TRABAJO FIN DE MASTER EN INGENIERÍA INDUSTRIAL

PROYECTO DE UN PARQUE EÓLICO DE UNA POTENCIA DE 20 MW, UBICADO EN EL TÉRMINO MUNICIPAL DE REQUENA, CON VERTIDO A LA RED DE 132 kV.

AUTOR: RAFAEL GARCÍA GARCÍA.
TUTOR: CARLOS ROLDÁN BLAY.
COTUTOR: CARLOS ROLDÁN PORTA.

Curso Académico: 2018-19
RESUMEN

El presente proyecto, tiene como objetivo fundamental el estudio, el diseño y las valoraciones ambiental y económica, de un parque eólico de 20 MW de potencia nominal, con conexión a la red de 132 kV.

El objetivo de la instalación es la venta de energía, con el fin de ser un proyecto rentable en el tiempo. Se ha realizado un estudio de viabilidad económica para obtener dicha rentabilidad.

La instalación eólica estará ubicada en el municipio de “Requena”, provincia de “Valencia”. Constará de 10 turbinas eólicas de 2 MW de potencia nominal cada una de ellas, formando un parque eólico de 20 MW de potencia nominal.
SUMMARY

The main objective of this project is the study, design and environmental and economic assessments of a wind farm with a nominal capacity of 20 MW, with connection to the 132 kV power grid.

The objective of the installation is the sale of energy, in order to be a profitable project over time. An economic feasibility study has been carried out to obtain profitability.

The wind installation will be located in the municipality of "Requena", province of "Valencia". It will consist of 10 wind turbines of 2 MW of nominal power each one, forming a wind farm of 20 MW of nominal power.
RESUM

El present projecte, té com a objectiu fonamental l'estudi, el disseny i les valoracions ambiental i econòmica, d'un parc eòlic de 20 MW de potència nominal, amb connexió a la xarxa de 132 kV.

L'objectiu de la instal·lació és la venda d'energia, amb la finalitat de ser un projecte rendible en el temps. S'ha realitzat un estudi de viabilitat econòmica per a obtindre aquesta rendibilitat.

La instal·lació eòlica estarà situada en el municipi de “Requena”, província de “València”. Constarà de 10 turbines eòliques de 2 MW de potència nominal cadascuna d'elles, formant un parc eòlic de 20 MW de potència nominal.
1 OBJETIVO, ALCANCE Y JUSTIFICACIÓN DEL PROYECTO.. 8
1.1 OBJETIVO DEL PROYECTO.. 8
1.2 ALCANCE DEL PROYECTO... 8
1.3 JUSTIFICACIÓN DEL PROYECTO... 9

2 DISPOSICIONES LEGALES .. 9
2.1 REGLAMENTACIÓN REFERENTE A INSTALACIONES ELÉCTRICAS... 9
2.2 REGLAMENTACIÓN REFERENTE A OBRA CIVIL... 10
2.3 REGLAMENTACIÓN REFERENTE A MEDIO AMBIENTE... 10
2.4 REGLAMENTACIÓN REFERENTE AL PATRIMONIO.. 10
2.5 REGLAMENTACIÓN REFERENTE A LA SEGURIDAD Y LA HIGIENE.. 10
2.6 LEGISLACIÓN AUTONÓMICA DE LA COMUNIDAD VALENCIANA.. 10

3 PANORAMA ACTUAL .. 11
3.1 ENERGÍA EÓLICA A NIVEL MUNDIAL.. 11
3.2 ENERGÍA EÓLICA EN ESPAÑA ... 12
3.3 ENERGÍA EÓLICA EN LA COMUNIDAD VALENCIANA... 14

4 EMPLAZAMIENTO .. 15

5 FIGURAS AMBIENTALES ... 17
5.1 RED NATURA 2000.. 17
5.2 IBAs.. 19
5.3 ESPACIOS NATURALES PROTEGIDOS... 19

6 ANÁLISIS DEL RECURSO EÓLICO ... 20
6.1 ATLAS EÓLICO.. 20
6.2 DIRECCIONES DEL VIENTO. ROSA DE VIENTOS... 21
6.3 DESVIACIÓN TÍPICA. ROSA DE TURBULENCIA... 22
6.4 CURVA DE DISTRIBUCIÓN DE FRECUENCIAS DE VELOCIDADES DEL VIENTO. LEY DE DISTRIBUCIÓN DE WEIBULL... 24
6.5 PERFIL DE VELOCIDADES DEL VIENTO. VARIACIÓN CON LA ALTURA............................... 25

7 ANÁLISIS Y COMPARATIVA DE AEROGENERADORES ... 27
7.1 CLASE DE TURBINA EÓLICA.. 27
7.2 MODELOS DE AEROGENERADORES COMERCIALES ANALIZADOS.................................... 28
 7.2.1 “E82/2000” DE “ENERCON”.. 29
 7.2.2 “V90/2000” DE “VESTAS”.. 30
 7.2.3 “HARVESTER 2.0 MW” DE “W2E”... 31
7.3 ENERGÍA OBTENIDA.. 32
 7.3.1 “E82/2000” DE “ENERCON”.. 33
 7.3.2 “V90/2000” DE “VESTAS”... 34
 7.3.3 “HARVESTER 2.0 MW” DE “W2E”... 35
7.4 CONCLUSIONES Y SELECCIÓN DE AEROGENERADOR COMERCIAL................................. 36
 7.4.1 AEROGENERADOR “E82/2000” DE “ENERCON”.. 37

8 ALINEACIÓN Y ORIENTACIÓN DE LOS AEROGENERADORES... 38

9 PRODUCCIÓN NETA DEL PARQUE EÓLICO.. 43
9.1 PÉRDIDAS POR SOMBRAS ENTRE ALINEACIONES... 44
9.2 PÉRDIDAS POR SOMBRAS ENTRE TURBINAS DE UNA MISMA ALINEACIÓN........................ 44
9.3 PÉRDIDAS POR DISPONIBILIDAD... 44
9.4 PÉRDIDAS POR TRANSFORMACIÓN Y TRANSPORTE... 44
9.5 PÉRDIDAS POR MANTENIMIENTO DE LA SUBESTACIÓN... 45
9.6 PÉRDIDAS POR CORTES DE SUMINISTRO.. 45
9.7 PÉRDIDAS POR AJUSTE DE LA CURVA DE POTENCIA... 45
9.8 COEFICIENTE DE FUNCIONAMIENTO DEL PARQUE... 45
9.9 PRODUCCIÓN NETA... 46

10 INFRAESTRUCTURA ELÉCTRICA INTERIOR... 46
10.1 GENERALIDADES Y CIRCUITO TIPO DE M.T. DEL PARQUE... 46
10.2 CÁLCULO DE INTENSIDADES NOMINALES.. 48
10.3 CABLES EMPLEADOS EN LA LÍNEA INTERIOR DE M.T.. 49
10.4 NIVEL DE AISLAMIENTO DE LOS CABLES DE LA LÍNEA INTERIOR DE M.T.................... 50
10.5 SECCIÓN DE LOS CABLES DE LA LÍNEA INTERIOR DE M.T.. 51
 10.5.1 CRITERIO TÉRMINICO.. 52
 10.5.2 COMPROBACIÓN DE LAS SECCIONES POR CRITERIO DE CORTOCIRCUITO............. 59
 10.5.3 COMPROBACIÓN DE LAS SECCIONES POR CRITERIO DE CAÍDA DE TENSIÓN........... 60
10.6 CELDAS MODULARES DE MT EN LA BASE DE LOS AEROGENERADORES.................... 61
10.7 CELDAS MODULARES DE MT EN EL EDIFICIO DE CONTROL DE 20 kV.......................... 65
10.8 PROTECCIÓN CONTRA RAYOS PARA LOS AEROGENERADORES.................................... 69
10.9 TRANSFORMADOR DE POTENCIA 132/20 kV... 70

11 SUBESTACIÓN DE MANIOBRA EN 132 kV, DE INTEMPERIE Y EN SIMPLE BARRA, Y
CONEXIÓN CON LA RED DE 132 kV... 71
11.1 OBJETO... 71
11.2 ALCANCE Y JUSTIFICACIÓN... 71
11.3 ÁMBITO DE APLICACIÓN.. 72
11.4 ESQUEMA UNIFILAR.. 72
11.5 CRITERIOS DE IMPLANTACIÓN Y CARACTERÍSTICAS GENERALES................................. 73
 11.5.1 IMPLANTACIÓN.. 73
 11.5.2 TERRENO.. 73
 11.5.3 APOYOS FIN DE LÍNEA.. 74
 11.5.4 PROTECCIÓN CONTRA SOBRETENSIONES... 74
 11.5.5 ACCESOS Y VIALES... 74
 11.5.6 CANALIZACIONES DE CABLES.. 75
 11.5.7 CERRAMIENTO Y FRANJA DE SERVICIOS.. 75
 11.5.8 EQUIPOS COMPACTOS HÍBRIDOS (HIS).. 75
 11.5.9 CENTRO DE TRANSFORMACIÓN PARA SSAA... 76
 11.5.10 EDIFICIO DE CONTROL.. 76
 11.5.11 ESTADO DEL SUELO... 77
11.6 DISTANCIAS MÍNIMAS ELÉCTRICAS Y DE SEGURIDAD... 77
 11.6.1 GENERALIDADES... 77
 11.6.2 DISTANCIA VERTICAL A ELEMENTOS NO PROTEGIDOS EN TENSIÓN...................... 80
 11.6.3 DISTANCIA HORIZONTAL PARA CIRCULACIÓN DE VEHÍCULOS.............................. 81
 11.6.4 DISTANCIA HORIZONTAL PUNTOS EN TENSIÓN AL CERRAMIENTO....................... 81
 11.6.5 ALTURA ENTRADA DE LÍNEA A PÓRTICO... 81
 11.6.6 DISTANCIA ENTRE FASES Y ENTRE FASE Y TIERRA.. 82
11.7 CARACTERÍSTICAS GENERALES... 82
 11.7.1 NIVELES DE AISLAMIENTO... 82
 11.7.2 INTENSIDADES DE CORTOCIRCUITO... 82
11.8 ESTRUCTURA METÁLICA... 82
11.9 EMBARRADOS... 83
 11.9.1 DISEÑO.. 83
 11.9.2 TUBOS Y CONDUCTORES PUENTE... 84
 11.9.3 PIEZAS DE CONEXIÓN.. 86
 11.9.4 AISLADORES DE SOPORTE.. 87
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>APARATAMIENTO DEL SISTEMA DE 132 kV.</td>
<td>88</td>
</tr>
<tr>
<td>11.10</td>
<td>DESCRIPCIÓN GENERAL</td>
<td>88</td>
</tr>
<tr>
<td>11.10.2</td>
<td>EQUIPOS COMPACTOS HIS.</td>
<td>90</td>
</tr>
<tr>
<td>11.10.3</td>
<td>TRANSFORMADORES DE TENSIÓN:</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>INSTALACIÓN DE PUESTA A TIERRA.</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>ESTUDIO DE IMPACTO AMBIENTAL.</td>
<td>100</td>
</tr>
<tr>
<td>12.1</td>
<td>OBJETIVOS DEL ESTUDIO</td>
<td>100</td>
</tr>
<tr>
<td>12.2</td>
<td>DESCRIPCIÓN DEL PROYECTO</td>
<td>100</td>
</tr>
<tr>
<td>12.3</td>
<td>INVENTARIO AMBIENTAL</td>
<td>101</td>
</tr>
<tr>
<td>12.3.1</td>
<td>CLIMA</td>
<td>101</td>
</tr>
<tr>
<td>12.3.2</td>
<td>GEOMORFOLÓGÍA Y GEOLOGÍA</td>
<td>102</td>
</tr>
<tr>
<td>12.3.3</td>
<td>HIDROLOGÍA</td>
<td>102</td>
</tr>
<tr>
<td>12.3.4</td>
<td>ÁREAS PROTEGIDAS</td>
<td>103</td>
</tr>
<tr>
<td>12.3.5</td>
<td>FAUNA</td>
<td>104</td>
</tr>
<tr>
<td>12.3.6</td>
<td>FLORA</td>
<td>104</td>
</tr>
<tr>
<td>12.4</td>
<td>VALORACIÓN DE IMPACTOS. MATRIZ DE LEOPOLD.</td>
<td>105</td>
</tr>
<tr>
<td>12.5</td>
<td>INTERACCIONES Y MEDIDAS CORREGATALES</td>
<td>106</td>
</tr>
<tr>
<td>12.6</td>
<td>CONCLUSIONES</td>
<td>107</td>
</tr>
<tr>
<td>13</td>
<td>ESTUDIO DE VIABILIDAD ECONÓMICA.</td>
<td>108</td>
</tr>
<tr>
<td>13.1</td>
<td>PRESUPUESTO TOTAL. INVERSIÓN INICIAL</td>
<td>108</td>
</tr>
<tr>
<td>13.2</td>
<td>PRODUCCIÓN Y BENEFICIO ANUAL OBTENIDO</td>
<td>109</td>
</tr>
<tr>
<td>13.3</td>
<td>FLUJO DE CAJA Y AÑOS DE RETORNO DE LA INVERSIÓN “PAYBACK”</td>
<td>110</td>
</tr>
<tr>
<td>13.4</td>
<td>ANÁLISIS DEL VAN EN FUNCIÓN DEL TIPO DE INTERÉS CONSIDERADO</td>
<td>111</td>
</tr>
<tr>
<td>13.5</td>
<td>CONCLUSIONES</td>
<td>112</td>
</tr>
<tr>
<td>14</td>
<td>CONCLUSIONES GENERALES DEL PROYECTO</td>
<td>112</td>
</tr>
<tr>
<td>15</td>
<td>ÍNDICE DE FIGURAS</td>
<td>113</td>
</tr>
<tr>
<td>16</td>
<td>ÍNDICE DE TABLAS</td>
<td>114</td>
</tr>
<tr>
<td>17</td>
<td>ÍNDICE DE FÓRMULAS</td>
<td>115</td>
</tr>
<tr>
<td>18</td>
<td>REFERENCIAS</td>
<td>116</td>
</tr>
<tr>
<td>19</td>
<td>PLANOS DEL PROYECTO</td>
<td>120</td>
</tr>
</tbody>
</table>
1 OBJETIVO, ALCANCE Y JUSTIFICACIÓN DEL PROYECTO.

1.1 OBJETIVO DEL PROYECTO.

El presente proyecto, tiene como objetivo principal el estudio, el diseño y la valoración, tanto ambiental como económica, de un parque eólico de 20 MW con conexión a la red de 132 kV, situado en el término municipal de Requena, provincia de Valencia.

Para obtener un diseño óptimo del parque eólico, se lleva a cabo una caracterización del recurso eólico de la zona de actuación. A continuación, se realizan estimaciones de la energía obtenida mediante diferentes alternativas de aerogeneradores comerciales. Tras la elección de un aerogenerador comercial y tras la elección de la disposición que tendrán éstos sobre el terreno, se procede con la caracterización y el diseño del parque eólico.

Se ha realizado un estudio de impacto ambiental, así como un estudio de viabilidad económica del proyecto. Con ello, se han querido analizar las repercusiones que el parque eólico puede causar en el medio ambiente, y la rentabilidad que tendrá el proyecto en el tiempo. Partiendo de estos dos estudios, se han tomado las decisiones más oportunas al respecto.

Ligado al objetivo principal, coexiste un segundo objetivo no menos importante, el impulso de las energías renovables en el territorio de la Comunidad Valenciana y, en consecuencia, en España. Con este impulso se pretende, por un lado la reducción de emisiones de CO2 a la atmósfera y, por otro lado el aumento del número de puestos de trabajo en el sector de las energías renovables.

1.2 ALCANCE DEL PROYECTO.

El alcance del presente proyecto se define a continuación:

Caracterización del recurso eólico en la zona de actuación (velocidades de viento, direcciones de viento, densidades de viento,...) y estudio de varias alternativas de aerogeneradores comerciales diferentes de varios fabricantes.

Diseño óptimo del parque eólico en la zona de actuación (tipo de aerogenerador comercial y disposición de éstos sobre el terreno), maximizando la producción energética y el beneficio obtenido.

Diseño de la toda la infraestructura eléctrica (cableado, celdas modulares de entrada/salida de línea, de protección, de remonte de cables, de medida, etc.), necesaria para el buen funcionamiento y seguridad de la instalación eólica en media tensión (20 kV).

Selección de los valores nominales del transformador de potencia de la subestación 132/20 kV, así como de las protecciones adecuadas para el buen funcionamiento del mismo.

Diseño de la subestación de maniobra en 132 kV, mediante la cual se conectará la instalación eólica de generación a la red eléctrica de 132 kV para la inyección de la energía generada.
Estudio de impacto ambiental para la determinación de las repercusiones que el parque eólico puede tener en el medio ambiente cercano.

Estudio de viabilidad económica para la determinación de la rentabilidad y el periodo de retorno de la inversión que tendrá el proyecto.

Conclusiones y decisiones tomadas respecto al proyecto, fundamentadas en ambos estudios realizados, impacto ambiental y viabilidad económica.

1.3 JUSTIFICACIÓN DEL PROYECTO.

Como ya se ha citado en el apartado 1.1, uno de los objetivos del presente proyecto es el impulso de las energías renovables en la Comunidad Valenciana y, en consecuencia, en España.

El llamado “Plan de Energías Renovables 2011-2020 (PER)”, obtenido de la página web del “IDAE” (instituto para la diversificación y el ahorro de energía), establece tres objetivos fundamentales en el horizonte del año 2020:

• Un 20% de la energía generada debe ser procedente de fuentes renovables.
• Un 20% de mejora en la eficiencia energética.
• Un 20% de reducción de gases de efecto invernadero.

Partiendo de dichos objetivos del “PER 2011-2020” y del objetivo propio de impulsar las energías renovables en la C.V, está más que justificado la realización de este tipo de proyectos de generación eléctrica sostenible.

2 DISPOSICIONES LEGALES.

Todas las instalaciones y obras a realizar objeto del presente proyecto, están sometidas a la reglamentación que se cita a continuación:

2.1 REGLAMENTACIÓN REFERENTE A INSTALACIONES ELÉCTRICAS.

• Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.

• Ley 24/2013, de 26 de diciembre, del Sector Eléctrico.

• Real Decreto 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23.

• Reglamento Electrotécnico para Baja Tensión (Real Decreto 842/2002, de 2 de agosto) e Instrucciones Técnicas Complementarias ITC BT.
• Real Decreto 223/2008, de 15 de febrero, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias ITC-LAT 01 a 09.

• Normas particulares de la compañía distribuidora (Iberdrola Distribución).

2.2 REGLAMENTACIÓN REFERENTE A OBRA CIVIL.

• Instrucción de Hormigón Estructural EHE-08 (Real Decreto 1247/2008 de 18 de julio).

• Pliego de Prescripciones Técnicas Generales para recepción de cementos RC-08.

• Código Técnico de la Edificación (CTE).

2.3 REGLAMENTACIÓN REFERENTE A MEDIO AMBIENTE.

• Ley 21/2013, de 9 de diciembre, de evaluación ambiental.

• Ley 6/2014, de 25 de julio, de la Generalitat Valenciana, de prevención, calidad y control ambiental de actividades en la Comunitat Valenciana.

• Ley 7/2002, de 3 de diciembre, de la Generalitat Valenciana, de protección contra la contaminación acústica.

• Ley 3/2014, de 11 de julio, de la Generalitat Valenciana, de vías pecuarias de la Comunitat Valenciana.

2.4 REGLAMENTACIÓN REFERENTE AL PATRIMONIO.

2.5 REGLAMENTACIÓN REFERENTE A LA SEGURIDAD Y LA HIGIENE.

• Ordenanza general de seguridad e higiene en el trabajo (Orden de 9 de marzo de 1971).

• Ley 31/1995 de 8 de noviembre, de prevención de riesgos laborales.

2.6 LEGISLACIÓN AUTONÓMICA DE LA COMUNIDAD VALENCIANA.

• Plan Eólico de la Comunidad Valenciana (PECV), aprobado por Acuerdo de 26 de julio de 2001, del Gobierno Valenciano, con carácter de plan de acción territorial sectorial, teniendo como objeto regular la instalación de parques eólicos en las zonas calificadas.
como aptas para dicho fin.

• Acuerdo de 26 de julio de 2001, del Gobierno Valenciano, por el que se aprueba el Plan Eólico de la Comunidad Valenciana (última revisión a fecha 28/07/2017).

• Orden de 31 de julio de 2001, de la Consejería de Industria y Comercio, por la que se realiza la convocatoria pública para el desarrollo y ejecución del Plan Eólico de la Comunidad Valenciana (DOGV no 4.056, 02/08/01).

• Orden 5/2017, de 20 de febrero, de la Conselleria de Economía Sostenible, Sectores Productivos, Comercio y Trabajo, por la que se establecen las bases regulatorias para la concesión de ayudas del Instituto Valenciano de Competitividad Empresarial (IVACE), en el marco de los fondos de Compensación y Promoción vinculados al Plan eólico de la Comunitat Valenciana.

3 PANORAMA ACTUAL.

3.1 ENERGÍA EÓLICA A NIVEL MUNDIAL.

A nivel mundial, la energía eólica ha tenido un gran impacto progresivo desde el año 2000 en adelante.

En la “Figura 1", obtenida de la página web “Global Wind Energy Council”, se muestra un gráfico de barras donde se aprecia, de forma rápida y visual, la progresión ascendente que ha seguido a lo largo de los años la potencia eólica instalada en todo el mundo.

El último valor registrado de potencia eólica acumulada en todo el mundo se corresponde con el año 2017 y tiene un valor de 539.123 MW totales instalados de potencia eólica.

![Figura 1. Potencia Eólica Instalada Acumulada en el Mundo (2001-2016).](image)

El continente europeo, desde 1995 hasta 2014 aproximadamente, ha sido el continente con mayor potencia eólica instalada en todo el mundo, aunque no fuera en Europa, sino en Estados Unidos, donde se instalaran los primeros generadores eólicos. Esto se debe a la gran cantidad de parques eólicos construidos durante estos años en Alemania y en España principalmente.
A partir del año 2014, el continente asiático se ha puesto por delante del europeo en cuanto a potencia eólica instalada, aunque las diferencias actuales entre Europa y Asia son muy pequeñas. Esto se debe a la fuerte inversión realizada en China y La India los últimos años para la construcción de multitud de parques eólicos distribuidos por todo su territorio.

Actualmente en Europa, España es el segundo país con mayor potencia eólica instalada. La lista la encabeza Alemania con unos 50 GW instalados. En segundo lugar se encuentra España con aproximadamente 23 GW instalados, y le siguen Reino Unido con 14,5 GW, Francia con 12,1 GW, Italia con 9,2 GW, etc.

En la “Figura 2”, obtenida de la página web “Wikipedia”, se muestra un mapa de Europa donde aparecen los diferentes países con diferentes tonalidades de color, dependiendo de la potencia eólica instalada en su respectivo territorio nacional a finales del año 2010. Se observa rápidamente como Alemania, España y Reino Unido son los países más resaltados en todo el continente europeo, y por tanto con mayor potencia eólica instalada.

![Figura 2. Mapa Europa: Potencia Eólica Instalada.]

3.2 ENERGÍA EÓLICA EN ESPAÑA.

Cabe destacar que en España, desde el año 2012 hasta la actualidad, la instalación de parques eólicos se ha visto estancada por diversas causas, y con ello la progresión de potencia instalada en el territorio español desde ese año.

En la “Figura 3”, obtenida de la página web “Energía Estratégica”, se muestra un gráfico de barras donde se puede apreciar este estancamiento. En color azul se representa la potencia eólica instalada acumulada (MW) y en color rojo la potencia total instalada cada año (MW). En el punto en que la potencia instalada anual (color rojo) se hace nula o muy pequeña, la potencia instalada acumulada (color azul) se estanca en un valor constante.
En España, la energía eólica cubre aproximadamente un 18,2% de la demanda de energía eléctrica del país, y por ello, es la energía sostenible más extendida en el país. Por encima de dicho porcentaje, solo se encuentran dos fuentes de energía convencionales: la energía nuclear con un 21,5% y el carbón con un 17%.

En la “Figura 4”, obtenida de la página web “Red Eléctrica de España”, se muestra un gráfico circular donde se pueden comparar rápidamente los porcentajes que suponen, a final del año 2017, cada una de las fuentes de energía utilizadas en España, tanto convencionales como renovables.

La potencia eólica instalada en España se distribuye por las diferentes comunidades autónomas de forma bastante desigual. Encabezando la lista se encuentra Castilla y León con 5,6 GW instalados de un total de 23 GW. A continuación, se encuentran Castilla-La Mancha con 3,8 GW, Andalucía con 3,3 GW, Galicia con 3,3 GW, etc.
3.3 ENERGÍA EÓLICA EN LA COMUNIDAD VALENCIANA.

La Comunidad Valenciana, comunidad autónoma donde va a estar ubicado el parque eólico objeto del proyecto, posee una potencia eólica instalada de 1.189 MW, que se corresponde con el 5,17% del total de la potencia eólica instalada en España.

Dicha potencia instalada se encuentra distribuida en diferentes parques eólicos ubicados por todo el territorio de la Comunidad Valenciana. En concreto, en la “Figura 5”, obtenida de la página web “AEE - aeeolica”, se muestra un mapa donde se puede ver la localización exacta de los diferentes parques eólicos que componen la potencia instalada total de 1.189 MW.

Todos los parques eólicos instalados en la Comunidad Valenciana se encuentran ubicados en la provincia de Valencia o en la provincia de Castellón. Actualmente no hay ningún parque instalado en la provincia de Alicante.

En la provincia de Valencia, donde estará ubicado el parque eólico objeto del proyecto, existen actualmente 22 parques eólicos con una potencia total instalada en todos ellos de 602,44 MW. Estos parques se encuentran situados en los términos municipales de: Andilla, Chelva, Calles, Aras de los Olmos, Ayora, Buñol, Enguera, Jarafuel y La Yesa.

Destacar que los aerogeneradores comerciales instalados en los diferentes parques, son de marcas y modelos variados. De “Gamesa” hay 171 aerogeneradores instalados, de “Acciona Wind Power” hay 166, de “GE” hay 33, de “Vestas” hay 8, y por último de “Enercon” hay 29 aerogeneradores.
4 EMPLAZAMIENTO.

El emplazamiento del parque eólico objeto del presente proyecto se localiza en Requena, término municipal más extenso de la provincia de Valencia. Su territorio se extiende por una gran parte de la cuenca superior del “Río Magro”, y cuenta con una superficie de unos 814 km2 aproximadamente. Por ello, cuenta con un gran número de habitantes, en concreto 20.510 habitantes.

Multitud de aldeas y pedanías pertenecen a su territorio municipal, en concreto 25. Entre ellas, destacan las de mayor población: San Antonio, Campo Arcís, El Pontón, Los Isidros, etc. A pesar de todo, el término municipal de Requena todavía no alberga ninguno de los parques eólicos construidos en la provincia de Valencia.

