd0))
{

 (5) if($passwd1!=$passwd2)
 {

 $e_passwd = constant('error-password-

unequal')."
";

 $passwd1="";

 $passwd2="";

 $n_errors++;

 }

 else

 {

 if((6) strlen($passwd1)<6 || (7) preg_match('[^0-
9]',$passwd1))

 {

 $e_passwd = constant('error-password-length');

 $passwd1="";

 $passwd2="";

 $n_errors++;

 }

 }

}
Code from updatePassword.php

(8) In order to ensure users privacy, users’ password will not be directly stored in
database but a checksum of it, This way nobody except its owner will be able to know
it and it will remain protected even if database is accessed without authorization.

(3) Changing avatar.

ChangeProfile.php will display a form prepared to upload pictures to system’s

database. The following box shows its code:

<form id=uploadAvatarForm action=uploadAvatar.php method="post"

enctype="multipart/form-data (1)" onSubmit="return

checkPath();(2)">

63 | P a g e

<input type="file" name="bx_file" style="display:none;"

onChange="refreshTb_fake();">

<input type="text" name="tb_fake" readonly>

<input type="button" name="b_file_fake" value="<?php echo

constant('button-browse');?>" onclick="displayFileWindow()(3);">

<input type="submit" name="b_submit" value="<?php echo

constant('button-upload');?>!">

 </form>

Code from changeProfile.php

(1) Enctype’s value as “multipart/form data” illustrates the aim of this form,

transferring a file.

(2) checkPath() function, will be the one in charge of authorizing form’s

submitting if a file has been correctly introduced. Its code is showed in the

following box:

 function checkPath()

 {

 uploadForm = document.getElementById('uploadAvatarForm');

 if(uploadForm.bx_file.value=="") return false;

 else return true;

 }

Code from changeProfile.php

(3) Since standard file’s input does not fit design requirements some of his

elements as its search button have been configured to not be displayed. A

fake button has been added. Its behavior it’s managed by

displayFileWindow(), JavaScript function that will perform hidden button

duties.

 function displayFileWindow()

 {

 uploadForm = document.getElementById('uploadAvatarForm');

 uploadForm.bx_file.click();

 }

Code from changeProfile.php

After collecting file’s information, updateAvatar.php will be accessed.

64 | P a g e

First of all code required to update the file which was selected by the user will

be executed.

$name = $_FILES['bx_file']['name'];

$tmp_name = $_FILES['bx_file']['tmp_name'];

$location="images/avatars/$username";

move_uploaded_file($tmp_name,$location);

Code from updateAvatar.php

Finally user’s record in database will be updated to the new location of his avatar.

include('dbAlexandria1.php');

include('connect.php');

$SQL="UPDATE users SET users.avatar=\"$location\" WHERE

users.username=\"$username\"";

mysql_query($SQL) or die(mysql_error());

mysql_close();

Code from updateAvatar.php

(4) Changing description.

Each user will be able to write a short description which will be showed in his

own profile. A text box will be displayed in ChangeProfile.php for this purpose.

Once users finish composing their description, updateDescription.php will be

accessed. There, introduced description will be stored in user’s record in database.

$description = $_POST['tb_description'];

include('dbAlexandria1.php');

include('connect.php');

$SQL="UPDATE users SET users.description=\"$description\" WHERE

users.username=\"$username\"";

mysql_query($SQL) or die(mysql_error());

mysql_close();

Code from updateDescription.php

65 | P a g e

Sending a message

Developed private message system has no any special feature if we compare it

to the one we can find in a common website providing this functionality.

Once user has filled in required information, his message is stored in site’s

database and it will be available henceforth when recipient checks his inbox.

As a first step to send a message, once user has selected the proper option, a

hidden form will be showed to collect all the information.

As if was defined previously, there will be three fields to fill in: recipient, subject

and body. Going back to the “Analysis of requirements” document we can find

following restrictions related to this case:

“Recipient field is mandatory, an existing user must be specified in this field”
“Either subject or body fields must be filled in. Both messages without subject and
messages without body are allowed, besides the common ones”

All these restrictions are checked by a JavaScript function implemented for this
purpose. This function is executed each time a user clicks on send button and is the
one in charge of authorizing the operation even though the same check is performed
at server’s side once the information has arrived, to prevent unexpected behavior or
absence of JavaScript support in user’s web-browser.

A fragment of getPData, JavaScript function just mentioned it is showed in the
following box.

var topic = f.tb_topic.value;

var content = f.tb_content.value;

var recipient = f.tb_recipient.value; (1)

if(recipient!="" && (topic!="" || content!="")) (2)

{

 if(topic=="") f.tb_topic.value="(no subject)";

 f.destination.value=document.location.href;

 f.style.display = 'none'; (4)

 document.getElementById('sendMessage').submit();(3)

}

Code from showMessages.php

After collecting introduced values from a form with “f” as id (1). All restrictions

defined in “Analysis of requirements” are checked (2). If all three conditions have been

fulfilled, form is submitted (3) and hidden again (4).

According to form’s definition, sendMessage.php will be accessed (5).

66 | P a g e

<form id=sendMessage action=sendMessage.php (5) method="post">

 <label><?php echo constant('label-recipient');?></label>

 <input type="text" name="tb_recipient" value="">

 <label><?php echo constant('label-subject');?></label>

 <textarea class=singleRowArea

name="tb_topic"></textarea>

 <textarea class=multipleRowArea

name="tb_content"></textarea>

 <input type="hidden" name="destination" value="">

 <input type="button" value="<?php echo constant('button-

send');?>" id="b_submit" name="b_submit" onClick="getPdata()" >

 <input type="button" value="<?php echo constant('button-

cancel');?>" name="b_cancel" onClick="getPdata(this.value)">

</form>
 Code from showMessages.php

Once reached sendMessage.php the restriction check already performed in

JavaScript will be repeated (6) and system will check that selected recipient exists in

site’s database (7).

If($_POST[„tb_recipient']!="" && $_POST['tb_content']!="") (6)

{

 //Code to access to database

 $SQL = "SELECT * FROM users WHERE id = \"$tmpRecipient\"

OR username = \"$tmpRecipient\";" (7);

 $result = mysql_query($SQL) or die('Error:

'.mysql_error());

 if(mysql_num_rows($result)==0) //non existing recipient

deny request

 {

 header('Location: accessDenied.php');

 }

 Code from sendMessage.php

Finally if this process ends up successfully message will be stored in database. It

will be available next time recipient checks his inbox.

$SQL = "INSERT INTO privateMessages

(`sender`,`recipient`,`topic`,`content`,`timestamp`) VALUES

('$userID','$recipient','$topic','$content','$sqlTime');";

mysql_query($SQL) or die(mysql_error());

 Code from sendMessage.php

67 | P a g e

Replying a message

Since replying a message is an especial case of sending a message, a very similar

procedure is followed to perform both operations.

Users will be allowed to reply the message they are reading.

ShowMessage.php, the page which displays the content of a received message will

provide an option to do so. First steps of this procedure are identical to the ones

explained in the previous section; a form will be showed and message sender will be

able to compose his message.

Once finished, data will be checked by getPData(), the same function used to

send a common message. Both associated restrictions (message has a recipient, either

subject or body field have been filled in, at least) will be checked, even though it would

be difficult to find an error, since recipient and subject fields will be already filled when

they are displayed to the user according to replied message.

