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Abstract

It is shown that Bloc
p′,1/k̃

(Ω) is isomorphic to (Bc
p,k(Ω))′b (Ω open set in Rn, 1 ≤ p < ∞,

k Beurling–Björck weight) extending a Hörmander’s result (the proof we give is valid
in the vector–valued case, too). As a consequence, and using Vogt’s representation
theorems and weighted Lp–spaces of entire analytic functions, a number of results
on sequence space representations of Hörmander–Beurling are given.
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1 Introduction and notation

In [13, Chapter XV] Hörmander studies the behaviour of the Fourier–Laplace
transform in the space Bc

2,k(Ω) = ind →
KbΩ

[B2,k ∩ E ′(K)] when Ω is an open

convex set in Rn and k is a temperate weight function on Rn, and then proves
a theorem on the representation of solutions of the equation P (D)u = 0
by integrals of exponential solutions (P (D) is a constant coefficient partial
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differential operator). For this he obtains an appropiate collection of semi-
norms defining the inductive limit topology of Bc

2,k(Ω), proves the isomor-
phism (Bc

2,k(Ω))′b ' Bloc
2,1/k̃

(Ω) and shows that every continuous seminorm in

Bc
2,k(Ω) is bounded by a seminorm of the form u →

(∫
|û(ζ)|2e−2φ(ζ)dλ(ζ)

)1/2

where û is the Fourier–Laplace transform of u and φ is plurisubharmonic
(see [13, Section 15.2]). In this paper we extend the former isomorphism to
Beurling–Björck weights [1] and as a consequence (and using Vogt’s repre-
sentation theorems [33] and weighted Lp–spaces of entire analytic functions
[25,30]) a number of results on sequence space representations of Hörmander
spaces in the sense of Beurling–Björck [1] (=Hörmander–Beurling spaces) are
given. This research pursues the study on Hörmander–Beurling spaces carried
out in [1,6,12,13,29,33] and [24,25,27,28,32] (see also [14]).

The organization of the paper is as follows. Section 2 contains some basic facts
about scalar and vector–valued Beurling ultradistributions and the definitions
of the spaces which are considered in the paper. In Section 3 we show that
Bloc

p′,1/k̃
(Ω, E ′) is isomorphic to (Bc

p,k(Ω, E))′b when ω ∈M, k ∈ Kω, 1 ≤ p < ∞
and E is a Banach space whose dual E ′ possesses the Radon–Nikodým prop-
erty (see Theorem 3.2), and we propose the following question: Are the spaces
BV loc

p′,1/k̃
(Ω, E ′) and (Bc

p,k(Ω, E))′b isomorphic (E is any Banach space)? (Prob-

lem 3.4). In Section 4, by using the previous isomorphism, some representation
theorems of Vogt [33, Theorems 5.2, 6.2] and the solution to Problem 4.11 in
[24] given by Cembranos and Mendoza in [3], we partially answer the Prob-
lem 4.10 in [24] (see Theorem 4.4). We also show that, in general, Bloc

∞,k(Ω, E)
is not isomorphic to either Bloc

∞,k(Ω)⊗̂εE or Bloc
∞,k(Ω)⊗̂πE. Next it is shown

that Bc
p,k(Ω, lq) (resp. Bloc

p,k(Ω, lq)) is isomorphic to
⊕∞

j=0 Gj (resp.
∏∞

j=0 Hj)
where G0 (resp. H0) is isomorphic to lp(lq) and Gj (resp. Hj) is isomorphic
to a complemented subspace of lp(lq) for j = 1, 2, . . . . Then we describe the
structure of the complemented normed subspaces of Bloc

p,k(Ω), Bloc
p,k(Ω, lq) and∏m

j=1 Bloc
pj ,kj

(Ωj, lp). We also give a new proof (based on our representation

theorem Bloc
p,k(Ω) ' lNp ) of a well known result on linear partial differential

operators.

Notation. The linear spaces we use are defined over C. Let E and F be locally
convex spaces. Then Lb(E, F ) is the locally convex space of all continuous
linear operators equipped with the bounded convergence topology. The dual
of E is denoted by E ′ and is given the strong topology so that E ′ = Lb(E, C).
E⊗̂εF (resp. E⊗̂πF ) is the completion of the injective (resp. projective) tensor
product of E and F . If E and F are (topologically) isomorphic we put E ' F .
If E is isomorphic to a complemented subspace of F we write E < F . We put
E ↪→ F if E is a linear subspace of F and the canonical injection is continuous

(we replace ↪→ by
d

↪→ if E is also dense in F ). If (En)∞n=1 is a sequence of locally
convex spaces,

∏∞
n=1 En (EN if En = E for all n) is the topological product of

the spaces En;
⊕∞

n=1 En (E(N) if En = E for all n) is the locally convex direct
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sum of the spaces En.

Let 1 ≤ p ≤ ∞, k : Rn → (0,∞) a Lebesgue measurable function, and E a
Fréchet space. Then Lp(E) is the set of all (equivalence classes of) Bochner

measurable functions f : Rn → E for which ‖f‖p =
(∫

Rn ‖f(x)‖pdx
)1/p

is finite

(with the usual modification when p = ∞) for all ‖ · ‖ ∈ cs(E) (see, e.g. [8]).
Lp,k(E) denotes the set of all Bochner measurable functions f : Rn → E such
that kf ∈ Lp(E). Putting ‖f‖Lp,k(E) = ‖kf‖p for all f ∈ Lp,k(E) and for all
‖ · ‖ ∈ cs(E), Lp,k(E) becomes a Fréchet space isomorphic to Lp(E). When E
is the field C, we simply write Lp and Lp,k. If f ∈ L1(E) the Fourier transform

of f , f̂ or Ff , is defined by f̂(ξ) =
∫
Rn f(x)e−iξxdx. If f is a function on Rn

then f̃(x) = f(−x) for x ∈ Rn. The letter C will always denote a positive
constant, not necessarily the same at each occurrence.