El emplazamiento exacto se localiza en la “Sierra El Matutano”, o también conocida como “Sierra de las Cabrillas”, a escasos 8 kilómetros de distancia de Requena.

Esta sierra posee una altura máxima sobre el nivel del mar muy considerable, de aproximadamente 1150 msnm. En su parte alta, hay suficiente superficie disponible para la inmediata ejecución del proyecto. Además, ya existen actualmente accesos hasta la parte más alta de la sierra (pista sin asfaltar), por lo que únicamente se deberán acondicionar para el paso de vehículos y maquinaria pesada.

En la “Figura 6”, obtenida de la página web “Google Maps”, se muestra un mapa topográfico de la zona. Se marca con un rectángulo en rojo la zona de actuación del proyecto, del cual se aportan las coordenadas UTM de sus cuatro vértices, referidas al huso 30, ETRS89 (Tabla 1). Además, se marcan también en azul las ubicaciones de cada uno de los 10 aerogeneradores que forman el parque eólico, de las que también se aportan las coordenadas UTM, referidas al huso 30, ETRS89 (Tabla 2).
Coordenadas UTM, huso 30, ETRS89:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>671.455,78</td>
<td>4.376.120,67</td>
</tr>
<tr>
<td>P2</td>
<td>673.491,04</td>
<td>4.375.856,90</td>
</tr>
<tr>
<td>P3</td>
<td>671.427,70</td>
<td>4.373.075,73</td>
</tr>
<tr>
<td>P4</td>
<td>674.339,03</td>
<td>4.373.188,30</td>
</tr>
</tbody>
</table>

Tabla 1. Coordenadas UTM, huso 30, ETRS89 rectángulo rojo.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>673.137,07</td>
<td>4.375.670,62</td>
</tr>
<tr>
<td>A2</td>
<td>672.962,34</td>
<td>4.375.476,46</td>
</tr>
<tr>
<td>A3</td>
<td>672.714,68</td>
<td>4.375.340,13</td>
</tr>
<tr>
<td>A4</td>
<td>672.503,86</td>
<td>4.375.157,07</td>
</tr>
<tr>
<td>A5</td>
<td>672.388,24</td>
<td>4.374.988,01</td>
</tr>
<tr>
<td>A6</td>
<td>672.094,93</td>
<td>4.374.755,55</td>
</tr>
<tr>
<td>A7</td>
<td>671.941,38</td>
<td>4.374.680,78</td>
</tr>
<tr>
<td>A8</td>
<td>671.862,07</td>
<td>4.374.488,75</td>
</tr>
<tr>
<td>A9</td>
<td>671.914,03</td>
<td>4.374.299,63</td>
</tr>
<tr>
<td>A10</td>
<td>672.086,39</td>
<td>4.374.065,61</td>
</tr>
</tbody>
</table>

Tabla 2. Coordenadas UTM, huso 30, ETRS89 de los 10 aerogeneradores.

La principal vía de comunicación es la autovía A3 (Madrid-Valencia), vía muy transitada habitualmente. A través de esta se puede acceder a la aldea “El Rebollar”, y desde la aldea hasta la sierra también hay vía de comunicación a través de pista no asfaltada.

En la “Figura 7” se muestra una fotografía, tomada personalmente, desde la rotonda que conecta la aldea “El Rebollar” con la autovía A3. De esta forma se puede apreciar, de forma realista, la magnitud que tiene la sierra en cuestión. Además, se observa que por la zona cercana a la sierra discurre la línea dúplex de 132 kV, donde se va a inyectar la energía generada en la instalación eólica.

Figura 7. Sierra El Matutano (Vista desde Rotonda).
La cercanía a la principal vía de comunicación (autovía A3 Madrid-Valencia) es un factor importante en la ejecución del proyecto. Para todos los desplazamientos necesarios de equipos, materiales y personal de trabajo a la zona de actuación, es conveniente tanto la cercanía a una vía principal como un acceso adecuado hasta la propia sierra.

En referencia al acceso a la sierra, se dispone ya de un acceso hasta la parte más alta, por lo que es una gran ventaja en la ejecución del proyecto. Únicamente se deberá acondicionar este vial para el paso de vehículos y maquinaria pesada. En la “Figura 8”, obtenida de “Google Earth”, se puede ver con más detalle el acceso del que dispone actualmente la sierra para alcanzar la parte más alta.

![Figura 8. Accesos Sierra El Motutano.](image)

5 FIGURAS AMBIENTALES.

En la zona de actuación del proyecto están presentes principalmente dos figuras ambientales: Red Natura 2000 e IBAs (Important Bird Areas).

Red Natura 2000 se encarga de la conservación de la biodiversidad en la Unión Europea. Las IBAs se encargan de la conservación de aquellas zonas, en el territorio español, en las que se encuentran presentes regularmente una parte significativa de la población de una o varias especies de aves consideradas prioritarias para la llamada “BirdLife”.

Además, se han de tener en cuenta espacios naturales protegidos como pueden ser: cuevas, monumentos naturales, parques naturales, reservas naturales, zonas húmedas, parajes naturales municipales o paisajes protegidos.

5.1 RED NATURA 2000.

Red Natura 2000 es una red de áreas de conservación de la biodiversidad de la UE. Consta de tres tipos de zonas especiales: zonas especiales de conservación (ZEC), zonas de especial protección para las aves (ZEPA) y lugares de importancia comunitaria (LIC).

La finalidad de dicha figura ambiental es la de asegurar la supervivencia a largo plazo de las especies y de los hábitats más amenazados de la UE. Por ello, contribuye a detener la pérdida de biodiversidad ocasionada por el impacto de la actividad humana. Dicho esto, Red Natura 2000 es el principal instrumento para la conservación de la naturaleza en la UE.
En las “Figuras 9, 10 y 11”, obtenidas de la página web de la cartografía de la “Generalitat Valenciana”, se muestran mapas donde se puede ver claramente como la zona de actuación del parque eólico (marcada con una flecha en rojo), no se ve afectada por ninguna de estas tres zonas especiales.

Figura 11. Lugares de Importancia Comunitaria de la C.V. (LIC).
5.2 IBAs.

Las IBAs (Important Bird Areas) son áreas de importancia para las aves en el territorio español. Están definidas por el Ministerio de Agricultura, Alimentación y Medio Ambiente como aquellas zonas en las que se encuentran presentes normalmente una parte significativa de la población de una o varias especies de aves consideradas prioritarias para la SEO/BirdLife (Sociedad Española de Ornitología).

En la “Figura 12”, obtenida de la página web “Atlas Eólico”, se puede observar como la zona de actuación del parque eólico (marcada con una flecha roja), tampoco se ve afectada por ninguna de estas áreas denominadas “IBAs”.

![Figura 12. IBAs (Áreas de Importancia para las Aves en España).](image)

5.3 ESPACIOS NATURALES PROTEGIDOS.

Además de la figura ambiental principal de la UE (Red Natura 2000) y de las IBAs, en España se debe tener en cuenta la posibilidad de la existencia de algún espacio natural protegido en la zona de actuación, que pueda haber quedado fuera del alcance de estas figuras ambientales.

Las “Figuras 13 y 14”, obtenidas de la página web de la cartografía de la “Generalitat Valenciana”, muestran los mapas correspondientes a la zona de actuación, donde se puede comprobar que esta zona (marcada con una flecha roja) no se ve afectada tampoco por ninguno de estos espacios naturales protegidos.

Únicamente se adjuntan mapas correspondientes a parques naturales y parajes naturales municipales, ya que cerca de la zona de actuación no existen cuevas, monumentos naturales, reservas naturales, zonas húmedas o paisajes protegidos.
6 ANÁLISIS DEL RECURSO EÓLICO.

6.1 ATLAS EÓLICO.

El análisis del recurso eólico en la zona de actuación se ha realizado mediante datos recogidos de la página web del “Atlas Eólico de España”, tanto para velocidades como para direcciones de viento.

Hay que hacer notar que el método más fiable y aconsejable para el análisis del recurso eólico en una zona determinada, es la colocación de una torre de mediciones en dicha zona, durante un periodo de tiempo mínimo de un año, y siempre que sea posible, de más de un año.

Dicha torre de mediciones dispondría de los equipos necesarios (anemómetros, veletas, etc.) a la altura necesaria para la caracterización del viento en las mejores condiciones.

Con esta torre de mediciones, se registraría la velocidad del viento cada 10 minutos como una media de velocidad diezminutaria. Con ello se obtendría la distribución de velocidades del viento, y tras ello, los parámetros de la función de distribución de Weibull que más se aproximan a la realidad.
Como ya se ha mencionado, no se dispone de una torre de mediciones que realice todas las medidas necesarias para este proyecto. Por tanto, lo que se ha hecho es obtener directamente los parámetros de la función de distribución de Weibull que más se aproximan a la realidad en la zona de actuación, mediante el uso del “Atlas Eólico”.

Está comprobado que, realizando el análisis mediante los datos proporcionados por el “Atlas Eólico” o mediante datos procedentes de una torre de mediciones, los resultados prácticamente coinciden, por lo que en el proyecto se va a proceder con los parámetros que proporciona el “Atlas Eólico” sobre la función de distribución de Weibull.

6.2 DIRECCIONES DEL VIENTO. ROSA DE VIENTOS.

Un dato muy importante a la hora de decidir la colocación y disposición (orientación) más adecuada para los aerogeneradores del parque, es la dirección del viento predominante en la zona.

El “Atlas Eólico” proporciona la rosa de vientos a 80 metros de altitud con una resolución de 2,5 kilómetros, más que suficiente para evaluar la zona de actuación del parque eólico objeto del proyecto.

Los datos obtenidos aparecen en la “Tabla 3”. Para cada dirección del viento (N, NNE, NE, ENE, etc.), el “Atlas Eólico” aporta la frecuencia del viento en tanto por cien, la velocidad media anual a 80 metros de altitud, la potencia en tanto por cien, y por último, los parámetros de la función de distribución de Weibull para cada una de las direcciones (aunque no son éstos los que se usarán para evaluar la distribución de velocidades del viento, ya que dependen de la dirección del viento).

<table>
<thead>
<tr>
<th>Dirección</th>
<th>Frecuencia (%)</th>
<th>Velocidad (m/s)</th>
<th>Potencia (%)</th>
<th>Weibull C (m/s)</th>
<th>Weibull K</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6.01</td>
<td>6.431</td>
<td>5.15</td>
<td>7.143</td>
<td>2.089</td>
</tr>
<tr>
<td>NNE</td>
<td>2.74</td>
<td>3.894</td>
<td>0.56</td>
<td>4.367</td>
<td>1.988</td>
</tr>
<tr>
<td>NE</td>
<td>5.19</td>
<td>5.237</td>
<td>2.94</td>
<td>6.043</td>
<td>1.93</td>
</tr>
<tr>
<td>ENE</td>
<td>10.2</td>
<td>5.934</td>
<td>6.96</td>
<td>6.737</td>
<td>2.212</td>
</tr>
<tr>
<td>E</td>
<td>11.99</td>
<td>5.057</td>
<td>4.67</td>
<td>5.741</td>
<td>2.467</td>
</tr>
<tr>
<td>ESE</td>
<td>10.95</td>
<td>4.715</td>
<td>2.81</td>
<td>5.117</td>
<td>2.775</td>
</tr>
<tr>
<td>SE</td>
<td>4</td>
<td>3.626</td>
<td>0.52</td>
<td>3.954</td>
<td>2.411</td>
</tr>
<tr>
<td>SSE</td>
<td>1.68</td>
<td>2.556</td>
<td>0.1</td>
<td>2.902</td>
<td>2.022</td>
</tr>
<tr>
<td>S</td>
<td>1.26</td>
<td>2.488</td>
<td>0.08</td>
<td>2.86</td>
<td>1.818</td>
</tr>
<tr>
<td>SSW</td>
<td>1.36</td>
<td>3.054</td>
<td>0.2</td>
<td>3.526</td>
<td>1.584</td>
</tr>
<tr>
<td>SW</td>
<td>1.9</td>
<td>3.782</td>
<td>0.52</td>
<td>4.346</td>
<td>1.59</td>
</tr>
<tr>
<td>WSW</td>
<td>6.22</td>
<td>7.545</td>
<td>11.37</td>
<td>8.531</td>
<td>1.725</td>
</tr>
<tr>
<td>W</td>
<td>14.88</td>
<td>8.652</td>
<td>31.07</td>
<td>9.856</td>
<td>2.277</td>
</tr>
<tr>
<td>WNW</td>
<td>9.7</td>
<td>8.266</td>
<td>19.37</td>
<td>9.386</td>
<td>2.037</td>
</tr>
<tr>
<td>NW</td>
<td>5.28</td>
<td>6.618</td>
<td>4.85</td>
<td>7.311</td>
<td>2.093</td>
</tr>
<tr>
<td>NNW</td>
<td>6.65</td>
<td>7.333</td>
<td>8.82</td>
<td>8.202</td>
<td>2.044</td>
</tr>
</tbody>
</table>

Tabla 3. Distribución por direcciones a 80 metros.

Mediante estos datos, se han realizado representaciones gráficas de las rosas de vientos, tanto para la frecuencia (tiempo), como para la potencia del viento. Pueden verse en las “Figuras 15 y 16”.

21
Se puede observar con bastante claridad la dirección del viento predominante en la zona de estudio, tanto en tiempo como en potencia. Esta dirección es la “W”, es decir, el viento que viene del oeste (west) y va hacia el este (east). Por tanto, este dato será de vital importancia a la hora de decidir la colocación óptima sobre el terreno de los aerogeneradores del parque.

Por último, también se ha querido representar la rosa de velocidades del viento. Los resultados obtenidos se muestran en la “Figura 17”.

Se puede apreciar como la velocidad media del viento en la dirección “W” también es la mayor con respecto a las demás velocidades del viento en las demás direcciones posibles. En concreto, la velocidad media del viento en la dirección “W” es de 8,652 m/s, una velocidad muy considerable.

6.3 DESVIACIÓN TÍPICA. ROSA DE TURBULENCIA.

Otra característica que se va a representar en forma de rosa de vientos, es la turbulencia de este.
Para evaluar los esfuerzos que sufren los aerogeneradores, es muy importante tener en cuenta la intensidad de turbulencia existente. Dicha intensidad de turbulencia se calcula como el cociente entre la desviación típica del viento y su velocidad media, para cada una de las direcciones del viento consideradas, es decir, mediante la “Fórmula 1”:

\[I = \frac{\sigma}{\bar{v}} \]

(1)

El dato de la velocidad media del viento para cada dirección ya se ha obtenido del “Atlas Eólico”, y el dato de la desviación típica para cada dirección del viento se calcula despejando de la “Fórmula 2”, ya que el factor de forma de la distribución de Weibull “K” también es conocido para cada dirección del viento:

\[K = (\frac{\sigma}{\bar{v}})^{-1.086} \]

(2)

Con todo ello, los datos numéricos obtenidos y la representación gráfica de la rosa de vientos de turbulencias se muestran en la “Tabla 4” y en la “Figura 18”:

<table>
<thead>
<tr>
<th>DIRECCIÓN</th>
<th>DESVIACIÓN TÍPICA 80 m</th>
<th>TURBULENCIA 80 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>3,263</td>
<td>0.567</td>
</tr>
<tr>
<td>NNE</td>
<td>2,068</td>
<td>0.531</td>
</tr>
<tr>
<td>NE</td>
<td>2,859</td>
<td>0.546</td>
</tr>
<tr>
<td>ENE</td>
<td>2,857</td>
<td>0.481</td>
</tr>
<tr>
<td>E</td>
<td>2,202</td>
<td>0.435</td>
</tr>
<tr>
<td>ESE</td>
<td>1,842</td>
<td>0.391</td>
</tr>
<tr>
<td>SE</td>
<td>1,012</td>
<td>0.445</td>
</tr>
<tr>
<td>SSE</td>
<td>1,337</td>
<td>0.523</td>
</tr>
<tr>
<td>S</td>
<td>1,435</td>
<td>0.577</td>
</tr>
<tr>
<td>SSW</td>
<td>2,000</td>
<td>0.655</td>
</tr>
<tr>
<td>SW</td>
<td>2,468</td>
<td>0.652</td>
</tr>
<tr>
<td>WSW</td>
<td>4,367</td>
<td>0.605</td>
</tr>
<tr>
<td>W</td>
<td>4,056</td>
<td>0.469</td>
</tr>
<tr>
<td>WNN</td>
<td>4,293</td>
<td>0.519</td>
</tr>
<tr>
<td>NNW</td>
<td>3,927</td>
<td>0.567</td>
</tr>
<tr>
<td>NNNW</td>
<td>3,797</td>
<td>0.518</td>
</tr>
</tbody>
</table>

Tabla 4. Desviación típica y turbulencia en función de la dirección del viento.

Figura 18. Rosa de vientos de turbulencias a 80 metros.

Como se puede observar, la máxima turbulencia se produce en la dirección “SSW” con un valor en tanto por cien del 65,5 %. A la hora de evaluar esfuerzos en los aerogeneradores, se deben tener en cuenta estos datos de turbulencias del viento para cada dirección.
6.4 CURVA DE DISTRIBUCIÓN DE FRECUENCIAS DE VELOCIDADES DEL VIENTO.
LEY DE DISTRIBUCIÓN DE WEIBULL.

La curva de distribución de frecuencias de velocidades del viento, representa el valor de la
velocidad del viento independientemente de su dirección, y se va a emplear para obtener la
potencia y la energía obtenida del viento.

Como ya se ha mencionado, no se dispone para este proyecto de datos de velocidades
diezminutarias del viento para realizar un análisis más exhaustivo de la curva de distribución
de frecuencias de velocidades del viento. Sin embargo, bien es sabido que, la curva de
distribución de frecuencias de velocidades de viento que se puede obtener con los datos del
“Atlas Eólico”, se aproxima muy bien a la ley de distribución de Weibull (con el factor de
escala y el factor de forma más adecuados).

El “Atlas Eólico” proporciona estos factores de escala y de forma para alturas de 30, 60, 80
y 100 metros, independientemente de la dirección del viento. Para obtener estos valores se
deben ampliar lo suficiente la zona de actuación, ya que el “Atlas Eólico” proporciona valores
con una resolución de 100 metros.

Los valores obtenidos en la zona de actuación son los que aparecen a continuación en la
“Tabla 5”.

<table>
<thead>
<tr>
<th>Velocidad (m/s)</th>
<th>30m.</th>
<th>60m.</th>
<th>80m.</th>
<th>100m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weibull C (m/s)</td>
<td>8.28</td>
<td>8.39</td>
<td>8.37</td>
<td>8.35</td>
</tr>
<tr>
<td>Weibull K</td>
<td>2.016</td>
<td>1.948</td>
<td>1.9</td>
<td>1.86</td>
</tr>
</tbody>
</table>

Tabla 5. Velocidad, factor de escala y factor de forma para diferentes alturas.

Con estos parámetros, se ha representado de forma gráfica la llamada “Ley de Distribución
de Weibull” para las diferentes alturas consideradas, mediante la siguiente sintaxis en el
programa “Excel”:

\[f(v_x) = DIST.WEIBULL(v_x,K,C,FALSO) \]

Se han obtenido los resultados que se muestran en la “Figura 19”.

Figura 19. Ley de Distribución de Weibull a 30, 60, 80 y 100 metros.
A continuación se han obtenido las probabilidades de aparición de velocidades del viento, mediante la siguiente sintaxis en “Excel”:

\[
P(v \leq v_x) = \text{DIST.WEIBULL}(v_x ; K ; C ; \text{VERDADERO})\]

\[
P(v_x < v \leq v_y) = \text{DIST.WEIBULL}(v_y ; K ; C ; \text{VERDADERO}) - \text{DIST.WEIBULL}(v_x ; K ; C ; \text{VERDADERO})\]

Se han obtenido los resultados que se muestran en la “Figura 20”.

![Figura 20. Probabilidades de aparición de velocidades de viento a 30, 60, 80 y 100 metros.](image)

Mediante el uso de estas expresiones en “Excel”, se simplifica muchísimo el cálculo de las probabilidades de aparición de velocidades de viento, datos necesarios para el cálculo de la producción neta de los aerogeneradores y del parque eólico en conjunto.

6.5 PERFIL DE VELOCIDADES DEL VIENTO. VARIACIÓN CON LA ALTURA.

También es muy importante evaluar la variación de la velocidad del viento con la altura sobre el nivel del suelo, ya que los aerogeneradores comerciales que van a ser estudiados tienen alturas de buje diferentes sobre la cota cero.

Para evaluar este fenómeno de variación de la velocidad del viento con la altura, se procede a utilizar el “Modelo Potencial”. Conocida la velocidad del viento “\(v_0\)” a una altura determinada “\(h_0\)”, la velocidad “\(v\)” a otra altura “\(h\)” se puede obtener fácilmente utilizando la “Fórmula 3”:

\[
v = v_0 \times \left(\frac{h}{h_0}\right)^b\]

(3)

El coeficiente “\(b\)” varía con el tipo de superficie y representa la fricción superficial encontrada por el viento en su paso por la zona. Se denomina coeficiente de rugosidad o de rozamiento.

Este dato también se ha obtenido del “Atlas Eólico”, que proporciona un valor del coeficiente de rugosidad de 0,1. Parece bastante acertado y aproximado a la realidad, ya
que la zona de actuación del parque eólico es una zona muy poco rugosa (con yerbas bajas), y por tanto se corresponde con el valor teórico.

La velocidad “v₀” utilizada es la velocidad media anual correspondiente a una altura “h₀” de 30 metros de altura sobre la cota cero, es decir, 7,18 m/s. Con ello, se ha obtenido el perfil de velocidades del viento para diferentes alturas sobre el nivel del suelo. Los resultados numéricos y gráficos se muestran en la “Tabla 6” y en la “Figura 21”.

<table>
<thead>
<tr>
<th>ALTO MÉTRICO</th>
<th>VELOCIDAD (m/s)</th>
<th>ALTO MÉTRICO</th>
<th>VELOCIDAD (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>90</td>
<td>8.01</td>
</tr>
<tr>
<td>5</td>
<td>6.00</td>
<td>95</td>
<td>8.06</td>
</tr>
<tr>
<td>10</td>
<td>6.43</td>
<td>100</td>
<td>8.10</td>
</tr>
<tr>
<td>15</td>
<td>6.70</td>
<td>105</td>
<td>8.14</td>
</tr>
<tr>
<td>20</td>
<td>6.89</td>
<td>110</td>
<td>8.18</td>
</tr>
<tr>
<td>25</td>
<td>7.05</td>
<td>115</td>
<td>8.21</td>
</tr>
<tr>
<td>30</td>
<td>7.18</td>
<td>120</td>
<td>8.25</td>
</tr>
<tr>
<td>35</td>
<td>7.29</td>
<td>125</td>
<td>8.28</td>
</tr>
<tr>
<td>40</td>
<td>7.39</td>
<td>130</td>
<td>8.31</td>
</tr>
<tr>
<td>45</td>
<td>7.48</td>
<td>135</td>
<td>8.35</td>
</tr>
<tr>
<td>50</td>
<td>7.56</td>
<td>140</td>
<td>8.38</td>
</tr>
<tr>
<td>55</td>
<td>7.63</td>
<td>145</td>
<td>8.41</td>
</tr>
<tr>
<td>60</td>
<td>7.70</td>
<td>150</td>
<td>8.43</td>
</tr>
<tr>
<td>65</td>
<td>7.76</td>
<td>155</td>
<td>8.46</td>
</tr>
<tr>
<td>70</td>
<td>7.81</td>
<td>160</td>
<td>8.49</td>
</tr>
<tr>
<td>75</td>
<td>7.87</td>
<td>165</td>
<td>8.51</td>
</tr>
<tr>
<td>80</td>
<td>7.92</td>
<td>170</td>
<td>8.54</td>
</tr>
<tr>
<td>85</td>
<td>7.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6. Velocidad del viento en función de la altura.

Se puede ver de forma rápida el aumento de la velocidad del viento con la altura respecto de la cota cero. A mayor altura, mayor será la velocidad del viento, siguiendo siempre el "Modelo Potencial" elegido para el cálculo.

Destacar que la velocidad media del viento a partir de los 90 metros de altura (altura aproximada de aerogeneradores comerciales) ya sobrepasa los 8 m/s, una velocidad suficientemente elevada para el buen funcionamiento y aprovechamiento del viento en la zona.

7 ANÁLISIS Y COMPARATIVA DE AEROGENERADORES.

7.1 CLASE DE TURBINA EÓLICA.

Para poder seleccionar modelos comerciales de aerogeneradores, se debe conocer la clase de turbina eólica horizontal que se debe instalar en la zona de estudio.

Este parámetro viene definido por la “Norma IEC 61400-1”. Es función de la velocidad media de referencia del viento en la zona, medida durante un periodo de 10 minutos a la altura del buje (velocidad media anual a la altura del buje dividido por el factor 0,2). También se puede obtener la clase de turbina mediante el valor esperado de la intensidad de turbulencia a la altura del buje para una velocidad del viento promedio de 15 m/s y medida durante un periodo de 10 minutos (intensidad de referencia).

En la “Tabla 7”, obtenida de la “Norma IEC 61400-1”, se muestra la clasificación que establece esta normativa respecto a la clase de turbina eólica, en función de la velocidad media de referencia o de la intensidad de turbulencia de referencia. Son datos de aplicación a la altura del buje.

<table>
<thead>
<tr>
<th>Clases</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{m0} (m/s)</td>
<td>50</td>
<td>42.5</td>
<td>37.5</td>
<td>30</td>
</tr>
<tr>
<td>V_{wg} (m/s)</td>
<td>10</td>
<td>8.5</td>
<td>7.5</td>
<td>6</td>
</tr>
<tr>
<td>A</td>
<td>I$_{15}$ (-)</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>a(-)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>I$_{15}$ (-)</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>a(-)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabla 7. Clase de turbina eólica (Norma IEC 61400-1).

En el caso que nos ocupa, se ha realizado el cálculo con la velocidad media de referencia. La velocidad media anual en la zona está comprendida entre 7,95 y 8,1 m/s, para las alturas de buje consideradas en este proyecto. Por tanto, dividiendo estas velocidades por el factor que dice la norma de 0,2, se han obtenido los valores de las velocidades de referencia de 39,75 y 40,5 m/s. Con ello, la clase de turbina eólica que debe ser seleccionada para el parque es clase II.

Destacar que, en ningún caso, las clases I, II, III y IV están destinadas a cubrir condiciones extremas como pueden ser huracanes, tifones o ciclones.
7.2 MODELOS DE AEROGENERADORES COMERCIALES ANALIZADOS.

Han sido analizados tres modelos de aerogeneradores comerciales diferentes para realizar una comparativa, tanto a nivel energético como a nivel económico. Los tres modelos son de una potencia nominal de 2 MW, pero solo 2 de ellos cumplen con la clase de turbina eólica II. El otro modelo analizado se corresponde con una clase de turbina eólica III, y simplemente se ha analizado para contrastar los resultados con los de turbinas de menor altura y menor diámetro de las palas.