After data validation, sendMessage.php will be required as it happened in the

previous section. In this file there is a condition and a portion of code to be executed

when message to be sent is a reply of a previous one.

if($_POST['reply'](1)!="") //then a reply of a previously sent

message is being sent

 {

 mysql_query('BEGIN') (2);

 $reply = $_POST['reply'];

 $SQL = "INSERT INTO privateMessages

(`sender`,`recipient`,`topic`,`content`,`timestamp`,`reply`)

VALUES

('$userID','$recipient','$topic','$content','$sqlTime','$reply')

;";

 mysql_query($SQL);

 //Checking if current request is the first reply to

the selected message (reply field must be changed from not

replied to replied)

 $SQL = "SELECT reply FROM privateMessages WHERE

id=\"$reply\";" (3);

 $tmpResult = mysql_query($SQL) or die(mysql_error());

 $tmpRow = mysql_fetch_assoc($tmpResult);

 if($tmpRow['reply']==-1)

 {

 $SQL = "UPDATE privateMessages SET reply=\"-2\"

WHERE id=\"$reply\";" (4);

 mysql_query($SQL);

 if(mysql_error())

 {

 mysql_query('ROLLBACK');

 die();

68 | P a g e

 }

 }

 mysql_query('COMMIT'); (5)

 }

 Code from sendMessage.php

(1) Notice that the id of the message being replied has been enclosed among the

information which was sent after ShowMessage.php’s form submitting.

(2) A MySQL transaction is started since replying a message requires more than

one access to site’s database and all of the operations should be performed

atomically.

(3) First of all, message must be sent, so it is stored in database.

(4) Once reply has been sent, database must be corrected, since replied message’s

state could have changed if it current reply was the first one. Recall that a

privateMessage record in database includes an especial field for this purpose

called “reply”. Depending on its value, system will know which procedure

should be applied when a message or a chain of messages must be showed.

This field’s possible values are the following ones:

Reply = -1 Message has not been replied.

Reply = -2 Replied message, head of a message chain.

Reply > 0 Message reply. Reply field will contain the id of the first message in
the message chain.

Since there is a message being replied, if current reply is the first one related to

it its state will change from non replied to replied.

(5) If both operations have been performed without errors transaction can be

finished.

Checking incoming/outgoing messages

The way incoming messages are displayed in Project Alexandria follows the
rules or standards usually observed in major social networks. Two restrictions involving
this function were defined during analysis of requirements phase:

“A message chain must be managed as a single message. Once a message has been
replied only the last one of its replies will be showed in incoming messages”

On the other hand,

“In order to speed up the access to the inbox, only a defined amount of the last

received messages should be showed at once. There should be any navigation or

69 | P a g e

filtering facilities in order to ease the reading and management of previously

received messages”

First of all, a group of messages to be showed must be fetched from database.

According to the second restriction, only the ten most recent messages

($selectedAmount = 10) (1) will be retrieved. Furthermore, considering the first

restriction, only non-replied messages or the last replies of a message must be

showed. As a first step to achieve it only non-replied messages (2) (reply=-1) and

messages heading a message chain (3) (reply=-2) will be selected.

$SQL = "SELECT

privateMessages.id,privateMessages.sender,privateMessages.topic,

privateMessages.content,privateMessages.timestamp,privateMessage

s.readed,users.username,users.avatar FROM privateMessages INNER

JOIN users ON privateMessages.sender = users.id WHERE (recipient

= \"$userID\" AND reply<\"0\" AND deletedBy!=\"$userID\" (2)) OR

(sender = \"$userID\" AND reply=\"-2\" AND

deletedBy!=\"$userID\" (3)) ORDER BY timestamp DESC LIMIT (1)

$fromMessage,$selectedAmount; ";

$result = mysql_query($SQL) or die('Error: '.mysql_error());

Code from showMessages.php

Once ten results have been collected, an iterator in charge of showing each one

of them will start.

First of all, according to the second restriction, if current message has been

replied (4) the last one of its replies must be fetched and showed instead of the

selected one (5). Remind that during the first selection just heads of message chains

besides non replied messages were chosen.

$SQL = "SELECT

privateMessages.id,privateMessages.sender,privateMessages.topic,

privateMessages.content,privateMessages.timestamp,privateMessage

s.readed,users.username,users.avatar FROM privateMessages INNER

JOIN users ON privateMessages.sender = users.id WHERE

privateMessages.id = \"$msgID\" OR

privateMessages.reply=\"$msgID\" ORDER BY timestamp DESC LIMIT

$fromMessage,$selectedAmount;";

$replies = mysql_query($SQL) or die('Error: '.mysql_error());

if(mysql_num_rows($replies)>0) (4)
{

 //Fetching the last generated message (since they're ordered

by DESC timestamp)

 //This message will be showed instead of the one heading the

reply chain (oldest)

while($row=mysql_fetch_assoc($replies))

70 | P a g e

{

 if($row['sender']!=$userID)

 {

 //Getting reply information (5)
 $msgID=$row['id'];

 $readed = $row['readed'];

 $topic = $row['topic'];

 $content = $row['content'];

 $timestamp =$row['timestamp'];

 //Retrieving recipient's name

 $senderID=$row['sender'];

 $senderName = $row['username'];

 $senderAvatar = $row['avatar'];

 break;

 }

}

 Code from showMessages.php

Once proper information has been corrected, if needed, message is displayed

using html divs as containers. Non readed messages will be showed in a different color

to ease its identification.

if($readed==1)
{
 echo "<div class=\"messageMultipleContainerRow\">";
}
else
{
 echo "<div class=\"messageMultipleContainerRowNonReaded\">";
}

Code from showMessages.php

Each message container will show some sender’s information as picture and

nickname, and current message details, subject and body. Both of them will be split if

needed in order to fit container dimensions. Complete subject and body will be fully

displayed when a message is requested to be showed in showMessage.php.

echo "<div class=\"messageSmallContainerInfoDiv\">\n";

//Checking if topic should be splitted to make it fit in the

container

if(strlen($content)<=75)

 {

 echo "<p>".$content."</p>\n";

 }

else

 {

 echo "<p>".substr($content,0,75)."...</p>\n";

 }

71 | P a g e

echo "</div>\n";

Code from showMessages.php

On the other hand since only ten messages are displayed each time, a

navigation system has been developed to have access to the older ones. A new

variable called $fromMessage has been added for this purpose. Its value will establish

from which message, selection must be done.

$SQL = "SELECT * FROM privateMessages INNER JOIN users ON

privateMessages.sender = users.id WHERE (recipient =

\"$userID\" AND reply<\"0\" AND deletedBy!=\"$userID\" (2)) OR

(sender = \"$userID\" AND reply=\"-2\" AND

deletedBy!=\"$userID\" (3)) ORDER BY timestamp DESC LIMIT (1)

$fromMessage,$selectedAmount; ";

Code from showMessages.php

This variable value will be initialized as zero each time incoming messages

section is accessed if it had no previously assigned value.

if(isset($_GET['fromMessage']))

{

 $fromMessage =

$_GET['fromMessage'];

}

else

{

 $fromMessage = 0;

}

 Code from showMessages.php

Its value will be updated and sent in displayed navigation links.

if(($fromMessage+10)<$totalMessages)

{

 $nextInitialPos = $fromMessage+10;

 echo "<div class=\"bControlBar\"

onclick=\"location.href='".$rootURL."showMessages.php?fromMessag

e=$nextInitialPos'\">".constant('button-next')."</div>";

}

if($fromMessage>9)

{

 $nextInitialPos = $fromMessage-10;

 echo "<div class=\"bControlBar\"

onclick=\"location.href='".$rootURL."showMessages.php?fromMessag

e=$nextInitialPos'\">".constant('button-previous')."</div>";

}

72 | P a g e

Code from showMessages.php

Deleting messages

Among the options available in showMessages.php single and multiple message

deletion can be found.

echo "<div class=messageControlBar>";

echo '<div class="bControlBar"

onclick="selectAll();">'.constant('button-select-

all').'</div>';

echo '<div class="bControlBar"

onclick="deleteSelected();">'.constant('button-delete-

selected').'</div>';

 echo "</div>"; // of messageControlBar

Code from showMessages.php

As a first step messages to be deleted must be selected from current message

list then, deletion button must be clicked.