Finally we recall the definition of A∗
p functions. A positive, locally integrable

function ω on Rn is in A∗
p provided, for 1 < p < ∞,

sup
R

(
1

|R|

∫
R

ωdx

)(
1

|R|

∫
R

ω−p′/pdx

)p/p′

< ∞

where R runs over all bounded n–dimensional intervals. The basic properties
of these functions can be found in [7, Chapter IV]

2 Spaces of vector–valued (Beurling) ultradistributions

In this section we collect some basic facts about vector–valued (Beurling) ul-
tradistributions and we recall the definitions of the vector–valued Hörmander–
Beurling spaces. Comprehensive treatments of the theory of (scalar or vector–
valued) ultradistributions can be found in [1], [10] and [15], [16], [17]. Our
notations are based on [1] and [30, pp. 14–19].

Let M (or Mn) be the set of all functions ω on Rn such that ω(x) = σ(|x|)
where σ(t) is an increasing continuous concave function on [0,∞[ with the
following properties:

(i) σ(0) = 0,

(ii)
∫∞
0

σ(t)
1+t2

dt < ∞ (Beurling’s condition),
(iii) there exist a real number a and a positive number b such that

σ(t) ≥ a + b log(1 + t) for all t ≥ 0 .

The assumption (ii) is essentially the Denjoy–Carleman non–quasianalyticity
condition (see [1, Sect. 1.5]). The two most prominent examples of functions
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ω ∈M are given by ω(x) = log(1 + |x|)d, d > 0, and ω(x) = |x|β, 0 < β < 1.

If ω ∈M and E is a Fréchet space, we denote by Dω(E) the set of all functions
f ∈ L1(E) with compact support, such that ‖f‖λ =

∫
Rn‖f̂(ξ)‖ eλω(ξ)dξ < ∞

for all λ > 0 and for all ‖·‖ ∈ cs(E). For each compact subset K of Rn,
Dω(K, E) = {f ∈ Dω(E) : supp f ⊂ K}, equipped with the topology induced
by the family of seminorms {‖·‖λ : ‖·‖ ∈ cs(E), λ > 0}, is a Fréchet space
and Dω(E) = ind→

K

Dω(K, E) becomes a strict (LF)–space. If Ω is any open

set in Rn, Dω(Ω, E) is the subspace of Dω(E) consisting of all functions f
with supp f ⊂ Ω. Dω(Ω, E) is endowed with the corresponding inductive limit
topology: Dω(Ω, E) = ind →

K⊂Ω

Dω(K, E). Let Sω(E) be the set of all functions

f ∈ L1(E) such that both f and f̂ are infinitely differentiable functions on
Rn with supx∈Rn eλω(x)‖∂αf(x)‖ < ∞ and supx∈Rn eλω(x)‖∂αf̂(x)‖ < ∞ for all
multi–indices α, all positive numbers λ and all ‖·‖ ∈ cs(E). Sω(E) with the
topology induced by the above family of seminorms is a Fréchet space and the
Fourier transformation F is an automorphism of Sω(E). If E = C then Dω(E)
and Sω(E) coincide with the spaces Dω and Sω (see [1]). Let us recall that, by
Beurling’s condition, the space Dω is non–trivial and the usual procedure of
the resolution of unity can be established with Dω–functions (see [1, Theorem

1.3.7]). Furthermore, Dω
d

↪→ D (see [1, Theorem 1.3.18]) and Dω is nuclear

([33, Corollary 7.5]). On the other hand, Dω = D ∩ Sω, Dω
d

↪→ Sω
d

↪→ S (see
[1, Proposition 1.8.6, Theorem 1.8.7]) and Sω is nuclear also (see [10, p. 320]).
If Eω is the set of multipliers on Dω, i.e., the set of all functions f : Rn → C
such that ϕf ∈ Dω for all ϕ ∈ Dω, then Eω with the topology generated
by the seminorms {f → ‖ϕf‖λ =

∫
Rn|ϕ̂f(ξ)|eλω(ξ) dξ : λ > 0, ϕ ∈ Dω} be-

comes a nuclear Fréchet space (see [33, Corollary 7.5]) and Dω
d

↪→ Eω. Using
the above results and [17, Theorem 1.12] we can identify Sω(E) with Sω⊗̂εE.
However, though Dω ⊗E is dense in Dω(E), in general Dω(E) is not isomor-
phic to Dω⊗̂εE (cf., e.g. [9, Chapter II, p. 83]). A continuous linear operator
from Dω into E is said to be a (Beurling) ultradistribution with values in E.
We write D′

ω(E) for the space of all E–valued (Beurling) ultradistributions
endowed with the bounded convergence topology, thus D′

ω(E) = Lb(Dω, E).
D′

ω(Ω, E) = Lb(Dω(Ω), E) is the space of all (Beurling) ultradistributions on
Ω with values in E. A continuous linear operator from Sω into E is said to be
an E–valued tempered ultradistribution. S ′ω(E) is the space of all E–valued
tempered ultradistributions equipped with the bounded convergence topology,
i.e., S ′ω(E) = Lb(Sω, E). The Fourier transformation F is an automorphism of
S ′ω(E).