El primero de los modelos analizados, el “E82/2000”, tiene una altura del buje de 85 metros y un diámetro barrido por las palas del rotor de 82 metros. El segundo de ellos, tiene una altura del buje de 95 metros y un diámetro barrido de 90 metros. El tercer modelo (clase de turbina eólica III), tiene una altura del buje de 100 metros y un diámetro barrido de 116 metros.

Además de la diferencia de altura del buje y del diámetro barrido, también ha sido escogido cada uno de los modelos de un fabricante diferente. Así, el primer modelo seleccionado es de “ENERCON” (Alemania), el segundo modelo es de “VESTAS” (Dinamarca), y el tercer modelo es de “W2E” (Alemania).

Los tres fabricantes son muy reconocidas a nivel mundial y con una dilatada experiencia en el sector eólico. “ENERCON” y “W2E” son dos empresas alemanas, y “VESTAS” es una empresa danesa.

Destacar que, en la actualidad, hay dos parques eólicos en la Comunidad Valenciana con aerogeneradores de “ENERCON” y un parque eólico con aerogeneradores de “VESTAS”.

Las características más relevantes de cada uno de los modelos seleccionados, junto con su curva de potencia y los valores numéricos de estas curvas, se detallan a continuación. Estos datos han sido obtenidos de:

- **Aerogenerador “E82/2000” de “ENERCON” (Alemania):**

 Página web de “ENERCON”: Catálogos del fabricante.
Página web de fabricantes de aerogeneradores “The Wind Power”.

- **Aerogenerador “V90/2000” de “VESTAS” (Dinamarca):**

 Página web de “VESTAS”: Catálogos del fabricante.
Página web de fabricantes de aerogeneradores “The Wind Power”.

- **Aerogenerador “HARVESTER 2.0 MW” de W2E (Alemania):**

 Página web de “W2E”: Catálogos del fabricante.
Página web de fabricantes de aerogeneradores “The Wind Power”.

28
7.2.1 “E82/2000” DE “ENERCON”.

- **Datos Generales:**

<table>
<thead>
<tr>
<th>Fabricante</th>
<th>Enercon (Alemania)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbina Eólica</td>
<td>E82/2000</td>
</tr>
<tr>
<td>Potencia (kW)</td>
<td>2000</td>
</tr>
<tr>
<td>Diámetro (m)</td>
<td>82</td>
</tr>
<tr>
<td>Clase de Viento (IEC)</td>
<td>IIa</td>
</tr>
<tr>
<td>Área de Barrido (m²)</td>
<td>5.281</td>
</tr>
<tr>
<td>Densidad de Potencia (m²/kW)</td>
<td>2,65</td>
</tr>
<tr>
<td>Número de Palas</td>
<td>3</td>
</tr>
<tr>
<td>Altura de la Gondola (m)</td>
<td>85</td>
</tr>
<tr>
<td>Rango de Velocidades (vueltas/min)</td>
<td>6 - 18</td>
</tr>
<tr>
<td>Tensión de Salida (V)</td>
<td>400 - 690</td>
</tr>
</tbody>
</table>

Tabla 8. Datos generales “E82/2000”.

- **Curva de Potencia:**

<table>
<thead>
<tr>
<th>Velocidad (m/s)</th>
<th>Potencia (kW)</th>
<th>Coeficiente de Potencia “Cp”</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>0.060</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.120</td>
</tr>
<tr>
<td>2.5</td>
<td>12</td>
<td>0.205</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>0.290</td>
</tr>
<tr>
<td>3.5</td>
<td>53</td>
<td>0.345</td>
</tr>
<tr>
<td>4</td>
<td>82</td>
<td>0.400</td>
</tr>
<tr>
<td>4.5</td>
<td>128</td>
<td>0.415</td>
</tr>
<tr>
<td>5</td>
<td>174</td>
<td>0.430</td>
</tr>
<tr>
<td>5.5</td>
<td>247</td>
<td>0.445</td>
</tr>
<tr>
<td>6</td>
<td>321</td>
<td>0.460</td>
</tr>
<tr>
<td>6.5</td>
<td>426</td>
<td>0.470</td>
</tr>
<tr>
<td>7</td>
<td>532</td>
<td>0.480</td>
</tr>
<tr>
<td>7.5</td>
<td>674</td>
<td>0.485</td>
</tr>
<tr>
<td>8</td>
<td>815</td>
<td>0.490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocidad (m/s)</th>
<th>Potencia (kW)</th>
<th>Coeficiente de Potencia “Cp”</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,5</td>
<td>998</td>
<td>0.495</td>
</tr>
<tr>
<td>9</td>
<td>1180</td>
<td>0.500</td>
</tr>
<tr>
<td>9,5</td>
<td>1380</td>
<td>0.495</td>
</tr>
<tr>
<td>10</td>
<td>1580</td>
<td>0.490</td>
</tr>
<tr>
<td>10,5</td>
<td>1695</td>
<td>0.455</td>
</tr>
<tr>
<td>11</td>
<td>1810</td>
<td>0.420</td>
</tr>
<tr>
<td>11,5</td>
<td>1895</td>
<td>0.385</td>
</tr>
<tr>
<td>12</td>
<td>1965</td>
<td>0.350</td>
</tr>
<tr>
<td>12,5</td>
<td>2000</td>
<td>0.320</td>
</tr>
<tr>
<td>13</td>
<td>2000</td>
<td>0.290</td>
</tr>
<tr>
<td>13,5</td>
<td>2000</td>
<td>0.260</td>
</tr>
<tr>
<td>14</td>
<td>2000</td>
<td>0.230</td>
</tr>
<tr>
<td>15</td>
<td>2000</td>
<td>0.210</td>
</tr>
<tr>
<td>15,5</td>
<td>2000</td>
<td>0.190</td>
</tr>
<tr>
<td>16</td>
<td>2000</td>
<td>0.150</td>
</tr>
<tr>
<td>16,5</td>
<td>2000</td>
<td>0.140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocidad (m/s)</th>
<th>Potencia (kW)</th>
<th>Coeficiente de Potencia “Cp”</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>2000</td>
<td>0.130</td>
</tr>
<tr>
<td>17,5</td>
<td>2000</td>
<td>0.120</td>
</tr>
<tr>
<td>18</td>
<td>2000</td>
<td>0.110</td>
</tr>
<tr>
<td>18,5</td>
<td>2000</td>
<td>0.100</td>
</tr>
<tr>
<td>19</td>
<td>2000</td>
<td>0.090</td>
</tr>
<tr>
<td>19,5</td>
<td>2000</td>
<td>0.085</td>
</tr>
<tr>
<td>20</td>
<td>2000</td>
<td>0.080</td>
</tr>
<tr>
<td>20,5</td>
<td>2000</td>
<td>0.075</td>
</tr>
<tr>
<td>21</td>
<td>2000</td>
<td>0.070</td>
</tr>
<tr>
<td>21,5</td>
<td>2000</td>
<td>0.065</td>
</tr>
<tr>
<td>22</td>
<td>2000</td>
<td>0.060</td>
</tr>
<tr>
<td>22,5</td>
<td>2000</td>
<td>0.055</td>
</tr>
<tr>
<td>23</td>
<td>2000</td>
<td>0.050</td>
</tr>
<tr>
<td>23,5</td>
<td>2000</td>
<td>0.050</td>
</tr>
<tr>
<td>24</td>
<td>2000</td>
<td>0.050</td>
</tr>
<tr>
<td>24,5</td>
<td>2000</td>
<td>0.030</td>
</tr>
<tr>
<td>25</td>
<td>2000</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Tabla 9. Potencia y coeficiente de potencia del aerogenerador en función de la velocidad del viento.

Figura 22. Curvas de potencia y del coeficiente de potencia del “E82/2000”.
7.2.2 “V90/2000” DE “VESTAS”.

- **Datos Generales:**

<table>
<thead>
<tr>
<th>Fabricante</th>
<th>Vestas (Dinamarca)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbina Eólica</td>
<td>V90/2000</td>
</tr>
<tr>
<td>Potencia (kW)</td>
<td>2000</td>
</tr>
<tr>
<td>Diámetro (m)</td>
<td>90</td>
</tr>
<tr>
<td>Clase de Viento (IEC)</td>
<td>IIa</td>
</tr>
<tr>
<td>Área de Barrido (m²)</td>
<td>6.362</td>
</tr>
<tr>
<td>Densidad de Potencia (m²/kW)</td>
<td>3,19</td>
</tr>
<tr>
<td>Número de Palas</td>
<td>3</td>
</tr>
<tr>
<td>Altura de la Gondola (m)</td>
<td>95</td>
</tr>
<tr>
<td>Rango de Velocidades (vueltas/min)</td>
<td>8,2 - 17,3</td>
</tr>
<tr>
<td>Tensión de Salida (V)</td>
<td>400 - 690</td>
</tr>
</tbody>
</table>

Tabla 10. Datos generales “V90/2000”.

- **Curva de Potencia:**

<table>
<thead>
<tr>
<th>Velocidad (m/s)</th>
<th>Potencia (kW)</th>
<th>Velocidad (m/s)</th>
<th>Potencia (kW)</th>
<th>Velocidad (m/s)</th>
<th>Potencia (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>8,5</td>
<td>1065</td>
<td>17</td>
<td>2000</td>
</tr>
<tr>
<td>0,5</td>
<td>0</td>
<td>9</td>
<td>1245</td>
<td>17,5</td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>9,5</td>
<td>1429</td>
<td>18</td>
<td>2000</td>
</tr>
<tr>
<td>1,5</td>
<td>0</td>
<td>10</td>
<td>1612</td>
<td>18,5</td>
<td>2000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10,5</td>
<td>1756</td>
<td>19</td>
<td>2000</td>
</tr>
<tr>
<td>2,5</td>
<td>5</td>
<td>11</td>
<td>1900</td>
<td>19,5</td>
<td>2000</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>11,5</td>
<td>1934</td>
<td>20</td>
<td>2000</td>
</tr>
<tr>
<td>3,5</td>
<td>28</td>
<td>12</td>
<td>1968</td>
<td>20,5</td>
<td>2000</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>12,5</td>
<td>1979</td>
<td>21</td>
<td>2000</td>
</tr>
<tr>
<td>4,5</td>
<td>108</td>
<td>13</td>
<td>1990</td>
<td>21,5</td>
<td>2000</td>
</tr>
<tr>
<td>5</td>
<td>170</td>
<td>13,5</td>
<td>1995</td>
<td>22</td>
<td>2000</td>
</tr>
<tr>
<td>5,5</td>
<td>263</td>
<td>14</td>
<td>2000</td>
<td>22,5</td>
<td>2000</td>
</tr>
<tr>
<td>6</td>
<td>355</td>
<td>14,5</td>
<td>2000</td>
<td>23</td>
<td>2000</td>
</tr>
<tr>
<td>6,5</td>
<td>468</td>
<td>15</td>
<td>2000</td>
<td>23,5</td>
<td>2000</td>
</tr>
<tr>
<td>7</td>
<td>580</td>
<td>15,5</td>
<td>2000</td>
<td>24</td>
<td>2000</td>
</tr>
<tr>
<td>7,5</td>
<td>732</td>
<td>16</td>
<td>2000</td>
<td>24,5</td>
<td>2000</td>
</tr>
<tr>
<td>8</td>
<td>884</td>
<td>16,5</td>
<td>2000</td>
<td>25</td>
<td>2000</td>
</tr>
</tbody>
</table>

Tabla 11. Potencia del aerogenerador en función de la velocidad del viento.

Figura 23. Curva de potencia del “V90/2000”.
7.2.3 “HARVESTER 2.0 MW” DE “W2E”.

- **Datos Generales:**

<table>
<thead>
<tr>
<th>Fabricante</th>
<th>W2E (Alemania)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbina Eólica</td>
<td>Harvester 2.0 MW</td>
</tr>
<tr>
<td>Potencia (kW)</td>
<td>2000</td>
</tr>
<tr>
<td>Diámetro (m)</td>
<td>116</td>
</tr>
<tr>
<td>Clase de Viento (IEC)</td>
<td>Ila</td>
</tr>
<tr>
<td>Área de Barrido (m²)</td>
<td>10.569</td>
</tr>
<tr>
<td>Densidad de Potencia (m²/kW)</td>
<td>5.29</td>
</tr>
<tr>
<td>Número de Palas</td>
<td>3</td>
</tr>
<tr>
<td>Altura de la Góndola (m)</td>
<td>100</td>
</tr>
<tr>
<td>Rango de Velocidades (vueltas/min)</td>
<td>7 - 18</td>
</tr>
<tr>
<td>Tensión de Salida (V)</td>
<td>400 - 690</td>
</tr>
</tbody>
</table>

Tabla 12. Datos generales “HARVESTER 2.0 MW”.

- **Curva de Potencia:**

<table>
<thead>
<tr>
<th>Velocidad (m/s)</th>
<th>Potencia (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1,5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2,5</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>3,5</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>154</td>
</tr>
<tr>
<td>4,5</td>
<td>249</td>
</tr>
<tr>
<td>5</td>
<td>344</td>
</tr>
<tr>
<td>5,5</td>
<td>482</td>
</tr>
<tr>
<td>6</td>
<td>619</td>
</tr>
<tr>
<td>6,5</td>
<td>808</td>
</tr>
<tr>
<td>7</td>
<td>997</td>
</tr>
<tr>
<td>7,5</td>
<td>1231</td>
</tr>
<tr>
<td>8</td>
<td>1464</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocidad (m/s)</th>
<th>Potencia (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,5</td>
<td>1629</td>
</tr>
<tr>
<td>9</td>
<td>1793</td>
</tr>
<tr>
<td>9,5</td>
<td>1878</td>
</tr>
<tr>
<td>10</td>
<td>1962</td>
</tr>
<tr>
<td>10,5</td>
<td>1981</td>
</tr>
<tr>
<td>11</td>
<td>2000</td>
</tr>
<tr>
<td>11,5</td>
<td>2000</td>
</tr>
<tr>
<td>12</td>
<td>2000</td>
</tr>
<tr>
<td>12,5</td>
<td>2000</td>
</tr>
<tr>
<td>13</td>
<td>2000</td>
</tr>
<tr>
<td>13,5</td>
<td>2000</td>
</tr>
<tr>
<td>14</td>
<td>2000</td>
</tr>
<tr>
<td>14,5</td>
<td>2000</td>
</tr>
<tr>
<td>15</td>
<td>2000</td>
</tr>
<tr>
<td>15,5</td>
<td>2000</td>
</tr>
<tr>
<td>16</td>
<td>2000</td>
</tr>
<tr>
<td>16,5</td>
<td>2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocidad (m/s)</th>
<th>Potencia (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>2000</td>
</tr>
<tr>
<td>17,5</td>
<td>2000</td>
</tr>
<tr>
<td>18</td>
<td>2000</td>
</tr>
<tr>
<td>18,5</td>
<td>2000</td>
</tr>
<tr>
<td>19</td>
<td>2000</td>
</tr>
<tr>
<td>19,5</td>
<td>2000</td>
</tr>
<tr>
<td>20</td>
<td>2000</td>
</tr>
<tr>
<td>20,5</td>
<td>2000</td>
</tr>
<tr>
<td>21</td>
<td>2000</td>
</tr>
<tr>
<td>21,5</td>
<td>2000</td>
</tr>
<tr>
<td>22</td>
<td>2000</td>
</tr>
<tr>
<td>22,5</td>
<td>2000</td>
</tr>
<tr>
<td>23</td>
<td>2000</td>
</tr>
<tr>
<td>23,5</td>
<td>2000</td>
</tr>
<tr>
<td>24</td>
<td>2000</td>
</tr>
<tr>
<td>24,5</td>
<td>2000</td>
</tr>
<tr>
<td>25</td>
<td>2000</td>
</tr>
</tbody>
</table>

Tabla 13. Potencia del aerogenerador en función de la velocidad del viento.

Figura 24. Curva de potencia del “HARVESTER 2.0 MW”.
7.3 ENERGÍA OBTENIDA.

Para obtener la producción de cada modelo de aerogenerador seleccionado, basta disponer de las probabilidades de aparición de velocidades de viento a la altura del buje del aerogenerador junto con la curva de potencia de dicho aerogenerador.

Anteriormente se han obtenido las curvas de distribución de frecuencias de velocidades de viento y las probabilidades de aparición de velocidades de viento a 30, 60, 80 y 100 metros, ya que se disponían de datos de los coeficientes de la “Ley de Distribución de Weibull” para esas alturas sobre la cota cero.

Para obtener la curva de distribución de frecuencias de velocidades de viento y las probabilidades de aparición de velocidades de viento a la altura del buje de cada modelo de aerogenerador (85, 95 y 100 metros), se han interpolado los coeficientes “k” y “c” de la “Ley de Distribución de Weibull”, para obtener los resultados más aproximados posibles.

Multiplicando las probabilidades de aparición de velocidades de viento por el número de horas que tiene un año completo (Fórmula 4), se obtienen las horas que sopla el viento para cada una de las velocidades posibles.

\[N_{\text{horas}}(v_x) = P(v_x) \ast N_{\text{horas 1 año}} \] \hspace{1cm} (4)

Introduciendo ahora la curva de potencia de cada modelo de aerogenerador, se ha obtenido la producción anual para cada uno de los modelos analizados. Basta con multiplicar el número de horas en las que el viento sopla a una determinada velocidad por la potencia obtenida por el aerogenerador a esa velocidad (Fórmula 5).

\[E = P \ast t \] \hspace{1cm} (5)

Además, para cada modelo de aerogenerador, se ha obtenido el diagrama de densidad de producción (MWh), en el cual se puede apreciar de forma muy visual, a que velocidades de viento se produce la mayor producción del aerogenerador.

A continuación se muestra, para cada modelo de aerogenerador analizado, la curva de distribución de frecuencias de velocidades de viento o “Ley de Distribución de Weibull”, las probabilidades de aparición de velocidades de viento, y los diagramas de densidad de producción. Además, en última instancia, aparece el valor de la producción anual total obtenida por cada uno de los modelos (MWh/año).
7.3.1 “E82/2000” DE “ENERCON”.

Figura 25. Función de Weibull a 85 metros.

Figura 26. Probabilidades de aparición de velocidades de viento a 85 metros.

Figura 27. Diagrama de densidad de producción del “E82/2000”.

\[\text{Energía Anual} = 7 \, 272,3 \, \text{MWh/ año}. \]
7.3.2 “V90/2000” DE “VESTAS”.

Figura 28. Función de Weibull a 95 metros.

Figura 29. Probabilidades de aparición de velocidades de viento a 95 metros.

Figura 30. Diagrama de densidad de producción del “V90/2000”.

Energía Anual = 7.436,2 MWh/año.
7.3.3 “HARVESTER 2.0 MW” DE “W2E”.

Figura 31. Función de Weibull a 100 metros.

Figura 32. Probabilidades de aparición de velocidades de viento a 100 metros.

Figura 33. Diagrama de densidad de producción del “HARVESTER 2.0 MW”.

Energía Anual = 9.329,5 MWh/año.
7.4 CONCLUSIONES Y SELECCIÓN DE AEROGENERADOR COMERCIAL

A medida que aumenta la altura del buje del aerogenerador, y en consecuencia el diámetro y el área barrida por las palas del rotor, aumenta la producción energética del aerogenerador.

Entre el primer modelo estudiado “E82/2000” y el segundo “V90/2000” (alturas del buje de 85 y 95 metros respectivamente; diámetros de 82 y 90 metros respectivamente; áreas barridas por las palas del rotor de 5.281 y 6.362 m² respectivamente) no hay demasiada diferencia en cuanto a producción energética.

Con el “E82/2000” de “ENERCON”, se obtendría un total anual de 7.272,3 MWh/año, mientras que con el “V90/2000” de “VESTAS”, se obtendría un total anual de 7.436,2 MWh/año. La diferencia entre ambos es de apenas 163,9 MWh/año.

A diferencia de los dos primeros modelos analizados, el tercer modelo de aerogenerador analizado, el “HARVESTER 2.0 MW” de “W2E”, que posee una altura del buje de 100 metros sobre la cota cero, un diámetro de las palas de 116 metros, y un área barrida por las palas de 10.569 m², es el aerogenerador con el que más producción energética se consigue a lo largo de un año, con una gran diferencia respecto a los otros dos modelos.

Se obtendría un total de 9.329,5 MWh/año por cada uno de estos aerogeneradores. La diferencia respecto a los otros dos modelos ya es considerable, de 2057,2 MWh/año con el primero y de 1893,3 MWh/año con el segundo. Sin embargo, este aerogenerador se corresponde con una clase de turbina eólica III como ya se ha citado, y no entra dentro de las posibilidades para el presente proyecto.

Partiendo de estos datos, se ha analizado la tasa de retorno simple de la inversión (TIR simple) del aerogenerador “V90/2000” de “VESTAS” respecto al aerogenerador “E82/2000” de “ENERCON”, que es el que tiene un menor coste. De esta manera, se va a seleccionar el modelo de aerogenerador más adecuado de entre las dos posibilidades, teniendo en cuenta el punto de vista económico (período de retorno de la inversión adicional). La expresión empleada para el cálculo del TIR simple ha sido la siguiente (Fórmula 6):

$$TIR_{simple} = \frac{\Delta \text{COSTE}}{\Delta \text{BENEFICIO ANUAL}}$$ (6)

El coste del aerogenerador “E82/2000” es de aproximadamente 1.450.000 €. Por otro lado, el coste del aerogenerador “V90/2000” es de aproximadamente 1.510.000 €, es decir, 60.000 € más que el “E82/2000”.

La producción anual obtenida es mayor cuanto mayor es la altura del buje y el diámetro barrido por las palas, por lo que el beneficio obtenido es también mayor. Se ha calculado el incremento del beneficio obtenido con un precio medio de la prima de 68 €/MWh, valor medio de los últimos años.

Con ello, se ha calculado el TIR simple mediante la “Fórmula 6”:

\[
TIR_{simple} ("V90/2000") = \frac{60.000 \, \text{€}}{11.145,2 \, \text{€/año}} = 5,38 \, \text{años}.
\]

Tras este análisis, se ha tomado la decisión de elegir para el proyecto el aerogenerador “E82/2000” del fabricante “ENERCON”, ya que la tasa de retorno simple del “V90/2000” respecto a este es algo elevada.

7.4.1 AEROGENERADOR “E82/2000” DE “ENERCON”.

Las características técnicas más significativas del aerogenerador “E82/2000” de “ENERCON” seleccionado para el proyecto, se citan a continuación en la “Tabla 14”:

<table>
<thead>
<tr>
<th>Fabricante</th>
<th>ENERCON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>E82/2000</td>
</tr>
<tr>
<td>Potencia Nominal</td>
<td>2,0 MW</td>
</tr>
<tr>
<td>Diámetro Palas Rotor</td>
<td>82 m</td>
</tr>
<tr>
<td>Área de Barrido</td>
<td>5,281 m²</td>
</tr>
<tr>
<td>Clase de Viento</td>
<td>IEC IIA</td>
</tr>
<tr>
<td>Velocidad Mínima del Viento</td>
<td>2 m/s</td>
</tr>
<tr>
<td>Velocidad Nominal del Viento</td>
<td>12,5 m/s</td>
</tr>
<tr>
<td>Velocidad Máxima del Viento</td>
<td>25 m/s</td>
</tr>
<tr>
<td>Nivel sonoro</td>
<td>103,5 dBA</td>
</tr>
<tr>
<td>Altura del Buje</td>
<td>85 m</td>
</tr>
<tr>
<td>Número de Palas</td>
<td>3 Palas</td>
</tr>
<tr>
<td>Densidad de Potencia</td>
<td>2,55 m²/kW</td>
</tr>
<tr>
<td>Tensión de Salida</td>
<td>400/690 V</td>
</tr>
<tr>
<td>Compatible Offshore</td>
<td>NO</td>
</tr>
</tbody>
</table>

Se trata de un generador asincróno de inducción doblemente alimentado. Durante todo instante de generación eléctrica, el generador va a trabajar con factor de potencia igual a la unidad, es decir, sin generar ni absorber potencia reactiva. De todos modos, este factor de potencia puede ser variable, pudiendo trabajar el generador entre un 0,94 capacitivo y un 0,95 inductivo.

Para velocidades de viento inferiores a los 2 m/s, el aerogenerador se mantendrá inactivo. A partir de los 2 m/s, el aerogenerador arrancará e irá obteniendo mayor potencia a medida que aumenta la velocidad del viento. A la velocidad de 12,5 m/s o velocidad nominal, el aerogenerador alcanza su pico de potencia, es decir, 2 MW. Para velocidades superiores a 12,5 m/s, el aerogenerador seguirá dando la misma potencia, es decir, la máxima de 2 MW, hasta llegar a la velocidad máxima de 25 m/s. Llegado a este punto, el aerogenerador dejará de funcionar por seguridad, evitando que las altas velocidades del viento puedan dañar cualquier parte de éste.
Es un aerogenerador de 3 palas, fabricadas en fibra de vidrio reforzada con resina epoxi. Ha sido diseñado y fabricado siguiendo las especificaciones de clase de turbina eólica II de la “IEC 61400-1”.

A partir de un sistema de orientación, montado directamente sobre el extremo superior de la torre y formado por engranajes, se orientará la góndola del aerogenerador a la dirección deseada.

La torre del aerogenerador estará construida con tubos troncocónicos de acero, y tendrá una altura de 85 metros. Estará dimensionada para las cargas que deberá soportar en el emplazamiento del parque.

Debido a la altura que tendrán los aerogeneradores, se consideran como obstáculos y deben señalizarse e iluminarse para que quede garantizada en todo momento la seguridad de la navegación aérea.

Para garantizar la iluminación de éstos y que queden bien señalizados, se va a instalar una baliza en cada aerogenerador, con un sistema dual, es decir, de mediana intensidad durante el día y de alta intensidad durante la noche.

Además, todos los aerogeneradores del parque estarán equipados con un sistema de pararrayos situado en la parte más alta y conectado a tierra, de forma que las descargas eléctricas atmosféricas se deriven sin producir ningún tipo de daño a las palas del rotor o a otros componentes del aerogenerador.

El transformador BT/MT (0,69/20 kV) equipado en cada uno de los aerogeneradores, estará dotado de protección de temperatura, protección de nivel, y protección de presión de aceite, con contactos de alarma y disparo.

8 ALINEACIÓN Y ORIENTACIÓN DE LOS AEROGENERADORES.

Los aerogeneradores de un parque eólico, habitualmente y si el terreno lo permite, se organizan en agrupaciones alineadas en dirección perpendicular a la componente más energética del viento (indicada por la rosa de vientos), denominadas alineaciones. La primera alineación es la que mayor recurso eólico recibe y por tanto con la que mayor producción se obtiene.

Si el terreno lo permite, los aerogeneradores se colocan en una sola alineación frente a la dirección predominante del viento. Con ello se intentan minimizar, en la medida de lo posible, las pérdidas energéticas por disposición de varias alineaciones. De no ser posible la colocación de todos los aerogeneradores del parque en una sola alineación, se dispondrán en dos o más alineaciones.