After that proper form including selected message ids will be submitted by a

JavaScript function, pmDeleteSelected.php will be accessed.

function deleteSelected()

{

 f = document.getElementById(

'selectMessages');

 f.action='pmDeleteSelected.php';

 f.submit();

}

Code from showMessages.php

PmDeleteSelected.php will iterate through all selected messages deleting them.

However a message only will be truly deleted from database once both sender and

recipient have request its deletion. If this situation has not happened message will be

marked, by using its “deletedBy” field. In this field the id of the user who has

requested its deletion will be written.

while($msg = mysql_fetch_assoc($toBeRemoved))

{

 $msgID = $msg['id'];

 $deletedBy = $msg['deletedBy'];

 //Current is the first one (sender/recipient) who asks for

deleting the msg, msg must be preserved

73 | P a g e

 if($deletedBy==-1)

 {

 $SQL = "UPDATE privateMessages SET

deletedBy=\"$userID\" WHERE id=\"$msgID\";";

 mysql_query($SQL);

 if(mysql_error())

 {

 mysql_query('ROLLBACK');

 mysql_close();

 die();

 }

 }

 //Both sender and recipient have already asked for

deleting the msg, remove it from DB

 else

 {

 $SQL="DELETE FROM privateMessages WHERE

privateMessages.id=\"$msgID\";";

 $result = mysql_query($SQL);

 if(mysql_error())

 {

 mysql_query('ROLLBACK');

 mysql_close();

 die();

 }

 }
Code from pmDeleteSelected.php

This way, next time he checks his messages system will notice that marked

messages must not be displayed any more. At the same time, the other user involved

in this message will be able to read it until he decides it must be deleted.

Notice that if a replied message is deleted, its replies will be deleted as well.

//Checking if an action committed on this message would require

actions on other messages (reply chain)

if($selectedMessage['reply']==-2) //Replied message, head of

the reply chain, its replies must be deleted too

{

 $SQL = "SELECT * FROM privateMessages WHERE

privateMessages.id=\"$messageID\" OR

privateMessages.reply=\"$messageID\" ;";

 $toBeRemoved = mysql_query($SQL);

}

if($selectedMessage['reply']>0) //Single reply of a message,

its replies must be deleted too

{

 $reply = $selectedMessage['reply'];

 $SQL = "SELECT * FROM privateMessages WHERE

privateMessages.id=\"$reply\" OR

privateMessages.reply=\"$reply\" ;";

 $toBeRemoved = mysql_query($SQL);

}

74 | P a g e

Code from pmDeleteSelected.php

Marking several messages as not read

Sometimes marking a message that has been already read as not read can be

useful as a reminder for the next time. This functionality is also available in

showMessages.php.

echo "<div class=messageControlBar>";

echo '<div class="bControlBar"

onclick="markAsReaded();">'.constant('button-mark-as-

readed').'</div>';

Code from showMessages.php

To do so messages to be marked must be selected from current message list

then, function button must be clicked.

After that proper form including selected message ids will be submitted by a

JavaScript function, pmMarkAsReaded.php will be accessed.

function markAsReaded()

{

 f = document.getElementById(

'selectMessages');

 f.action='pmMarkAsReaded.php';

 f.submit();

}

Code from showMessages.php

Finally database will be updated from pmMarkAsReaded.php. Readed field

value in PrivateMessage record will be updated.

$SQL="UPDATE privateMessages SET privateMessages.readed=\"0\"

WHERE privateMessages.id=\"".$selectedMessages[$i]."\" AND

privateMessages.recipient=\"$userID\";";

$result = mysql_query($SQL);

Checking notifications

As it was stated in previous chapters of this document, notifications are an

especial kind of messages whose main characteristic is that they always have the

75 | P a g e

system as sender and cannot be replied. For this reason, showNotifications.php looks

pretty similar to ShowMessages.php but it is simpler.

Following the same restriction, only the ten most recent notifications have to

be showed at once while the rest of them will be accessible by using a navigation

system.

After its selection which is performed in the same way message selection is

done but with a simpler condition (1). Notifications will be showed according to their

type.

//Getting 10 notifications to be showed

$SQL = "SELECT notifications.issue, notifications.content,

users.username, users.avatar, notifications.timestamp,

notifications.id FROM notifications INNER JOIN users ON

notifications.content = users.id WHERE recipient = \"$userID\"

ORDER BY timestamp DESC LIMIT (1)
$fromNotification,$notificationAmount";

$notificationList = mysql_query($SQL);

Code from showNotifications.php

Two types of notifications have been defined so far: friendship requests and

friendship confirmations. Notifications type is stored in a field called issue which was

created for this purpose in Notifications database.

According to their type notifications will be processed and showed.

- Friendship requests will display the picture and nickname of its sender besides

two buttons where recipient will decide whether ignoring or accepting the

request.

- Friendship confirmations are merely informative. They will be sent to the

requester user once recipient has accepted him as a friend.

On the other hand since only ten notifications are displayed each time, a

navigation system has been developed to have access to the older ones. Once again an

identical procedure to the one used to manage private messages has been used.

$fromNotification variable will have the same behavior as previously defined

$fromMessage. Its value will establish from which notification, selection must be done.

$SQL = "SELECT notifications.issue, notifications.content,

users.username, users.avatar, notifications.timestamp,

notifications.id FROM notifications INNER JOIN users ON

notifications.content = users.id WHERE recipient = \"$userID\"

ORDER BY timestamp DESC LIMIT

76 | P a g e

$fromNotification,$notificationAmount";

$notificationList = mysql_query($SQL);

Code from showNotifications.php

This variable value will be initialized as zero each time incoming messages

section is accessed if it had no previously assigned value.

if(isset($_GET['fromNotification']))

{

 $fromNotification = $_GET['fromNotification'];

}

else

{

 $fromNotification = 0;

}

 Code from showNotifications.php

Its value will be updated and sent in displayed navigation links.

if(($fromNotification+10)<$notificationCount)

{

 $nextInitialPos = $fromNotification+10;

 echo "<div class=\"bControlBar\"

onclick=\"location.href='".$rootURL."showNotifications.php?fromN

otification=$nextInitialPos'\">".constant('button-

next')."</div>";

}

if($fromNotification>9)

{

 $nextInitialPos = $fromNotification-10;

 echo "<div class=\"bControlBar\"

onclick=\"location.href='".$rootURL."showNotifications.php?fromN

otification=$nextInitialPos'\">".constant('button-

previous')."</div>";

}

Code from showNotifications.php

Deleting notifications.

After reading a notification this one is no longer useful since its aim is merely

informative. As time goes by the amount of stored notifications can increase a lot, so it

would be useful to be able to select and remove the ones users do not want to keep

any more.

In the same way it is done with messages, after selecting the notifications to be

deleted by clicking the proper button nDeletedSelected.php will be accessed (1).

77 | P a g e

function deleteSelected()
{
 f = document.getElementById('selectMessages');
 f.action='nDeleteSelected.php' (1).;
 f.submit();
}

Code from nDeleteSelected.php

Inside this file selected notification ids will be gathered in an array (2) and then

they will be deleted (3).

$SQL = "DELETE FROM notifications WHERE notifications.id IN ($strNotifIDs (2)) AND
notifications.recipient=\"$userID\";" (3);

mysql_query($SQL) or die('Error: '.mysql_error());

Code from nDeleteSelected.php

Sending a friendship request.

Each time a user visits another user profile, if they do not have any kind of

relationship yet, sending a friendship request option will be displayed.

<?php

 if($areFriends==false)

 {

 echo "".constant

('add-as-friend')."";

 }

?>

Code from sUserMenu << showProfile.php

All required operations are performed in addFriend.php

Two database tables are involved in this operation.

- FriendList it is a table storing all friendship relationships established in the

system. For each established relationship two records will be placed. The first

of them is stored when friendship request is sent and the second when that

request has been confirmed so both pending and confirmed relationships are

stored inside this table.

