
SPECIAL SECTION ON MULTIMEDIA ANALYSIS FOR INTERNET-OF-THINGS

Received April 24, 2018, accepted May 23, 2018, date of publication June 18, 2018, date of current version June 29, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2842034

INVITED PAPER

An Intelligent System for Video Surveillance
in IoT Environments
ALBERT REGO , ALEJANDRO CANOVAS, JOSE M. JIMÉNEZ,
AND JAIME LLORET , (Senior Member, IEEE)
Instituto de Investigación para la Gestion Integrada de zonas Costeras, Universitat Politècnica de València, 46730 València, Spain

Corresponding author: Jaime Lloret (jlloret@dcom.upv.es)

This work was supported in part by the Ministerio de Educación, Cultura y Deporte, through the Ayudas para contratos predoctorales de
Formación del Profesorado Universitario FPU (Convocatoria 2015) under Grant FPU15/06837, in part by the Programa para la Formación
de Personal Investigador de la Universitat Politècnica de Valéncia 2014, Subprograma 2, (Codigo del contrato: 884), and in part by the
Ministerio de Economía y Competitividad in the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia,
Subprograma Estatal de Generación de Conocimiento within the project under Grant TIN2014-57991-C3-1-P and
Grant TIN2017-84802-C2-1-P.

ABSTRACT Multimedia traffic has drastically grown in the last few years. In addition, some of the
last paradigms proposed, like the Internet of Things (IoT), adds new types of traffic and applications.
Software-defined networks (SDNs) improve the capability of network management. Combined with SDN,
artificial intelligence (AI) can provide solutions to network problems based on classification and estimation
techniques. In this paper, we propose an artificial intelligence system for detecting and correcting errors in
multimedia transmission in a surveillance IoT environment connected through a SDN. The architecture,
algorithm, and messages of the SDN are detailed. The AI system design is described, and the test-bed and
the data set are explained. The AI module consists of two different parts. The first one is a classifying part,
which detects the type of traffic that is sent through the network. The second part is an estimator that informs
the SDN controller on which kind of action should be executed to guarantee the quality of service and quality
of experience. Results show that with the actions performed by the network, like jitter can be reduced up
to 70% of average and losses can be reduced from 9.07% to nearly 1.16%. Moreover, the presented
AI module is able to detect critical traffic with 77% accuracy.

INDEX TERMS Artificial inteligence, IoT, multimedia, SDN.

I. INTRODUCTION
In the last few years, video transmission through networks
has grown dramatically. Multiple reports state that this trend
will increase in the coming years. Cisco, in its Cisco Visual
Networking Index, Forecast and Methodology 2016–2021
report [1], asserts that video traffic in 2021 will be three
times that of the 2016 video traffic. Moreover, this traffic will
represent 82% of the total Internet traffic in 2021. Further-
more, it says that video surveillance traffic on the Internet
will be seven times greater during that same period than the
trafficwe currently have. In addition, Cisco predicts that 3.4%
of the video traffic that will be transmitted though Internet
in 2021 will be generated by video surveillance traffic.

The Telecommunication Standardization Sector of ITU
(ITU-T) [2], in its recommendation ITU-T Y.4000/Y.2060
(06/2012) [3], defines the Internet of Things (IoT) as a

global infrastructure for the information society, enabling
advanced services by interconnecting (physical and virtual)
things based on existing and evolving interoperable informa-
tion and communication technologies. The forecasts of IoT
devices connected to networks increases day by day. Cisco
reported in itsWhite Paper [4] that it expected about 50 billion
IoT devices to be connected to the Internet by 2020. Later,
the predictions changed. According to Amy Nordrum [5],
the predictions for the year 2020 on the amount of con-
nected IoT devices vary from the 30.7 billion, predicted
by IHS Markit [6], to the 20.8 billion predicted by Gart-
ner [7] or the 28.1 billion that was predicted by IDC [8].
However, the last two studies do not have in mind smart-
phones, tablets and computers. Nonetheless, the number of
IoT devices that are expected in 2020 is overwhelming. The
need tomake good trafficmanagement in the network is clear.
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Above all, the traffic that requires special treatment, due to its
characteristics, is the traffic that comes from critical applica-
tions and multimedia.

Networks can have great limitations if they are managed
statically, due to the rigidity of these mechanisms. Networks,
which are managed statically by commands or static scripts,
are less efficient and, furthermore, their resource provisioning
is less automatic. In the last few years, the most often pro-
posed technique to improve network management in different
studies, is applying Software Defined Networking (SDN).
IETF in its RFC 7149 [9] defines SDN as the set of tech-
niques used to facilitate the design, delivery, and operation
of network services in a deterministic, dynamic, and scalable
manner. Through the SDN Controller, we can apply different
rules about traffic flows that traverse the network, which
allow us to have adaptive networks. Generally, by applying
SDN, we are able to increase the efficiency and reduce the
cost of network management, bringing important advantages
in the networks where it is applied.

Artificial Intelligence (AI) helps to manage resources and
network traffic dynamically. Using AI to study the traffic of
the network, we can discover the different types of flow that
are being transmitted. Thus, traffic patterns can be obtained,
which can then be applied in SDN decision making. Combin-
ing AI techniques with SDN, adaptive behaviors are achieved
in order to improve the performance of the network.

Due to the predicted change about Internet traffic previ-
ously exposed, multimedia traffic must be managed as effi-
ciently as possible. Therefore, and knowing that techniques
such as SDN and AI allow to increase efficiency and traffic
management dynamically, we propose an intelligent system
for guaranteeing QoS and QoE in the video surveillance
traffic generated by devices of IoT.

In our study, the treated traffic is generated by multimedia
streaming. Our work is directed to the environment of video
surveillance, where IoT nodes (smart cameras, among others)
send video when anomalies are detected. We propose a SDN
core network to manage the different IoT networks. Then,
we describe the data-set used to create and train our AI mod-
ule. After that, the AI system that we have created is detailed.
It allows the detection of traffic that is considered critical. In
addition, the AI system is also able to estimate the necessary
resources to guarantee an adequate level of Quality of Service
(QoS) or Quality of Experience (QoE) of the multimedia
transmission. This AI system is integrated in the SDN to
avoid QoS and QoE problems during the streaming of multi-
media traffic. Thereby, it is possible to act when the resources
are not enough for having an adequate transmission.

We use an architecture based on SDN, where an Open-
Flow switch [10] performs the Cluster Head function, and
it is responsible for communicating the IoT networks. The
SDN network collaborates with the AI system, which detects
critical traffic based on the packets sent by the SDN con-
troller. The statistics collected by the controller from the
nodes are sent to theAI system,which estimates the necessary
resources for the appropriate transmission.When this point of

knowledge of the network and its traffic are reached, the con-
troller is responsible for applying different techniques to
guarantee the resources. Depending on the level of resources
needed, it will make different actions that will affect differ-
ent IoT nodes. This provokes an increment of performance
in the multimedia streaming and a better network manage-
ment. Problems such as bandwidth limitation, jitter, delay and
packet loss can be reduced or avoided due to the ability of
the system to react to the critical situations detected by the
AI system. So this system differs from others because, thanks
to the results of the classification, it is able to estimate the best
action to perform in order to solve the current problem with
this critical data. It combines a classification method with an
estimator to act and improve the performance of the network.