En caso de colocar los aerogeneradores en varias alineaciones, no se colocaría una alineación justo detrás de otra, sino que se colocarían al tresbolillo, tal y como se muestra en la “Figura 34”, con objeto de minimizar las “sombras” entre alineaciones.
El parque eólico del presente proyecto, está formado por 10 aerogeneradores iguales. Se ha decidido colocarlos todos en una misma alineación, ya que el terreno donde se va a ubicar el parque (“Sierra El Matutano”), es montañoso y con unas características que permiten disponer los 10 aerogeneradores en una sola alineación frente a la dirección predominante del viento, colocándolos todos ellos en la zona alta de la sierra.

Se trata de una gran ventaja, ya que el ancho de la montaña en dirección ”W-E” no permite la colocación de una segunda alineación, separada la distancia suficiente para evitar pérdidas energéticas significativas por sombras entre alineaciones, y que pueda estar a una altura considerable.

Por tanto, como el terreno lo permite, se van a colocar los 10 aerogeneradores del parque en una misma alineación en la dirección “N-S”, con ligeras desviaciones respecto a una línea recta, para así aprovechar siempre la parte alta de la sierra. Los 10 aerogeneradores van a estar orientados a la dirección predominante del viento, que en este caso es la “W”. Como se ha mencionado más arriba, la opción de una única alineación es la más eficiente de entre las posibilidades.

En la “Figura 35”, obtenida de la vista satélite de “Google Earth” y personalizada, se puede observar el camino que recorrerá la alineación de los diez aerogeneradores que formarán parte del parque eólico, con una longitud total de 3,1 kilómetros.

Esta alineación está enfrentada a la dirección predominante del viento “W”, y por ello discurre con la dirección “N-S”, ya que todos los aerogeneradores del parque estarán enfrentados a la dirección predominante del viento “W”.

Figura 34. Disposición de aerogeneradores en alineaciones contiguas.

Figura 35. Recorrido de la alineación de los 10 aerogeneradores del parque eólico.
Además, para mayor detalle, en la “Figura 36”, también obtenida de “Google Earth”, se puede observar el perfil de elevación del terreno por el que va a discurrir la alineación:

![Figura 36. Perfil de elevación del terreno.](image)

Toda la alineación, de principio a fin, discurre por una zona montañosa situada entre los 1100 y los 1200 metros sobre el nivel del mar, altura más que interesante para el presente proyecto. Viendo la “Figura 36”, a simple vista parece que hay pendientes abruptas en el recorrido de la alineación por la zona montañosa, aunque esto no es así. La distancia en el eje “X” es muy grande (3.100 metros), y por ello, en la realidad estas pendientes son muy suaves.

La distancia entre aerogeneradores contiguos va a ser mayor que 3 veces el diámetro del área barrida por las palas. Si hubiese más de una alineación, la distancia entre alineaciones debería ser mayor que 8 veces el diámetro del área barrida por las palas. De esta manera, se intentan minimizar las pérdidas por sombras entre alineaciones y entre turbinas de una misma alineación.

El aerogenerador elegido para el presente proyecto, tiene un diámetro del área barrida por las palas de 82 metros, por lo que la distancia entre los ejes de dos aerogeneradores contiguos será de **246 metros** como mínimo. Como el parque está formado por 10 aerogeneradores, la distancia mínima que ha de tener la única alineación del parque será de **2.214 metros**. Por tanto, con los 3.100 metros de longitud hay más que suficiente para los 10 aerogeneradores.

En la “Figura 37”, obtenida de la vista satélite de “Google Earth” y personalizada, se puede observar la ubicación exacta de cada uno de los aerogeneradores que conforman el parque.

![Figura 37. Ubicación de los 10 aerogeneradores que componen el parque eólico.](image)
Para comprobar que todos los aerogeneradores se encuentran ubicados en la parte alta de la montaña, y que no hay zonas montañosas u obstáculos más altos delante de las ubicaciones propuestas, se han trazado líneas en dirección “W-E” pasando por cada uno de los aerogeneradores. De esta forma, se puede obtener el perfil del terreno de cada una de estas líneas para comprobar que exactamente todos los aerogeneradores se han ubicado en la parte alta de la sierra y no tienen obstáculos delante.

En la “Figura 38”, obtenida de la vista satélite de “Google Earth” y personalizada, se puede ver el recorrido de estas líneas, con la dirección “W-E”, para la obtención de los perfiles del terreno en la dirección predominante del viento para cada aerogenerador.

Desde la “Figura 39” hasta la “Figura 48”, se pueden ver los diez perfiles del terreno obtenidos para cada aerogenerador del parque en la dirección “W-E”. Queda señalada con una línea vertical la posición de cada aerogenerador. Se puede comprobar como todos ellos se encuentran en la parte alta de la montaña y no tienen zonas más altas u obstáculos delante de ellos en la dirección predominante del viento.

![Figura 38. Líneas en dirección W-E para obtención de perfiles del terreno.](image1)

![Figura 39. Perfil del terreno dirección W-E aerogenerador 1.](image2)
Figura 40. Perfil del terreno dirección W-E aerogenerador 2.

Figura 41. Perfil del terreno dirección W-E aerogenerador 3.

Figura 42. Perfil del terreno dirección W-E aerogenerador 4.

Figura 43. Perfil del terreno dirección W-E aerogenerador 5.

Figura 44. Perfil del terreno dirección W-E aerogenerador 6.
9 PRODUCCIÓN NETA DEL PARQUE EÓLICO.

En el punto 7.3 “Energía obtenida”, se ha calculado la producción anual bruta de un solo aerogenerador “E82/2000”. Este valor es de 7.272,3 MWh/año. Por tanto, la producción anual bruta del parque eólico completo (10 aerogeneradores) es de:

- \[\text{Producción Anual Bruta Parque Eólico} = 72,723 \text{ MWh/año}. \]
Para la obtención de la producción anual neta del parque eólico, se han empleado una serie de coeficientes de pérdidas \((K_1 - K_7)\), obtenidos del libro “Manual de Energía Eólica” de “Salvador Cucó Pardillos”. A continuación se detallan todos estos coeficientes de pérdidas.

9.1 Pérdidas Por Sombras Entre Alineaciones.

El parque eólico va a estar formado por una única alineación orientada frente a la dirección más energética del viento “W-E”. Por este motivo, el coeficiente de pérdidas por sombras entre alineaciones se considera igual a 1.

\[
K_1 = 1
\]

En caso de 2 alineaciones, la primera recibe más recurso eólico que la segunda. Si fuera el caso, se consideraría un coeficiente de pérdidas habitual de 0,9 para una distancia entre alineaciones de 8 veces el diámetro de las palas.

9.2 Pérdidas Por Sombras Entre Turbinas de Una Misma Alineación.

Los 10 aerogeneradores del parque eólico van a estar separados entre sí una distancia mínima de 3 veces el diámetro de las palas.

Los aerogeneradores de una misma alineación interfieren entre sí, generando pérdidas en la producción energética. Debido a este motivo, se considera un coeficiente de pérdidas habitual de 0,995 para la distancia entre aerogeneradores de una misma alineación de 3 veces el diámetro de las palas.

\[
K_2 = 0,995
\]

9.3 Pérdidas Por Disponibilidad.

Otro tipo de pérdidas que también deben ser cuantificadas, son las pérdidas por paradas no deseadas de los aerogeneradores, debidas principalmente a averías.

Para estimar este tipo de pérdidas energéticas, se considera un coeficiente de pérdidas habitual del orden de 0,98.

\[
K_3 = 0,98
\]

9.4 Pérdidas Por Transformación y Transporte.

La energía eléctrica generada a pie de parque eólico (producción bruta), sufre unas pérdidas como consecuencia de procesos de elevación de tensión y transporte hasta la conexión a la red eléctrica.

La infraestructura de evacuación suele dimensionarse de forma que las pérdidas estén comprendidas entre el 2 y el 3\%, por lo que se va a considerar un coeficiente de pérdidas habitual del orden de 0,97 para estimar este tipo de pérdidas.
9.5 PÉRDIDAS POR MANTENIMIENTO DE LA SUBESTACIÓN.

También deben ser cuantificadas las pérdidas energéticas procedentes de faltas de vertido de la energía generada a la red eléctrica, debido a trabajos de mantenimiento en la subestación eléctrica de conexión a red.

Un valor habitual para el coeficiente de pérdidas por mantenimiento de la subestación suele ser 0,999.

\[K_5 = 0,999 \]

9.6 PÉRDIDAS POR CORTES DE SUMINISTRO.

Tras los periodos de calma (sin viento), cuando el viento se presenta, los aerogeneradores deben orientarse frente al viento, para lo cual necesitan consumir energía eléctrica para accionar los motoreductores que giran la turbina alrededor de su eje vertical.

Si en este momento no hubiera servicio eléctrico, se producen unas pérdidas que deben ser cuantificadas. En la actualidad, que se produzca este hecho es prácticamente imposible, por lo que suele tomarse un coeficiente de pérdidas del orden de la unidad para cuantificar este tipo de pérdidas.

\[K_6 = 1 \]

9.7 PÉRDIDAS POR AJUSTE DE LA CURVA DE POTENCIA.

Todos los cálculos realizados hasta el momento se basan en los valores de la curva de potencia de los aerogeneradores comerciales facilitados por los fabricantes. Sin embargo, estos valores suelen ser inferiores con la turbina en funcionamiento, por lo que se considera un coeficiente de pérdidas energéticas del orden de 0,98.

\[K_7 = 0,98 \]

9.8 COEFICIENTE DE FUNCIONAMIENTO DEL PARQUE.

Para obtener la producción neta del parque eólico, simplemente se debe multiplicar el coeficiente global de pérdidas energéticas (producto de todos los coeficientes de pérdidas) por la producción bruta del parque eólico obtenida anteriormente.

Multiplicando los siete coeficientes de pérdidas energéticas, se obtiene un coeficiente global de pérdidas de:

\[K_4 = 0,97 \]
\[K = K_1 \times K_2 \times K_3 \times K_4 \times K_5 \times K_6 \times K_7 = 0,926 \]

9.9 PRODUCCIÓN NETA.

Haciendo uso del coeficiente global de pérdidas calculado en el apartado anterior, la producción neta anual del parque eólico completo será de:

- \textit{Producción Neta Anual Parque Eólico} = 67.341,5 MWh/año.

10 INFRAESTRUCTURA ELÉCTRICA INTERIOR.

10.1 GENERALIDADES Y CIRCUITO TIPO DE M.T. DEL PARQUE.

La energía se genera a una tensión inferior a los 1000 voltios en bornes del generador situado en la góndola del aerogenerador. Esta energía hay que transportarla desde los aerogeneradores hasta la subestación del parque donde se realiza la inyección en la red de 132 kV.

Transportar la energía eléctrica a una tensión inferior a los 1000 voltios supone unas pérdidas inasumibles. Por ello, cada aerogenerador posee un transformador en su base para elevar la tensión desde los 400/690 V en bornes del generador, hasta valores en torno a los 20 kV (MT). De esta manera, se minimizan las pérdidas energéticas debidas al transporte interno del parque.

Las líneas eléctricas hasta la subestación del parque, por motivos ambientales y visuales, se van a realizar mediante líneas subterráneas enterradas en zanjas interiores al parque. Estas líneas subterráneas van a transportar la energía generada, desde los aerogeneradores hasta las celdas de línea situadas en el edificio de control de 20 kV de la subestación del parque.

En la “Figura 49”, obtenida de la vista satélite de “Google Earth” y personalizada, se puede observar el recorrido aproximado que tendrá la zanja interna del parque por donde van a discurrir las líneas subterráneas de la línea eléctrica interior. Además, con mayor grosor, se representa la zanja que conectará con la subestación eléctrica del parque (rectángulo azul).

\textbf{Figura 49. Recorrido zanjas internas parque eólico.}
La línea eléctrica interior del parque, va a estar formada por 5 circuitos. El “Circuito 1” recogerá la energía generada por el aerogenerador 1, entrará al aerogenerador 2 para recoger la energía generada por éste, y por último saldrá para circular hasta la primera celda de línea de la subestación. El “Circuito 2” recogerá la energía generada por el aerogenerador 3, entrará al aerogenerador 4 para recoger la energía generada por éste, y por último saldrá para circular hasta la segunda celda de línea de la subestación. Así sucesivamente con el resto de circuitos (“Circuito 3”: 5 - 6 - Subestación; “Circuito 4”: 8 - 7 - Subestación; “Circuito 5”: 10 - 9 - Subestación).

Del aerogenerador 1 saldrá un torno de cables unipolares (enterrados bajo tubo) en dirección al aerogenerador 2. Los cables entran y salen del aerogenerador 2 por medio de celdas de línea, y transportan la energía hasta la primera celda de línea de la subestación.

De la misma forma los otros 4 circuitos, transportando la energía desde los aerogeneradores hasta las correspondientes celdas de línea situadas en la subestación del parque.

Cada uno de los 5 circuitos, recoge la energía generada por 2 aerogeneradores del parque, y por tanto, recorre una distancia diferente por las zanjas internas al parque hasta la subestación.

En la “Tabla 15” se recogen las distancias entre aerogeneradores, las distancias entre el segundo aerogenerador de cada circuito y las celdas de línea de la subestación, y la distancia total que va a recorrer cada uno de los 5 circuitos.

<table>
<thead>
<tr>
<th>DISTANCIAS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aero1 - Aero2</td>
</tr>
<tr>
<td>Aero2 - Aero3</td>
</tr>
<tr>
<td>Aero3 - Aero4</td>
</tr>
<tr>
<td>Aero4 - Aero5</td>
</tr>
<tr>
<td>Aero5 - Aero6</td>
</tr>
<tr>
<td>Aero6 - Aero7</td>
</tr>
<tr>
<td>Aero7 - Aero8</td>
</tr>
<tr>
<td>Aero8 - Aero9</td>
</tr>
<tr>
<td>Aero9 - Aero10</td>
</tr>
<tr>
<td>Aero2 - 1ª Celda de Línea Subestación</td>
</tr>
<tr>
<td>Aero4 - 2ª Celda de Línea Subestación</td>
</tr>
<tr>
<td>Aero6 - 3ª Celda de Línea Subestación</td>
</tr>
<tr>
<td>Aero7 - 4ª Celda de Línea Subestación</td>
</tr>
<tr>
<td>Aero9 - 5ª Celda de Línea Subestación</td>
</tr>
</tbody>
</table>

Circuito 1	2.466,18
Circuito 2	1.848,84
Circuito 3	1.186,05
Circuito 4	1.426,37
Circuito 5	2.056,49

Tabla 15. Distancias circuitos eléctricos.

La recogida de energía en cada uno de los aerogenerador, se realiza en la base de los mismos mediante una serie de celdas modulares, de acuerdo con el esquema unifilar de la “Figura 50”. La energía recogida por cada uno de los 5 circuitos, es transportada mediante un torno de cables unipolares enterrados bajo tubo hasta la subestación del parque.

Los 5 circuitos se conectarán al embarrado común del edificio de control, mediante sus respectivas celdas modulares. Del embarrado, partirán dos líneas protegidas, una dirigida hacia el transformador de potencia de la subestación (132/20 kV), y otra dirigida hacia un
transformador de baja tensión (20/0,4 kV) para el abastecimiento de los servicios auxiliares, del alumbrado, de las tomas de corriente, etc.

En la “Figura 50” se muestra el esquema unifilar simplificado del “Circuito 1”, el cual será idéntico al resto de circuitos que componen la línea eléctrica interior del parque eólico.

![Diagrama de Circuito 1]

Figura 50. Esquema unifilar simplificado Circuito 1.

10.2 CÁLCULO DE INTENSIDADES NOMINALES.

Para el cálculo de las intensidades nominales que van a circular por los 5 circuitos de la instalación interior del parque, se ha empleado la siguiente expresión conocida (Fórmula 7):

\[I_n (A) = \frac{P_n}{\sqrt{3} \times U_n} \]

(7)

La tensión nominal \((U_n) \) de las líneas es de 20 kV. Dentro de la subestación, a la intemperie, se encuentra el transformador de potencia elevador de tensión, que elevará la tensión desde los 20 kV hasta los 132 kV para la conexión con la red eléctrica de 132 kV.

La potencia nominal \((P_n) \) depende del número de aerogeneradores de los que se recoge energía, y de la potencia unitaria de cada aerogenerador, que en este caso es de 2 MW.

Los 5 circuitos que conforman la línea eléctrica interior van a recoger energía de dos aerogeneradores, por lo que la potencia nominal a considerar es de 4 MW (4.000 kW), a excepción de los tramos entre el primer aerogenerador de cada circuito y el segundo, en los que la potencia nominal a considerar será de 2 MW (2.000 kW).

Por tanto, la intensidad nominal circulante en régimen permanente por los cinco circuitos (desde la salida del segundo aerogenerador del circuito hasta la celda de línea correspondiente de la subestación) será de:
\[I_n(A) = \frac{P_n}{\sqrt{3} \times U_n} = \frac{4.000 \, kW}{20 \, kV} = 200 \, A \]

La intensidad nominal circulante en régimen permanente por los cinco tramos entre aerogeneradores del mismo circuito será de:

\[I_n(A) = \frac{P_n}{\sqrt{3} \times U_n} = \frac{2.000 \, kW}{20 \, kV} = 100 \, A \]

10.3 CABLES EMPLEADOS EN LA LÍNEA INTERIOR DE M.T.

Para estos 5 circuitos, se van a emplear cables de media tensión (20 kV) de un fabricante muy reconocido a nivel mundial y con una dilatada experiencia en el sector como es “PRYSMIAN”.

Dentro de la gama de productos que este fabricante ofrece en sus catálogos, se ha centrado la búsqueda en cables aislados de media tensión (todos los circuitos internos del parque van enterrados), y se ha decidido emplear la tecnología de cable que se describe a continuación.

*Tecnología Eprotenax Compact:

Para la instalación interior del parque se ha decidido emplear esta tecnología de cable (Eprotenax Compact) debido a que presenta varias ventajas frente a otras tecnologías similares para la misma sección de cable. Alguna de estas ventajas se detallan a continuación:

- Mayor capacidad de transporte a igualdad de sección, debido al incremento de la temperatura de servicio de 90ºC a 105ºC.
- Menor diámetro exterior del cable, debido al incremento del gradiente de trabajo, y a la reducción del espesor del aislamiento.
- Mayor facilidad de instalación, por su mayor flexibilidad y menor peso y diámetro.
- Menor coste de la línea eléctrica.

Se trata de un tipo de cable con un aislamiento a base de etileno-propileno de alto módulo (HEPR) capaz de trabajar a un alto gradiente, lo que implica un menor espesor de aislamiento. Al poder trabajar a una temperatura de servicio de 105ºC, este tipo de cable tiene la posibilidad de transmitir mayor potencia que cualquier otro cable con la misma sección. Además, sus menores dimensiones comparadas con otros cables similares, hacen de él un cable más manejable, menos pesado y más fácil de transportar.

Dentro de la familia de cables de media tensión “Eprotenax Compact”, se van a emplear cables con conductor de aluminio, en concreto el modelo de cable “Al Eprotenax H Compact 12/20 kV”.
Cable “Al Eprotenax H Compact 12/20 kV”:

En el “punto 10.4” se define la tensión nominal que deben tener los cables a instalar en la línea eléctrica interior del parque, que en este caso es de 12/20 kV.

El cable seleccionado responde a la siguiente identidad:

- Designación Genérica: AL HEPRZ1.
- Tensión nominal: 12/20 kV (18/30 kV).
- Norma básica: UNE HD 620-9E.

En la “Figura 51”, obtenida del catálogo de cables y accesorios para media tensión de “PRYSMIAN”, se puede ver de forma visual el tipo de cable que se ha decidido emplear en las líneas interiores del parque.

![Figura 51. Cable “Al Eprotenax H Compact 12/20 kV”](image)

Además, a continuación se detallan todos sus componentes:

- **Conductor:** cuerda redonda compacta de hilos de aluminio (clase 2) según UNE EN 60228.
- **Semiconductor interno:** capa extrusionada de material conductor.
- **Aislamiento:** etileno-propileno de alto gradiente (HEPR, 105ºC).
- **Semiconductor externo:** capa extrusionada de material conductor separable en frío.
- **Pantalla metálica:** hilos de cobre en hélice con cinta de cobre a contraespira. Sección total de 16 mm².
- **Separador:** Cinta de poliéster.
- **Cubierta exterior:** poliolefina termoplástica.

10.4 NIVEL DE AISLAMIENTO DE LOS CABLES DE LA LINEA INTERIOR DE M.T.

En primer lugar, se debe seleccionar el nivel de aislamiento que deben tener los cables de la línea eléctrica interior del parque. La tensión nominal (Uₙ) de estos circuitos eléctricos es de 20 kV, siendo la tensión más elevada (Uₑ) de 24 kV.
El nivel de aislamiento del cable seleccionado debe ser apropiado para las condiciones de operación de la red en la que el cable va a ser instalado. Por tanto, para seleccionar el nivel de aislamiento de los cables de media tensión que van a formar parte de las líneas interiores del parque, se ha empleado la tabla que se muestra en la “Tabla 16”, que se corresponde con la “Tabla 2 de la ITC-LAT 06”.

Esta tabla distingue entre tensión nominal de la red (U_n), tensión más elevada de la red (U_s), y categoría de la red (A, B o C). Por tanto, el nivel de aislamiento para los cables de la instalación y para todos los accesorios debe tener el valor de U_s/U = 12/20 kV, lo que significa que el nivel de aislamiento de los cables ha de ser de 12 kV entre fase y pantalla y de 20 kV entre dos de las fases.

- Nivel de aislamiento entre fase y pantalla: 12 kV.
- Nivel de aislamiento entre fases: 20 kV.

<table>
<thead>
<tr>
<th>Tensión nominal de la red U_n</th>
<th>Tensión más elevada de la red U_s</th>
<th>Categoría de la red</th>
<th>Características mínimas del cable y accesorios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>U_s/U</td>
</tr>
<tr>
<td>3</td>
<td>3,6</td>
<td>A-B</td>
<td>1,8/3</td>
</tr>
<tr>
<td>6</td>
<td>7,2</td>
<td>C</td>
<td>3,6/6</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>A-B</td>
<td>6/10</td>
</tr>
<tr>
<td>15</td>
<td>17,5</td>
<td>A-B</td>
<td>8,7/15</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>A-B</td>
<td>12/20</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td>A-B</td>
<td>15/25</td>
</tr>
<tr>
<td>30</td>
<td>36</td>
<td>A-B</td>
<td>18/30</td>
</tr>
</tbody>
</table>

Tabla 16. Niveles de aislamiento de los cables y sus accesorios.

10.5 SECCIÓN DE LOS CABLES DE LA LÍNEA INTERIOR DE M.T.

En primer lugar, es necesario conocer la corriente máxima permanente que circulará por cada uno de los conductores de la instalación. Esta corriente ya ha sido calculada en el apartado 10.2, y tiene un valor de 200 A para los cinco circuitos que se dirigen hacia la subestación, y de 100 A para los tramos individuales, es decir, para las uniones entre dos aerogeneradores del mismo circuito.

Para determinar la sección necesaria que deben tener todos los conductores de la instalación, hasta las celdas de línea del edificio de control de 20 kV de la subestación, se han realizado cálculos en base a tres consideraciones o criterios:

- Intensidad máxima admisible por el cable en servicio permanente.
- Intensidad máxima admisible por el cable en cortocircuito durante un tiempo determinado.
- Caída de tensión en las líneas.
Conocida ya la intensidad máxima permanente que circulará por los conductores, el método que se aconseja seguir y el que se ha seguido es el siguiente:

1. Calcular la sección de los conductores según el “
2. Comprobar que las secciones seleccionadas cumplen con el “Criterio de Cortocircuito”.
3. Verificar que las secciones seleccionadas cumplen con el “Criterio de Caida de Tensión”.

Añadir a todo esto que se parte siempre de secciones de cable normalizadas por Iberdrola (10, 16, 25, 50, 95, 150, 240 mm²).

10.5.1 CRITERIO TÉRMICO

Mediante este criterio se han determinado las secciones mínimas necesarias que deben tener los conductores de la instalación, en base a la intensidad máxima admisible por calentamiento del tipo de cable seleccionado.

Para realizar los cálculos, se ha partido de las siguientes caracteristicas principales de la instalación:

- Intensidad circuitos: 200 A.
- Intensidad tramos individuales: 100 A.
- Cables “Al Eprotenax H Compact 12/20 kV” (aislamiento HEPR) enterrados bajo tubo (terno de cables unipolares).
-Temperatura del terreno a la profundidad de los conductores de 20°C.
- Resistividad térmica del terreno de 1 K-m/W.
- Agrupación de 1, 2, 3 o 5 circuitos en la misma zanja (explicación más abajo).
- Instalación enterrada a 1,25 metros de profundidad.

Para realizar cálculos se ha partido de una configuración y una disposición para los conductores en las zanjas. En la “Figura 52”, a modo de ejemplo, se representa la configuración y disposición que tendrán los conductores enterrados a 1,25 metros, en la zanja de conexión con la subestación, es decir, con los cinco circuitos de la instalación contiguos.

Este tramo es el más desfavorable, es decir, donde la agrupación de conductores es mayor que en cualquier otro tramo. En cualquier caso, todos los tramos donde coexistan más de un circuito por la misma zanja, la separación mínima entre ellos será de 0,4 metros.
El “RLAT” fija como estándares para tendidos subterráneos bajo tubo de media tensión las siguientes condiciones:

- Terno de cables unipolares enterrados bajo tubo.
- Temperatura del terreno de 25°C.
- Resistividad térmica del terreno de 1,5 K·m/W.
- Circuito único (sin influencia térmica de otros cables en el entorno).
- Profundidad de la instalación de 1 metro.

Para seleccionar las secciones adecuadas que deben tener los conductores de la instalación, se ha empleado la “Tabla 17”, correspondiente a la “Tabla 12 de la ITC-LAT 06” (intensidades máximas admisibles en servicio permanente y con corriente alterna; cables unipolares aislados de hasta 18/30 kV enterrados bajo tubo).