- FriendRequests is the table where all pending friend requests in the system are

stored. In contrast to the previous table information stored in this table is

temporary and will be deleted once friendship relationship is confirmed or

ignored by its recipient.

78 | P a g e

First of all the first record in FriendList will be stored.

$SQL = "INSERT INTO friendList

(`member1`,`member2`,`timestamp`) VALUES

('$userID','$sFriendID','$sqlTime');";

mysql_query($SQL);

Code from addFriend.php

Notice that $userID contains requester ID and $sFriendID recipient’s.

After that friendship requests is sent.

$SQL = "INSERT INTO friendRequests

(`sender`,`recipient`,`idFriendList`,`timestamp`) VALUES

('$userID','$sFriendID','$idFriendList','$sqlTime');";

mysql_query($SQL);
Code from addFriend.php

If both operations have been completed without errors transaction will be

finished and selected user’s profile will be displayed again.

Confirming a friendship request.

When a user adds another one as a friend, a new notification will appear in the

second’s notification box. Recipient will have to choose whether accepting or denying

this friendship request. If he accepts confirmFriend.php will be accessed.

Information about the users involved in this operation will be fetch from

database as a first step.

$SQL = "SELECT * FROM friendList WHERE

friendList.id=\"$idFriendList\"";

$result = mysql_query($SQL) or die(mysql_error());

$row = mysql_fetch_row($result);

$member1 = $row[constant("friendList::member1")];

$member2 = $row[constant("friendList::member2")];

Code from confirmFriend.php

Recall that this record was added to friendList table when friendship request

was sent. Another one switching member’s order should be added at the end of this

operation.

Afterwards friendList’s record status will be updated from “pending” to

“confirmed” (1). The second record with switched values will be added as well (2).

79 | P a g e

mysql_query('BEGIN');

//Confirming friendship on current DB score

$SQL = "UPDATE friendList SET friendList.status=\"confirmed\",

friendList.timestamp=\"$sqlTime\" WHERE

friendList.id=\"$idFriendList\"(1)";

mysql_query($SQL);

if(mysql_error())

{

 mysql_query('ROLLBACK');

 die();

}

//Creating new score on friendship table

$SQL = "INSERT INTO friendList

(`member1`,`member2`,`timestamp`,`status`) VALUES

('$member2','$member1','$sqlTime','confirmed');" (2);

mysql_query($SQL);

if(mysql_error())

{

 mysql_query('ROLLBACK');

 die();
}

Code from confirmFriend.php

User who requested confirmed friendship request will be sent a notification to

let him know about its confirmation.

//Notifying requester friendship request has been confirmed
$SQL = "INSERT INTO notifications (`recipient`,`issue`,`content`,`timestamp`) VALUES
('$member1','friend_confirmation','$content','$sqlTime');";
mysql_query($SQL);
if(mysql_error())
{
 mysql_query('ROLLBACK');
 die();
}

Code from confirmFriend.php

Finally confirmed friendship request record will be deleted from friendRequests

table in database.

Deleting current friendship request from member2's box
$SQL = "DELETE FROM friendRequests WHERE friendRequests.id=\"$idFriendRequest\"";
mysql_query($SQL);
if(mysql_error())
{
 mysql_query('ROLLBACK');
 die();
}

//Committing changes
mysql_query('COMMIT');

80 | P a g e

Code from confirmFriend.php

If all mentioned operations have been performed without errors transaction

will be finished and changes committed.

Looking a user up in the system.

In order to expand their friend network users will be able to look other users up

in user directory. Since especial privacy rules, as hidden accounts, have been defined in

this prototype users will be able to access the whole user directory.

According to “Analysis of requirements”’ document, one statement was

defined related to this issue:

“In order to ease this process (look up process) several filtering options will be

provided. Some user characteristics as name, sex, current city or current country will

be available for this purpose”

This process will take place in searchFriend.php. Once accessed the whole site’s

user directory will be showed. Only ten results will be displayed per page so there will

be a navigation system to go along all the results.

In the box below ten results ($selectedAmount has been given this value (1))

are selected from site’s user directory to be showed.

$SQL = "SELECT * FROM users $sqlWhere ORDER BY users.timestamp

DESC LIMIT $fromElement,$selectedAmount";

$result = mysql_query($SQL) or die('Error: '.mysql_error());

$cont=0;

while($friendList = mysql_fetch_assoc($result))

{

 $friendIDs[$cont]=$friendList["id"];

 $friendNames[$cont] = $friendList["username"];

 $friendAvatars[$cont] = $friendList["avatar"];

 $cont++;

}

Code from searchFriend.php

Notice that $fromElement variable is used to store which results must be

showed each time as it happened in previous operations as showing messages or

notifications. $fromElement value will contain an index from which results must be

collected. Its value will be reset if previous page have not sent its previous value (2).

//Getting range of elements that are going to be showed

$selectedAmount=10 (1);
if(isset($_GET['fromElement']) (2))

81 | P a g e

{

 $fromElement = $_GET['fromElement'];

}

else

{

 $fromElement = 0;

}

Code from searchFriend.php

By using navigation buttons $fromElement’s value will be updated.

if(($fromElement+$selectedAmount)<$friendCount)

{

 $nextInitialPos = $fromElement+$selectedAmount;

 echo "<div class=\"bControlBar\"

onclick=\"location.href='".$rootURL."searchFriend.php?fromElemen

t=$nextInitialPos'\">".constant('button-next')."</div>";

}

if($fromElement>$selectedAmount-1)

{

 $nextInitialPos = $fromElement-$selectedAmount;

 echo "<div class=\"bControlBar\"

onclick=\"location.href='".$rootURL."searchFriend.php?fromElemen

t=$nextInitialPos'\">".constant('button-previous')."</div>";

}

Code from searchFriend.php

 In the right side of the page a form will be displayed, here users will be able to

filter the information showed in the result window by introducing some details about

people they are looking for. Each time page is loaded if any filtering setting was

defined search will be performed according to it.

$sqlWhere="WHERE " (3);

if($_POST['tb_username']!="") $sqlWhere =

$sqlWhere."users.username LIKE '%".$_POST['tb_username']."%' AND

" (4);

if($_POST['tb_city']!="") $sqlWhere = $sqlWhere."users.city LIKE

'%".$_POST['tb_city']."%' AND " (4);

if($_POST['tb_country']!="") $sqlWhere =

$sqlWhere."users.country LIKE '%".$_POST['tb_country']."%' AND "

(4);

if($_POST['tb_mail']!="") $sqlWhere =

$sqlWhere.'users.email="'.$_POST['tb_mail'].'" AND ' (4);

82 | P a g e

if($sqlWhere=="WHERE ") $sqlWhere="" (5);

else $sqlWhere = substr($sqlWhere,0,strlen($sqlWhere)-5);

Code from searchFriend.php

Notice that $sqlWhere contains WHERE clause that must be used in database

query (3) (see first code-box of this section). Defined settings will customize this field

by adding information to $sqlWhere (4).

If none of them has been defined, $sqlWhere will remain unchanged so it will

have to be reset in order to show the whole user directory (SELECT * FROM users)

which is defined default behavior (5).

Both user picture (6) and nickname (7) will be showed in each one of the ten

selected results. By clicking on them selected user profile will be accessed.

echo "<div class=\"searchResultRow\">";
echo " <img
class=\"friendPicture\" src=$friendAvatar (6) alt=$friendName /> ";

echo "<div class=\"friendName\">";
echo "<A class=userLink
href=\"".$rootURL."showProfile.php?sUser=".$friendID."\">".$friendName
(7)."
\n";
echo "</div>"; //of friendName div

echo "</div>";

Code from searchFriend.php

Showing a user’s friend list

In order to show any user friend list, the same system described for looking

users up is used. After all a this operation is a particular case of user look-up. The only

difference lies on the searching condition, this one will be more complex this time to

search only among the friends of the user whose friend list is being showed (1).