The rest of this paper is structured as follows.
Section 2 presents some of the most relevant works related
to our study. Section 3 presents the network architecture,
algorithm and messages used to implement our solution.
Section 4 displays the test-bed used to train the AI module
in the proposed system. Then, in Section 4, the AI module is
detailed and its different parts are discussed. In Section 5,
the results are shown and the QoS improvements are dis-
cussed. Finally, Section 6 concludes the paper and introduces
some future works.

II. RELATED WORK
There is a lot of previous work dealing with the study of mul-
timedia transmission, video surveillance, IoT, AI and SDN.
Even many of the previous works interact with different
technologies. We go on to show some of them.

There are authors who study different areas of IoT appli-
cability. For example, Pal in [11] establishes six areas, called
SPACES, which are of interest to companies and organiza-
tions when implementing IoT. The areas he presents in his
study are: scalability, privacy, affordability, context aware-
ness, ease-of-development, and security. Other authors, such
as [12] and [13], propose to use IoT devices and sensors
in the field of e-Health or Ambient Assisted Living (AAL).
Both papers discuss the possibility of obtaining informa-
tion through these devices to improve the personalization of
medical treatment, facilitate the practice of medicine, and
reduce costs. Tan and Wang [14] present the structure of IoT;
they also propose IoT architecture and design an application
model. Gubbia et al. in [15] present a vision of the implemen-
tation of IoT in the Cloud. They study key technologies and
application domains, to subsequently implement a solution
based on both public and private clouds. This implementation
is done within a framework that allows Cloud scalability, and
that provides capacity for IoT.

Other authors study in the scope of video surveillance.
Authors, such as Ajiboye et al. in [16], propose a new hier-
archical architecture called Fused Video Surveillance Archi-
tecture (FVSA). Privately-owned video surveillance systems
can increase efficiency in public safety. In their proposal,
they define a network adapted to intelligent services of
video surveillance, which allows communicating with other
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compatible systems in IoT. Lloret et al. in [17] present the
study of the implementation of a video surveillance system
in rural environments. They study codec selection, design and
coverage problems, and finally show the results obtained in a
public deployment.

There are authors who study multimedia transmission
based on SDN technology. In [18], Taha et al. present an
algorithm for the management of video transmission per-
formance based on SDN. Their algorithm provides a stable
video because it distributes bandwidth equally among clients.
Besides, they perform tests and present some results that
confirm the validity of their algorithm.

There are works done by other authors that relate
SDN with IoT. Huang et al. in [19] expect that as the
SDN networks proliferate, the collection of information
and the updating of the network topology and the con-
trol of QoS will be facilitated in the IoT environment.
Quin et al in [20] extend the Multinetwork Architecture
Information Architecture (MINA), achieving different levels
of quality for different IoT tasks so that an original SDN
IoT controller supports commands to differentiate flows and
tasks. They have applied a prototype to an IoT scenario.
The performance results indicate that IoT networks can be
exploited more efficiently. In [21], Omnes et al. present a new
multilayer IoT architecture, which includes SDN and NFV,
based on network and IT resources. Some authors, such as
Bizanis and Kuipers [22], study the state of the art when
applying SDN and Network Virtualization (NV) to IoT. They
describe the implementation of IoT in both technologies and
finally review IoT architectures enabled by SDN-NV together
with implementations in real life. Other authors, such
as [23] and [24], describe SDN presenting their first fields
of application, and analyze the possibility of using it in
IoT applications.

There are also authors who propose applying AI to SDN.
For example, Matlou and Abu-Mahfouz [25] analyze auto-
matic learning algorithms through AI, which are applied
in SDN. They also study the possibility of applying them in
Software DefinedWireless Sensor Network (SDWSN). Latah
and Toker [26] study the application of AI to SDN. In their
conclusions, they indicate that the inclusion of AI in SDN
security systems find lower rates in the detection of false posi-
tives. Regarding the video transmission, they observe a lower
rate of frame losses. They announce that the use of hybrid
intelligence will probably improve networks based on SDN.
Guibao et al. in [27] present a framework called FINE, based
on AI. They implement this framework in collaboration with
SDN/NFV and demonstrate that its use is feasible in networks
and real communication services. Sendra et al. in [28] present
a proposal to use an intelligent routing protocol in a SDN
topology. They designed an intelligent algorithm based on
reinforcement learning to improve routing. They used the
Quagga suite to implement the routing tasks. The virtual
topology is compared with a real one and they announce that
their proposal achieves a better RTT but that the convergence
time of the OSPF protocol is greater, due to Quagga.

There are some published works where authors have
applied AI to IoT. Egea et al. in [29] show the combination of
Machine Learning with IoT. They propose the modification
of the Fast-Fast-Correlation Feature (FCBF) algorithm, with
the aim of separating and prioritizing sensed data in multime-
dia traffic, to avoid damage in emergency situations. Their
results show three algorithms based on FCBF, confirming
improvements regarding their precision and execution time.
Turcu et al. in [30] propose the control of traffic signals and
environmental parameters by means of a distributed intelli-
gent system, based on IoT.

Our work presents different novelties regarding previous
published works. On the one hand, regarding AI, previous
techniques have not been used to detect and estimate the
parameters on real time. On the other hand, the combina-
tion of SDN with IoT and IA is quite novel, and there are
few papers published related with them, especially when the
aim is to improve QoS in multimedia transmissions. In our
proposal, we include an architecture, a message protocol,
the required algorithms and an AI system composed by a
classifier and an estimator.

III. PROPOSED NETWORK MODEL
In this subsection, the proposal is detailed. First, the archi-
tecture is shown. Then, the algorithm is described. Finally,
the messages are displayed and the communication process
is commented.

A. ARCHITECTURE
In this subsection, the architecture of the network is
described. The system is designed for surveillance. The archi-
tecture of the proposal is a combination of two network
technologies. This combination is shown in Fig. 1. On the one
hand, IoT networks work as edge networks. The IoT nodes
implement the functionality of the system. On the other hand,
a SDN is used to provide the core network. The SDN con-
troller, whose function is to ensure the best QoS, is the central
node in the network and it is able to make decisions to
interconnect the different IoT networks.

FIGURE 1. Scheme of the architecture proposed.

The two networks are joined by the Network Head (NH)
of each IoT network. It is a special node that manages the
IoT network communication and sends the data through the
SDN network. Moreover, it uses the OpenFlow standard to
communicate with the controller and send it statistics about
the use of the network. This role is played by an OpenFlow-
enable switch. There are also OpenFlow-enabled switches
that do not act as the NH of an IoT network. However,
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the SDN controller has the AI module and it is in constant
communication with it. The AI module is a set of software
programs that uses AI techniques to provide the functionali-
ties to the system proposed.