If ω ∈M, then Kω is the set of all positive functions k on Rn for which there
exists a positive constant N such that k(x + y) ≤ eNω(x)k(y) for all x and y
in Rn [1, Definition 2.1.1] (when ω(x) = log(1 + |x|) the functions k of the
corresponding class Kω are called temperate weight functions, see [13, Defini-
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tion 10.1.1]). If k, k1, k2 ∈ Kω and s is a real number then log k is uniformly

continuous, ks ∈ Kω, k1k2 ∈ Kω and Mk(x) = supy∈Rn
k(x+y)

k(y)
∈ Kω (see [1,

Theorem 2.1.3]). If u ∈ Lloc
1 and

∫
Rn ϕ(x)u(x) dx = 0 for all ϕ ∈ Dω, then

u = 0 a.e. (see [1]). This result, the Hahn–Banach theorem and [5, Chap-
ter II, Corollary 7] prove that if k ∈ Kω, p ∈ [1,∞] and E is a Fréchet space,
we can identify f ∈ Lp,k(E) with the E–valued tempered ultradistribution
ϕ → 〈ϕ, f〉 =

∫
Rn ϕ(x)f(x) dx, ϕ ∈ Sω, and Lp,k(E) ↪→ S ′ω(E). If ω ∈ M,

k ∈ Kω, p ∈ [1,∞] and E is a Fréchet space, we denote by Bp,k(E) the
set of all E–valued tempered ultradistributions T for which there exists a
function f ∈ Lp,k(E) such that 〈ϕ, T̂ 〉 =

∫
Rn ϕ(x)f(x) dx, ϕ ∈ Sω. Bp,k(E)

with the seminorms {‖T‖p,k =
(
(2π)−n

∫
Rn‖k(x)T̂ (x)‖pdx

)1/p
: ‖·‖ ∈ cs(E)}

(usual modification if p = ∞), becomes a Fréchet space isomorphic to Lp,k(E).
Spaces Bp,k(E) are called Hörmander–Beurling spaces with values in E (see
[12], [13], [33] for the scalar case and [25], [27], [32] for the vector–valued
case). We denote by Bloc

p,k(Ω, E) (see [12], [13], [33] and [24], [25], [27]) the
space of all E–valued ultradistributions T ∈ D′

ω(Ω, E) such that, for every
ϕ ∈ Dω(Ω), the map ϕT : Sω → E defined by 〈u, ϕT 〉 = 〈uϕ, T 〉, u ∈ Sω,
belongs to Bp,k(E). The space Bloc

p,k(Ω, E) is a Fréchet space with the topol-
ogy generated by the seminorms {‖·‖p,k,ϕ : ϕ ∈ Dω(Ω), ‖·‖ ∈ cs(E)}, where
‖T‖p,k,ϕ = ‖ϕT‖p,k for T ∈ Bloc

p,k(Ω, E), and Bloc
p,k(Ω, E) ↪→ D′

ω(Ω, E). We shall
also use the spaces Bc

p,k(Ω, E) which generalize the scalar spaces Bc
p,k(Ω) con-

sidered by Hörmander in [13], by Vogt in [33] and by Björck in [1]. If ω, k, p, Ω
and E are as above, then Bc

p,k(Ω, E) =
⋃∞

j=1[Bp,k(E)∩E ′ω(Kj, E)] (here (Kj) is
any fundamental sequence of compact subsets of Ω and E ′ω(Kj, E) denotes the
set of all T ∈ D′

ω(E) such that supp T ⊂ Kj). Since for every compact K ⊂ Ω,
Bp,k(E) ∩ E ′ω(K, E) is a Fréchet space with the topology induced by Bp,k(E),
it follows that Bc

p,k(Ω, E) becomes a strict (LF)–space (strict (LB)–space if E
is a Banach space): Bc

p,k(Ω, E) = ind→
j

[Bp,k(E)∩E ′ω(Kj, E)]. These spaces are

studied in [24], [25] and [27].

3 The dual of Bc
p,k(Ω, E)

In [13, Chapter XV] Hörmander studies the behaviour of the Fourier–Laplace
transform in the space Bc

2,k(Ω) = ind→
K

[B2,k∩E ′(K)] when Ω is an open convex

set in Rn and k is a temperate weight function on Rn. For this he discusses

the inductive limit topology in Bc
2,k(Ω), proves the isomorphism

(
Bc

2,k(Ω)
)′

b
'

Bloc
2,1/k̃

(Ω) [13, Section 15.2] and shows that every continuous seminorm in

Bc
2,k(Ω) is bounded by a seminorm of the form

u −→
(∫

|û(ζ)|2e−2φ(ζ)dλ(ζ)
)1/2
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where û is the Fourier–Laplace transform of u and φ is plurisubharmonic.
In this section we extend the former isomorphism to Hörmander spaces in
the sense of Beurling–Björck [1] and prove that (Bc

p,k(Ω, E))′b ' Bloc
p′,1/k̃

(Ω, E ′)

when ω ∈ M, k ∈ Kω, 1 ≤ p < ∞ and E is a Banach space. A number of
applications of this duality will be given in the next section.