Query used in this case is showed in the following box:

$SQL = "SELECT users.id,users.username,users.avatar FROM users

INNER JOIN friendList ON users.id = friendList.member2 WHERE

$sqlWhere (2) friendList.member1=\"$sUserID\" AND

friendList.status=\"confirmed\ (1)" ORDER BY \"username\" LIMIT

$fromElement,$selectedAmount;";

83 | P a g e

$result = mysql_query($SQL) or die('Error: '.mysql_error());

Code from showSearchResults.php

Filtering settings among showed results are available as well. Its

implementation and behavior are the same described in the previous section. Filtering

conditions will be included in $sqlWhere variable (2).

if($_POST['tb_username']!="") $sqlWhere =

$sqlWhere.'users.username="'.$_POST['tb_username'].'" AND ';

if($_POST['tb_city']!="") $sqlWhere =

$sqlWhere.'users.city="'.$_POST['tb_city'].'" AND ';

if($_POST['tb_country']!="") $sqlWhere =

$sqlWhere.'users.country="'.$_POST['tb_country'].'" AND ';

if($_POST['tb_mail']!="") $sqlWhere =

$sqlWhere.'users.email="'.$_POST['tb_mail'].'" AND ';

$sqlWhere = substr($sqlWhere,0,strlen($sqlWhere)-1);

Code from showSearchResults.php

Registering a group.

If a user wants to find people sharing his interests and there is no group created

for this purpose he will be able to create a new one. Group creation code is divided in

two files, while registerGroup.php will be the one in charge of collecting proper

information for its creation, commitGroupRegistration.php will perform required

operations to create it.

As it was stated during the definition of the requisites linked to this issue, user

will have to choose a name for the group and write a short description of its aim. In

addition, he will be able to upload a picture related to group’s aim that will be show in

group’s main page.

In the box below the code of the form displayed to collect all required

information is showed.

<form id="groupRegistration"

action="commitGroupRegistration.php" method="post"

enctype="multipart/form-data" (1) onSubmit="return
checkPath()(2);">

 <label><?php echo constant('label-name');

?></label><input type="text" size=40 name="tb_name" value="" />

 <label><?php echo constant('label-description');

84 | P a g e

?></label><textarea name="tb_description"

class=multipleRowArea></textarea>

 <label><?php echo constant('label-group-picture');

?> (<?php echo constant('label-optional'); ?>)

 </label>

 (3)<input id="bx_file" type="file" name="bx_file"
style="display:none;" onChange="refreshTb_fake();">

 <input type="text" name="tb_fake" readonly>

 <input type="button" name="b_file_fake" value="<?php

echo constant('button-browse'); ?>"

onclick="displayFileWindow();">

 <center> <input type="submit" name="b_submit"

value="<?php echo constant('button-register'); ?>" /> </center>

</form>
Code from registerGroup.php

- Since a file could be attached, enctype attribute will be added. Its value shows

this situation (“multipart/form-data”) (1).

- Notice that form will not be submitted until CheckPath() a JavaScript function

allows it (2).

- File selection pop up will work as the one described previously in “Changing

account settings” section, whose aim was uploading an avatar (3).

CheckPath function will check both required fields (group name and description) have

been introduced (4).

 function checkPath()

 {

 uploadForm = document.getElementById('groupRegistration');

 if(uploadForm.tb_name.value=="" ||

uploadForm.tb_description.value=="")(4)
 {

 alert('Group name and short description are

mandatory fields');

 return false;

 }

 else return true;

 }

Code from registerGroup.php

After its execution form will be submitted to commitGroupRegistration.php.

Once data are collected in commitGroupRegistration.php, group will be

registered if there is not any group with the same name. Even though the introduction

of required fields was checked previously by checkPath(), this check will be performed

85 | P a g e

once again since javascript could not work properly in user’s web-browser or could not

be habilitated.

$SQL = "INSERT INTO groups

(`name`,`description`,`createdBy`,`timestamp`) VALUES

('$gName','$gDescription','$userID','$sqlTime');";

mysql_query($SQL) or die(mysql_error());

Code from commitGroupRegistration.php

If a picture was attached the following code will both upload (5) it and update

proper field in database including its location in the server (6).

$name = $_FILES['bx_file']['name'];

$tmp_name = $_FILES['bx_file']['tmp_name'];

$location="images/groups/$idGroup";

$coverAdded = move_uploaded_file($tmp_name,$location) (5);

if($coverAdded==true)

{

 $SQL="UPDATE groups SET groups.avatar=\"$location\" WHERE

groups.id=\"$idGroup\"" (6);

 mysql_query($SQL) or die(mysql_error());

}

Code from commitGroupRegistration.php

Joining a group.

Once a user requests to join a group, selected group id will be sent to

addGroup.php. This file will perform all required operations to commit his registration

as a participant.

As a first step two checks will be performed to verify received group id has

been received correctly and user is not already a participant of this group.

If check ends up successfully user will be registered as a participant of the

group in Membership table.

$SQL = "INSERT INTO membership(`userID`,`groupID`,`timestamp`)

VALUES ('$userID','$groupID','$sqlTime');";

mysql_query($SQL);

if(mysql_error())

{

 die();

}

Code from addGroup.php

86 | P a g e

Leaving a group.

If a user decides to stop being a participant of a group, selected group id will be

sent to leaveGroup.php. This file will perform all required operations to disassociate

him from that group.

Similar checks to the ones performed when a user wants to join a group will be

commit. On the one hand group’s id reception will be verified. On the other hand

user’s membership to selected group will be corroborated.

If both checks end up successfully user will be unregistered as a participant of

the group by removing proper record in Membership table.

$SQL = "DELETE FROM membership WHERE userID=\"$userID\" AND

groupID = \"$groupID\";";

mysql_query($SQL);

if(mysql_error())

{

 die();

}

Code from leaveGroup.php

Looking for a group.

In order to find people sharing their interests users will be provided with a

system to look up and filter groups among all the ones registered in the site.

According to “Analysis of requirements”’ document, one statement was

defined related to this issue:

“To ease this process (look up process) several filtering options will be provided.

Some group characteristics as name or short description will be available for this

purpose”

This process will take place in searchGroup.php. Once accessed the whole site’s

group directory will be showed. Only ten results will be displayed per page so there

will be a navigation system to go along all the results.

In the box below ten results ($selectedAmount has been given this value (1))

are selected from site’s group directory to be showed.

$SQL = "SELECT * FROM groups $sqlWhere ORDER BY

groups.timestamp DESC LIMIT $fromElement,$selectedAmount (1)";

$groupList = mysql_query($SQL) or die('Error: '.mysql_error());

87 | P a g e

Code from searchGroup.php

Notice that $fromElement variable is used, once again, to store which results

must be showed each time as it happened in previous operations as showing messages

or notifications. $fromElement value will contain an index from which results must be

collected. Its value will be reset if previous page have not sent its previous value (2).

//Getting range of elements that are going to be showed

$selectedAmount=10 (1);
if(isset($_GET['fromElement']) (2))
{

 $fromElement = $_GET['fromElement'];

}

else

{

 $fromElement = 0;

}

Code from searchGroup.php

By using navigation buttons $fromElement’s value will be updated.

if(($fromElement+$selectedAmount)<$friendCount)

{

 $nextInitialPos = $fromElement+$selectedAmount;

 echo "<div class=\"bControlBar\"

onclick=\"location.href='".$rootURL."searchGroup.php?fromElement

=$nextInitialPos'\">".constant('button-next')."</div>";

}

if($fromElement>$selectedAmount-1)

{

 $nextInitialPos = $fromElement-$selectedAmount;

 echo "<div class=\"bControlBar\"

onclick=\"location.href='".$rootURL."searchGroup.php?fromElement

=$nextInitialPos'\">".constant('button-previous')."</div>";

}

Code from searchGroup.php

 In the right side of the page a form will be displayed, here users will be able to

filter the information showed in the result window by introducing some details about

the group they are looking for (its name or description). Each time page is loaded if any

filtering setting was defined search will be performed according to it.