<table>
<thead>
<tr>
<th>Sección (mm²)</th>
<th>EPR</th>
<th>XLPE</th>
<th>HEPR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu</td>
<td>Al</td>
<td>Cu</td>
</tr>
<tr>
<td>25</td>
<td>115</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>35</td>
<td>135</td>
<td>105</td>
<td>145</td>
</tr>
<tr>
<td>50</td>
<td>160</td>
<td>125</td>
<td>170</td>
</tr>
<tr>
<td>70</td>
<td>200</td>
<td>155</td>
<td>205</td>
</tr>
<tr>
<td>95</td>
<td>235</td>
<td>185</td>
<td>245</td>
</tr>
<tr>
<td>120</td>
<td>270</td>
<td>210</td>
<td>280</td>
</tr>
<tr>
<td>150</td>
<td>305</td>
<td>235</td>
<td>315</td>
</tr>
<tr>
<td>185</td>
<td>345</td>
<td>270</td>
<td>355</td>
</tr>
<tr>
<td>240</td>
<td>400</td>
<td>310</td>
<td>415</td>
</tr>
<tr>
<td>300</td>
<td>450</td>
<td>355</td>
<td>460</td>
</tr>
<tr>
<td>400</td>
<td>510</td>
<td>405</td>
<td>520</td>
</tr>
</tbody>
</table>

Esta tabla recoge las intensidades máximas admisibles por los cables, según el tipo de aislamiento (EPR, XLPE o HEPR) y el material del conductor (Cu o Al), para las condiciones estándar fijadas por el “RLAT” que se han citado anteriormente.
Por tanto, como las características de la instalación del presente proyecto se desvían, en cierta medida, de las condiciones estándar fijadas por el “RLAT”, se debe hacer uso de unos coeficientes correctores de estas intensidades máximas admisibles proporcionadas por la tabla. Se ha empleado la siguiente expresión (Fórmula 8), donde I' es la intensidad máxima admisible por el cable, corregida ya por los coeficientes correctores:

$$I' = I_{\text{tabla}} * K_T * K_R * K_A * K_P \quad (8)$$

Estos cuatro coeficientes correctores (K_T, K_R, K_A, K_P) figuran en las “Tablas 7, 8, 10 y 11 de la ITC-LAT 06”. A continuación, se definen y se obtienen estos cuatro coeficientes, adaptados al presente proyecto:

• K_T: Coeficiente corrector para temperaturas del terreno distintas de 25°C:

En el presente proyecto, la temperatura media del terreno, a lo largo del año y a 1,25 metros de profundidad, es de aproximadamente 20°C. Además, la temperatura en servicio permanente del aislamiento HEPR es de 105°C. Para la obtención de este coeficiente corrector K_T, se ha empleado la “Tabla 18”, que se corresponde con la “Tabla 7 de la ITC-LAT 06” (factor de corrección para temperaturas del terreno distintas de 20°C):

![Tabla 18. Factor corrector para temperaturas del terreno distintas de 20°C.](image)

Por tanto, el coeficiente corrector para la temperatura del terreno de 20°C y para la temperatura en servicio permanente del HEPR de 105°C es de:

$$K_T(\theta_t = 20^\circC; \theta_s = 105^\circC) = 1,03$$

• K_R: Coeficiente corrector para resistencias térmicas del terreno distintas de 1,5 Km/W:

En primer lugar se ha empleado la “Tabla 19”, que se corresponde con la “Tabla 9 de la ITC-LAT 06” (resistividad térmica del terreno en función de su naturaleza y humedad), para obtener el valor de la resistividad del terreno, en el lugar donde va a estar ubicada la instalación.

En este caso, se trata de un terreno montañoso seco, por lo que se va a utilizar un valor de resistividad del terreno de 1 Km/W.
Con este dato de resistividad térmica del terreno y con la “Tabla 20”, que se corresponde con la “Tabla 8 de la ITC-LAT 06” (factor de corrección para resistividad térmica del terreno distinta de 1,5 Km/W), se ha obtenido el valor del coeficiente corrector correspondiente.

<table>
<thead>
<tr>
<th>Resistividad térmica del terreno (K.m/W)</th>
<th>Naturaleza del terreno y grado de humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,40</td>
<td>Inundado</td>
</tr>
<tr>
<td>0,50</td>
<td>Muy húmedo</td>
</tr>
<tr>
<td>0,70</td>
<td>Húmedo</td>
</tr>
<tr>
<td>0,85</td>
<td>Poco húmedo</td>
</tr>
<tr>
<td>1,00</td>
<td>Seco</td>
</tr>
<tr>
<td>1,20</td>
<td>Arcillosos muy secos</td>
</tr>
<tr>
<td>1,50</td>
<td>Arenoso muy seco</td>
</tr>
<tr>
<td>2,00</td>
<td>De piedra arenisca</td>
</tr>
<tr>
<td>2,50</td>
<td>De piedra caliza</td>
</tr>
</tbody>
</table>

Tabla 19. Resistividad térmica del terreno.

<table>
<thead>
<tr>
<th>Tipo de Instalación</th>
<th>Sección del conductor mm²</th>
<th>Resistividad térmica del terreno, K.m/W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,8</td>
<td>0,9</td>
</tr>
<tr>
<td>Cables directamente enterrados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1,25</td>
<td>1,20</td>
</tr>
<tr>
<td>35</td>
<td>1,25</td>
<td>1,21</td>
</tr>
<tr>
<td>50</td>
<td>1,26</td>
<td>1,25</td>
</tr>
<tr>
<td>70</td>
<td>1,27</td>
<td>1,22</td>
</tr>
<tr>
<td>95</td>
<td>1,28</td>
<td>1,22</td>
</tr>
<tr>
<td>120</td>
<td>1,28</td>
<td>1,22</td>
</tr>
<tr>
<td>150</td>
<td>1,28</td>
<td>1,23</td>
</tr>
<tr>
<td>185</td>
<td>1,29</td>
<td>1,23</td>
</tr>
<tr>
<td>240</td>
<td>1,29</td>
<td>1,23</td>
</tr>
<tr>
<td>300</td>
<td>1,30</td>
<td>1,24</td>
</tr>
<tr>
<td>400</td>
<td>1,30</td>
<td>1,24</td>
</tr>
</tbody>
</table>

Tabla 20. Factor corrector para resistividades térmicas del terreno distintas de 1,5 Km/W.

Por tanto, el coeficiente corrector para resistividad térmica del terreno de 1 Km/W y para las secciones indicadas es de:

\[K_R(35 - 95 \, \text{mm}^2) = 1,09 \]
\[K_R(120 - 400 \, \text{mm}^2) = 1,10 \]
• K_a: Coeficiente corrector para agrupación de conductores en la misma zanja:

Este coeficiente depende de la disposición de los conductores en las zanjas de la instalación. Se ha obtenido de la “Tabla 21”, que se corresponde con la “Tabla 10 de la ITC-LAT 06” (factor de corrección por distancia entre ternos o cables tripolares).

<table>
<thead>
<tr>
<th>Tipo de instalación</th>
<th>Separación de los ternos</th>
<th>Número de ternos de la zanja</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>En contacto (d=0 cm)</td>
<td>2</td>
</tr>
<tr>
<td>Cables directamente enterrados</td>
<td></td>
<td>0,76</td>
</tr>
<tr>
<td></td>
<td>d = 0,2 m</td>
<td>0,82</td>
</tr>
<tr>
<td></td>
<td>d = 0,4 m</td>
<td>0,86</td>
</tr>
<tr>
<td></td>
<td>d = 0,6 m</td>
<td>0,88</td>
</tr>
<tr>
<td></td>
<td>d = 0,8 m</td>
<td>0,90</td>
</tr>
<tr>
<td>Cables bajo tubo</td>
<td>En contacto (d=0 cm)</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td>d = 0,2 m</td>
<td>0,83</td>
</tr>
<tr>
<td></td>
<td>d = 0,4 m</td>
<td>0,87</td>
</tr>
<tr>
<td></td>
<td>d = 0,6 m</td>
<td>0,89</td>
</tr>
<tr>
<td></td>
<td>d = 0,8 m</td>
<td>0,90</td>
</tr>
</tbody>
</table>

Tabla 21. Factor corrector por distancia entre ternos o cables tripolares.

Para los conductores que parten del segundo aerogenerador de cada uno de los cinco circuitos de la instalación (A2, A4, A6, A7, A9), hacia las celdas de línea de la subestación, se va a considerar una agrupación de circuitos en la misma zanja de 5 (caso más desfavorable).

En este caso, el coeficiente corrector por agrupamiento de circuitos en la misma zanja toma el valor de 0,74.

Por otro lado, para los conductores individuales que van desde el primer aerogenerador de cada circuito hacia el segundo, nos encontramos con varios casos de agrupación:

• Conductor Aero1 – Aero2 --> 1 solo circuito por la zanja.
• Conductor Aero3 – Aero4 --> Agrupación de 2 circuitos por la zanja.
• Conductor Aero5 – Aero6 --> Agrupación de 3 circuitos por la zanja.
• Conductor Aero8 – Aero7 --> Agrupación de 2 circuitos por la zanja.
• Conductor Aero10 – Aero9 --> 1 solo circuito por la zanja.

En los dos casos donde coexiste un solo circuito en la zanja (A1-A2 y A10-A9), se ha aplicado un coeficiente corrector igual a 1, ya que se trata de un único circuito circulando por la zanja y no está influenciado por ningún otro.

En los dos casos donde coexisten 2 circuitos en la zanja (A3-A4 y A8-A7), se ha aplicado un coeficiente corrector igual a 0,87.

Por último, en el caso donde coexisten 3 circuitos en la zanja (A5-A6), se ha aplicado un coeficiente corrector igual a 0,80.
Por tanto, los coeficientes correctores por agrupación de conductores en la misma zanja son:

\[
\begin{align*}
K_A(\text{CIRCUITOS}) &= 0.74 \\
K_A(A1 - A2 ; A10 - A9) &= 1 \\
K_A(A3 - A4 ; A8 - A7) &= 0.87 \\
K_A(A5 - A6) &= 0.80
\end{align*}
\]

- **\(K_P\): Coeficiente corrector para profundidades distintas de 1 metro:**

Las zanjas por donde van a discurrir los conductores de la instalación se van a realizar de una profundidad suficiente para que los tubos queden por debajo de 1,25 metros de profundidad.

La “Tabla 22”, que se corresponde con la “Tabla 11 de la ITC-LAT 06” (factor de corrección para profundidades de instalación distintas de 1 metro), se ha empleado para obtener este coeficiente corrector.

<table>
<thead>
<tr>
<th>Profundidad (m)</th>
<th>Cables enterrados de sección</th>
<th>Cables bajo tubo de sección</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 185 mm²</td>
<td>> 185 mm²</td>
</tr>
<tr>
<td>0,50</td>
<td>1,06</td>
<td>1,09</td>
</tr>
<tr>
<td>0,60</td>
<td>1,04</td>
<td>1,07</td>
</tr>
<tr>
<td>0,80</td>
<td>1,02</td>
<td>1,03</td>
</tr>
<tr>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>1,25</td>
<td>0,98</td>
<td>0,98</td>
</tr>
<tr>
<td>1,50</td>
<td>0,97</td>
<td>0,96</td>
</tr>
<tr>
<td>1,75</td>
<td>0,96</td>
<td>0,94</td>
</tr>
<tr>
<td>2,00</td>
<td>0,95</td>
<td>0,93</td>
</tr>
<tr>
<td>2,50</td>
<td>0,93</td>
<td>0,91</td>
</tr>
<tr>
<td>3,00</td>
<td>0,92</td>
<td>0,89</td>
</tr>
</tbody>
</table>

Tabla 22. Factor corrector para profundidades distintas de 1 m.

Por tanto, en este caso, el coeficiente corrector para profundidad de instalación de 1,25 metros es de:

\[
K_P(1,25 \, m, \text{Cables bajo tubo}) = 0.98
\]

Partiendo de estos cuatro coeficientes correctores, de las intensidades admisibles por los cables para secciones normalizadas de la “Tabla 12 de la ITC-LAT 06” (“Tabla 17”), y de las intensidades que circularán por los conductores en régimen permanente, se han obtenido las secciones adecuadas para cada uno de estos conductores por el criterio de calentamiento.

Las secciones normalizadas para el tipo de cable seleccionado son: 95, 150, 240 y 400 mm². Por tanto, los cálculos parten de una sección de 95 mm² y si no cumple, entonces se pasa a la sección de 150 mm² y así sucesivamente.
En primer lugar, se han calculado los coeficientes correctores globales para cada uno de los casos. Estos coeficientes se muestran en la “Tabla 23”.

<table>
<thead>
<tr>
<th>Circuitos A2, A4, A6, A7 y A9 - Celdas</th>
<th>K_t</th>
<th>$K_u (95 \text{ mm}^2)$</th>
<th>$K_u (>95 \text{ mm}^2)$</th>
<th>K_a</th>
<th>K_o</th>
<th>$K (95 \text{ mm}^2)$</th>
<th>$K (>95 \text{ mm}^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuitos A1-A2; A10-A9</td>
<td>1,03</td>
<td>1,09</td>
<td>1,11</td>
<td>0,74</td>
<td>0,98</td>
<td>0,81</td>
<td>0,82</td>
</tr>
<tr>
<td>Circuitos A3-A4; A8-A7</td>
<td>1,03</td>
<td>1,09</td>
<td>1,11</td>
<td>0,87</td>
<td>0,98</td>
<td>0,96</td>
<td>0,97</td>
</tr>
<tr>
<td>Circuito A5-A6</td>
<td>1,03</td>
<td>1,09</td>
<td>1,11</td>
<td>0,8</td>
<td>0,98</td>
<td>0,88</td>
<td>0,89</td>
</tr>
</tbody>
</table>

Tabla 23. Coeficientes correctores globales.

A partir de estos datos, se ha obtenido la sección mínima necesaria para cada uno de los conductores, según este criterio de calentamiento. El procedimiento adoptado para la obtención de las secciones mínimas necesarias por calentamiento, se muestra en las “Tablas 24, 25, 26 y 27”.

Tabla 24. Sección mínima necesaria por calentamiento circuitos A2, A4, A6, A7 y A9 – Celdas de línea.

<table>
<thead>
<tr>
<th>Circuitos A2, A4, A6, A7 y A9 - Celdas</th>
<th>Intensidad Régimen Permanente (A)</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección (mm²)</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Intensidad Tabla 12 (A)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Intensidad Tabla 12 Corregida (A)</td>
<td>162,8</td>
<td>< 200 NO CUMPLE</td>
</tr>
<tr>
<td>Sección (mm²)</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Intensidad Tabla 12 (A)</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Intensidad Tabla 12 Corregida (A)</td>
<td>209,5</td>
<td>> 200 CUMPLE</td>
</tr>
</tbody>
</table>

Tabla 25. Sección mínima necesaria por calentamiento circuitos A1-A2 y A10-A9.

<table>
<thead>
<tr>
<th>Circuitos A1-A2; A10-A9</th>
<th>Intensidad Régimen Permanente (A)</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección (mm²)</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Intensidad Tabla 12 (A)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Intensidad Tabla 12 Corregida (A)</td>
<td>220,0</td>
<td>> 100 CUMPLE</td>
</tr>
</tbody>
</table>

Tabla 26. Sección mínima necesaria por calentamiento circuitos A3-A4 y A8-A7.

<table>
<thead>
<tr>
<th>Circuitos A3-A4; A8-A7</th>
<th>Intensidad Régimen Permanente (A)</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección (mm²)</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Intensidad Tabla 12 (A)</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Intensidad Tabla 12 Corregida (A)</td>
<td>191,4</td>
<td>> 100 CUMPLE</td>
</tr>
</tbody>
</table>

Tabla 27. Sección mínima necesaria por calentamiento circuito A5-A6.
Por tanto, las secciones mínimas necesarias por calentamiento para los conductores de media tensión de la instalación son:

- Circuitos A2, A4, A6, A7 y A9 – Celdas de Línea Subestación: **150 mm² (Al).**
- Circuitos A1-A2 y A10-A9: **95 mm² (Al).**
- Circuitos A3-A4 y A8-A7: **95 mm² (Al).**
- Circuito A5-A6: **95 mm² (Al).**

10.5.2 COMPROBACIÓN DE LAS SECCIONES POR CRITERIO DE CORTOCIRCUITO.

A continuación se comprueba si las secciones obtenidas por el “**Criterion Térmico**” soportan el cortocircuito máximo previsto en la instalación. Para ello, se ha recurrido en primer lugar a la “**Tabla 28**”, que se corresponde con la “**Tabla 26 de la ITC-LAT 06”**.

En esta tabla aparecen los valores máximos de densidad de corriente (A/mm²) en función del tiempo de duración del cortocircuito y del tipo de aislamiento del cable empleado, para conductores de aluminio.

<table>
<thead>
<tr>
<th>Tipo de aislamiento</th>
<th>Δθ* (K)</th>
<th>Duración del cortocircuito, tcc, en segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC:</td>
<td></td>
<td>0,1 0,2 0,3 0,5 0,6 1,0 1,5 2,0 2,5 3,0</td>
</tr>
<tr>
<td>sección ≤ 300 mm²</td>
<td>90</td>
<td>240 170 138 107 98 76 62 53 48 43</td>
</tr>
<tr>
<td>sección > 300 mm²</td>
<td>70</td>
<td>215 152 124 96 87 68 55 48 43 39</td>
</tr>
<tr>
<td>XLPE, EPR y HEPR</td>
<td>160</td>
<td>298 211 172 133 122 94 77 66 59 54</td>
</tr>
<tr>
<td>HEPR U0/U1 18/30 kV</td>
<td>145</td>
<td>281 199 162 126 115 89 73 63 56 51</td>
</tr>
</tbody>
</table>

Tabla 28. Valores máximos de densidad de corriente para conductores de aluminio.

La **“Normativa Particular de Iberdrola”** indica que, para tensiones hasta 24 kV, la intensidad de cortocircuito trifásico **durante 1 segundo** tiene un valor máximo de **12,5 kA**.

Por tanto, habrá que comprobar que las secciones de cable seleccionadas por criterio de calentamiento, aguantan los 12,5 kA durante 1 segundo de tiempo.

De la “**Tabla 28”**, se obtiene el valor de densidad de corriente máxima admisible para el cable seleccionado (HEPR U0/U ≤ 18/30 kV), y para una duración del cortocircuito de 1 segundo. En este caso, tiene un valor de **89 A/mm²**.

Multiplicando este valor por las secciones de cable seleccionadas anteriormente, se obtiene la intensidad máxima admisible por esa sección de cable frente a cortocircuitos, la cual debe ser mayor que la máxima intensidad de cortocircuito de 12,5 kA. De lo contrario, se aumenta la sección hasta dar con la primera que cumpla.

- Circuitos A2, A4, A6, A7 y A9 – Celdas de Línea Subestación (sección de cable de partida de 150 mm²):

\[
\frac{89}{mm^2} \times 150 \ mm^2 = 13.350 \ A > 12.500 \ A \quad \text{CUMPLE}
\]
• Circuitos A1-A2, A3-A4, A5-A6, A8-A7 y A10-A9 (sección de cable de partida de 95 mm2):

\[
89 \frac{A}{mm^2} \times 95 \text{ mm}^2 = 4.895 \text{ A } < 12.500 \text{ A } \quad \text{NO CUMPLE}
\]

\[
89 \frac{A}{mm^2} \times 150 \text{ mm}^2 = 13.350 \text{ A } > 12.500 \text{ A } \quad \text{CUMPLE}
\]

Tras comprobar las secciones por criterio de cortocircuito, la sección mínima necesaria que deben tener todos los conductores de la instalación eléctrica interior de media tensión, es de 150 mm2 (Al).

10.5.3 COMPROBACIÓN DE LAS SECCIONES POR CRITERIO DE CAÍDA DE TENSIÓN.

El criterio de caída de tensión en líneas subterráneas, rara vez es el más restrictivo a la hora de determinar las secciones necesarias de los conductores, y por ello se comprueba en último lugar. A menos que se trate de líneas de gran longitud, suele ser de poca importancia.

Las siguientes características de la instalación son de vital importancia para llevar a cabo los cálculos necesarios en este último criterio de caída de tensión:

• Intensidad Circuitos: 200 A (circuitos) y 100 A (conductores individuales).
• Cables unipolares “Al Eprotenax H Compact” (aislamiento HEPR) enterrados bajo tubo (terno de cables).
• Longitud de los circuitos: ver “Figura 59” del apartado 10.1.
• Tensión de las líneas: 20 kV.
• $\cos (\varphi) = 1$. El factor de potencia de todos los aerogeneradores del parque, permanecerá en todo instante de generación igual a 1, aunque existirá la posibilidad de que pueda variar entre 0,94 capacitivo y 0,95 inductivo. Esto es posible debido a que se trata de aerogeneradores asíncronos.

Con un sencillo cálculo, se puede obtener la caída de tensión máxima que habrá en una línea cualquiera. El valor aproximado de la caída de tensión para un sistema trifásico se ha obtenido empleando la siguiente expresión (Fórmula 9):

\[
\Delta U = \sqrt{3} \times L \times I \times \left(R \times \cos(\varphi) + X \times \sin(\varphi) \right) \quad (9)
\]

donde,

• ΔU es la caída de tensión en V.
• L es la longitud de la línea en km.
• I es la intensidad de corriente que recorre la línea en A.
• R es la resistencia del conductor en Ω/km.
• X es la reactancia del conductor en Ω/km.
Los valores de “R” y de “X” han sido obtenidos del propio catálogo del fabricante:

- Resistencia a la frecuencia de 50 Hz (105°C) para cables “Al Eprotenax H Compact” unipolares:
 \[R (150 \text{ mm}^2) = 0,277 \, \Omega/\text{km}. \]

- Reactancia a la frecuencia de 50 Hz, Cables “Al Eprotenax H Compact” unipolares:
 \[X (150 \text{ mm}^2) = 0,110 \, \Omega/\text{km}. \]

Los resultados obtenidos para las caídas de tensión en las líneas de la instalación, vienen dadas en la siguiente tabla que aparece en la “Tabla 29”:

<table>
<thead>
<tr>
<th>Circuito</th>
<th>Longitud (km)</th>
<th>Intensidad Régimen Permanente (A)</th>
<th>Resistencia Conductor (Ω/km)</th>
<th>Reactancia Conductor (Ω/km)</th>
<th>cos φ</th>
<th>sen φ</th>
<th>cos φ/sen φ</th>
<th>ΔU (V)</th>
<th>ΔU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuito A1</td>
<td>2,10501</td>
<td>200</td>
<td>0,277</td>
<td>0,110</td>
<td>1</td>
<td>0</td>
<td>0,277</td>
<td>201,80</td>
<td>1,01</td>
</tr>
<tr>
<td>Circuito A2</td>
<td>1,44687</td>
<td>200</td>
<td>0,277</td>
<td>0,110</td>
<td>1</td>
<td>0</td>
<td>0,277</td>
<td>138,64</td>
<td>0,69</td>
</tr>
<tr>
<td>Circuito A3</td>
<td>0,78401</td>
<td>200</td>
<td>0,277</td>
<td>0,110</td>
<td>1</td>
<td>0</td>
<td>0,277</td>
<td>75,23</td>
<td>0,38</td>
</tr>
<tr>
<td>Circuito A4</td>
<td>1,56934</td>
<td>200</td>
<td>0,277</td>
<td>0,110</td>
<td>1</td>
<td>0</td>
<td>0,277</td>
<td>100,15</td>
<td>0,50</td>
</tr>
<tr>
<td>Circuito A5</td>
<td>1,00233</td>
<td>200</td>
<td>0,277</td>
<td>0,110</td>
<td>1</td>
<td>0</td>
<td>0,277</td>
<td>162,95</td>
<td>0,61</td>
</tr>
<tr>
<td>Circuito A6</td>
<td>0,68527</td>
<td>100</td>
<td>0,277</td>
<td>0,110</td>
<td>1</td>
<td>0</td>
<td>0,277</td>
<td>17,42</td>
<td>0,09</td>
</tr>
<tr>
<td>Circuito A7</td>
<td>0,40297</td>
<td>100</td>
<td>0,277</td>
<td>0,110</td>
<td>1</td>
<td>0</td>
<td>0,277</td>
<td>19,38</td>
<td>0,10</td>
</tr>
<tr>
<td>Circuito A8</td>
<td>0,40204</td>
<td>100</td>
<td>0,277</td>
<td>0,110</td>
<td>1</td>
<td>0</td>
<td>0,277</td>
<td>19,29</td>
<td>0,10</td>
</tr>
<tr>
<td>Circuito A9</td>
<td>0,38263</td>
<td>100</td>
<td>0,277</td>
<td>0,110</td>
<td>1</td>
<td>0</td>
<td>0,277</td>
<td>18,96</td>
<td>0,09</td>
</tr>
</tbody>
</table>

Tabla 29. Caídas de tensión en las líneas de la instalación.

Se puede observar que la máxima caída de tensión se da en el circuito que va desde el aerogenerador 2 hasta la primera celda de línea de la subestación, ya que se trata del circuito de mayor recorrido. De todos modos, la caída de tensión es del 1,01% de la tensión nominal de la línea (20 kV), por lo que no hay ningún tipo de problema en emplear las secciones ya calculadas.

Por tanto, tras comprobar los tres criterios, la sección de todos los conductores de la instalación interior de media tensión del parque eólico será de **150 mm²** (Al).

SECCIÓN CABLES MT INSTALACIÓN ELÉCTRICA INTERIOR = 150 mm²

10.6 CELDAS MODULARES DE MT EN LA BASE DE LOS AEROGENERADORES

En el interior y en la base de cada uno de los aerogeneradores del parque, se van a colocar celdas modulares de media tensión con aislamiento integral en gas SF₆, equipadas con la aparataje de protección y maniobra necesaria en cada caso. Estas celdas serán del fabricante “Ormazabal Velatia”.

Los tipos de celdas modulares a instalar en los aerogeneradores son:

- **Celda modular de línea**: equipada con un interruptor-seccionador de 3 posiciones, cerrado, abierto o puesto a tierra. Estas celdas son como la que se muestra en la
“Figura 53”, y sus características eléctricas, en base a la normativa internacional IEC, se detallan en la “Tabla 30”.

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS ELÉCTRICAS (IEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión asignada: 500 (kV)</td>
</tr>
<tr>
<td>Frecuencia asignada: 50 (Hz)</td>
</tr>
<tr>
<td>Corriente asignada: 1000 (A)</td>
</tr>
<tr>
<td>Interconexión general de embarcados y celdas: 12 (kA)</td>
</tr>
<tr>
<td>Línea: 12 (kA)</td>
</tr>
<tr>
<td>Tensión asignada de corta duración soportada a frecuencia industrial (1 s): 50 (kV)</td>
</tr>
<tr>
<td>A través de la distancia de seccionamiento: 60 (kV)</td>
</tr>
<tr>
<td>Tensión soportada asignada a impulso tipo rayo: 125 (kV)</td>
</tr>
<tr>
<td>A través de la distancia de seccionamiento: 145 (kV)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERRUPTOR-SECCIONADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente admisible asignada de corta duración (ciclo principal): 15 / 20 (1/3 s) / 25 (1 s)</td>
</tr>
<tr>
<td>Valor de pico: 12 (kA)</td>
</tr>
<tr>
<td>Poder de corte de corriente principalmente activa: 400 (kA)</td>
</tr>
<tr>
<td>Poder de corte - carga de cable - poder de corte carga de línea: 50 (kA)</td>
</tr>
<tr>
<td>Poder de corta bucle cerrado: 120 (kA)</td>
</tr>
<tr>
<td>Poder de corta de falla a tierra: 40 (kA)</td>
</tr>
<tr>
<td>Poder de corta de cables y líneas en vacío en condiciones de falla a tierra: 100 (kA)</td>
</tr>
<tr>
<td>Corriente de comutación de magnetización del transformador: 25 (kA)</td>
</tr>
<tr>
<td>Categoría del interruptor: 1000 M-1 / 5000 M-2</td>
</tr>
<tr>
<td>Códigos de manómetros (cierres de cortocircuito) - clase: 9-25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECCIONADOR DE PUESTA A TIERRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corriente admisible asignada de corta duración (ciclo de tierra): 15 / 20 (1/3 s) / 25 (1 s)</td>
</tr>
<tr>
<td>Valor de pico: 12 (kA)</td>
</tr>
<tr>
<td>Poder de cierre del seccionador de puesta a tierra: 120 (kA)</td>
</tr>
<tr>
<td>Categoría del seccionador de puesta a tierra: 1000 M-1 / 5000 M-2</td>
</tr>
<tr>
<td>Códigos de manómetros (cierres de cortocircuito) - clase: 9-25</td>
</tr>
</tbody>
</table>

Tabla 30. Características eléctricas celda modular de línea.