Let us recall that a Dω(Ω)–partition of unity in Ω (=open set in Rn) is a
sequence (θj) in Dω(Ω) such that: i) θj ≥ 0 for j = 1, 2, . . . , ii)

∑
j θj ≡ 1 in

Ω, iii) For every compact set K ⊂ Ω there exist a positive integer m and a
bounded open set W such that K ⊂ W ⊂ W̄ ⊂ Ω and

∑m
j=1 θj ≡ 1 in W .

Lemma 3.1. Let Ω be an open set in Rn, ω ∈ M, k ∈ Kω, 1 ≤ p ≤ ∞,
and E a Banach space. Let (θj) be a Dω(Ω)–partition of unity in Ω. Then the
inductive limit topology on Bc

p,k(Ω, E) is generated by the seminorms

‖T‖(Cj) =
∞∑

j=1

Cj‖θjT‖p,k , T ∈ Bc
p,k(Ω, E) ,

varying (Cj) in RN
+.

Proof. See Proposition 3.10 of [27].

In the next result we will need the spaces l1(Cj, E) and l∞(Cj, E): If (Cj) is
a sequence in RN

+ and E is a Banach space then l1(Cj, E) (resp. l∞(Cj, E))
denotes the set of all sequences (xj) ∈ EN such that ‖(xj)‖1 =

∑∞
j=1 Cj‖xj‖E <

∞ (resp. ‖(xj)‖∞ = supj Cj‖xj‖E < ∞). With the norm ‖ · ‖1 (resp. ‖ · ‖∞)
l1(Cj, E) (resp. l∞(Cj, E)) becomes a Banach space.

Theorem 3.2. Let Ω be an open set in Rn, ω ∈M, k ∈ Kω, 1 ≤ p < ∞, and
let E be a Banach space whose dual E ′ possesses the Radon–Nikodým property.
Then Bloc

p′,1/k̃
(Ω, E ′) is isomorphic to (Bc

p,k(Ω, E))′b.

Proof. Choose a fixed Dω(Ω)–partition of unity (θj) in Ω and let L be an
element in (Bc

p,k(Ω, E))′. By Lemma 3.1 we can find a sequence (Cj) in RN
+

such that

|L(T )| ≤
∞∑

j=1

Cj‖θjT‖p,k , T ∈ Bc
p,k(Ω, E) .

Then the linear mapping

Z : Bc
p,k(Ω, E) −→ l1(Cj, Bp,k(E))

T → (θjT )

is continuous. Furthermore, since each T can be written in the form T =∑m
j=1 θjT (m varying with T ), we conclude that Z is injective. Now we consider

6



the linear form L ◦Z−1. Since |L ◦Z−1((θjT ))| ≤ ‖(θjT )‖1, the Hahn–Banach
theorem shows that there exists a linear form (L ◦ Z−1)− ∈ (l1(Cj, Bp,k(E)))′

of norm at most 1 which extends L◦Z−1. Then, by the isometric isomorphism

A : l∞(
1

Cj

, Bp′,1/k(E
′)) −→ (l1(Cj, Bp,k(E)))′

defined by < (Tj), A((Sj)) >= (2π)−n∑∞
j=1

∫
Rn < T̂j(x), Ŝj(x) > dx, we can

find (Sj) ∈ l∞( 1
Cj

, Bp′,1/k(E
′)) such that A((Sj)) = (L ◦ Z−1)−, and so

L ◦ Z−1((θjT )) = L(T ) = (2π)−n
∞∑

j=1

∫
Rn

< θ̂jT (x), Ŝj(x) > dx

for each T ∈ Bc
p,k(Ω, E). Next we shall prove that the linear mapping

Φ : (Bc
p,k(Ω, E))′b −→ Bloc

p′,1/k̃
(Ω, E ′)

L → ∑∞
j=1 θjS̃j

(the series
∑∞

j=1 θjS̃j converges in Bloc
p′,1/k̃

(Ω, E ′) since this space is a Fréchet

space and
∑∞

j=1 ‖θjS̃j‖p′,1/k̃,ϕ =
∑∞

j=1 ‖(θjϕ)S̃j‖p′,1/k̃ < ∞ for each ϕ ∈ Dω(Ω)
in virtue of the properties of the sequence (θj)) is an isomorphism. Let us
see that Φ is well defined. Let (L ◦ Z−1)= another extension of L ◦ Z−1 to
l1(Cj, Bp,k(E)) and let (S1

j ) ∈ l∞( 1
Cj

, Bp′,1/k(E
′)) the sequence which repre-

sents this extension. Let us check that
∑∞

j=1 θjS̃j =
∑∞

j=1 θjS̃
1
j . By Fourier’s

inversion formula, the properties of the Bochner integral and the embedding
Bloc

p′,1/k̃
(Ω, E ′) ↪→ D′

ω(Ω, E ′) (see Section 2) we have for all ϕ ∈ Dω(Ω) and all

e ∈ E

< ϕ,
∞∑

j=1

θjS̃j >=
∞∑

j=1

< ϕ, θjS̃j >=
∞∑

j=1

< ϕθj, S̃j >= (2π)−n
∞∑

j=1

< ϕ̂θj, Ŝj >

and

(2π)−n < e,
∞∑

j=1

< ϕ̂θj, Ŝj >> = (2π)−n
∞∑

j=1

< e, < ϕ̂θj, Ŝj >>

= (2π)−n
∞∑

j=1

< e,
∫

Rn
θ̂jϕ(x)Ŝj(x) dx >

= (2π)−n
∞∑

j=1

∫
Rn

< (θj(ϕ⊗ e))∧(x), Ŝj(x) > dx

= L(ϕ⊗ e) .