$sqlWhere="WHERE " (3);

if($_POST['tb_name']!="") $sqlWhere = $sqlWhere."groups.name

LIKE '%".$_POST['tb_name']."%' AND " (4);

88 | P a g e

if($_POST['tb_description']!="") $sqlWhere =

$sqlWhere."groups.description LIKE

'%".$_POST['tb_description']."%' AND " (4);

if($sqlWhere=="WHERE ") $sqlWhere=""(4);

else $sqlWhere = substr($sqlWhere,0,strlen($sqlWhere)-5) (5);

Code from searchGroup.php

Notice that $sqlWhere contains WHERE clause that must be used in database

query (3) (see first code-box of this section). Defined settings will customize this field

by adding information to $sqlWhere (4).

If none of them has been defined, $sqlWhere will remain unchanged so it will

have to be reset in order to show the whole group directory (SELECT * FROM groups)

which is defined default behavior (5).

Group picture (6), name (7) and description (split if needed) (8) will be showed

in each one of the ten selected results. By clicking on their container selected group

main page will be accessed. In addition a link to become a participant of the group will

be showed (9).

echo "<center> <img

class=\"picture150px\" src=$groupAvatar (6) alt=$groupName />

 </center>";

echo "</div>";

echo "<div style=\"width:340px;float:left;\">";

echo "<A class=userLink

href=\"".$rootURL."showGroup.php?sGroupID=".$groupID."\">".$grou

pName (7)."
\n";

echo "<p>".substr($groupDescription,0,75) (8)."</p>";

if(in_array($groupID,$myFavGroups)==false)

{

 (9) echo "
<A class=userLink style=\"float:right;\"

href=\"".$rootURL."addGroup.php?sGroupID=".$groupID."\">".consta

nt('join-group')."\n";

}

echo "</div>"; //of groupInfo div

echo "</div>";

Code from searchGroup.php

Showing a user’s favourite groups.

89 | P a g e

The same system described for looking for a group is used in order to show

user’s favourite groups. After all, this operation is a particular case of group search.

The only difference lies on the searching condition, being this one more complex this

time, to search only among user’s favourite groups (1).

The box below, shows the query associated with this search:

$SQL = "SELECT * FROM membership INNER JOIN users ON

membership.userID = users.id INNER JOIN groups ON

membership.groupID = groups.id $sqlWhere ORDER BY

groups.timestamp DESC LIMIT $fromElement,$selectedAmount" (1);

$groupList = mysql_query($SQL) or die('Error: '.mysql_error());

Code from showFavouriteGroups.php

Filtering settings among showed results are available as well. Its

implementation and behavior are the same described in the previous section. Filtering

conditions will be included in $sqlWhere variable (2).

$sqlWhere="WHERE " (2);

if($_POST['tb_name']!="") $sqlWhere = $sqlWhere."groups.name

LIKE '%".$_POST['tb_name']."%' AND ";

if($_POST['tb_description']!="") $sqlWhere =

$sqlWhere."groups.description LIKE

'%".$_POST['tb_description']."%' AND ";

$sqlWhere = $sqlWhere.'membership.userID="'.$sUserID.'"';

Code from showFavouriteGroups.php

Registering a book.

Since developed site is devoted to literature it is important to provide the users

with several tools to allow them to describe their literary interests. Once done so, they

will be able to group according to their interests and share experiences. The code to

perform operations related to the definition of a favourite book list is divided in two

files. RegisterBook.php will be the one in charge of collecting proper information for

its registration while commitGroupRegistration.php will perform required operations

to register it.

According to the definition of the requisites linked to this issue, users will have

to fill in some information about the book they want to register in the system. Besides

its title, author and genre will be required. In addition, they will be able to upload a

picture of the book’s cover.

90 | P a g e

By the following code a form to collect all required details is showed.

<form id="bookRegistration" action="commitBookRegistration.php"

method="post" enctype="multipart/form-data (1)." onSubmit="return
checkPath()(2);">

<img id="pictureBox" class="profileIMG" style="float:right;

margin:25px 25px 0px 0px;" src="images/books/default_book.png"

alt="Book's cover picture" />

<label><?php echo constant('label-title');?></label><input

type="text" size=40 name="tb_title" value="" />

<label><?php echo constant('label-author');?></label><input

type="text" size=40 name="tb_author" value="" />

<label><?php echo constant('label-genre');?></label><input

type="text" size=40 name="tb_genre" value="" />

<label><?php echo constant('label-cover-picture');?><font

size="-2"> (<?php echo constant('label-optional');?>)

</label>

(3) <input id="bx_file" type="file" name="bx_file"
style="display:none;" onChange="refreshTb_fake();">

<input type="text" name="tb_fake" readonly>

<input type="button" name="b_file_fake" value="<?php echo

constant('button-browse');?>" onclick="displayFileWindow();">

<center> <input type="submit" name="b_submit" value="<?php echo

constant('button-register');?>" /> </center>

</form>
Code from registerBook.php

- Since a book’s cover picture could be attached, enctype attribute will be added.

Its value shows this situation (“multipart/form-data”) (1).

- Notice that form will not be submitted until CheckPath() a javascript function

allows it (2).

- File selection pop up will work as the one described previously in “Changing

account settings” section, whose aim was uploading an avatar (3).

CheckPath function will check all required fields (book’s title, author and genre)

have been introduced (4). If there are some of them missing a pop up warning will be

showed and form will not be submitted.

 function checkPath()

 {

 uploadForm = document.getElementById('bookRegistration');

91 | P a g e

 if(uploadForm.tb_title.value=="" ||

uploadForm.tb_author.value=="" ||

uploadForm.tb_genre.value=="")(4)
 {

 alert('Book title, author and genre are mandatory

fields!');

 return false;

 }

 else return true;

 }

Code from registerBook.php

Once all conditions have been satisfied commitBookRegistration.php will be

accessed.

After collecting incoming data, in commitGroupRegistration.php, the book will

be registered if it does not exist yet in database.

Even though the introduction of required fields was checked previously by

checkPath(), this check will be performed once again, since javascript could not work

properly in user’s web-browser or could not be habilitated.

$SQL = "INSERT INTO books

(`title`,`author`,`genre`,`timestamp`) VALUES

('$title','$author','$genre','$sqlTime');";

mysql_query($SQL) or die(mysql_error());

Code from commitBookRegistration.php

If a picture of the book’s cover was attached, the following code will both

upload (5) it and update proper field in database including its location in the server (6).

$name = $_FILES['bx_file']['name'];

$tmp_name = $_FILES['bx_file']['tmp_name'];

$location="images/books/$idBook";

$coverAdded = move_uploaded_file($tmp_name,$location) (5);

if($coverAdded==true)

{

 $SQL="UPDATE books SET books.picture=\"$location\" WHERE

books.id=\"$idBook\"" (6);

 mysql_query($SQL) or die(mysql_error());

}

Code from commitBookRegistration.php

Marking a book as favourite.

92 | P a g e

When a user requests a book to be marked as one of its favourites, chosen

book id will be sent to addBook.php. This file will perform all required operations to

commit his addition to user’s favourite book list.

After verifying that received book id is valid and that current book is not among

user’s favourites yet, database will be updated and selected book will be added to

Bookshelf table.

$SQL = " INSERT INTO bookshelf (`bookID`,`userID`,`timestamp`)
VALUES ('$sBookID','$userID','$sqlTime');";

mysql_query($SQL);

if(mysql_error())

{

 die();

}

Code from addGroup.php

Unmarking a book as favourite.