Thereby, the network is composed by IoT networks that
implement the functions. There are several different kinds
of IoT nodes in the system. Fig. 2 shows the different
roles in the system and the communication between them.
The tasks that each role implements are painted with dif-
ferent colors. The SDN controller is in charge of network
management and sends the statistics that gather from the
SDN nodes (NHs and other SDN switches) to the AI module.
The AI module uses this set of data in order to apply the
AI techniques and inform the controller about the multi-
media traffic flowing through the network and its resource
requirements. This module is divided into two parts: The
traffic classifier, which reports whether the incoming flow
is critical or not; and the estimator, which decides the kind
of action that should be performed by the SDN controller
in order to guarantee the QoS conditions for multimedia
transmission.

FIGURE 2. Scheme of each actor in the system and their interaction.

The communication between the SDN controller and the
AI module is internal, but it is composed by structured mes-
sages. The SDN controller performs network management
functions. However, the most important parts for this paper
are the traffic routing part, where the SDN controller fills
the flow table of each switch, and the statistics gathering.
In order to do that, the controller communicates with the
SDN nodes by using the OpenFlow standard. Nevertheless,
in some cases we need to use custom messages defined in the
following subsections. The Network Head not only performs
network management tasks, but also communicates with the
IoT nodes and it is able to manage their behavior. With the
messages described in Subsection C, the Network Head is
able to operate with the nodes. These nodes are the ones that
generate the traffic in the network. Some of this traffic is
multimedia traffic, like video surveillance traffic, and its QoS
must be guaranteed.

B. ALGORITHM
In this section, the algorithm performed by the SDN con-
troller is detailed, and the different actions that can be exe-
cuted either by the controller or the nodes are described
and classified. The algorithm of the network management is
simpler than the one used by the AI module. The controller
initializes the AI module. Its main task is to use the standard
OpenFlow messages to gather statistics. The algorithm used
for network management uses the AI module to detect critical
traffic flows being sent through the network. This critical
traffic means multimedia traffic in this paper. When multi-
media traffic is detected by the AI module, it estimates the
resources required and the best action to perform in order
to provide an acceptable level of QoE. This estimation uses
the statistics provided by the controller to be aware of the
current state of the network. With the estimation done by the
AI module, the SDN controller chooses an action to perform
in the network. Depending on the resources needed to pro-
vide enough QoE in the transmission, the AI module labels
the level of urgency of the actions to be taken. Therefore,
the SDN controller handles the categories of the actions. The
SDN controller will perform an action categorized into the
same level of needed resources (listed in Table 1) as that of the
AI module. With these actions, the SDN controller is able to
change priority, queuing policies or making routing decisions
in order to guarantee the QoS needed in the transmission.
Some problems, such as media access, are managed by the
controller. If the action being performed by the SDN belongs
to the first three categories, the OpenFlow standard does
not contain any messages that could perform it. Therefore,
we have designed some custom messages (explained in the
next subsection) that implement these actions. The action
labeled as IoT has been specifically designed for the archi-
tecture maintenance. They allow activating backup nodes in
destination and enable buffer mode in source. Moreover, with
this ability to put some IoT nodes into sleep mode, the system
will avoid QoS problems.

TABLE 1. Possible actions and their category.

The algorithm is described in Algorithm 1 and it is graphi-
cally shown in Fig. 3, where the Execute_Action subprocess
is detailed. The SDN controller starts gathering statistics and
providing these statistics to the AI module. When a new
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FIGURE 3. SDN controller operation diagram.

packet is reported to the controller, it sends the packet to the
AI module. The AI module detects if it is a critical situation.
If it is, the AI module also estimates the action to perform.
The controller is notified about the action and it sends the
messages needed to perform this action in the SDN nodes.
The messages needed to be sent change depending on the
action to be executed. When the action is done, the controller
returns to its usual stats reporting activity.

Algorithm 1 Actions Management
Given: Actions

Initialize_AI(Actions)

Cat_Prev = Cat_initial
Foreach new iteration

Stats = Get_Statistics()
AI_Sent_Statistics(Stats)
If New_Packet do

Cat = AI_Send_Packet(Packet)
If Cat != No_Crit do

Execute_Action(Cat)
End If

End If
End Foreach

C. MESSAGES
The messages sent from the controller to the nodes belong
to the OpenFlow standard in almost all cases. In this sub-
section, the communication processes described are not only
those between the SDN controller and the nodes, but also
between the SDN controller and the AI module. In addition,
the structure of the messages added in order to expand the
capabilities of the SDN controller is also detailed.

Since the SDN controller contains the AI module, the
messages exchanged between them are not sent through
the network. However, it is very important to describe this

communication in order to understand how both actors work.
The communication process in which the SDN controller
receives a new packet is shown in Fig. 4a. The OpenFlow
‘‘Packet_In’’ message is sent from the NH to the controller.
The controller sends the packet to the AI module, which
classifies the new flow and decides if it is critical or not.
Then, if the flow is critical, the AI module estimates the level
of criticalness depending on the state of the network. These
states have been built up thanks to the messages sent by the
SDN controller to the AImodule (displayed in Fig. 4b). These
messages contain the statistics gathered by the nodes. The
AI module reports its classification to the SDN controller.
With this info, the SDN controller executes an action that
matches with the estimation performed by the AI module.

Depending on the action to be executed, the OpenFlow
messages will change. Table 2 shows the actions taken when
each message is sent.

TABLE 2. Actions taken when each message is sent.

A special case is when the action is related to the IoT net-
works. In that case, there are no OpenFlow standardmessages
to implement the actions, so the messages shown in Fig. 5 are
used. They are the following ones:
• Category: Used to communicate with the AIModule and
reports which kind of resource has to be improved.

• Sleep: Used to inform the NH that all the networks in the
IoT network must be put to sleep when the timer reaches
0 except the video source.

• Awake: Used to inform the NH that all the networks
in the IoT network must be awakened when the timer
reaches 0. Used also to activate the backup nodes in the
destination IoT network.

• Buffer_Mode: Activates the buffer in the video source
indicated by its ID.

The communications steps differ when an OpenFlow mes-
sage is used and when one of the custom messages are used.
This happens because the custom messages are focused on
IoT network management. The communication process of
each case is shown in Fig. 6 and Fig. 7. This process is the
continuation of the one described in Fig. 4 (when the AI mod-
ule indicates that the flow is critical and the action that should
be executed). Fig. 6 shows the message exchange when the
action is focused on the SDN nodes. The SDN controller
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FIGURE 4. Message communication process when: a) A new packet
arrives; and, b) Statistics are demanded.

FIGURE 5. Custom messages used when actions in the IoT networks are
required.