Repeating the argument with
∑∞

j=1 θjS̃1
j we conclude that

∑∞
j=1 θjS̃j =

∑∞
j=1 θjS̃1

j .
Now let (C ′

j) ∈ RN
+ another sequence such that |L(T )| ≤ ∑∞

j=1 C ′
j‖θjT‖p,k for

7



T ∈ Bc
p,k(Ω, E). Let Z ′ be the corresponding operator, let (L ◦ Z ′−1)− be an

extension of L ◦ Z ′−1 to l1(C
′
j, Bp,k(E)) and let (S ′j) ∈ l∞( 1

C′j
, Bp′,1/k(E

′)) the

sequence which represents this extension, then L(T ) = (2π)−n∑∞
j=1

∫
Rn <

θ̂jT (x), Ŝ ′j(x) > dx, T ∈ Bc
p,k(Ω, E), and also < e, < ϕ,

∑∞
j=1 θjS̃ ′j >>=

L(ϕ ⊗ e) for ϕ ∈ Dω(Ω) and e ∈ E. Then Φ is well defined. If Φ(L) = 0
then < e, < ϕ, Φ(L) >>= 0 = L(ϕ⊗ e) for all ϕ ∈ Dω(Ω) and all e ∈ E, thus
L = 0 on Dω(Ω)⊗E. Since this space is dense in Dω(Ω, E) (see Section 2) and

Dω(Ω, E)
d

↪→ Bc
p,k(Ω, E) (see Proposition 3.6 of [27]), it follows that L = 0.

Consequently, Φ is one–to–one. Furthermore, Φ is surjective: Let (χj) a se-
quence in Dω(Ω) such that χj = 1 in a compact neighborhood of supp θj. Let
S be an element of Bloc

p′,1/k̃
(Ω, E ′). Then we have (convergence in Bloc

p′,1/k̃
(Ω, E ′))

S =
∑∞

j=1 θjS =
∑∞

j=1(θjχj)S =
∑∞

j=1 θj(χjS) =
∑∞

j=1 θjX̃j where Xj = χ̃jS.
Now we define the functional

L(T ) = (2π)−n
∞∑

j=1

∫
Rn

< θ̂jT (x), X̂j(x) > dx , T ∈ Bc
p,k(Ω, E) .

Since

|L(T )| ≤ (2π)−n
∞∑

j=1

∫
Rn
‖θ̂jT (x)‖E k(x) ‖X̂j(x)‖E′

1

k(x)
dx

≤
∞∑

j=1

‖θjT‖p,k‖Xj‖p′,1/k

for all T ∈ Bc
p,k(Ω, E), it follows that L ∈ (Bc

p,k(Ω, E))′. Then Φ(L) = S and
Φ is surjective.

Now we prove that Φ−1 is continuous: Let A be a bounded set in Bc
p,k(Ω, E).

Since this space is a strict (LB)–space, there is a compact set M in Ω such
that A is contained and bounded in the step Bp,k(E) ∩ E ′ω(M, E) (see [18,
(4) p. 223]). Take a sequence (χj) in Dω(Ω) such that χj = 1 in a compact
neighborhood of supp θj, j = 1, 2, . . . , and let m be such that θj = 0 in M for
all j > m. Then, taking into account Proposition 3.4 of [27] and that every
S ∈ Bloc

p′,1/k̃
(Ω, E ′) can be written in the form S =

∑∞
j=1 θjX̃j with Xj = χ̃jS,

we get

sup
T∈A

|Φ−1(S)(T )|= sup
T∈A

∣∣∣∣(2π)−n
∞∑

j=1

∫
Rn

< θ̂jT (x), X̂j(x) > dx

∣∣∣∣
≤ sup

T∈A

m∑
j=1

‖θjT‖p,k‖Xj‖p′,1/k

≤ sup
T∈A

m∑
j=1

‖θj‖1,Mk
‖T‖p,k‖S‖p′,1/k̃,χj
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≤C
m∑

j=1

‖θj‖1,Mk
‖S‖p′,1/k̃,χj

for all S ∈ Bloc
p′,1/k̃

(Ω, E ′) (C is a constant > 0). Hence it follows the continuity

of Φ−1. Then Φ becomes an isomorphism since Bloc
p′,1/k̃

(Ω, E ′) and (Bc
p,k(Ω, E))′b

are Fréchet spaces (Bc
p,k(Ω, E) is a (DF)–space by [18, (4) p. 402] and so its

strong dual is a Fréchet space (see [18, (1) p. 397])). The proof is complete.

Remark 3.3. When k(x) is a temperate weight function, p = 2 and E = C,
our theorem yields the isomorphism which appears in [13, p. 279].

In [32] the spaces BVp,k(E) are introduced (by using the natural embedding of
the space Vp(k

pdx, E) of the finitely additive E–valued measures of bounded p–
variation into the space S ′ω(E)) and the isometric isomorphism BVp′,1/k(E

′) '
(Bp,k(E))′ is shown (E is any Banach space and 1 ≤ p < ∞). In view of this
result and our Theorem 3.2 we can define the space

BV loc
p,k (Ω, E) = {T ∈ D′

ω(Ω, E) : ϕT ∈ BVp,k(E) for all ϕ ∈ Dω(Ω)}

(equipped with the topology generated by the family of seminorms {T →
‖(2π)−n/pϕ̂T‖Vp(kpdx,E) : ϕ ∈ Dω(Ω)} when p < ∞ (resp. {T → ‖ϕ̂T‖V∞( 1

k
dx,E) :

ϕ ∈ Dω(Ω)} if p = ∞)) and propose the following question.