If due to any reason a user decides that a book among its favourites should be

unmarked, selected book id will be sent to removeBookfromFavourites.php. This file

will perform all required operations to remove it from its favourite book list.

Similar checks to the ones performed to mark a book as favourite will be

commit. On the one hand book’s id reception will be verified. On the other hand book

has to be marked. If both checks end up successfully book will be removed from user’s

favourites (Bookshelf table in database)

$SQL = "SELECT * FROM bookshelf WHERE bookID=$sBookID and

userID=$userID;"

mysql_query($SQL);

if(mysql_error())

{

 die();

}

Code from leaveGroup.php

Looking a book up.

Users will be provided with a system to look books up in site’s database. This

way they will be able to add new ones as favourites or to publish reviews about their

experience when they read them. According to “Analysis of requirements”’ document,

one statement was defined related to this issue:

93 | P a g e

“In order to speed up the access, only a defined amount of books should be showed

at once. There should be any navigation facilities in order to ease the checking

through all the results found”

This process will take place in searchBook.php. Once accessed all registered

books will be showed. Only ten results will be displayed per page so there will be a

navigation system to go along all the results.

In the box below ten results ($selectedAmount has been given this value (1))

are selected among registered books to be showed.

$SQL = "SELECT * FROM books $sqlWhere ORDER BY books.timestamp

DESC LIMIT $fromElement,$selectedAmount(1)";
$result = mysql_query($SQL) or die('Error: '.mysql_error());

$cont=0;

while($bookList = mysql_fetch_assoc($result))

{

 $bookIDs[$cont]=$bookList["id"];

 $bookNames[$cont] = $bookList["title"];

 $bookAuthors[$cont] = $bookList["author"];

 $bookAvatars[$cont] = $bookList["picture"];

 $bookGenres[$cont] = $bookList["genre"];

 $cont++;

}

Code from searchBook.php

Notice that $fromElement variable is used to store which results must be

showed each time as it happened in previous operations as showing messages or

notifications. $fromElement value will contain an index from which results must be

collected. Its value will be reset if previous page have not sent its previous value (2).

//Getting range of elements that are going to be showed

$selectedAmount=10 (1);
if(isset($_GET['fromElement']) (2))
{

 $fromElement = $_GET['fromElement'];

}

else

{

 $fromElement = 0;

}

Code from searchBook.php

By using navigation buttons $fromElement’s value will be updated.

if(($fromElement+$selectedAmount)<$friendCount)

94 | P a g e

{

 $nextInitialPos = $fromElement+$selectedAmount;

 echo "<div class=\"bControlBar\"

onclick=\"location.href='".$rootURL."searchBook.php?fromElement=

$nextInitialPos'\">".constant('button-next')."</div>";

}

if($fromElement>$selectedAmount-1)

{

 $nextInitialPos = $fromElement-$selectedAmount;

 echo "<div class=\"bControlBar\"

onclick=\"location.href='".$rootURL."searchBook.php?fromElement=

$nextInitialPos'\">".constant('button-previous')."</div>";

}

Code from searchBook.php

 In the right side of the page a form will be displayed, here users will be able to

filter the information showed in the result window by introducing some details about

the book they are looking for. Each time page is loaded if any filtering setting was

defined search will be performed according to it.

$sqlWhere="WHERE " (3);

if($_POST['tb_title']!="") $sqlWhere = $sqlWhere."books.title

LIKE '%".$_POST['tb_title']."%' AND " (4);

if($_POST['tb_author']!="") $sqlWhere = $sqlWhere."books.author

LIKE '%".$_POST['tb_author']."%' AND "(4);

if($_POST['tb_genre']!="") $sqlWhere = $sqlWhere."books.genre

LIKE '%".$_POST['tb_genre']."%' AND "(4);

if($sqlWhere=="WHERE ") $sqlWhere="" (5);

else $sqlWhere = substr($sqlWhere,0,strlen($sqlWhere)-5);

Code from searchBook.php

Notice that $sqlWhere contains WHERE clause that must be used in database

query (3) (see first code-box of this section). Defined settings will customize this field

by adding information to $sqlWhere (4).

If none of them has been defined, $sqlWhere will remain unchanged so it will

have to be reset in order to show all registered books in the system (SELECT * FROM

books) which is defined default behavior (5).

Book’s cover picture (6), title (7),author (8), and genre(9) will be showed for

each one of the ten selected results. By clicking on their container selected book

95 | P a g e

profile will be accessed. In addition a link to mark that book as favourite will be

displayed (10).

echo "<center> <img

class=\"picture150px\" src=$bookAvatar (6) alt=$bookName />

</center>";

echo "</div>";

echo "<div style=\"width:340px;float:left;\">";

echo "<A class=userLink

href=\"".$rootURL."showBook.php?sBookID=".$bookID."\">".$bookNam

e (7)."
\n";

echo "<A class=userLink

href=\"".$rootURL."searchBook.php?author=".$bookAuthor."\">".$bo

okAuthor (8)."
\n";

echo "<A class=userLink

href=\"".$rootURL."searchBook.php?genre=".$bookGenre."\">".$book

Genre (9)."
\n";

if(in_array($bookID,$myFavBooks)==false)

{

 (10) echo "
<A class=userLink style=\"float:right;\"

href=\"".$rootURL."addBook.php?sBookID=".$bookID."\">".constant(

'add-to-favourites')."\n";

}

Code from searchBook.php

Showing user favourite books.

A very similar system to the one just described for looking books up in database

is used to show user complete list of favourite books. The only difference lies on the

searching condition, which will be as follows:.

$SQL = "SELECT books.id, books.title, books.author,

books.picture, books.genre FROM books, bookshelf WHERE books.id

= bookshelf.bookID AND $sqlWhere bookshelf.userID=$userID

ORDER BY books.timestamp DESC LIMIT

$fromElement,$selectedAmount";

$bookList = mysql_query($SQL) or die('Error: '.mysql_error());

Code from myFavouriteBooks.php

Filtering settings among showed results are available as well. Its

implementation and behavior are the same described in the previous section. Filtering

conditions will be included in $sqlWhere variable (1).

96 | P a g e

if($_POST['tb_title']!="") $sqlWhere = $sqlWhere."books.title

LIKE '%".$_POST['tb_title']."%' AND "(1);

if($_POST['tb_author']!="") $sqlWhere = $sqlWhere."books.author

LIKE '%".$_POST['tb_author']."%' AND "(1);

if($_POST['tb_genre']!="") $sqlWhere = $sqlWhere."books.genre

LIKE '%".$_POST['tb_genre']."%' AND "(1);

Code from myFavouriteBooks.php

Reviewing a book.

From each book profile users will be able to publish their own reviews and rate

them according to their satisfaction after finishing them. A form will be displayed for

this purpose (showBook.php). Three fields will have to be filled in: review’s title,

content and book rating.

AddReview.php will be in charge of collecting introduced data and publishing it.

First of all, system will check all required data were introduced correctly (1).

if(isset($_POST['tb_title']) && isset($_POST['tb_content']) &&

isset($_POST['sBookID']) (1))
 {

 //Code to store a review in database

 }

else

 {

 header('Location: accessDenied.php');

 }

Code from addReview.php

After this, if no error arisen, review will be published by storing it in

bookReviews table.

$SQL = "INSERT INTO bookReviews

(`bookID`,`userID`,`title`,`content`,`rating`,`timestamp`)

VALUES

('$sBookID','$userID','$title','$content','$rating','$sqlTime');

";

mysql_query($SQL);

Code from addReview.php

97 | P a g e

6. Bibliography

www.wikipedia.com

http://php.net/manual/es/index.php

http://www.desarrolloweb.com/javascript/

http://www.w3c.es/divulgacion/guiasbreves/hojasestilo

http://www.w3schools.com/html/default.asp

www.pixabella.com

http://www.wikipedia.com/
http://php.net/manual/es/index.php
http://www.desarrolloweb.com/javascript/
http://www.w3c.es/divulgacion/guiasbreves/hojasestilo
http://www.w3schools.com/html/default.asp
http://www.pixabella.com/

98 | P a g e

Appendix I: Analysis phase: Similar website reviews

In order to get a wider approach about the requirements and services we want
to provide by developing our own website, a pair of similar websites, related to
literature field have been studied and reviewed as a part of the analysis phase.