FIGURE 6. Message communication process when there is a
SDN-node-based action.

uses the OpenFlow messages to inform the SDN nodes of the
network on which action must be performed. Fig. 7 describes
the process when the IoT network is involved and the NH is
the destination of the messages sent by the controller.

IV. TEST-BED
In this section, the study performed to design the AI system
is presented. Different scenarios have been tested. They are
based on the architecture previously described. Mininet emu-
lator has been used to perform the simulations and gather the
data to design the system. With this test-bed, we are looking
for the most complete set of data. So we need to check which
characteristics have influence over the QoS obtained, and
consequently over the QoE. Therefore, we have analyzed how
the video resolution and the frame rate affect some network

FIGURE 7. Message communication process when the IoT network is
affected.

parameters. These network parameters are jitter, delay and
loss rate. Moreover, we have also checked how the network
status affects the video quality perceived by the end user.

In order to perform the study, we have used several com-
pression formats and different networks. The video formats
used have been MJPEG, MPEG4 and H264, with different
video resolutions. The video resolutions have been chosen
based on the fact that IP surveillance video cameras use sen-
sors from 0.4MP (Megapixels) to 8MP. Some of them reach
higher video resolutions like 704 × 576 or UHD. Therefore,
we have used three types of resolution for testing: a medium
resolution, a high resolution and a very high resolution. These
resolutions are 928 × 576, 2592 × 1920 and 3840 × 2160,
respectively. The number of frames per second is also taken
into account. Rates between 15fps and 30fps are usual in these
kinds of cameras. The networks used in the test have been
both wired and wireless.

Once the different scenarios and video characteristics have
been set, the simulations are executed and the data are gath-
ered. On each simulation, the network parameters (jitter,
delay, loss rate and bandwidth) of the links of each node
are captured. In the end, the data is collected and the dataset
is built. This dataset bring us the possibility of testing our
system once it is developed. So, the performance of the
AI system can be measured.

A. DEVELOPMENT AND ANALYSIS OF QOS RESULTS
In this subsection, the results obtained from the test-bed to
build our dataset are shown and analyzed. In order to analyze
the maximum possible number of scenarios for video trans-
mission under the system proposed, we executed several tests
that can be classified into:
• Congested networks
• Networks with high loss rate
• Networks with jitter
Each one of these cases is analyzed.
First, we have analyzed how different frame rates

(30-60 fps) and resolutions (800 × 600, 1280 × 720 and
1920 × 180) affect to jitter, delay and loss rate. This test
has been performed on a wired network with loss rates from
0% to 1%.
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FIGURE 8. QoS parameters depending on loss rate and video resolution. From left to right and up to down: a) delay with loss rate from 0%
to 1% and different resolutions with 30fps, b) number of lost packets with the same conditions as in the previous graph, c) average of lost
packets, d) Jitter in ms, e) delay with loss rate from 0% to 1% and a 1920 × 1080 30fps video streaming, and f) delay in the same
conditions as the previous case but also with 60fps videos.

Fig. 8 shows the results of this test. It shows how loss
rate affects the QoS parameters when the video resolution
changes. Delay, lost packets, average lost packets and jitter
are measured. As displayed in Fig. 8c, the losses obtained
are higher when the video resolution is low, reaching more

than 20 packets as maximum, as can be observed in Fig. 8b.
This pattern is also presented with jitter and delay, shown
in Figs. 8a-d. In addition, QoS is degraded at the beginning
of the transmission because of the increment of jitter, delay
and loss rates. This increment is the highest increment of
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FIGURE 9. QoS parameters depending on jitter, from 10ms to 60ms, and video resolution with 30fps streaming. From left to right and up to down:
a) delay, b) number of lost packets, c) average of lost packets, d) jitter.

the transmission. The increments occur at 8s, at 41s and
also at 45s, when there are changes on the video scene. The
delay increases up to 1.7ms of maximum and, during the rest
of the transmission, it varies from 0.2ms to 0.3ms. Then,
at the end of the transmission and, as shown in Fig. 8a,
it increases again up to 1.4ms. The number of lost packets
presents a maximum of 23 packets at the beginning of the
transmission and then decreases to 4-5 packets. At the end
of the streaming, it raises to 24 packets for an 800 × 600
video resolution and a 0.5% loss rate (Fig. 8b). Regarding
jitter, it reaches 3ms at the beginning and 1.8 at the end
(Fig. 8d). In Fig. 8e, the manner in which the loss rate affects
the delay when a 1920× 1080 30fps video is being streamed
can be observed. The highest changes on delay happen when
the video scene changes. Delay increases to 0.5ms at the
beginning and to 0.65ms at the end of the streaming. The loss
rate presented in this test is not very significant because the
different measures with 0% and 1% of loss rate are similar. In
order to show how frame rate affects transmission, Fig 8f is
presented. The highest the frame rate gives the highest delay.
The maximum delay is 4ms at the end of the transmission

with 0.2% loss rate. The peaks of delay happen on different
timestamps due to the different video framerate.

Secondly, we have analyzed how different values of jit-
ter, from 10ms and 60ms, affect the QoS parameters under
streaming with different rates (30-60fps) and resolutions
(800 × 600, 1280 × 720 and 1920 × 180). The results are
displayed in Fig. 9.

In Fig. 9a, we can observe how the increment of jitter
affects the delay on transmission with different resolutions.
Again, when the video changes the scene, the increment of
delay is higher. It is incrementally increased to 0.6ms at the
beginning and 0.9ms at the end of the 800 × 600 video
transmission. The higher the resolution, the lesser the delay
is.With the same video resolution, the increment of jitter does
not affect the delay. However, in Fig. 9b, we can observe that,
with higher resolutions, we obtain more lost packets. With
1920 × 1080 video resolution, the maximum number of lost
packets is 9 at the beginning of the transmission. Neverthe-
less, with an 800 × 600 video resolution, we obtain 16 lost
packets of maximums at the end. The peaks of loss are placed
in the last two changes of video scenes, on 41s and 45s.
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In Fig. 9c, we have the same results in terms of average lost
packets. We observe the same pattern, with increments at the
end of the streaming. In Fig. 9d, we observe that jitter is
affected in the same way as delay. We obtain lower values,
with maximums of 0.3ms at the beginning of the 800 × 600
transmission and 0.8-0.9ms at the end of it.