Problem 3.4. Let Ω be an open set in Rn, ω ∈ M, k ∈ Kω, 1 ≤ p < ∞
and let E be a Banach space. Are the spaces BV loc

p′,1/k̃
(Ω, E ′) and (Bc

p,k(Ω, E))′b
isomorphic?

4 On sequence space representations of spaces of ultradistributions

In this section we give a number of results on sequence space representations
of spaces of distributions and ultradistributions. Based on these and using the
solution to Problem 4.11 in [24] given by Cembranos and Mendoza in [3], we
partially answer the Problem 4.10 in [24]. We also give a new proof of a well
known result: The short sequence

0 −→ N(P (D)) −→ Bloc
p,k(Ω)

P (D)−→ Bloc
p,k/P ′(Ω) −→ 0

does not split (P (D) is an elliptic operator with constant coefficients and

P ′(ξ) =
(∑

α |∂αP (ξ)|2
)1/2

). (The proof we give is based on the isomorphism

Bloc
p,k(Ω) ' lNp .)

We shall omit the proof of the following simple result.
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Lemma 4.1. Let Ω be an open set in Rn, ω ∈ M, k ∈ Kω, 1 ≤ p ≤ ∞, and
let (Ej)

∞
j=1 be a sequence of Banach spaces. Then the space Bloc

p,k(Ω,
∏∞

j=1 Ej)
is isomorphic to

∏∞
j=1 Bloc

p,k(Ω, Ej).

Theorem 4.2. Let Ω be an open set in Rn, ω ∈ M, k ∈ Kω, and let E be a
Banach space. Then: (1) Bc

1,k(Ω, E) is isomorphic to (l1(E))(N), (2) Bloc
1,k(Ω, E)

is isomorphic to (l1(E))N, (3) If E is a dual space and has the Radon–Nikodým
property then Bloc

∞,k(Ω, E) is isomorphic to (l∞(E))N.

Proof. (1) and (2) The proof given in [33] is also valid in the vector–valued
case and for weights k ∈ Kω. (3) Suppose E ' F ′ and recall that if (Ej)

∞
j=1 is a

sequence of Banach spaces then the space (
⊕∞

j=1 Ej)
′
b is isomorphic to

∏∞
j=1 E ′

j

(see [18, p. 287]). Then, taking into account Theorem 3.2 and (1), we get

Bloc
∞,k(Ω, E) '

(
Bc

1,1/k̃
(Ω, F )

)′
b
'
(
(l1(F ))(N)

)′
b
' (l∞(E))N .

Theorem 4.3. l∞(l1) and l1(l∞) are not isomorphic.

Proof. See [3, Theorem 1].

Next we answer the Problem 4.10 in [24] when q = ∞.

Theorem 4.4. If Ω1 is an open set in Rn1, ω1 ∈Mn1 and k1 ∈ Kω1 (resp. Ω2

open set in Rn2, ω2 ∈ Mn2, k2 ∈ Kω2), then the spaces Bloc
1,k1

(Ω1, B
loc
∞,k2

(Ω2))
and Bloc

∞,k2
(Ω2, B

loc
1,k1

(Ω1)) are not isomorphic.

Proof. By using the previous results we have the isomorphisms

Bloc
1,k1

(Ω1, B
loc
∞,k2

(Ω2))'Bloc
1,k1

(Ω1, l
N
∞) '

(
Bloc

1,k1
(Ω1, l∞)

)N

'
(
(l1(l∞))N

)N
' (l1(l∞))N

and

Bloc
∞,k2

(Ω2, B
loc
1,k1

(Ω1))'Bloc
∞,k2

(Ω2, l
N
1 ) '

(
Bloc
∞,k2

(Ω2, l1)
)N

'
(
(l∞(l1))

N
)N
' (l∞(l1))

N .

Suppose now that our iterated spaces are isomorphic. Then (l1(l∞))N and
(l∞(l1))

N are also isomorphic. Hence it follows (by [4]) that there exist positive
integers α, β such that l1(l∞) < (l∞(l1))

α ' l∞(l1) and l∞(l1) < (l1(l∞))β '
l1(l∞). Then, using Pelczynski’s decomposition method, we conclude that
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l1(l∞) ' l∞(l1). This contradicts Theorem 4.3. In consequence, Bloc
1,k1

(Ω1, B
loc
∞,k2

(Ω2))
and Bloc

∞,k2
(Ω2, B

loc
1,k1

(Ω1)) are not isomorphic.

Remark 4.5. 1. We must point out that the space Bloc
∞,k2

(Ω2, B
loc
1,k1

(Ω1)) even
contains no complemented subspace isomorphic to Bloc

1,k1
(Ω1, B

loc
∞,k2

(Ω2)) (see
the proof of Theorem 4.4 and use the final remarks of [3]).

2. Note also that, in general, Bloc
∞,k(Ω, E) is not isomorphic to either Bloc

∞,k(Ω)⊗̂εE
or Bloc

∞,k⊗̂πE: In fact, let 1 ≤ p < ∞ and assume that Bloc
∞,k(Ω, lp) is isomorphic

to Bloc
∞,k(Ω)⊗̂εlp. Then, by virtue of [19, (5) p. 282], [19, (2) p. 287], Theorem

4.2 and a result of Cembranos and Freniche [2, Theorem 3.2.1], we get

(l∞(lp))
N ' lN∞⊗̂εlp ' (l∞⊗̂εlp)

N ' (C(βN)⊗̂εlp)
N ' (C(βN, lp))

N > cN
0 .