The first one, called “www.whatsonmybookshelf.com”, is maybe one of the
simplest examples, in terms of design and implementation, of exchanging book web-
platform .
 Although the exchange system applied in this case could not be the same one it’s
planned to use in our case (point-based system, user must buy or earn points by
shipping his books to other users and then is able to get some books by “paying” their
point price), some useful ideas could be extracted from it.

As a second example another website, called www.bookcrossing.com, has
been analyzed. This one is closer to the idea we are interested in developing, because
besides providing a mechanism to allow book sharing devotes a part of its structure
and functionality to allow the interaction among users. More personal user profiles or
forums have been implemented for this purpose.

WhatsOnMyBookshelf.com

Aim of the site:

Whatsonmybookshelf.com is a website providing a simple point-based system
to allow their users purchasing books just by paying the shipping taxes of the books
they are asked for. Since finding a match between two concrete users willing to share
their books can be quite difficult, a different approach is applied to grant a user, who
shared some of his books with another user, being able to get the books he is
interested in for free from a different user.

Target user:

The site’s book database includes all kind of books, even children’s and teen’s
literature besides textbooks so this platform can be useful for almost all kinds of
people. The only restriction is related to the exchange system that requires an adult
able to do the shipping and picking up of the requested books.

Design approach and characteristics:

In order to reach the widest range of users the site’s appearance looks quite
simple and little redundant. Its main (and almost unique) aim is showing which books
are available in each moment and providing filtering mechanisms to ease the look-up.
Then you can purchase the books you are interested in by using a mechanism equal to
a common web-store (adding books to your cart) but where points instead of money
are used to commit the transactions.

http://www.bookcrossing.com/

99 | P a g e

According to your interests you can either look for a specific book typing its name or
ISBN in the search bar or showing the available books classified by genre, topic or user
tags as well.

In the main page you are shown which books were added lately and which users are
the most participative ones.

Following the same principles we reach the user’s profile page where some details
can be viewed:

- A few personal details: Username, locations, website and favorite tags.
- Statistics related to his activity in the community: books registered and

available for sharing, books requested and books already shipped.
- List of friends *.
- List of books you could get from your friends.
- List of groups you have joined *.
- Number of points you own in order to purchase books from other users.

*It must be pointed out that having a friend or group list in this website doesn’t

allow you to interact with them in the way we are used to do it (for instance, in a social
network).
By adding friends you pretend to have quicker information about their updates (books
they recently added and you could get) since they will be shown in the right side of your
profile page.
In the same way groups haven’t been created to provide a meeting point for users with
similar interests. They are mere classifiers of users and books related/interested in one
specific topic.

100 | P a g e

Description of the exchange method

 A user willing to ship his books register them into the website’s database. He
will be given 1 points for each 5 books registered. According to the current price of the
books in stores, the system will establish its point-based price (1 point per 20$). This
amount of points will be given to the owner after shipping the book as a response to a
purchase.
Since the user has already received some of his points (due to the registration
process), as soon as a book has been registered any other user is allowed to request its
shipping.

 A purchaser, by using the search engine of the website finds the book and adds
it to his cart asking for its purchase.

 The website removes the book from the available book list and sends a
notification to the owner with the e-mail direction of the purchaser. If there is no
special arrangement between them the seller has 5 days to do the shipping of the
requested book. As soon as the book has been shipped the seller notifies it through
the website.

 Once the purchaser has received the book he must finish the transaction by
notifying it to the website.

Although the aim of the website is promoting the free exchange of books between
users from a non lucrative approach, you are allowed to buy a maximum of 5 points
per month at a price of 2$ per point. Incoming money is invested in the improvement
and maintenance of the website.

Implementation approach and feasibility

101 | P a g e

 The website looks simple and schematic. It’s organized in tables and the most
important part of its elements are links to query the database in order to find the
required book.
 Since there is no direct interaction among users through the site, remaining the
last one as a coordinator of the transaction, the logic associated to the main
transaction of the site can be quite simple as well.

 After studying its content organization, appearance and functionality needs it
could be concluded that a development of a similar website would be feasible by using
html, php and a sql database.

Conclusions

Interesting aspects: The point-based purchasing approach allows a fair exchange
between users and is not really sensitive to fails due to unfair behavior of the
seller/buyer.

Non-interesting aspects: Since the first aim of our project besides allowing book
exchanging between users is providing some mechanisms to ease the interaction
among them the analyzed website doesn’t fulfill all the capabilities we would like to
implement, looking rather aseptic.

Bookcrossing.com

Aim of the site:

Bookcrossing.com is website that proposes a new idea to allow book

exchanging between users without shipping costs and even contact between them.
The website acts as a news table where you can check which books have been left in
your city by other users who wanted to “free” them. Books can be waiting for new
readers in a park, a coffee shop or a museum so if you find the one you are interested
in reading on the website you just have to go there and take it. The main aim is
fulfilling your reading desires and then let another enjoy the book by setting it free
again in another place and updating that information on the website.

Besides providing this main service the site allows the users to interact in a
higher level than the previous one by including forums and a common wall where all
the users can share their thoughts.

Target user:

As in the previous example there is no restriction according to the books that
can be shared so there is no specific sector of people whom this site is focused on.

Since you want to reach as much people as possible a simple and intuitive
design could be the best option to succeed.

Design approach and characteristics:

http://www.bookcrossing.com/

102 | P a g e

 Site’s design is simple but pleasant and attractive enough. It’s organized in a
hierarchical structure divided in five submenus.

The first one, called “Home” gathers all the information related to the user who
is using the platform. Besides a user’s profile and a friend list you can find there the
options to “free” your own books for the first time or release the ones you already
found. Another interesting option is “My bookshelf” that allows the user to keep his
bookcase organized by creating an inventory on the website.

In the second one a user will find search options for the books he is interested

in finding. If there is a concrete book that must be found the search bar is the most
useful election but there is another option available (“Go hunting”) where a user can
be shown a list of available books depending on the city he is living in. Besides these
look-up facilities some statistics about the most exchanged books and the most active
users can be found in this menu.

Inside “Community” menu all the interaction mechanisms provided by the
website are grouped. As it was said before among these facilities there is a forum and
a common wall to let the users express their thoughts, nevertheless, there is not any
feedback or reply system available for the rest of the users besides writing another
entry in the common wall. A convention list can be checked as well.

 Fourth and fifth menus are not especially interesting since the first one leads to
a virtual shop and the last one includes all the information related to the website itself
(About us, FAQ, Privacy policy, etc).

Implementation approach and feasibility:

103 | P a g e

 After comparing this site to the one analyzed previously a slight increase of the
complexity is noticed.

This increase of the complexity has two main causes:

- On the one hand, the higher amount of pages developed as a result of
expanding the range of services and functionalities provided by the website.

- On the other hand some of those services require a more complex
implementation, especially those whose aim is to allow users to interact.

According to the technologies that could be used in order to program a similar
solution, only CSS styles could be added to the one selected for the previous site (html-
php-sql).

Conclusions

Interesting aspects: The whole site ‘s aim is going beyond than allowing users to
exchange their books, is a little closer to a social network approach providing some
interaction mechanisms.
Some functionalities, like the possibility of inventorying and organizing your book
collection are interesting and could be used as an example for our own
implementation.

Non-interesting aspects: Even though the book exchanging system is quite original, it
doesn’t require direct interaction among users. Since we would our website to allow
the creation of little readers’ communities perhaps we should think about a different
one.