- **Celda modular de protección con fusibles**: equipada con un interruptor-seccionador de 3 posiciones: cerrado, abierto o puesto a tierra y protección con fusibles limitadores para la turbina. Estas celdas son como la que se muestra en la “Figura 54”, y sus características eléctricas, en base a la normativa internacional IEC, se detallan en la “Tabla 31”.

62

Tabla 31. Características eléctricas celda modular de protección con fusibles.

Los fusibles limitadores que incorporan estas celdas modulares son como los que se muestran en la “Figura 55”, obtenida del catálogo de “Ormaezabal Velatia”, uno por fase.

Figura 55. Fusibles media tensión.

Según la normativa internacional IEC, para una tensión nominal de la línea de 20 kV y una potencia nominal del transformador de la turbina sin sobrecarga de 2.000 kVA, la intensidad asignada que han de tener los fusibles 10/24 kV es de 125 A.
En los aerogeneradores 1, 3, 5, 8 y 10, se van a instalar celdas modulares con un módulo de protección con fusibles para la turbina y un módulo de salida de línea.

El esquema unifilar simplificado de estas celdas modulares compuestas por 2 módulos, se muestra en la “Figura 56”.

![Figura 56. Esquema unifilar celda modular aerogeneradores 1, 3, 5, 8 y 10.]

En los aerogeneradores 2, 4, 6, 7 y 9, se van a instalar celdas modulares con un módulo de protección con fusibles para la turbina y con 2 módulos de línea, uno para la entrada de la línea procedente de la turbina anterior de su mismo circuito, y otro para la salida de la línea hacia la subestación.

El esquema unifilar simplificado de estas celdas modulares compuestas por 3 módulos, se muestra en la “Figura 57”.

![Figura 57. Esquema unifilar celda modular aerogeneradores 2, 4, 6, 7 y 9.]

Además de las celdas modulares de línea y de protección con fusibles, en la base de cada aerogenerador se dispondrá también de celdas modulares de medida con aislamiento en aire, equipadas con sus correspondientes transformadores de corriente y tensión.

Estas celdas son como la que se muestra en la “Figura 58”, y sus características eléctricas de mayor importancia se detallan en la “Tabla 32”.

64
Los 5 circuitos eléctricos de la línea interior, finalizan su recorrido en el edificio de control de 20 kV de la subestación del parque. Lo hacen a través de celdas modulares de media tensión con aislamiento en gas SF6, ubicadas en el interior del edificio. Estas celdas van equipadas con la aparataje de protección y maniobra necesaria en cada caso, y también serán del fabricante “Ormazabal Velatia”.

En la “Figura 59” aparece un esquema simplificado, con la distribución aproximada de celdas modulares en el edificio de control de 20 kV de la subestación. Las tipos de celdas que aparecen en la figura son:

- Celdas modulares de línea con interruptor-seccionador de tres posiciones para las entradas de los cinco circuitos.
- Celdas modulares de protección con interruptor automático para los cinco circuitos.
- Celdas modulares de remonte de cables para la conexión de los cinco circuitos al embarrado superior.
- Celda modular de protección con interruptor automático para la línea dirigida hacia el transformador de potencia.
- Celda modular de protección con fusibles para la línea dirigida hacia el transformador de baja tensión para servicios auxiliares.
- Celdas modulares de medida para las 2 líneas de salida.
- Celda modular de línea con interruptor-seccionador de tres posiciones para la salida de la línea dirigida hacia el transformador de potencia.
• **Celdas modulares de línea para las entradas de los 5 circuitos**: celdas equipadas con interruptor-seccionador de 3 posiciones, cerrado, abierto o puesto a tierra, idénticas a las celdas que se van a colocar en la base de los aerogeneradores (*Figura 53* y *Tabla 30*).

• **Celdas modulares de protección para los 5 circuitos**: celdas equipadas con un interruptor automático de corte en vacío de 3 posiciones, como la que se muestra en la “*Figura 60*”. Sus características eléctricas, en base a la normativa internacional IEC, se detallan en la “*Tabla 33*”.

Figura 60. Celda modular de protección con interruptor automático, con aislamiento en gas SF6.
Tabla 33. Características eléctricas celda modular de protección con interruptor automático.

- **Celdas modulares de remonte de cables para los 5 circuitos**: únicamente tienen la función de conducir los cables de los cinco circuitos hacia el embarrado superior para realizar sus conexiones. Estas celdas son como la que se muestra en la “Figura 61” y sus características eléctricas de mayor importancia se citan en la “Tabla 34”.

Figura 61. Celda modular de remonte de cables.

Tabla 34. Características eléctricas celda modular de remonte de cables.
• **Celda modular de protección para la línea del transformador de potencia:** celda equipada con un interruptor automático de corte en vacío de 3 posiciones. Celda idéntica a las celdas de protección de los 5 circuitos (*Figura 60 y Tabla 33*), con la diferencia del interruptor automático a instalar en esta celda.

El interruptor automático que se va a colocar en esta celda es de mayor tamaño que el de las celdas para los 5 circuitos. La corriente en régimen permanente por esta celda tiene un valor de 1.000 A, mientras que por las celdas de protección de los 5 circuitos circulan corrientes de 200 A.

Por ello, el interruptor automático a instalar en esta celda tendrá un **poder de corte** de **1.250 A**. En caso de que la corriente en régimen permanente fuese mayor a 1.000 A, se dividiría la línea de salida hacia el transformador de potencia en varias líneas. Se debería hacer de esta forma, ya que no hay interruptores automáticos con poder de corte mayor a 1.250 A para media tensión.

• **Celda modular de protección para la línea del transformador de SSAA:** celda equipada con un interruptor-seccionador de 3 posiciones y protección con fusibles limitadores para el transformador de baja tensión para SSAA. Esta celda es como la celda de protección de las turbinas en la base de los aerogeneradores (*Figura 54 y Tabla 31*), con la diferencia de los fusibles que incorporan.

Para una tensión nominal de la línea de 20 kV y una potencia asignada para el transformador de SSAA de 400 kVA, se van a incorporar fusibles con una **corriente asignada** de **25 A** en esta celda.

• **Celdas modulares de medida para las 2 líneas de salida:** celdas equipadas con los correspondientes transformadores de tensión y de corriente para realizar las medidas necesarias para realizar el control. Son celdas modulares de medida, iguales que las que se colocarán en cada aerogenerador (*Figura 58 y Tabla 32*), solo que con los equipos adecuados para realizar la medida en cada uno de los 2 circuitos de salida.

• **Celda modular de línea para la línea del transformador de potencia:** celda equipada con interruptor-seccionador de 3 posiciones: cerrado, abierto o puesto a tierra. Celda idéntica a las demás celdas de línea (*Figura 53 y Tabla 30*), con la diferencia del interruptor-seccionador de puesta a tierra a instalar.

En este caso la corriente nominal de la línea es de 1000 A, mientras que en los casos anteriores era de 200 A. Por ello, en esta celda, se va a instalar un interruptor-seccionador de tres posiciones con un poder de corte de **1.250 A**.
10.8 PROTECCIÓN CONTRA RAYOS PARA LOS AEROGENERADORES.

La parte más alta de los 10 aerogeneradores del parque, se encuentran a una altura considerable sobre la cota cero del terreno, en concreto la altura del buje es de 85 metros sobre el suelo.

Se sabe que el riesgo que posee un aerogenerador para ser impactado por un rayo, se incrementa en función de su altura de forma cuadrática. Por ello, se van a tomar una serie de medidas para proteger las turbinas eólicas contra el impacto directo de rayos y contra los efectos secundarios que estos pueden llegar a provocar.

Se va a instalar un sistema de protección, el cual va a combinar puntas captadoras, conductores bajantes, y el propio sistema de puesta a tierra. Con ello, se pretende proteger los aerogeneradores contra efectos mecánicos destructivos y contra la posibilidad de fuego. Este sistema aparece representado en la “Figura 62”.

![Figura 62. Sistema de protección contra el rayo en un aerogenerador.](image)

En cada aerogenerador se va a instalar un anillo de 11 metros de diámetro, es decir un anillo con un diámetro 6 metros mayor al diámetro de la base de la torre (5 metros), alrededor de la torre y a una profundidad de 0,8 metros.

Además, combinados con el anillo, se colocarán 4 electrodos verticales de 2 metros de longitud, con objeto de disminuir el valor de resistencia de puesta a tierra. A cada uno de estos anillos, también se va a interconectar el entramado metálico de los cimientos de cada uno de los aerogeneradores.

Por tanto, cada aerogenerador posee 1 punta captadora en su parte más alta, un conductor de bajante, y el anillo de 11 metros de diámetro con los 4 electrodos verticales.

Estas puestas a tierra individuales de cada uno de los 10 aerogeneradores del parque, se van a agrupar formando 2 circuitos de 5 aerogeneradores cada uno. Por último, los 2 circuitos resultantes se van a conectar a la malla de puesta a tierra de la subestación del parque.

Todas las uniones de conductores de tierra se van a realizar con soldadura aluminotérmica para garantizar la calidad de dichas uniones.
10.9 TRANSFORMADOR DE POTENCIA 132/20 kV.

La energía generada en el parque eólico, va a ser evacuada a la red de distribución de 132 kV por medio de la subestación del parque, mediante un transformador de potencia de 30 MVA, con aislamiento en baño de aceite, y preparado para un uso a la intemperie. Este transformador estará construido según normas “CEI 76” / “UNE 20101”, y tendrá las siguientes características:

- Tensión primaria: 132 kV.
- Tensión secundaria: 20 kV.
- Potencia nominal: 30 MVA.
- Tipo: En baño de aceite mineral.
- Frecuencia: 50 Hz.
- Sistema de refrigeración: ONAN (Oil Natural Air Natural) / ONAF (Oil Natural Air Forced).
- Sistema de regulación de tensión en carga (accionamiento automático).

Para que este equipo quede totalmente protegido, además de la celda de protección, la celda de medida y la celda de salida de línea, ubicadas en el interior del edificio de control de 20 kV, adicionalmente se van a instalar:

- 3 autoválvulas o protectores de sobretensiones (uno por fase).
- 1 pararrayos con dispositivo de cebado.
- 1 relé Buchholz (vigilancia del estado del aceite del transformador).
- 1 sensor de temperatura con alarma.

Esta aparataforma de protección adicional, se va a colocar a la intemperie, del mismo modo que el mismo transformador. Para instalar el pararrayos con dispositivo de cebado, se montará una estructura metálica (torre), de altura suficiente para la correcta protección del transformador frente a descargas atmosféricas.

A modo de ejemplo y para tener constancia de las dimensiones de este tipo de equipos, se adjunta una imagen (“Figura 63”), obtenida del libro “Manual de Energía Eólica – Desarrollo de Proyectos e Instalaciones” de Salvador Cucó Pardillos.

![Figura 63. Ejemplo de transformador de potencia 132/120 kV.](image-url)
El transformador de potencia 132/20 kV, es uno de los equipos más importantes de toda la infraestructura eléctrica de la subestación. Es un equipo crucial en el buen funcionamiento de toda la instalación, ya que es el encargado de elevar la tensión desde los 20 kV hasta los 132 kV, con las menores pérdidas energéticas posibles.

Además, es uno de los equipos más caros, por lo que se van a establecer unas pautas de mantenimiento muy exhaustivas para controlar que, en todo momento, este equipo dé el máximo rendimiento y no quede paralizado por ningún tipo de avería.

11 SUBESTACIÓN DE MANIOBRA EN 132 kV, DE INTEMPERIE Y EN SIMPLE BARRA, Y CONEXIÓN CON LA RED DE 132 kV.

11.1 OBJETO.

En este apartado, se describen los criterios de diseño que han sido adoptados y las características técnicas del conjunto de instalaciones y equipos que van a formar parte de la subestación de maniobra en el nivel de tensión de 132 kV, con aparataje de servicio a la intemperie y de configuración en simple barra, para la conexión del parque eólico de generación eléctrica a la red de distribución más cercana, perteneciente a “Iberdrola Distribución”.

Mencionar que se ha tomado como referencia para este apartado el documento “Proyecto básico de subestación de maniobra 132 kV de intemperie en simple barra” de “Iberdrola Distribución Eléctrica” (Ref. PMT 2.71.10 Edición 01, Octubre de 2016).

11.2 ALCANCE Y JUSTIFICACIÓN.

La subestación de maniobra en 132 kV consiste en una instalación que va a permitir la conexión del parque eólico con una línea cercana de “Iberdrola Distribución”, en el nivel de tensión de 132 kV, para la inyección de la energía generada en el parque eólico a la red.

Tras la fase de construcción y previamente a la puesta en marcha, las extensiones de la línea de 132 kV ejecutadas para poder realizar la entrada y salida a la subestación, las dos posiciones de línea, las barras, la posición de conexión del parque eólico, así como todas las instalaciones y equipamiento necesarios para la conexión y explotación, van a ser cedidas a “Iberdrola Distribución”, quien se encargará de su explotación, operación y mantenimiento.

La instalación eléctrica interior del parque eólico finaliza en un edificio cubierto, el cual estará ubicado en el interior de la parcela donde se va a situar la subestación de maniobra en 132 kV. En esta zona, también se instalará el transformador elevador de tensión (132/20 kV), situado a la intemperie. A la finalización de la fase de construcción, todas las instalaciones serán cedidas a “Iberdrola Distribución” para su explotación, operación y mantenimiento.
11.3 ÁMBITO DE APLICACIÓN.

Este documento queda sujeto a una revisión por parte de “Iberdrola Distribución”, quien lo analizará y decidirá si realiza alguna ampliación o modificación de alguno de los criterios incluidos en el presente documento.

Todo el proyecto de la subestación hace referencia al cumplimiento de la normativa particular de “Iberdrola Distribución”. Más aun, toda la instalación interior del parque eólico, también se ha diseñado cumpliendo con la normativa particular de “Iberdrola Distribución”, ya que estas instalaciones también pasarán a ser de su propiedad tras la fase de construcción como ya se ha mencionado.

Por ello, todos los equipos y materiales a emplear cumplen con las normas internas de “Iberdrola Distribución”. Los procesos de ejecución también serán realizados con los criterios establecidos en los manuales técnicos internos de “Iberdrola Distribución”.

11.4 ESQUEMA UNIFILAR.

La configuración e implantación de la subestación de maniobra en 132 kV para conexión a red de la instalación de generación eólica, se va a realizar con un sistema en simple barra con disposición a la intemperie.

A continuación, se detalla toda la infraestructura eléctrica del sistema de 132 kV que se ha adoptado para la subestación de maniobra del presente proyecto.

- 2 posiciones de línea, para la conexión de la línea de 132 kV a la subestación de maniobra (entrada y salida). Estas 2 posiciones disponen de: interruptor automático, transformadores de corriente, y seccionador de aislamiento y puesta a tierra (integados en un equipo compacto híbrido), además de un transformador de tensión capacitivo de línea exterior al equipo compacto híbrido.

- 1 posición de conexión y entrega de energía procedente del parque eólico. Esta posición dispone de: interruptor automático, transformadores de corriente y seccionador de aislamiento (integados en un equipo compacto híbrido), además de un juego de aisladores para facilitar la conexión con la instalación eólica.

- 1 embarrado con sus correspondientes transformadores de tensión para la medida de la tensión de barras.

- Transformador de potencia 132/20 kV, embarrado secundario y apararmenta de medida y protección aguas abajo de la posición de conexión y entrega.
11.5 CRITERIOS DE IMPLANTACIÓN Y CARACTERÍSTICAS GENERALES.

11.5.1 IMPLANTACIÓN.

La parcela donde se va a ubicar la subestación de maniobra tiene unas dimensiones de 66 x 76 metros, con una superficie total de 5.016 m².

En concreto, las coordenadas geográficas exactas de la parcela son las siguientes:

- **Coordenadas UTM:**
 \(X: 673.108,59 \quad Y: 4.374.501,07 \)

- **Datum:**
 ETRS89

- **Huso UTM:**
 30

La entrada y la salida de la línea de 132 kV, y la posición de conexión y entrega de la instalación de generación eólica, van a situarse de forma paralela al edificio de control y al vial principal de acceso. La ubicación de los viales principales trata de facilitar el acceso y la descarga de los equipos principales.

Se han tenido en cuenta los siguientes condicionantes a la hora de seleccionar la parcela donde va a estar ubicada la subestación:

- **Requisitos urbanísticos del Ayuntamiento de Requena.**

- **Servidumbres o distancias a infraestructuras y elementos naturales tales como carreteras, ferrocarriles, aeropuertos, aeródromos, gaseoductos, gasolineras, líneas eléctricas, ríos, salinas, cañadas, cuarteles militares, Camino de Santiago, etc.**

- **Condicionantes medioambientales, tales como los LIC (lugares de importancia comunitaria), las ZEPA (zonas de especial protección para las aves), las zonas inundables, o las zonas arqueológicas.**

11.5.2 TERRENOS.

La subestación de maniobra se ubicará en la parcela citada en el apartado anterior (11.6.1). Se considera un terreno adecuado, teniendo en cuenta requerimientos de espacio y condicionantes como son el coste de los terrenos, los movimientos de tierra necesarios, los plazos de consecución de permisos y licencias, y factores medioambientales y de impacto visual.

El terreno destinado a la construcción de la subestación garantiza el soporte de cargas de las estructuras y construcciones civiles, con valores aceptables según la normativa de edificación. El estudio geotécnico determinará los datos del suelo tales como la tensión admisible, el contenido de sulfatos, el nivel freático, etc.
Se van a realizar los siguientes estudios del terreno previamente a la implantación de la subestación:

- Estudio taquimétrico.
- Estudio geológico/geotécnico.
- Medida de resistividad del terreno.

11.5.3 APOYOS FIN DE LÍNEA.

Tanto en la entrada como en la salida de la línea de 132 kV a la subestación, se van a colocar los apoyos finales de línea fuera del terreno de la subestación, para reducir de manera significativa las dimensiones de la parcela, pero con una ubicación óptima para evitar tendidos largos y sobreesfuerzos en los pórticos.

Los vanos de entrada se van a instalar manteniendo las garantías técnicas de seguridad y las distancias reglamentarias.

11.5.4 PROTECCIÓN CONTRA SOBRETENSIONES.

No se dispondrá de un sistema de tierras aéreas superiores de protección. Sin embargo, los pórticos de entrada y salida van a permitir el amarre de los cables de tierra y fibra óptica de las líneas de 132 kV. De esta forma, se evita el riesgo de caída de los cables sobre los embarrados y disminuyen los costes de la instalación.

Para proteger la instalación, se va a disponer de un sistema de protección contra el rayo compuesto por 2 dispositivos de captación (puntas “Franklin”), con sus respectivos conductores de bajante y electrodos de puesta a tierra. Las puntas “Franklin” se van a ubicar sobre los pórticos de entrada y salida de las líneas.

Además, para la correcta protección del transformador de potencia 132/20 kV de la subestación frente a sobretensiones de origen atmosférico, se va a instalar un pararrayos con dispositivo de cebado en lo alto de una torre situada a escasa distancia del transformador. El hecho de emplear este dispositivo en lugar de otra punta “Franklin”, es debido a que este proporciona un mayor radio de protección para una misma altura.

11.5.5 ACCESOS Y VIALES.

El acceso a la parcela de la subestación se va a realizar a través de una vía pública sin ninguna restricción de paso.

Por el interior de la subestación, va a circular un vial principal de firme rígido de hormigón, de 5 m de anchura, para la circulación de vehículos pesados y de vehículos necesarios para el montaje y mantenimiento de los todos los equipos que forman parte de la subestación.

Tanto el vial de acceso a la subestación como los viales principales internos a la misma, tendrán las pendientes y los radios de curvatura adecuados para permitir la circulación de vehículos pesados para el transporte de equipos y materiales. En concreto, se considera una
pendiente máxima del 10% para el vial de acceso y un radio de curvatura interior mínimo de 5 m.

La zona de la subestación estará preparada para realizar trabajos de mantenimiento con los vehículos necesarios. Se ha contemplado un espacio suficiente (zona afirmada) para poder realizar maniobras de carga/descarga y para realizar cambios de sentido en la zona próxima al edificio de control cubierto.

Por último, también se van a realizar viales interiores de montaje y mantenimiento, de 3 m de anchura, para el acceso de vehículos.

11.5.6 CANALIZACIONES DE CABLES.

Las zanjas internas a la subestación, por donde van a circular los cables subterráneos, se realizarán de tal forma que se pueden separar los cables de distintas tensiones, y reduciendo lo máximo posible la longitud de las derivaciones hasta los equipos.

Se prevé que ciertos tramos de las zanjas deben ser reforzados, para resistir el paso de vehículos de mantenimiento por encima de ellas. Por otro lado, las zanjas que discurren paralelas a alguno de los viales, van a estar separadas de estos un mínimo de 1 m.

Las canalizaciones entubadas se van a hormigonar, distribuyendo las arquetas necesarias para facilitar el tendido y el posterior mantenimiento.

11.5.7 CERRAMIENTO Y FRANJA DE SERVICIOS.

Por todo el perímetro de la subestación se va a instalar una valla metálica como cerramiento de la misma. Esta se va a situar 1 m hacia el interior del límite de los terrenos de la parcela, con el fin de construir una acera exterior perimetral, de hormigón y de 1 metro de anchura, además de instalar un cable perimetral que proteja contra tensiones de paso y contacto desde el exterior, sin necesidad de invadir terrenos adyacentes.

La valla metálica se trata de un cerramiento sencillo de postes metálicos y cubierto por malla de acero galvanizado. La puerta principal de acceso consta de 2 hojas metálicas giratorias, con un ancho total de 6 m. Adosada a esta, se dispondrá de una puerta de acceso para el personal, también metálica y de 1 m de ancho.

Entre la valla perimetral o cerramiento y las canalizaciones y viales interiores, se establece una franja perimetral de 2 m de ancho para canalizar servicios (alumbrado, servicios auxiliares, etc.). Esta franja tendrá las mismas características que el resto de la explanada de la subestación, es decir, se dispondrá de una capa de grava de 10 cm de espesor, para mejorar la resistividad del terreno en esas zonas.

11.5.8 EQUIPOS COMPACTOS HÍBRIDOS (HIS).

Referente al sistema de 132 kV de la subestación de maniobra, se ha optado por una solución de intemperie, con equipos modulares compactos híbridos. Estos equipos están
constituidos por una combinación de apararnenta de maniobra y protección, aislada en SF6, conformando un único equipo compacto.

De esta forma, se tienen una serie de ventajas, entre ellas: se trata de equipamiento eléctrico de alta fiabilidad y reducido mantenimiento; son equipos fáciles de montar e instalar; son equipos con un reducido tiempo de construcción y montaje; son equipos que necesitan menor espacio, con el consiguiente ahorro de terreno que esto supone, etc.

Los equipos compactos híbridos (HIS) se colocan a la intemperie, uno por posición (en total serán necesarios 3 de estos equipos), y sustituyen a la aparamenta convencional con aislamiento al aire que se dispone habitualmente en los parques clásicos de intemperie (con elementos separados).

11.5.9 CENTRO DE TRANSFORMACIÓN PARA SSAA.

Dentro de la propia subestación se deben alimentar los servicios auxiliares de c.a. (SSAA). Estos consumos son independientes de la toma de baja tensión de los servicios auxiliares del edificio cubierto, correspondiente al nivel de tensión de 20 kV.

Para la alimentación de estos servicios auxiliares de c.a., se va a disponer de un centro de transformación de SSAA de corriente alterna alimentado desde una línea de media tensión cercana propiedad de “Iberdrola Distribución”. Este centro de transformación cumple con la normativa de “Iberdrola Distribución” y será compacto y de intemperie. Va a estar separado del vallado una distancia mínima de 2 m, teniendo en cuenta en todo momento el acceso de vehículos para su mantenimiento.

11.5.10 EDIFICIO DE CONTROL.

En el interior de la parcela de la subestación coexistrarán dos edificios de control. Por un lado, el edificio de control de 20 kV de nivel de tensión, y por otro lado, el edificio de control de 132 kV de nivel de tensión.

En el edificio de control de 20 kV, se ubican las celdas modulares de línea, protección y remonte para la llegada de los cinco circuitos de potencia procedentes del parque eólico. Además, también se ubican en este edificio las celdas modulares de línea, protección y medida para las 2 líneas de salida.

En el edificio de control de 132 kV, se colocarán equipos de protección y control, armarios para los servicios auxiliares, equipos rectificador-batería, equipos para las comunicaciones, etc.

Este último edificio será de hormigón prefabricado, y estará compuesto por 2 salas separadas mediante tabiques intermedios, una sala de control y una sala para comunicaciones. Se ha previsto un espacio en el interior del edificio para realizar trabajos documentales y para almacenaje de herramientas y útiles de seguridad.

Al ser un edificio prefabricado, se reducen los costes y los tiempos de construcción. Además, al ser de hormigón, proporciona un excelente comportamiento térmico y frente al clima. La
superficie ocupada por el edificio es de 50,6 m², siendo sus dimensiones interiores de 5,5 x 9,2 metros (normalizadas para edificios de hormigón prefabricados).

La distancia en horizontal a cualquier elemento desprotegido en tensión, será mayor de 5 m. Además, la distancia en horizontal al vallado exterior también será mayor de 5 m.

El acceso al edificio se realiza a través de una puerta metálica de dos hojas con una anchura de 2 m y una altura de 2,5 m.

11.5.11 ESTADO DEL SUELO.

El terreno donde va a estar ubicada la subestación de maniobra en 132 kV, es un terreno no contaminado. Actualmente se trata de un terreno desocupado y no ha tenido actividad alguna años atrás.

11.6 DISTANCIAS MÍNIMAS ELÉCTRICAS Y DE SEGURIDAD.

11.6.1 GENERALIDADES.

La implantación de la aparamenta eléctrica viene condicionada por las distancias mínimas reglamentarias y de seguridad, contempladas en este proyecto y que se especifican en la siguiente normativa de aplicación:

- Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT (01 a 23).
- RD 614/2001, de 8 de junio, sobre disposiciones mínimas para la protección de la salud y seguridad de los trabajadores frente al riesgo eléctrico.
- RD 223/2008 Reglamento sobre Condiciones Técnicas y Garantías de Seguridad en Líneas eléctricas de A.T. y sus Instrucciones Técnicas Complementarias.
- Normativa Iberdrola y sus materiales y equipos calificados.
- Resto de normativa aplicable y condicionantes urbanísticos.