Finally, we have analyzed how QoS parameters vary when
there are different videos with different rates and resolutions.
These videos are sent through networks with different band-
width from 10Mb/s to 100Mb/s and provoking congestions.
In Fig. 10a-b, the delay obtained for different transmissions
through a path with 10Mb/s of available bandwidth. In order
to congest the network, an 800 × 600 30fps ‘‘disturbing’’
video is streamed as displayed in Fig.10a, and a 1600 ×
1200 30fps video is streamed in as displayed in Fig. 10b.
They started at different moments. This process is repeated
after 30 and 40 seconds of transmission. As we can observe
in Fig.10, the delay obtained is higher for videos with lower
resolutions. For instance, with 800×600 streaming, the delay
reaches 1.7ms of maximum at the beginning of the transmis-
sion, but with 1024× 768, it is lower than 1.6ms. Moreover,
as it can be observed in Fig. 10b, the delay increases up
to 1.1ms at the end. We have repeated the process, increasing
the available bandwidth to 100Mb/s. In Fig. 10c, we observe
that this increment of available bandwidth reduces the impact
on delay, being 1.3ms during the beginning of the 1024×768
transmission. In Fig. 10d, it is shown how changes in the
number of lost packets occur when the 10Mb/s network gets
congested. The video transmitted has an 800×600 resolution
and 30fps. The video is transmitted at 10s(s1), 20s(s2) and
40s(s3). When the 1920×1080 video is being streamed, there
are losses of 50 packets. In Fig. 10d, we can observe a frame
of the video when the peak of lost packets happens. That
frame would decrease the QoE obtained. This error happens
at 48s. Fig. 10e shows that there is not a relationship between
loss rate and the size of the video, but there is a relation-
ship with the video resolution. The transmission, in terms
of packet loss, is more affected with less video resolution.
This can be observed in the red, green and orange lines in
the graph. These lines are the ones related to 800 × 600
video streaming. However, the errors produced when a high-
resolution video is being streamed affects the QoE more,
as we can observe in the 1920×1080 (s2) case. If the network
is congested with a 1024 × 768 video, we obtain the results
that are presented in Fig. 10f. With these results, when the
resolution is low, the transmission is more sensitive to loss
rate. This can be observed in the pink, orange and blue lines
for 1024 × 768, and these results are compared with the
lines related to 1920 × 1080. However, this does not affect
the MOS, as we have observed when analyzing the received
videos.

B. DEVELOPMENT AND ANALYSIS OF QOE RESULTS
We have performed 495 experiments. On each one, we have
saved the video received on the destination. Thereby,
we have both, the original video and the video with

transmission errors. So, we can perform an objective study of
the image quality received. As a result of this study, we have
obtained PSNR, NQI, VQM, SSIM and MSE measurements.
The goal was to obtain an approximation of the level of qual-
ity perceived by the user. Attending to the literature, we have
chosen those measurements that have more correlation with
the subjective quality, in terms ofMOS, perceived by the user.

The Peak Signal to Noise Ratio (PSNR) parameter is an
engineering term for the ratio between the maximum possible
power of a signal and the power of corrupting noise that
affects the fidelity of its representation. Normally, higher
PSNR indicates that the reconstruction is of higher qual-
ity [31], [32]. According to the mathematical equations for
calculating MSE and PSNR, it can be inferred that they
represent similar error values (i.e., the calculated error is of
the same degree). Because of this, PSNR can be considered
as an unofficial representative of all the above mentioned
video quality metrics and still the most widely used met-
ric for video quality estimation in many video processing
systems [33]. The Human Visual System (HVS) is highly
adapted to extract the structural information from the area
of viewing. SSIM metric uses this characteristic of the HVS
in the estimation of the quality of the processed digital
video. Structural information of an image can be defined by
those characteristics that represent the structure of the objects
in the scene – independently of the mean brightness and
contrast [33], [34]. These measurements are based on three
components: luminance comparison, contrast comparison
and structure comparison [35]. NQI works in a similar man-
ner as the SSIM index. NQI defines picture distortion as a
combination of three factors: difference in mutual charac-
teristics, difference in luminance, and difference in contrast.
Human eye sensitivity to spatial-temporal patterns decreases
with high spatial and temporal frequency. Based on this dif-
ference in sensitivity, high spatial or temporal information
can be represented with less data and less precision, while
human eyes are more or less insensitive to the loss of this
information. This characteristic of HVS is exploited by DCT
quantization, which is the base for VQM [31]. The values
of VQM start from 0 and, in real situations, they can reach
around 12. The VQM value of 0 represents minimum dis-
tortion and maximum quality [35]. In conclusion, the SSIM
metric has a quite better performance compared to PSNR and,
in most cases, performs very similarly to the Human Visual
System. But, imperfections are also present. SSIM is almost
insensitive to changes in brightness, contrast and hue such
that, when these changes are bigger, SSIM values can become
largely inverted. VQM mostly considers the changes that are
more noticeable to the human eye.

With all the previous discussion, we have chosen VQM,
SSIM and PSNR to set the output parameters of the dataset.
We have chosen these metrics because every one of them
can provide us some kind of characteristic to correlate that
metric with the QoE. VQM is similar to the subjective quality
perceived by the user. Therefore, this metric has more weight
in the settings. The equation used to calculate the subjective
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FIGURE 10. QoS parameters depending on network congestion and video resolution. From left to right and up to down: a) delay obtained in a
10Mb/s network with 800 × 600 30fps disturbing traffic, b) delay obtained in a 100Mb/s network with 1920 × 1080 30fps disturbing traffic,
c) delay obtained in a 100Mb/s network with 1920 × 1080 30fps disturbing, d) number of packets lost in a 10Mb/s network with 800 × 600
30fps disturbing traffic e) average of lost packets obtained in a 10Mb/s network with 800 × 600 30fps disturbing traffic, f) average of lost
packets obtained in a 10Mb/s network with 1920 × 1080 30fps disturbing traffic.

values from objective measurements of each frame is:

QoE≈si = δi,VQMRi,VQM + δi,SSIMRi,SSIM + δi,PSNRRi,PSNR
(1)

Where the subjective approximate QoE value for each
frame i, QoE_aprox_s_i, is the combination of three factors.
The result of each metricM for the frame i (R_(i,M)) adjusted
with a specific weight ∂_(i,M). These values correspond with
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FIGURE 11. Preprocessing done with the data obtained from the QoS and QoE analysis. From left to right and up to down: a) dataset related to
the subjective measurements after analyzing both, a 30fps and a 60fps video streaming., b) preprocessing base on sampling for each frame,
c) preprocessing based on sampling the lost packets each time instant, d) preprocessing based on sampling jitter and delay each time instant.

∂_(i,VQM)=0.5, ∂_(i,SSIM)=0.35 and ∂_(i,PSNR)=0.15,
which are determined based on the literature.

C. DATA PREPROCESING
In order to set the data used in the traffic classifying model,
we first performed data preprocessing. Thereby, we grouped
the data in GOPs of 2 seconds. That means that if the obtained
data was frame-based, we would preprocess them each
60 frames when the frame rate is 30fps, or each 120 frames
when it is 60fps. Results are presented in Fig. 11.