Hence it follows, arguing as in Theorem 4.4, that l∞(lp) contains a comple-
mented copy of c0. Then, by a result of Leung and Räbiger [2, Theorem 5.1.1],
lp also contains a complemented copy of c0. This contradiction shows that
Bloc
∞,k(Ω, lp) and Bloc

∞,k⊗̂εlp are not isomorphic. On the other hand, since by
Theorem 4.2 and [19, (5) p. 194] we have

Bloc
∞,k(Ω, l1)' (l∞(l1))

N

Bloc
∞,k(Ω)⊗̂πl1' lN∞⊗̂πl1 ' (l∞⊗̂πl1)

N ' (l1(l∞))N ,

it follows that the spaces Bloc
∞,k(Ω, l1) and Bloc

∞,k(Ω)⊗̂πl1 are not isomorphic.

In the next theorem the following elementary fact will be used: “Let F =
ind→

j
Fj be the strict inductive limit of a properly increasing sequence F1 ⊂

F2 ⊂ · · · of Banach spaces. Assume that every Fj is a complemented subspace
of Fj+1 and that Gj is a topological complement of Fj in Fj+1. Then, the
mapping F1 ⊕ G1 ⊕ G2 ⊕ · · · → F : (f1, g1, g2, . . . ) → f1 + g1 + g2 + · · · is
an isomorphism”. We will also need the weighted Lp–spaces of vector–valued

entire analytic functions LK
p,k(E) and the operators SK(f) = F−1(χK f̂) (see

[25]).

Theorem 4.6. Let Ω be an open set in Rn. Assume 1 < p, q < ∞ and let k
be a temperate weight function on Rn with kp ∈ A∗

p. Then the space Bc
p,k(Ω, lq)

(resp. Bloc
p,k(Ω, lq)) is isomorphic to

⊕∞
j=0 Gj (resp.

∏∞
j=0 Hj) where G0 (resp.

H0) is isomorphic to lp(lq) and Gj (resp. Hj) is isomorphic to a complemented
subspace of lp(lq) for j = 1, 2, . . . .

Proof. Let (Kj) be a covering of Ω consisting of compact sets such that

Kj ⊂
◦

Kj+1, Kj =
◦

Kj and
◦

Kj has the segment property (we may also assume,
without loss of generality, that each Kj is a finite union of n–dimensional
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compact intervals). Then Bc
p,k(Ω, lq) = ind→

j
[Bp,k(lq) ∩ E ′(Kj, lq)]. In this in-

ductive limit, the step Bp,k(lq) ∩ E ′(Kj, lq) is isomorphic (via the Fourier

transform) to L
−Kj

p,k (lq) and this space is isomorphic, by Corollaries 4.2 and

5.1 of [25], to lp(lq). Furthermore, L
−Kj

p,k (lq) is a complemented subspace of

L
−Kj+1

p,k (lq): L
−Kj

p,k (lq) ⊕ [ker S−Kj
∩ L

−Kj+1

p,k (lq)] = L
−Kj+1

p,k (lq). Thus, the space

Gj = ker S−Kj
∩ L

−Kj+1

p,k (lq) is isomorphic to an infinite–dimensional comple-
mented subspace of lp(lq). Then, by using the former result, we obtain

Bc
p,k(Ω, lq) ' L−K1

p,k (lq)⊕G1 ⊕G2 ⊕ · · · ' lp(lq)⊕G1 ⊕G2 ⊕ · · · .

Next, since 1/k̃ is a temperate weight function on Rn such that 1/k̃p′ ∈ A∗
p′ ,

we see that Bc
p′,1/k̃

(Ω, lq′) '
⊕∞

j=0 Bj where B0 ' lp′(lq′) and Bj < lp′(lq′) for

j = 1, 2, . . . . Therefore, by Theorem 3.2, we get

Bloc
p,k(Ω, lq) '

(
Bc

p′,1/k̃
(Ω, lq′)

)′
b
'
( ∞⊕

j=0

Bj

)′
b
'

∞∏
j=0

B′
j =

∞∏
j=0

Hj

(here Hj = B′
j) where H0 ' lp(lq) and Hj < lp(lq) for j = 1, 2, . . . , and the

proof is complete.

Remark 4.7. 1. Let Ω, p and k as in Theorem 4.6. In [25, Corollary 5.3]
the space Bc

p,k(Ω, E) is showed to be isomorphic to l(N)
p if dim E < ∞ or

E = lp, and to (lp(l2))
(N) if E = l2. By duality (Theorem 3.2) it follows that

Bloc
p,k(Ω) ' lNp , Bloc

p,k(Ω, lp) ' lNp and Bloc
p,k(Ω, l2) ' (lp(l2))

N.

2. Note that, in general, Bloc
p,k(Ω, E) is not isomorphic to either Bloc

p,k(Ω)⊗̂εE
or Bloc

p,k(Ω)⊗̂πE: In fact, let Ω, p, q and k as in Theorem 4.6 and assume
that Bloc

p,k(Ω, lq) is isomorphic to Bloc
p,k(Ω)⊗̂εlq (resp. Bloc

p,k(Ω)⊗̂πlq). Then, by
Theorem 4.6, the previous note, [19, (5), p. 282] and [19, (5), p. 194], we get

∞∏
j=0

Hj ' lNp ⊗̂εlq '
(
lp⊗̂εlq

)N
(resp.