Las distancias mínimas a tener en cuenta, tanto la distancia mínima entre fase y tierra como la distancia mínima entre fases, vienen determinadas en las “Tablas 35 y 36” respectivamente, las cuales se corresponden con las “Tablas 4 y 5 de la ITC-RAT 12”. Las tablas solo son válidas para instalaciones situadas a una altitud inferior a los 1000 msnm, que es el caso del presente proyecto.
Tabla 35. Distancia mínima entre fase y tierra en el aire (cm).

<table>
<thead>
<tr>
<th>TENSión SOportADA NOMinal A LOS IMpulsOS TIPO RAYO (kV cresta)</th>
<th>DISTANCIA MÍNIMA FASE-TIERRA EN EL AIRE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>75</td>
<td>12</td>
</tr>
<tr>
<td>95</td>
<td>16</td>
</tr>
<tr>
<td>125</td>
<td>22</td>
</tr>
<tr>
<td>145</td>
<td>27</td>
</tr>
<tr>
<td>170</td>
<td>32</td>
</tr>
<tr>
<td>250</td>
<td>48</td>
</tr>
<tr>
<td>325</td>
<td>63</td>
</tr>
<tr>
<td>450</td>
<td>90</td>
</tr>
<tr>
<td>550</td>
<td>110</td>
</tr>
<tr>
<td>650</td>
<td>130</td>
</tr>
<tr>
<td>750</td>
<td>150</td>
</tr>
</tbody>
</table>

Tabla 36. Distancia mínima entre fases en el aire (cm).

<table>
<thead>
<tr>
<th>TENSión SOportADA NOMinal A LOS IMpulsOS TIPO RAYO (kV cresta)</th>
<th>DISTANCIA MÍNIMA ENTRE FASES EN EL AIRE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>9</td>
</tr>
<tr>
<td>75</td>
<td>12</td>
</tr>
<tr>
<td>95</td>
<td>16</td>
</tr>
<tr>
<td>125</td>
<td>22</td>
</tr>
<tr>
<td>145</td>
<td>27</td>
</tr>
<tr>
<td>170</td>
<td>32</td>
</tr>
<tr>
<td>250</td>
<td>48</td>
</tr>
<tr>
<td>325</td>
<td>63</td>
</tr>
<tr>
<td>450</td>
<td>90</td>
</tr>
<tr>
<td>550</td>
<td>110</td>
</tr>
<tr>
<td>650</td>
<td>130</td>
</tr>
<tr>
<td>750</td>
<td>150</td>
</tr>
<tr>
<td>850</td>
<td>170</td>
</tr>
<tr>
<td>950</td>
<td>190</td>
</tr>
<tr>
<td>1050</td>
<td>210</td>
</tr>
</tbody>
</table>

Estas distancias vienen determinadas por la tensión soportada nominal a los impulsos tipo rayo (kV cresta). Para la determinación de este dato, se ha empleado la “Tabla 37”, correspondiente a la “Tabla 2 de la ITC-RAT 12” (niveles de aislamiento nominales para materiales del grupo B).

Tabla 37. Niveles de aislamiento nominales para materiales del grupo B.

<table>
<thead>
<tr>
<th>TENsIÓN MÁs ELeVADA PARA EL MATERIAL (Um)</th>
<th>TENsIÓN SOportADA NOMinal A LOS IMpulsOS TIPO RAYO (kV cresta)</th>
<th>TENsIÓN SOportADA NOMinal DE CORTA DURACIóN A FRECUENCIa INDUSTRIAL (kV eficaCes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>250</td>
<td>95</td>
</tr>
<tr>
<td>72,5</td>
<td>325</td>
<td>140</td>
</tr>
<tr>
<td>123</td>
<td>450</td>
<td>185</td>
</tr>
<tr>
<td>145</td>
<td>550</td>
<td>230</td>
</tr>
<tr>
<td>170</td>
<td>650</td>
<td>275</td>
</tr>
<tr>
<td>245</td>
<td>750</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>950</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>1050</td>
<td>460</td>
</tr>
</tbody>
</table>

Siendo la tensión más elevada de la red de 145 kV eficaCes, la tensión soportada nominal a impulsos tipo rayo tiene un valor de 650 kV cresta.

Con este dato, se ha entrado en las “Tablas 4 y 5 de la ITC-RAT 12” (Tablas 35 y 36), y se han obtenido los siguientes valores de distancias mínimas:
• Distancia mínima F-T en el aire: **130 cm**.
• Distancia mínima F-F en el aire: **130 cm**.

Por otro lado y referente a las distancias de seguridad que se deben mantener para la protección de las personas en sus correspondientes trabajos y tránsitos por la subestación, se ha aplicado el “**RD 614/2001, de 8 de junio**”, referente al riesgo eléctrico. Este Real Decreto fija las distancias de seguridad a respetar con respecto a los puntos en tensión no protegidos.

En el citado Real Decreto se definen las siguientes zonas:

• **Zona de Peligro o zona de trabajos en tensión**: espacio alrededor de los elementos en tensión en el que la presencia de un trabajador desprestigido supone un riesgo grave e inminente de que se produzca un arco eléctrico, o un contacto directo con el elemento en tensión, teniendo en cuenta los movimientos normales que puede efectuar el trabajador sin desplazarse.

• **Zona de Proximidad**: espacio delimitado alrededor de la zona de peligro, desde la que el trabajador puede invadir accidentalmente esta última.

En la “**Tabla 38**”, correspondiente a la “**Tabla 1 del RD 614/2001**”, se muestran las distancias de seguridad a considerar para este tipo de proyectos:

![Tabla 38. Distancias de seguridad (zona de peligro y zona de proximidad).](image)

- **Dpel-1/Dpel-2**: Distancias hasta el límite exterior de la zona de peligro cuando exista/no exista riesgo de sobretensión por rayo (cm).
- **Dprox-1/Dprox-2**: Distancias hasta el límite exterior de la zona de proximidad cuando resulte/no resulte posible delimitar con precisión la zona de trabajo y controlar que ésta no se sobrepase durante la realización del mismo (cm).

La tensión nominal de la instalación es de 132 kV, por lo que las distancias de seguridad que han sido consideradas para este proyecto son:

- **Dpel-1 = 180 cm. Dpel-2 = 110 cm. Dprox-1 = 330 cm. Dprox-2 = 500 cm.**
11.6.2 DISTANCIA VERTICAL A ELEMENTOS NO PROTEGIDOS EN TENSION.

En este apartado se ha calculado la distancia mínima de seguridad en vertical para que cualquier operario pueda transitar por las zonas de paso e inspeccionar los armarios del parque para su mantenimiento, sin necesidad de invadir zonas de peligro. Además, con esta distancia de por medio, también se evitarán descargas innecesarias que influyan en la calidad del servicio.

La distancia mínima entre elementos en tensión no protegidos y las zonas de paso de personal, según la “ITC-RAT 15”, se calcula mediante la siguiente expresión (Fórmula 10):

\[H = 2,50 + d \]

donde “d” es la distancia (en metros) obtenida de la “Tabla 4 de la ITC-RAT 12”, dada en función de la tensión soportada nominal a impulsos tipo rayo (d = 1,30 metros).

Por tanto, empleando la fórmula:

\[H = 2,50 + 1,30 = 3,80 \text{ m} \]

De todos modos, el criterio a seguir para las nuevas instalaciones, como el caso que nos ocupa, considerando el “RD 614/2001”, se basa en la siguiente expresión (Fórmula 11):

\[D = 2,50 + D_{pel-1} + 0,10 \text{ (margen)} \]

Resulta por tanto una distancia de:

\[D = 2,50 + 1,80 + 0,10 = 4,40 \text{ m} \]

Por tanto, la distancia mínima de cualquier punto en tensión no protegido a las zonas de paso de personal (en vertical) va a ser de 4,40 m como mínimo.

Siguiendo este criterio, la referencia de cota se toma desde el nivel del suelo o cota cero de la subestación hasta la parte superior del aislamiento de la aparamenta.

Considerando para el embarrado un tubo de aleación de aluminio 100/90, es compatible mantener la altura de dicho embarrado a una cota inferior a 4,50 metros sobre el nivel del suelo de la subestación. Sin embargo, en caso de ser necesario, se podría aumentar la altura en incrementos de 10 cm, previa consulta y aprobación por “Iberdrola Distribución”, con el fin de no elevar la instalación innecesariamente, y en consecuencia, los armarios de mando de los interruptores.

La parte superior de los armarios de mando de la aparamenta estarán a una distancia mayor a Dpel-1 (1,80 m) de los elementos en tensión no protegidos.
Atendiendo al “RD 614/2001” y en referencia a los equipos compactos híbridos (HIS) de cada una de las posiciones de la subestación, la distancia mínima desde las barras principales y bajantes a las posiciones anexas es de Dprox-1 (3,30 m).

11.6.3 DISTANCIA HORIZONTAL PARA CIRCULACIÓN DE VEHÍCULOS.

En primer lugar, se debe mantener una distancia mínima de seguridad desde los puntos en tensión desprotegidos hasta el vial principal de Dprox-2 (5 metros). Los elementos más cercanos son los transformadores de tensión de barras.

En el caso de los viales secundarios (de montaje y mantenimiento), se debe mantener una distancia mínima de seguridad de Dprox-1 (3,3 metros) entre los puntos en tensión desprotegidos y dichos viales. En este caso, para realizar el diseño en base al diseño normalizado de “Iberdrola Distribución”, se ha considerado el siguiente criterio.

Los elementos más cercanos a estos viales secundarios son los transformadores de tensión de línea. Para un diseño normalizado, se va a mantener una distancia de 3,5 metros en horizontal desde el eje de la borna de estos aparatos hasta estos viales.

Para evitar la proximidad a estas zonas de peligro y la posible invasión de zanjas y canalizaciones, los viales se van a delimitar con balizas de hormigón prefabricado de 50 cm de altura, separadas entre sí entre 4 y 5 metros aproximadamente, y variando la separación en función del riesgo. A estas balizas se les va a aplicar una pintura roja de características adecuadas.

11.6.4 DISTANCIA HORIZONTAL PUNTOS EN TENSIÓN AL CERRAMIENTO.

Entre los puntos en tensión y los cerramientos con una altura mínima de 2,2 metros, se va a respetar una distancia mínima de seguridad dada por la “ITC-RAT 15” mediante la siguiente expresión (Fórmula 12):

\[G = d + 1,50 = 1,30 + 1,50 = 2,80 \, m \] (12)

11.6.5 ALTURA ENTRADA DE LÍNEA A PÓRTICO.

La altura de la entrada y salida de línea a los pórticos, va a ser de 9 metros para conductores y de 11 metros para los cables de tierra. Esta distancia es más que suficiente para el paso por encima del cerramiento, y no excesiva con el fin de minimizar el impacto visual. Estas alturas se corresponden con las alturas normalizadas por “Iberdrola Distribución” para pórticos de 132 kV.

El gálibo de paso por debajo de la zona de entrada/salida de la línea de 132 kV, es mayor que la altura mínima exigida por el nuevo “RD223/2008” de 6,50 m, por lo que queda asegurado el cumplimiento de este Real Decreto.
11.6.6 DISTANCIA ENTRE FASES Y ENTRE FASE Y TIERRA.

Se van a tomar las distancias de seguridad que se indican a continuación, ya que son las distancias normalizadas por “Iberdrola Distribución” para el nivel de tensión de 132 kV.

Se considera una distancia de 2,5 metros entre ejes de fase. Esta distancia es válida para que no se produzcan esfuerzos de cortocircuito anormales y elevados.

La anchura de las calles o posiciones va a ser de 10 metros. Con esta distancia se permite realizar labores de mantenimiento de una posición, con la adyacente en servicio.

Por último, la distancia mínima que se va a respetar entre fase y tierra es de 1,30 metros, cumpliendo con la “ITC-RAT 12” y constituyendo el prototipo normalizado de “Iberdrola Distribución” para sistemas de 132 kV aislados en aire.

11.7 CARACTERÍSTICAS GENERALES.

11.7.1 NIVELES DE AISLAMIENTO.

Partiendo de la “ITC-RAT 12”, y de una tensión más elevada de la red de 145 kV, correspondiente a un nivel de tensión nominal de la red de 132 kV, los niveles de aislamiento para la aparmenta eléctrica y para las distancias en el aire son los siguientes:

- 650 kV de cresta para impulsos tipo rayo.
- 275 kV eficaces a frecuencia industrial durante un minuto.

11.7.2 INTENSIDADES DE CORTOCIRCUITO.

Como criterio habitual de diseño para instalaciones de 132 kV, se consideran los siguientes valores de intensidades de cortocircuito:

- Intensidad de cortocircuito monofásica: 25 kA.
- Intensidad de cortocircuito trifásica: 40 kA.

11.8 ESTRUCTURA METÁLICA.

Es necesario, para llevar a cabo el desarrollo y la ejecución de la subestación, el montaje de estructuras metálicas que soporten toda la aparmenta eléctrica y embarrados. Dichas estructuras han de cumplir la Norma Iberdrola “NI 00.06.10” (Recubrimientos galvanizados en caliente para piezas y artículos diversos).

Para las estructuras metálicas se emplearán perfiles de acero de alma llena tipo “S-275-JR”, según la norma “UNE-EN-10025” (Productos laminados en caliente de aceros para estructuras).
En primer lugar, las estructuras metálicas para los pórticos de entrada y salida de línea de 132 kV, serán de 10 m de longitud de dintel y 9 m de altura. Dichas estructuras poseen castilletes de amarre para cables de tierra y fibra óptica a una altura de 11 m.

Por otro lado, toda la aparmenta eléctrica de la instalación irá montada sobre soportes metálicos.

Tanto los pórticos de entrada y salida de línea como los soportes metálicos de la aparmenta eléctrica, son estructuras de acero tubular normalizadas por “Iberdrola Distribución”.

Todas las estructuras a emplear en la subestación serán sometidas a un proceso de galvanizado en caliente en el proceso de fabricación, para así asegurar una protección eficaz contra la corrosión.

Todas estas estructuras van complementadas con herrajes y tornillería auxiliares para la fijación de cajas, la sujeción de cables y otros elementos accesorios.

Las cimentaciones necesarias para anclar estas estructuras el terreno han de proyectarse teniendo en cuenta los esfuerzos que van a soportar, para asegurar en todo momento y en las condiciones más desfavorables la estabilidad al vuelco.

En su totalidad, las estructuras metálicas necesarias para todo el sistema de 132 kV de la subestación se citan a continuación:

• 4 estructuras en forma de “V” invertida y 2 vigas para amarre, las cuales van a formar los pórticos de entrada y salida de la línea de 132 kV.
• 2 estructuras para montaje de transformadores de tensión de línea.
• 1 estructura para montaje de transformadores de tensión de barras.
• 3 estructuras para montaje de los equipos compactos híbridos.
• 4 estructuras para montaje de los aisladores soporte del embarrado principal.
• 2 estructuras para montaje de aisladores soporte del embarrado secundario.
• 5 estructuras para aisladores soporte.

Adicionalmente se contará con las siguientes estructuras metálicas:

• Estructura metálica de celosía para la fijación de la antena de comunicaciones.
• Estructuras metálicas necesarias para el transformador de servicios auxiliares de c.a., para iluminación, para la valla informativa, etc.
• Estructura metálica de celosía para el soporte del pararrayos con dispositivo de cebado de protección del transformador de potencia.

11.9 EMBARRADOS.

11.9.1 DISEÑO.

Para el diseño de los embarrados, tanto de los principales como de los secundarios, se han seguido los siguientes criterios. Las temperaturas máximas previstas no provocarán calentamientos por encima de los 40°C sobre la temperatura ambiente. Además, han de ser
capaces de soportar esfuerzos electrodinámicos y térmicos provocados por las corrientes de cortocircuito previstas, sin que se produzcan deformaciones permanentes.

Para las barras principales se van a emplear embarrados tubulares apoyados, mientras que para el resto de conexiones entre aparamenta se van a emplear embarrados con cable (conexiones elásticas), lo que va a evitar el doblado y el conformado de tubos.

Las ventajas de emplear embarrados tubulares apoyados frente a emplear los de tipo atirantado o flexibles, se citan a continuación:

- Menor elevación de la estructura metálica (menor impacto visual y menor coste).
- Mayor intensidad manejada, evitando soluciones con conductores dúplex y evitando roturas por puntos calientes en puntos intermedios del embarrado.
- Menores distancias entre fases (no se consideran grandes desplazamientos por viento o por cortocircuitos).
- Solución estética del conjunto mejorada.
- Menores alturas de embarrados en sus extremos (menor flecha).

La altura de los embarrados respecto de la cota cero es de 7,2 m para el embarrado principal y de 4,5 m para el embarrado secundario. Ésta última medida queda condicionada por la distancia de seguridad reflejada en el apartado 11.6.2.

El valor empleado de intensidad de cortocircuito, para la posterior comprobación de los esfuerzos electrodinámicos en los embarrados, es de 40 kA. Se emplea este valor de intensidad máxima de cortocircuito trifásico de diseño, como criterio habitual para instalaciones en 132 kV.

El valor empleado de intensidad nominal, para la posterior comprobación de los conductores puente entre aparamenta, posiciones y embarrados, es de 581 A. Se emplea este valor de intensidad nominal máxima de diseño como criterio habitual para líneas típicas de 132 kV.

11.9.2 TUBOS Y CONDUCTORES PUENTE.

Para el embarrado principal se van a emplear tubos huecos de aleación de aluminio 100/90 mm, equivalente a 1495 mm² de sección nominal, y que admite un paso de corriente permanente de 2320 A. Estos tubos van a ir soportados por 4 juegos de 3 aisladores rígidos.

Las características principales de estos tubos se detallan en la “Tabla 39”.

<table>
<thead>
<tr>
<th>D x d (mm)</th>
<th>e (mm)</th>
<th>Peso (kg/m)</th>
<th>Ml (cm⁴)</th>
<th>W (cm³)</th>
<th>A eq. (mm^2)</th>
<th>I max. adm. (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 x 90</td>
<td>5</td>
<td>4,029</td>
<td>168,810</td>
<td>33,762</td>
<td>1495</td>
<td>2320</td>
</tr>
</tbody>
</table>

Tabla 39. Características tubos huecos de aleación de aluminio 100/90 mm.

Previamemente a la instalación de los tubos, se debe realizar en fábrica un proceso de contraflechado de los mismos.
Estos tubos huecos de aleación de aluminio 100/90 mm elegidos para el embarrado principal, van a estar separados una distancia de 2,5 m. A continuación, se comprueba que los esfuerzos electrodinámicos, durante el paso de la corriente de cortocircuito trifásica en el embarrado, son admisibles por los tubos seleccionados.

Para ello, en primer lugar se hace uso de la “Fórmula 13” para el cálculo de la fuerza máxima real actuante sobre los tubos, debida a la corriente de cortocircuito trifásica:

\[
F_{\text{max,real}} = 13,22 \times \frac{I_{cc}^2 \times [\sqrt{L^2 + d^2} - d]}{d} \times 10^{-8} \quad kg
\]

(13)

donde:

- \(I_{cc}\): Corriente de cortocircuito trifásica de diseño: 40 kA.
- \(L\): Longitud entre 2 vanos: 10 metros.
- \(d\): Separación entre tubos: 2,5 metros.

La fuerza máxima real actuante sobre los tubos del embarrado, debida a esta corriente de cortocircuito trifásica, tiene el valor de:

\[
F_{\text{max,real}} = 13,22 \times \frac{40000^2 \times [\sqrt{10^2 + 2,5^2} - 2,5]}{2,5} \times 10^{-8} = 660,6 \quad kg
\]

Con ello, la tensión máxima real a la que se verá sometido el tubo de 14,95 cm² de sección equivalente, tendrá el valor calculado mediante la “Fórmula 14”:

\[
\sigma_{\text{max,real}} = \frac{F_{\text{max,real}}}{A_{eq}} = \frac{660,6 \quad kg}{14,95 \quad cm^2} = 44,2 \quad kg/cm^2
\]

(14)

Por otro lado, la tensión máxima que admiten los tubos paralelos, huecos y circulares de estas características, viene determinada por la siguiente expresión (Fórmula 15):

\[
\sigma_{\text{max}} = \frac{8 \times q_1 + 5 \times q_2 \times R \times L^2}{24 \times \pi \times (R^4 - r^4)} \quad kg/cm^2
\]

(15)

siendo:

- \(q_1\) y \(q_2\): Peso por unidad de longitud de los 2 tubos paralelos: 0,04029 kg/cm.
- \(R\): Radio exterior del tubo: 5 cm.
- \(L\): Longitud entre 2 vanos: 1000 cm.
- \(r\): Radio interior del tubo: 4,5 cm.

El valor obtenido para la tensión máxima admitida por el tubo es de:
Como la tensión máxima admitida por el tubo (161,6 kg/cm²) es mayor que la tensión máxima a la que se verá sometido (44,2 kg/cm²), el tubo hueco de aleación de aluminio 100/90 mm cumple el criterio establecido para la comprobación de los esfuerzos electrodinámicos entre barras.

Los puentes entre aparamen
ta eléctrica y posiciones de línea o posición de entrega, así como sus conexiones con los tubos de los embarrados, se realizarán con cable desnudo de aluminio homogéneo “ARBUTUS”, de 26,06 mm de diámetro, equivalente a una sección nominal de 402 mm², y que admite un paso de corriente permanente de 795 A.

Las características más relevantes de este tipo de cable se detallan en la “Tabla 40”.

<table>
<thead>
<tr>
<th>Designación</th>
<th>Calibre (A)</th>
<th>Nº de Hilos</th>
<th>A (mm²)</th>
<th>D (mm)</th>
<th>Peso (kg/km)</th>
<th>R a 20°C (Ω/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARBUTUS</td>
<td>795</td>
<td>37</td>
<td>402</td>
<td>26,06</td>
<td>1111</td>
<td>0,0713</td>
</tr>
</tbody>
</table>

Tabla 40. Características cables desnudos de aluminio homogéneo “ARBUTUS”.

La intensidad nominal máxima de diseño de líneas de alimentación típicas de 132 kV, es de 581 A como se ha citado anteriormente, por lo que el cable “ARBUTUS” seleccionado para la realización de los puentes entre posiciones, aparamen
ta y embarrados de la subestación, tiene un calibre suficientemente alto (795 A) para considerarlo apto y adecuado para esta función.

11.9.3 PIEZAS DE CONEXIÓN.

Las derivaciones de los embarrados en el sistema de 132 kV, así como todas las uniones entre bornas de aparamen
ta eléctrica y posiciones, se van a realizar mediante piezas de conexión de aleación de aluminio, con la geometría adecuada y diseñadas para soportar las intensidades permanentes y de corta duración previstas, sin que existan calentamientos localizados.

La tornillería empleada va a ser de acero inoxidable. Debe quedar embutida en las piezas para evitar altos gradientes de tensión.

Las piezas de conexión han de cumplir con las Normas Iberdrola “NI 58.07.05” y “NI 29.42.10”. Además, deben permitir la dilatación de los tubos por cambios de temperatura sin producir esfuerzos perjudiciales.

Para las barras principales se evitará el empleo de conexiones empotradas fijas.
11.9.4 AISLADORES DE SOPORTE.

Para la sujeción de los embarrados rígidos, se van a emplear aisladores soporte de tipo columna, los cuales quedan definidos en la Norma Iberdrola “NI 48.20.02” (Aisladores cerámicos de apoyo para instalaciones de intemperie de alta tensión).

En la “Figura 64”, obtenida de la citada Norma Iberdrola “NI 48.20.02”, se muestra una imagen de este tipo de aislador cerámico.

![Figura 64. Aislador cerámico de apoyo para instalaciones de intemperie de A.T.](image)

Como criterio general para este tipo de subestaciones de 132 kV de nivel de tensión, se utilizarán aisladores cerámicos de apoyo “Tipo C8-650”, cuyas características principales se detallan a continuación:

- Tensión de aislamiento asignada: 145 kV.
- Tensión de servicio nominal: 132 kV.
- Tensión de ensayo un minuto a 50 Hz: 275 kV.
- Tensión de ensayo a impulso tipo rayo onda 1,2/50 µs: 650 kV.
- Carga de rotura a flexión: 8000 N.
- Carga de rotura a torsión: 4000 N.

En la “Tabla 41”, obtenida también de la Norma Iberdrola “NI 48.20.02”, aparecen las características y las dimensiones de este tipo de aisladores, en función del tipo seleccionado:

<table>
<thead>
<tr>
<th>Designación</th>
<th>Tensión de aislamiento (kV)</th>
<th>Tensión de servicio (kV)</th>
<th>Tensión de ensayo a 1 minuto (kV)</th>
<th>Tensión de ensayo a impulso (kV)</th>
<th>Carga de rotura a flexión (N)</th>
<th>Carga de rotura a torsión (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8-120-10</td>
<td>145</td>
<td>132</td>
<td>275</td>
<td>650</td>
<td>8000</td>
<td>4000</td>
</tr>
<tr>
<td>C8-150-10</td>
<td>145</td>
<td>132</td>
<td>275</td>
<td>650</td>
<td>8000</td>
<td>4000</td>
</tr>
<tr>
<td>C8-180-10</td>
<td>145</td>
<td>132</td>
<td>275</td>
<td>650</td>
<td>8000</td>
<td>4000</td>
</tr>
</tbody>
</table>

Tabla 41. Características y dimensiones aisladores cerámicos de apoyo.

El número de aisladores soporte a instalar es de 12 para los embarrados principales y de 6 para los embarrados secundarios.
A continuación, se comprueba que el aislador cerámico seleccionado para soportar el embarrado principal de la subestación, es adecuado para absorber los esfuerzos electrodinámicos sobre los tubos. Se realizan los cálculos para el caso de una corriente de cortocircuito trifásica en el embarrado (40 kA).

Se ha empleado la siguiente expresión (Fórmula 16) para el cálculo de las reacciones en los aisladores soporte:

\[R = 6,61 \times \frac{I_{cc}^2 \times \left[\sqrt{L^2 + d^2} - d \right]}{d} \times 10^{-8} \text{ kg} \]

(16)

donde:

- L: Longitud entre 2 vanos: 10 metros.
- d: Separación entre tubos: 2,5 metros.

El resultado obtenido ha sido:

\[R = 6,61 \times \frac{40000^2 \times \left[\sqrt{10^2 + 2,5^2} - 2,5 \right]}{2,5} \times 10^{-8} = 330,3 \text{ kg} = 3.236,9 \text{ N} \]

Como la reacción sobre los aisladores soporte del embarrado principal, debida a una corriente de cortocircuito trifásica de 40 kA (3.236,9 N), es menor que la carga de rotura de los mismos (8.000 N a flexión y 4.000 N a torsión), se concluye que los aisladores soporte seleccionados para el proyecto son adecuados para soportar los esfuerzos electrodinámicos sobre los tubos.