As we can observe in Fig.11a, we converted the approx-
imated 3000frames for 60fps videos and 1500 frames for
30fps videos into 25 samples as shown in Fig. 11b. Each
sample was formed by calculating the average of the values
within the 2-second interval. The same process has been
executed for the data packets. In that case, they are pre-
sented depending on the time instant, not frames. As it can
be observed in Fig. 11c and Fig.11d, the average data was
taken every 2 seconds in order to obtain 25 samples from
50 seconds of transmission. Each sample corresponded to
2 seconds of video. In those 2 seconds, we obtained the

average of different QoS parameters like jitter and delay
(Fig.11d) or number of lost packets (Fig. 11c). Regarding lost
packets, there was a peak with more than 1.6 packets at the
beginning of the transmission and another with 0.6 at the end.
However, during the transmission, the average was below
0.2 packets. As in the previous study, these peaks happen
when the video changes the scene. In terms of delay, at 8s,
it reached 0.06ms and, at 42s, it reached 0.02ms. The average
during the transmission was below 0.01ms. The jitter suffered
an increment of 0.01ms at 8s, but it was insignificant during
the rest of the transmission.

Once the preprocessing was done, we obtained 25 samples
for each experiment. Jitter, delay, lost packets, bandwidth,
resolution and fps were measured. The average value of the
different objective metrics for each sample and time interval
was used for labeling. Consequently, we obtained 6 QoS-or-
video characteristics for each 2 seconds as an input for our
system. As output, we obtained the label that corresponded to
the average of the objective QoE metrics. The last step in the
preprocessing process was to divide the spectrum of the pos-
sible objective QoE values into 5 ranks. Thereby, the labels
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used were discrete values, not continuous. Managing only
5 possible labels is much easier. We associate the kind of
traffic to those labels as we describe in the next subsection.

V. ARTIFICIAL INTELLIGENCE SYSTEM
The artificial intelligence system is composed of two main
processes. The first process is a multimedia traffic classifier
and the second is an estimator of the network resources.
This last process is used for guaranteeing the most ade-
quate network condition for multimedia transmission. For the
development of the classifier, we have used convolutional and
recurrent neural networks. A statistical model has been used
to design the estimation process. In the following subsections,
both processes are detailed.

A. QOE-BASED MULTIMEDIA TRAFFIC CLASSIFICATION
We performed 237 experiments and obtained 25 samples for
each one. Therefore, a total amount of 5,925 samples have
been used to develop the classifying model. First, a learning
process is carried out and, then, a test process to check the
model. The learning process is a supervised process because
the labeling process has been manually executed for each
characteristic array. There are 5 different types of labels that
represent the kind of traffic in the transmission:

• Non-critical traffic
• Little critical traffic
• Rather critical traffic
• Critical traffic
• Very critical traffic

As it is mentioned in the previous subsection, these values
are obtained from the objective QoE. They cover a Rank from
1 to 5, with 1 being a really bad objective QoE and 5 being
the best possible. Thereby, a score of 5 corresponds to non-
critical traffic and a score of 1 to very critical traffic. Conse-
quently, an output of 2 means critical traffic, 3 means rather
critical traffic, and 4 means little critical traffic. Therefore,
the classifier model has QoS values and video characteristics
as an input and discrete objective QoE value as an output.
We must take into account that some video errors like black
pixels, color errors, tiling, noise, ghosting, soft focus, and
flickering can affect the QoE. Errors like the ones afore-
mentioned can affect the quality of the video received by
the surveillance video system and reduce its efficiency. This
could cause an incident to go undetected by the system, and it
would not accomplish its function. For this reason, it is very
important for our classifier system to rapidly and efficiently
detect the critical traffic, from scores of 2 to scores of 5,
so that the system can provide a solution as soon as possible
using the estimator.

When the samples are labeled and preprocessed, the learn-
ing process can start.We used 80%of the samples for learning
and 20% for testing. The group selection, learning and testing,
were randomly chosen from the sample set. In the learning
process, the stopping criteria used has been based on themean
square error and the number of cycles.

We have analyzed several learning methods in order to
determine which one presents the best performance and
adapts better to the problem. The methods used are based
on neural networks, array processing machines, statistics and
k neighbors. The statistic method (Kernel) is based on dis-
criminant analysis [36]. This is a term that is broadly used to
include problems associated with the (statistical) separation
between distinct classes or groups. It includes a wide range
of problems in statistical pattern recognition, where a pattern
is considered as a single entity and is represented by a finite
dimensional vector of features of the pattern. The neural net-
work (NN) method is based on adaptive networks. A class of
adaptive networks is identified which makes the interpolation
scheme explicit. This class has the property that learning is
equivalent to the solution of a set of linear equations. These
networks thus represent nonlinear relationships while having
a guaranteed learning rule. Another learning machine used
is support vector machine (SVM). The machine conceptually
implements the following idea: input vectors are nonlinearly
mapped to a very high dimension feature space. In this feature
space, a linear decision surface is constructed. Special proper-
ties of the decision surface ensure high generalization ability
of the learning machine. Finally, we have used classifying
methods based on distances – specifically on the closest
neighbor (KNN).

Since the optimal model is found, the accuracy of the
system is measured. In order to calculate it, we have used, for
all the items discussed previously, Precision (P), Recall (R),
Accuracy (A) and F1. All these parameters used the following
results to carry out the classifier model:

TP – The model classifies the traffic as critical or very
critical and its success.

TN – The model classifies the traffic as non-critical and its
success.

FP – The model classifies the traffic as critical or very
critical and its failures.

FN – The model classifies the traffic as non-critical and it
failures.

For obtaining the accuracy measurements, we calculate:

P =
TP

TP+ FP
(2)

R =
TP

TP+ FN
(3)

A =
TP+ TN

TP+ TN + FP+ FN
(4)

F1 = 2×
P× R
P+ R

(5)

In Fig. 12, the results obtained from the measurements pre-
viously explained are presented. This provides us a way to
analyze the accuracy of our system.

As it can be observed in Fig.12, the SVM model is the
one that presents the best results. Its accuracy is 84%. That
measurement is based on the total set of analysis. How-
ever, other measures are even more important to our system
because we should avoid the false negatives. That means that
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FIGURE 12. Precision measurements for model checking.

the system should not classify critical traffic as non-critical
traffic. The measure that takes more into account the false
negatives is recall. In this case, the statistic model and the
SVMmodel present similar results, with 31%. KNN presents
25% of recall and the neuronal network model is far away
from obtaining such a high result, with only 2%. For the rest
of the measurements, both SVM and Kernel present similar
results. For SVM, we obtained 50% precision and 38% of F1.
For Kernel, we obtained 48% precision and 38% of F1. The
worst results were obtained with NN: 5% precision and 3%
of F1. However, precision is not as important as recall for
our system because it takes into account the false positives,
which are not as important as the false negatives. F1 takes
into account both, the FN and the FP, becoming an illustrative
measurement; but it is not as important as recall. In order
to illustrate how each one of the classifier methods works,
Fig.13 is presented.

FIGURE 13. Test results for the evaluated classifier methods.