∞∏
j=0

Hj '
(
lp⊗̂πlq

)N
)

where H0 ' lp(lq) and Hj < lp(lq) for j = 1, 2, . . . . Hence it follows, reasoning
as in Theorem 4.4, that lp(lq) ' lp⊗̂εlq (resp. lp⊗̂πlq) but this is false when
p′ ≤ q (resp. p ≤ q′) by a result of Holub [11, Proposition 3.7] (resp. [11,
Proposition 3.6]). In consequence, the spaces Bloc

p,k(Ω, lq) and Bloc
p,k(Ω)⊗̂εlq (resp.

Bloc
p,k(Ω)⊗̂πlq) are not isomorphic when p′ ≤ q (resp. p ≤ q′).

3. By using the previous results we can describe the structure of the comple-
mented (normed) subspaces of Bloc

p,k(Ω), Bloc
p,k(Ω, lq) and

∏m
i=1 Bloc

pi,ki
(Ωi, lpi

): (i)
Let X be an infinite–dimensional complemented (normed) subspace of Bloc

p,k(Ω)
(Ω open set in Rn, ω ∈ M, k ∈ Kω and p ∈ {1,∞} or k temperate weight
function on Rn such that kp ∈ A∗

p and p ∈ (1,∞)). Then Bloc
p,k(Ω) ' lNp

and thus X becomes a complemented subspace of lp. This implies, since lp

12



is prime [20, Theorems 2.a.3, 2.a.7], that X ' lp. (ii) Let X be an infinite–
dimensional complemented (normed) subspace of Bloc

p,k(Ω, lq) (Ω open set in Rn,
p, q ∈ (1,∞) and k temperate weight function on Rn with kp ∈ A∗

p). Then,
since Bloc

p,k(Ω, lq) < (lp(lq))
N in virtue of Theorem 4.6, X becomes a comple-

mented subspace of lp(lq). This implies, in the case q = 2, that X is isomorphic
to either l2, lp, l2⊕lp or lp(l2) by a result of Odell [26]. (iii) Let X be an infinite–
dimensional complemented (normed) subspace of

∏m
i=1 Bloc

pi,kk
(Ωi, lpi

) (Ωi open
set in Rn, 1 < p1 < · · · < pm < ∞, ki temperate weight function on Rn with
kpi

i ∈ A∗
pi

, i = 1, . . . ,m). Then, since

m∏
i=1

Bloc
pi,ki

(Ωi, lpi
) '

m∏
i=1

lNpi
' (lp1 ⊕ · · · ⊕ lpm)N ,

we have that X < lp1 ⊕ · · · ⊕ lpm and so there exist 1 ≤ i1 < · · · < ik ≤ m
such that X ' lpi1

⊕ · · · ⊕ lpik
in virtue of [20, Theorem 2.c.14].

4. We omit the proof of the following result:

Bloc
p1,k1

(Ω1, lq1) ' Bloc
p2,k2

(Ω2, lq2) ⇐⇒ p1 = p2 and q1 = q2

(Ωi open set in Rn, pi, qi ∈ (1,∞), ki temperate weight function on Rn with
kpi

i ∈ A∗
pi

, i = 1, 2).

We conclude this section by showing a result on linear partial differential
operators (the result is well known, see e.g. [21], [22], [31] and [34]). The proof
we give is based on our representation theorem Bloc

p,k(Ω) ' lNp .

Theorem 4.8. Let Ω be an open set in Rn (n ≥ 2), 1 < p < ∞, k a temperate
weight function on Rn such that kp ∈ A∗

p and P (D) an elliptic operator with
constant coefficients. Then the short sequence

0 −→ N(P (D)) −→ Bloc
p,k(Ω)

P (D)−→ Bloc
p,k/P ′(Ω) −→ 0

is exact and does not split, i.e., the operator P (D) has no continuous linear
right inverse (here N(P (D)) is the kernel of P (D)).

Proof. P (D) is well defined by [13, Theorem 10.1.11] and the short sequence
is exact in virtue of [13, Corollary 10.8.2] and [13, Theorem 10.6.7]. The closed
subspace N(P (D)) of Bloc

p,k(Ω) coincides, algebraic and topologically, with the
subspace N(Ω) = {f ∈ E(Ω) : P (D)f = 0} of E(Ω) (by [12, Theorem 1.11.10],
[12, Theorem 1.11.11] and the closed graph theorem) and thus it is a nuclear
Fréchet space. Note also that, for every connected component O of Ω, the
space N(O) equipped with the topology induced by E(O), is a nuclear Fréchet
space with continuous norms (since all f ∈ N(O) is real analytic in O, see
e.g. [1, Corollary 4.1.4]) isomorphic to a complemented subspace of N(P (D))).
Now assume that the short sequence splits. Then N(P (D)) is a complemented
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subspace of Bloc
p,k(Ω). Since this space is isomorphic to lNp by Remark 4.7/1, it

follows that, for any connected component O of Ω, the space N(O) becomes
isomorphic to an infinite–dimensional (n ≥ 2) complemented subspace of lNp .
This implies, taking into account a result of Metafune and Moscatelli [23,
Theorem 1.2], that N(O) is isomorphic to either lp, lp × ω, ω or lNp . This
contradiction completes the proof.
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