Fig. 13 shows that the SVMmodel is the one that performs
better in the test, detecting 75% of critical traffic. The NN
model does not perform very well, obtaining 3 FP, which is
important in our system. Moreover, it has not detected any
critical traffic. The distribution of the dataset has probably

affected this method because there is not the same quantity
of critical traffic as non-critical traffic.

In conclusion, the SVM model is the one that best fits
the problem. Therefore, in order to improve its performance,
some parameters are refined. They are: activating function,
weighting factor C, nu and ε. C determines the compensation
between the error in training and the VC dimension of the
model [37]. Modifying ε, we are able to vary the quantity of
support vectors which affects the smoothness of the SVMout-
put. The complexity and the generalizing capability of the
network depend on that value [38]. The nu parameter allows
us to control efficiently the number of support vectors.

Table 3 shows the classifier results after we refined the
SVM model. With these data, we can statistically compare
the new results with the ones obtained in the previous study.

B. NETWORK RESOURCES ESTIMATION FOR QOE
GUARANTEEING
The resource estimation model is based on the Bayes statistic
model. In this model, the most adequate resource for solving
the critical problem is estimated from the network status and
the kind of node. The possible resources are:
• Traffic priority (queuing management/theory)
• Route traffic
• BW variation
• Buffer management
• Sleeping nodes in the source network
• Activate backup nodes
The statistic model has been obtained from the previous

study. Situations from the test-bed, where the traffic is crit-
ical, have been chosen. Then, all the resources are tested
to check which one improves more efficiently the traffic
conditions and the results are obtained. Some cases, where the
traffic is not critical, are also studied to have some scenarios
with false positives. Thereby, the system learns in which cases
it should do nothing. The cases studied are the following ones:

1) Congested networks due to the increment of video
flows either with a lot of bandwidth or with little
bandwidth

2) Congested networks due to the increment of data traffic
either with a lot of bandwidth or with little bandwidth

3) Wired or wireless networks with high loss rate
4) Wired or wireless networks with high jitter
The data is preprocessed as in the classifier model and

the result is the input of the system. This input is received
for each node in the network so that we can identify if the
critical traffic is being generated in the access network (IoT
network) or in the core network (SDN network). Once all the
cases are studied, the estimation model – given the network
parameters as an input – provides which resource is the most
adequate to be developed. Mathematically, the probability
that one event occurs – given some input parameters – is
defined by the Bayes statistic estimator:

Pr
(
r|j, d, p, b, n

)
=

Pr(r)Pr(j, d, p, b, n|r)
Pr(j, d, p, b, n)

(6)
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TABLE 3. Learning methods comparison.

where Pr(j,d,p,b,n|r) is the maximum likelihood function.
It estimates the probability that a resource r is chosen. That
probability is calculated, given some network parameters j, d,
p, b (jitter, delay, lost packets and delay), and if the node is
NH or not (n). As the denominator does not depend on the
numerator, the resource estimation problem can be presented
as:

Pr(r) = Pr(r)Pr(j, d, p, b, n|r) (7)

where r is one of the previously described resources and

Pr(r) ≈ Pr(r)Pr(j, d, p, b, n|r) (8)

We can assume that the variables are independent in order
to estimate the probability Pr(j,d,p,b,n|r). Describing p(x) as
the model parameters, we can define the probability as in (9):

Pr(j, d, p, b, n|r) ≈ p(j|r)p(j|r)p(p|r)p(b|r)p(n|r) (9)

Depending on the quantity of available data for learning,
we can make another supposition. For example, we could
estimate, at the same time, several variables like j, d and p.
Then we obtain:

Pr(j, d, p, b, n|r) ≈ p(j, d, p|r)p(b|r)p(n|r) (10)

In this way, given the network status, with the SDN node
where it is being measured and the bandwidth, we can cal-
culate the conditional probability of use of the rx resource.
According to Equation 10, b and n are independently esti-
mated and j,d, and p are jointly taken into account.

Some network situations have been simulated, and the
percentage of times that some resource has been chosen has
been calculated in order to validate the model. In Fig. 14,
the percentage of times that some resource has been chosen
in each one of the following situations is shown:

1) Network with low BW congested during video
streaming

2) Network with high BW congested during video
streaming

3) Network with low BW congested during data
transmission

4) Network with high BW congested during data
transmission

5) High loss wired network
6) High loss wireless network
7) High jitter wired network

FIGURE 14. Statistical results of the different experiments.

8) High jitter wireless network
9) Source IoT network congested

10) Destination IoT network congested

Fig. 14 indicates that, when the SDN is congested during
video streaming, the system chooses to increase the available
bandwidth, with 58% of probability. However, if the available
bandwidth is not low, the best option is to route the traffic,
with 72% of probability. Results are similar with data packets,
with 66% of probability. If the congestion is originated in the
source network, the system chooses to sleep the nodes in that
network. Thereby, the maximum bandwidth is assigned to
the video generated by the surveillance system. This happens
in 86% of the cases. The action most often chosen for the
case in which the congestion happens in the IoT destination
network is to activate the backup nodes in that same network,
with 91% of probability. Regarding losses, in wired networks,
the system chooses to route the traffic through another route
with 81% of probability. If the network is wireless, the solu-
tion is to use priority with queuing (91% of probability).
In 25% of the times, the system activates the buffer mode
when the problem is the jitter. Thereby, the congestion in
the nodes side is reduced. In wireless networks, the system
manages the node to operate the multimedia traffic with
more priority. The buffer is not being used to reduce energy
consumption of the IoT nodes. So, other solutions have a
greater probability (75%) of being chosen in those situations.

Once the experiments have been finished, the model has
been training based on Equation 10. The results of the test
are shown in Table 4. In the table, the estimation error and the
accuracy of the system can be observed. Although the values

VOLUME 6, 2018 31593



A. Rego et al.: An Intelligent System for Video Surveillance

TABLE 4. Estimation model results.

obtained are acceptable, further studies can be carried out to
improve the performance.

VI. METHODOLOGY AND RESULTS
Once the AI system is trained and explained, its application to
the SDN must be measured. In this section, the experiments
performed to measure the improvement during multimedia
transmission are detailed. First, the topology and the software
used in the experiments are described. Then, the results are
shown and discussed.

A. METHODOLOGY AND TOPOLOGY
The experiments ran over the emulator Mininet. This emu-
lator provides SDN emulation by using Linux Hosts as PC
and Switches. The experiments consist of sending video
streaming through the core network in different scenarios.
The streaming is performed using the VLC software. Both
the source and the destination network are emulated as Linux
hosts in Mininet; so we manage them as hosts in the network.
Mininet allow us to modify the network conditions and, along
with the multimedia traffic sent, to simulate different scenar-
ios. These conditions are defined in a script and the network
is built with those characteristics. The topology used in the
experiments is the one shown in Fig. 15. This topology allows
us to use different techniques, such as alternative routing,
thanks to the path redundancy. The streaming source is H1,
and the destination, H2. The path chosen for the delivery is
S1-S3-S5 because the others present higher delay. Moreover,
the link between S1 and S3 is marked in Fig. 15. This is
because we are able to use link aggregation in that link in
order to increase the available bandwidth.

FIGURE 15. Topology used in the experiments.

Attending to Fig.14, the different scenarios tested are the
following ones: In the first scenario (Scenario 1), there is a
bandwidth problem and the action indicated by the AImodule
is to use an alternative path, with an increment of delay.
In the second one, the problem is the same, but the action
to perform is to use link aggregation in order to increase the

bandwidth. In Scenario 3, theAImodule suggests using queu-
ing to modify the priority and reduce the loss rate. Finally,
in Scenario 5, there is congestion in the source IoT net-
work and the AI module reports the custom message that is
necessary to put the nodes to sleep. In the next subsection,
the results of each scenario are presented.

B. RESULTS
The results of the experiments are displayed and discussed in
this subsection. Not only are QoS parameters measured, but
also QoE has been analyzed, and it is discussed at the end of
the subsection.

In Fig. 16, the comparison between the bandwidth used
by the multimedia streaming in both cases, with and with-
out the proposed system, is displayed. Without any system
that performs actions to improve the QoS, the bandwidth
has a maximum of 1.83Mb/s. However, with the proposal,
that maximum increases up to 3.08Mb/s. The minimums are
16.4kb/s and 104.12kb/s, respectively. The average band-
widths are similar, 1.19Mb/s and 1.08Mb/s.

FIGURE 16. Bandwidth obtained in Scenario 1.

In terms of jitter, the performance is compared in Fig. 17.
The average jitter without the proposed system is 2.47ms.
However, by using the alternative path, the average is 8.19ms.
The maximums are 11.13ms and 47.62ms, respectively.
Finally, the minimum jitter also increases from 0.01ms to
0.13ms with the proposed action.

FIGURE 17. Jitter obtained in Scenario 1.

In Scenario 2, due to the network status, the action to per-
form is link aggregation. Fig. 18 shows the changes produced
in terms of bandwidth when the system is used. Without it,
the average bandwidth is 1.12Mb/s. There was a maximum
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FIGURE 18. Bandwidth obtained in Scenario 2.

of 1.89Mb/s and a minimum of 10.9kb/s. When the system
is used, the average bandwidth is 1.42Mb/s, the maximum is
2.99Mb/s, and the minimum is 16.4kb/s.

Regarding the jitter, there is a reduction when the system
performs the action indicated by the AI module, as shown
in Fig. 19. The average jitter is reduced from 2.4ms to 0.49ms.
The maximums are similar: 8.89ms when the proposal is not
being used, and 7.63ms when it is. The minimums are 0.22ms
and 0.03ms, respectively.

FIGURE 19. Jitter obtained in Scenario 2.

In Scenario 3, the loss rate is measured. The AI module
decides to use priority techniques using queues. Fig. 20 shows
that the bandwidth does not change like in the previous
scenarios. The average bandwidths are 1.01Mb/s, without
applying the action, and 1.07Mb/s when applying it. The
maximum is 1.95Mb/s in both cases and the minimum
is 16.4kb/s.

FIGURE 20. Bandwidth obtained in Scenario 3.

However, the jitter presents some differences. Fig. 21
shows that the average jitter without the proposal is 4.77ms,
and it is reduced to 1.35ms when it is used. The average jitter
is quite different: 10.2ms for the proposal, and 43.05ms when
it is not used. The minimums are 0.01ms with the proposal
and 0.13ms without it.

FIGURE 21. Jitter obtained in Scenario 3.

Fig. 22 shows the reduction of the loss rate from 9.07%
to nearly 1.16%. This loss rate reduction works to improve
the QoE, as is shown at the end of the section.

FIGURE 22. Loss rate obtained in Scenario 3.

The last scenario is used to test the custom characteristic
for QoS improvement using IoT characteristics. The conges-
tion in the source network is handled by putting the rest of the
nodes to sleep. So, the QoS of the multimedia transmission is
improved, as shown in Fig. 23. It shows that the maximum
bandwidth consumed by the multimedia flow is increased
from 1.79Mb/s to 2.92Mb/s by using the proposed solution.
The average bandwidth is also increased from 0.85Mb/s to
1.24Mb/s. The minimum bandwidth consumed is 8.98kb/s
with the system and 104.1kb/s without it.

The jitter also changes with this action. It is displayed in
Fig. 24. The congestion in the source network produces an
average jitter of 9.93ms. There is a maximum of 48.08ms
and a minimum of 0.12ms. Nevertheless, with the action
performed, this jitter is reduced to 0.27ms of the average,
6.19ms of the maximum and 0.01 of the minimum.

After testing these scenarios, the video obtained in the
destination network is watched by 11 users, 8 males and
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FIGURE 23. Bandwidth obtained in Scenario 4.

FIGURE 24. Jitter obtained in Scenario 4.

FIGURE 25. QoE obtained in each Scenario.

3 females. They chose for each player a score from 1 to
5 – 5 being the best quality and 1 being the worst one.
The results are shown in Fig. 25. All the actions per-
formed by the controller increase the MOS obtained by
the users. On the one hand, the greatest improvements are
those produced in Scenario 3, where the MOS increases from
2.1 to 5, and in Scenario 4, where it increases from 1 to 3.2.
On the other hand, in Scenario 2, the increment is from 3 to
3.75 and, in Scenario 2, the MOS increases from 3.2 to 4.1.

VII. CONCLUSION
We have proposed an artificial intelligence system to detect
problems and correct errors in multimedia transmission in
surveillance IoT environments connected through a SDN.
The system performs some actions to guarantee the Quality of
Service (QoS) and Quality of Experience (QoE). The system
has been tested in several scenarios.

With the proposed system, the QoS can be improved in
different cases when the network suffers problems like con-
gestion or high loss rates. SomeQoS parameters are improved
in the test performed, like bandwidth and jitter, and then,
the QoE increases. Moreover, the presented AI module is able
to detect critical traffic with 77% accuracy. This is the main
model limitation, due to the classification method. Improving
this classification method, by using a more complete data-set
would allow us to improve this accuracy.

As future work, we can improve the system accuracy by
using the end users’ interaction. So, during the transmission,
if the QoE experienced by the user is not satisfactory, they
can interact with the software from the destination. This inter-
action can be implemented through a checkbox or through
some command. This would be detected by the system and
marked as a FN. Another possible improvement would be to
enhance the estimation model to a node-level one. This would
allow us to select the best resource or action (depending on
the network status) for each link in the path, not only for the
entire network.

Moreover, in future works, we will analyze the correlation
between the objective QoE metrics and MOS or DMOS.
Thereby, this study could be applied to future research in
order to improve the performance. Furthermore, some other
statistical methods will be studied in order to improve the
results in the estimation process for network resources selec-
tion.
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