11.10 APARAMENTA DEL SISTEMA DE 132 kV.

11.10.1 DESCRIPCIÓN GENERAL.

El sistema de 132 kV de la subestación estará formado por equipos compactos híbridos aislados en SF6 “HIS” de la casa comercial “Siemens”. Son equipos con una envolvente metálica para su correcto funcionamiento a la intemperie, y además van provistos de terminales pasatapas “SF6-aire” para la conexión con las barras y con el resto de aparamenta.

En la “Figura 65”, obtenida del catálogo del fabricante “Siemens”, se puede ver la forma y dimensiones aproximadas que tienen este tipo de equipos:
Figura 65. Equipo Compacto Híbrido Aislado en SF6 (HIS) – Siemens.

Estos equipos, bajo una misma envolvente, engloban las funciones de: seccionador de barras y puesta a tierra de la línea, interruptor automático y transformador de corriente.

A continuación, se cita la aparamenta que engloba cada uno de los equipos compactos para cada una de las posiciones de la subestación de maniobra, así como la aparamenta aguas debajo de la posición de conexión:

• **Posiciones de línea:**

 o 1 interruptor automático tripolar de corte en SF6.
 o 1 seccionador de aislamiento de barras de 3 posiciones (abierto, cerrado y puesta a tierra).
 o 3 transformadores de corriente.
 o 6 bornas de intemperie.
 o 1 transformador de tensión convencional de intemperie (capacitivo) para medida y protección (fuera del equipo compacto HIS).

• **Posición de conexión y entrega al tercero:**

 o 1 interruptor automático tripolar de corte en SF6.
 o 1 seccionador de aislamiento de barras.
 o 3 transformadores de corriente.
 o 6 bornas de intemperie.
 o 1 juego de tres aisladores (fuera del equipo compacto HIS).

• **Aparamenta aguas abajo de la posición de conexión:**

 o 3 transformadores de corriente.
 o 3 transformadores de tensión (inductivos).
 o 3 autoválvulas para la protección de las 3 fases frente a sobretensiones.
 o 1 pararrayos con dispositivo de cebado para la correcta protección del transformador de potencia contra sobretensiones de origen atmosférico.
 o **Transformador de potencia 132/20 kV.**
11.10.2 EQUIPOS COMPACTOS HIS.

Los equipos compactos HIS que han sido seleccionados para el proyecto, cumplen con la Norma Iberdrola “NI 50.43.31”. Las características principales de estos equipos, se detallan a continuación:

- **Tipo de equipo:** blindado y aislado en SF6.
- **Servicio:** continuo y a la intemperie.
- **Temperatura ambiente:** [-30 +40] °C.
- **Tensión de aislamiento asignada:** 145 kV.
- **Tensión de servicio nominal:** 132 kV.
- **Tensión de ensayo durante 1 minuto a 50 Hz:** 275 kV.
- **Tensión de ensayo a impulso tipo rayo (onda 1,2/50 µs):** 650 kV.
- **Frecuencia nominal:** 50 Hz.
- **Intensidad asignada de servicio continuo:** 2500 A.
- **Intensidad de cortocircuito asignada (1 seg):** 40 kA.
- **Intensidad de cortocircuito (valor de cresta):** 100 kA.

Se van a instalar un total de 3 equipos compactos HIS, 1 en cada posición de línea (entrada y salida de línea de 132 kV) y 1 en la posición de conexión o entrega. Los 3 equipos poseen características constructivas análogas, variando únicamente la aparmenta instalada en el interior de cada uno de ellos, de acuerdo a las necesidades.

A continuación, se detallan las características principales de toda la aparmenta integrada en estos equipos compactos HIS:

- **INTEGROTORES AUTOMÁTICOS DE POTENCIA:**

Estos dispositivos serán los encargados de la apertura y cierre de los circuitos en carga o en cortocircuito. Los dispositivos seleccionados para el presente proyecto, cumplen con la norma “UNE-EN 62271-100” (Aparamenta de alta tensión. Parte 100 – Interruptores automáticos de corriente alterna). Sus características principales se detallan a continuación:

 - Tensión de aislamiento asignada: 145 kV.
 - Tensión de servicio nominal: 132 kV.
 - Frecuencia: 50 Hz.
 - Intensidad asignada de servicio continuo: 2500 A.
 - Intensidad de cortocircuito asignada: 40 kA.
 - Tensión de ensayo durante 1 minuto a 50 Hz: 275 kV.
 - Tensión de ensayo a impulso tipo rayo (onda 1,2/50 µs): 650 kV.
 - Duración nominal de la corriente de cortocircuito: 3 seg.
 - Ciclo nominal de maniobra asignado: O-0,3s-CO-15s-CO.
 - Tipo de reenganche: trifásico.
 - Clase: M2 y C2.

El aislamiento y corte del arco eléctrico se produce en gas SF6, con una presión superior a la atmosférica. Los tres polos de cada interruptor son accionados con un mismo mando.
motorizado tripolar con resortes, el cual se acopla a los polos mediante transmisiones mecánicas.

En la “Figura 66”, obtenida también del catálogo del fabricante “Siemens”, se detallan los pasos que sigue el interruptor automático de potencia para pasar desde el estado cerrado (hay paso de corriente), hasta el estado abierto (se corta el paso de corriente).

![Figura 66. Paso de cerrado a abierto del interruptor automático de potencia.](image)

SECCIONADORES DE AISLAMIENTO Y PUESTA A TIERRA:

Estos equipos son tripolares, con un único mando eléctrico para los 3 polos. Se van a instalar telemandados y telecontrolados.

Los seccionadores instalados en las 2 posiciones de línea son de 3 posiciones, incorporando la posición de puesta a tierra. A continuación se citan las características principales de estos equipos:

- Tensión de aislamiento asignada: 145 kV.
- Tensión de servicio nominal: 132 kV.
- Nivel de aislamiento a tierra y entre polos:
 - Tensión de ensayo durante 1 minuto a 50 Hz: 275 kV.
 - Tensión de ensayo a impulso tipo rayo (onda 1,2/50 µs): 650 kV.
- Nivel de aislamiento sobre la distancia de seccionamiento:
 - Tensión de ensayo durante 1 minuto a 50 Hz: 315 kV.
 - Tensión de ensayo a impulso tipo rayo (onda 1,2/50 µs): 750 kV.
- Intensidad asignada de servicio continuo: 2500 A.
- Intensidad admisible de corta duración (3 seg): 40 kA.
- Intensidad admisible (valor de cresta): 100 kA.

En la “Figura 67”, obtenida también del catálogo del fabricante “Siemens”, se pueden ver las 3 posiciones del seccionador de aislamiento y puesta a tierra.
92

Figura 67. Seccionador de aislamiento y puesta a tierra: Posición neutra, seccionador cerrado, y cuchilla de tierra cerrada.

➢ TRANSFORMADORES DE CORRIENTE:

Cada uno de los equipos compactos HIS contiene 3 transformadores de corriente toroidales, los cuales se encargarán de alimentar a los circuitos de medida y protección. Estos equipos se instalan fuera de la envolvente compacta, abrazando las bornas de intertemperie.

Las características principales de estos equipos se detallan a continuación:

- Relación de transformación: 1200/1-1 A.
- Potencia: 1 VA.
- Clase de precisión: 0,5 s.
- Resistencia del circuito secundario (75°C): Rct ≤ 2,4 Ω.
- Tensión del codo de saturación: Vpk ≥ 40 (Rct +5) V.
- Intensidad de excitación secundaria (Vpk): Ipk ≤ 20 mA.

11.10.3 TRANSFORMADORES DE TENSIÓN:

Estos equipos se encargarán de alimentar a los aparatos de medida y protección de los circuitos de 132 kV. Se trata de transformadores de tensión capacitivos e inductivos.

- Transformadores de tensión capacitivos:

En cada una de las 2 posiciones de línea, se va a instalar un transformador de tensión capacitivo con las siguientes características principales:

- Tensión de aislamiento asignada: 145 kV.
- Tensión de servicio nominal: 132 kV.
- Relación de transformación (1er y 2ndo arrollamiento): 132:V3 / 0,110:V3 kV.
- Potencia (1er y 2ndo arrollamiento): 30 VA.
- Clase de precisión (1er y 2ndo arrollamiento): Cl.0,5 – 3P.
- Frecuencia: 50 Hz.
- Tensión de ensayo durante 1 minuto a 50 Hz: 275 kV.
- Tensión de ensayo a impulso tipo rayo (onda 1,2/50 μs): 650 kV.
• **Transformadores de tensión inductivos:**

En uno de los extremos de las barras principales, se van a colocar tres transformadores de tensión inductivos. Las características principales y de estos equipos, se detallan a continuación:

- Tensión de aislamiento asignada: 145 kV.
- Tensión de servicio nominal: 132 kV.
- Relación de transformación:
 - 1er y 2ndo Arrollamiento: 132:v3 /0,110:v3 kV.
 - 3er Arrollamiento: 132:v3 /0,110 kV.
- Potencia:
 - 1er y 2ndo Arrollamiento: 75 VA.
 - 3er Arrollamiento: 50 VA.
- Clase de Precisión:
 - 1er y 2ndo Arrollamiento: Cl.0,5 – 3P.
 - 3er Arrollamiento: 3P.
- Frecuencia: 50 Hz.
- Tensión de ensayo a 50 Hz durante 1 minuto: 275 kV.
- Tensión de ensayo a impulso tipo rayo onda 1,2/50 µs: 650 kV.

Además, aguas abajo de la posición de conexión o entrega del parque eólico, se van a colocar también tres transformadores de tensión inductivos (uno por fase), para alimentar los circuitos de medida y protección.

11.11 INSTALACIÓN DE PUESTA A TIERRA.

El sistema de puesta a tierra de la subestación de maniobra consiste en un mallazo enterrado a 75 cm de profundidad sobre la cota cero.

Esta **malla** se compone de **conductores de cobre desnudo** con un diámetro de **15,75 mm**, equivalente a una sección de **150 mm²**. La retícula de conductores estará lo suficientemente espaciada (**5 metros**) para que, en ningún caso, se superen las tensiones de paso y de contacto admitidas por el reglamento (**ITC-RAT 13**), en caso de corrientes derivadas al terreno consecuencia de alguna falta.

Además, a 1 metro de distancia del cerramiento de la subestación y rodeando ésta, tanto por el interior como por el exterior, se van a colocar 2 cables perimetrales unidos a la malla de tierra.

De esta forma, se van a evitar tensiones de paso y de contacto peligrosas en las proximidades del cerramiento, que es uno de los puntos más conflictivos en este tipo de instalaciones.

En la zona exterior al cerramiento y con una anchura de 1 metro, se va a mantener el mismo nivel de resistividad del terreno que en el resto de la parcela donde se encuentra la subestación. Por tanto, esta zona será hormigonada con tal fin.
Como criterio general de diseño, la malla de tierra se ha diseñado para una intensidad de cortocircuito monofásico por defecto de 25 kA.

Según el reglamento de alta tensión, atendiendo a la función que desempeñan se distinguen dos tipos de puesta a tierra: las tierras de protección y las tierras de servicio. Ambas estarán unidas a la misma malla de tierras, constituyendo un único sistema de puesta a tierra general.

Mediante las **tierras de protección**, se unen todas las partes metálicas de la instalación que no están en tensión normalmente, pero que pueden estarlo (como consecuencia de algún tipo de avería, de descargas de corrientes atmosféricas o de sobretensiones), al mallazo de puesta a tierra. Estas uniones se realizan con conexiones desmontables.

Los elementos que se van a conectar a las **tierras de protección**, se citan a continuación.

- Chasis y bastidores de los aparatos de maniobra.
- Envolventes de los diferentes armarios metálicos.
- Puertas metálicas.
- Vallas y cerramientos metálicos.
- Estructuras metálicas: columnas, soportes, pórticos, etc.
- Estructuras y armaduras metálicas de los edificios de control.
- Blindajes metálicos de los cables.
- Hilos de guarda.
- Carcasa del transformador de potencia y del transformador de servicios auxiliares.

Mediante las **tierras de servicio**, se unirán los siguientes elementos al mallazo de puesta a tierra. Las conexiones, en este caso, serán fijas y no desmontables.

- Neutro del transformador de servicios auxiliares.
- Circuitos de BT de los transformadores de medida.
- Seccionadores de puesta a tierra (con una pica adicional para facilitar el drenaje de corriente al terreno).
- Autovalvulares, puntas “Franklin” y pararrayos.

Todas las conexiones se fijarán a las estructuras o carcasas mediante tornillos y grapas especiales de aleación de cobre, para que no se superen los 200°C en las uniones y se garantice la conexión en todo momento.

Para unir diferentes tramos de estructura metálica, se colocarán latiguillos de cobre. Para las uniones a la malla de tierra, se hará uso de la soldadura aluminotérmica “Cadweld”, de alto poder de fusión y altamente resistente a la corrosión galvánica.

En todos los puntos en los que se considera necesario mejorar la efectividad del sistema de puesta a tierra (bordes y esquinas de la malla), se van a colocar picas de puesta a tierra conectadas a la malla.

Tanto las puntas “Franklin” como el pararrayos de protección del transformador de potencia, irán directamente conectados a tierra mediante picas de puesta a tierra para
mejorar el drenaje de posibles descargas atmosféricas. Estas picas serán metálicas, de 2 metros de longitud, y se colocarán clavadas verticalmente y por completo en el terreno.

A continuación, se calcula la resistencia total de puesta a tierra de la subestación, para verificar que tiene un valor aceptable. De todos modos, el valor real de la resistencia de tierra, deberá ser medido una vez realizada la instalación del electrodo, con el fin de verificar la idoneidad de éste.

Se ha empleado la siguiente expresión (Fórmula 17), obtenida de la “ITC-RAT 13”, para el cálculo de la resistencia total de puesta a tierra del mallazo de cobre:

\[R = \frac{\rho}{4 \times r} + \frac{\rho}{L} \]

siendo:

- \(\rho \): Resistividad del terreno (\(\Omega \cdot m \)).
- \(r \): Radio de un círculo de la misma superficie que el área cubierta por el mallazo (m).
- \(L \): Longitud total de los conductores enterrados.

En este caso, en el terreno donde se va a implantar la subestación, aparecen materiales pertenecientes al “Cretáceo” y al “Jurásico”, como son dolomías, calcáreas y margas, arenas y arcillas, etc. Todo esto, ha sido obtenido en el apartado 12.3.2 (geomorfología y geología).

Por tanto, partiendo de estas características del terreno y de la “Tabla 1” de la “ITC-RAT 13”, el valor que corresponde para la resistividad del terreno en esta zona, estará comprendido entre 30 y 40 \(\Omega \cdot m \). Se ha elegido el valor más restrictivo para realizar los cálculos, es decir, una resistividad de 40 \(\Omega \cdot m \).

Por otro lado, la malla de puesta a tierra tendrá unas dimensiones de 65 x 75 metros. Como se ha comentado más arriba, tanto por el exterior como por el interior, y a 1 metro de distancia del cerramiento, se van a colocar 2 cables perimetrales unidos a la malla de tierra. Por ello, las dimensiones a considerar para la superficie ocupada por el sistema de puesta a tierra, son de 66 x 76 metros, con lo que el área ocupada tiene un valor de 5.016 m\(^2\).

Con esto, el radio del círculo que tiene la misma superficie que el área cubierta por el mallazo, es de 40 metros.

Por último, para calcular la longitud total de los conductores enterrados, se realiza el siguiente recuento:

- Conductores en horizontal: 13 conductores x 76 metros = 988 metros.
- Conductores en vertical: 16 conductores x 66 metros = 1.056 metros
- Picas: 7 picas x 2 metros = 14 metros.

El total de longitud de conductores enterrados es de 2.058 metros.
Con estos datos, el valor obtenido para la resistencia de puesta a tierra de la subestación es de:

\[R = \frac{40}{4 \times 40} + \frac{40}{2058} = 0,2694 \Omega \]

Se trata de un valor de resistencia de puesta a tierra bajo, lo cual hace indicar que todo se ha realizado correctamente hasta el momento, a falta de posteriores comprobaciones de las tensiones de paso y de contacto.

A continuación, se realiza el estudio de las tensiones de paso y de contacto admisibles \((U_{c, adm}, U_{p, adm}) \) en las diferentes zonas de la subestación, y de las tensiones de contacto y de paso máximas que pueden estar presentes en la subestación. Además, se comprueba que las tensiones máximas son inferiores a las admisibles, y que por tanto la seguridad queda garantizada.

El tiempo considerado para la duración de la corriente de falta ha sido de \(t_f = 0,5 \) segundos. Por tanto, según el reglamento, a este tiempo de duración de la corriente de falta, le corresponde una tensión de contacto aplicada admisible “\(U_{ca} \)” de 204 V.

\[U_{ca} = 204 V \]

Por tanto, la tensión de paso aplicada admisible “\(U_{pa} \)” es:

\[U_{pa} = 10 \times 204 V = 2040 V \]

Para el cálculo de las tensiones de contacto y de paso admisibles \((U_{c, adm}, U_{p, adm}) \), se calcula en primer lugar la resistividad aparente de la capa superficial de las distintas zonas de la subestación, es decir, de la acera exterior perimetral de hormigón, de la zona de grava, y de la zona hormigonada con firme rígido (viales interiores).

Para ello, se ha empleado la siguiente expresión (Fórmula 18), obtenida de los apuntes de la asignatura “Subestaciones Eléctricas y Coordinación de Aislamiento”:

\[\rho_s = \rho^* \times \left[1 - 0,106 \times \left(\frac{1 - \frac{\rho}{\rho^*}}{2 \times h_s + 0,106} \right) \right] \quad (18) \]

donde:

- \(\rho^* \): Resistividad de la capa superficial:
 - Acera de hormigón: 2.500 Ω*m.
 - Grava: 3.000 Ω*m.
 - Firme rígido de hormigón (viales): 3.500 Ω*m.

- \(\rho \): Resistividad del terreno natural: 40 Ω*m.
• \(h_s \): Espesor de la capa superficial:
 - Acera de hormigón: 0,1 m.
 - Grava: 0,1 m.
 - Firme rígido de hormigón (viales): 0,08 m.

Con ello, la resistividad aparente de las diferentes zonas tiene los siguientes valores:

\[
\rho_{s,ACERA} = 2500 \left[1 - 0,106 \times \left(1 - \frac{40}{2500} \right) \right] = 1.647,84 \ \Omega \cdot m
\]

\[
\rho_{s,GRAVA} = 3000 \left[1 - 0,106 \times \left(1 - \frac{40}{3000} \right) \right] = 1.974,64 \ \Omega \cdot m
\]

\[
\rho_{s,VIALES} = 3500 \left[1 - 0,106 \times \left(1 - \frac{40}{3500} \right) \right] = 2.121,2 \ \Omega \cdot m
\]

Con estos datos, se han calculado las tensiones de paso y de contacto admisibles en cada una de estas zonas de la subestación, mediante las siguientes expresiones (Fórmulas 19 y 20):

\[
U_{c,adm} = U_{ca} \times \left[1 + \frac{R_{a1}+1.5\times \rho_s}{1000} \right] \quad (19) \quad U_{p,adm} = U_{pa} \times \left[1 + \frac{2\times R_{a1}+6\times \rho_s}{1000} \right] \quad (20)
\]

donde:

• \(R_{a1} \): Resistencia de un pie calzado: 2000 \(\Omega \)

Con ello, los resultados obtenidos para las tensiones de paso y de contacto admisibles en las distintas zonas analizadas han sido:

- **ACERA DE HORMIGÓN:**
 - \(U_{c,adm} = 204 \times \left[1 + \frac{2000+1.5\times 1.647,84}{1000} \right] = 912,2 \ V \)
\[
U_{p,adm} = 2040 \left[1 + \frac{2^{20000+6\times1647.84}}{1000} \right] = 30.369,6 \text{ V}
\]

GRAVA:

\[
U_{c,adm} = 204 \left[1 + \frac{2^{2000+1.5\times1974.64}}{1000} \right] = 1.012,2 \text{ V}
\]

\[
U_{p,adm} = 2040 \left[1 + \frac{2^{2000+6\times1974.64}}{1000} \right] = 34.369,6 \text{ V}
\]

VIALES:

\[
U_{c,adm} = 204 \left[1 + \frac{2^{2000+1.5\times2121,2}}{1000} \right] = 1.057 \text{ V}
\]

\[
U_{p,adm} = 2040 \left[1 + \frac{2^{2000+6\times2121,2}}{1000} \right] = 36.163,5 \text{ V}
\]

Las tensiones de contacto y de paso máximas que se pueden dar, vienen definidas mediante las siguientes expresiones (Fórmulas 21 y 22):

\[
U_{c,\text{max}} = \frac{\rho \cdot K_m \cdot K_i \cdot I_g}{L_M} \quad (21) \quad U_{p,\text{max}} = \frac{\rho \cdot K_s \cdot K_i \cdot I_g}{L_S} \quad (22)
\]

donde:

- \(\rho\): Resistividad del terreno natural: 40 \(\Omega\cdot m\).
- \(K_m\) y \(K_s\): Factor geométrico de espaciado de conductores.
- \(K_i\): Factor de corrección por efecto de mayor densidad de corriente en los extremos de la malla.
- \(L_M\) y \(L_S\): Longitud efectiva de la red de conductores enterrados.
- \(I_g\): Corriente máxima de puesta a tierra: 25 kA (caso más desfavorable).

Los factores “\(K_m\)”, “\(K_s\)”, “\(K_i\)” y las longitudes “\(L_M\)” y “\(L_S\)”, se han calculado siguiendo las expresiones que da el reglamento, y que aparecen a continuación (Fórmulas 23, 24, 25, 26 y 27):

\[
K_m = \frac{1}{2\pi} \left[\ln \left(\frac{D^2}{16 \cdot h \cdot d} + \frac{(D + 2 \cdot h)^2}{8 \cdot D \cdot d} - \frac{h}{4 \cdot d} \right) + K_{ii} \cdot \ln \left(\frac{8}{\pi \cdot (2 \cdot n - 1)} \right) \right] \quad (23)
\]

\[
K_s = \frac{1}{\pi} \left[\frac{1}{2 \cdot h} + \frac{1}{D + h} + \frac{1}{D} \left(1 - 0.5^{(n-2)} \right) \right] \quad (24)
\]
\[K_i = 0,644 + 0,148 \times n \] \hspace{1cm} (25)

\[L_M = L_c + L_R \] \hspace{1cm} (26)

\[L_S = 0,75 \times L_c + 0,85 \times L_R \] \hspace{1cm} (27)

siendo:

- \(D \): Separación media entre conductores: 5 metros.
- \(h \): Profundidad de enterramiento de la malla: 0,75 metros.
- \(d \): Diámetro de los conductores de la malla: 0,01575 metros.

- \(K_{ii} = \frac{1}{(2 \times m)^{2/n}} \)
- \(n = \frac{2 \times l_c}{l_p} \times \sqrt{\frac{l_p}{4 + \sqrt{A}}} \) N° equivalente de conductores en paralelo
- \(L_c \): Longitud de los conductores de la malla (excepto las picas): 2.044 m.
- \(l_i \): Longitud de las picas enterradas: 14 m.
- \(L_p \): Longitud perimetral de la malla de tierra: 284 m.
- \(A \): Área de la subestación: 5.016 m².

Con estos datos, los resultados obtenidos se muestran en la “Tabla 42”:

<table>
<thead>
<tr>
<th>(n)</th>
<th>14,412</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{ii})</td>
<td>0,627</td>
</tr>
<tr>
<td>(L_S)</td>
<td>1,544,9</td>
</tr>
<tr>
<td>(L_M)</td>
<td>2,058</td>
</tr>
<tr>
<td>(K_i)</td>
<td>2,777</td>
</tr>
<tr>
<td>(K_s)</td>
<td>0,331</td>
</tr>
<tr>
<td>(K_m)</td>
<td>0,594</td>
</tr>
</tbody>
</table>

Tabla 42. Factores para el cálculo de las tensiones de paso y contacto máximas.

Y con ello, las tensiones de contacto y de paso máximas, considerando una corriente máxima de puesta a tierra de 25 kA, tienen los siguientes valores:

\[U_{c,\text{max}} = \frac{40 \times 0,594 \times 2,777 \times 25000}{2058} = 801,5 \text{ V} \]

\[U_{p,\text{max}} = \frac{40 \times 0,331 \times 2,777 \times 25000}{1544,9} = 595 \text{ V} \]
Se comprueba como la tensión de contacto máxima que puede aparecer en la instalación (801,5 V), es inferior a las tensiones de contacto admisibles obtenidas para cada una de las zonas de la subestación (912,2 V para la acera de hormigón; 1.012,2 V para las zonas de grava; 1.057 V para los viales).

Asimismo, se comprueba también como la tensión de paso máxima que puede aparecer (595 V), es inferior a las tensiones de paso admisibles obtenidas para cada una de las zonas (30.369,6 V para la acera de hormigón; 34.369,6 V para las zonas de grava; 36.163,5 V para los viales).

12 ESTUDIO DE IMPACTO AMBIENTAL.

12.1 OBJETIVOS DEL ESTUDIO.

La realización de un estudio de impacto ambiental en este tipo de proyectos, es de vital importancia para evaluar los impactos que tendrá el parque eólico sobre el medio ambiente cercano, tanto en la fase de construcción, como en las fases de explotación y desmantelamiento.

A destacar algunos objetivos principales como pueden ser:

• Predecir y prevenir las consecuencias que pueda tener la construcción, la explotación, y el desmantelamiento del parque eólico sobre el medio natural.
• Identificar las acciones susceptibles de generar impactos en cada una de las fases del proyecto.
• Identificar los elementos del medio natural que puedan verse afectados en cada una de las fases del proyecto.
• Valoración cualitativa y cuantitativa de los impactos ambientales.
• Desarrollo de medidas preventivas, y en su caso correctoras y compensatorias.
• Desarrollo de un plan de vigilancia ambiental.
• Colaboración con el desarrollo sostenible de la zona de actuación del proyecto.

12.2 DESCRIPCIÓN DEL PROYECTO.

El proyecto consiste en la instalación de un parque eólico de 20 MW de potencia nominal instalada en el término municipal de Requena (Valencia), y en concreto en la “Sierra de las Cabrillas”, una zona montañosa a la altura de la aldea de “El Rebollar”.

Dicho parque eólico estará compuesto por 10 aerogeneradores de 2 MW de potencia nominal cada uno de ellos, una subestación de maniobra para la conexión con la red eléctrica de 132 kV, y todas las infraestructuras necesarias para llevar a cabo el proyecto (líneas, aparramenta, celdas, etc.).

Entre los objetivos del proyecto se encuentra la generación de energía eléctrica para su inyección a la red de 132 kV, el cumplimiento del “PER 2020” (Plan de Energías Renovables para el año 2020), la contribución a la reducción de las emisiones de gases de efecto invernadero, y por último, el desarrollo local del término municipal de Requena.
Para el estudio de impacto ambiental se van a considerar las tres fases del proyecto: la fase de construcción, la fase de explotación, y la fase de desmantelamiento de la instalación al finalizar su vida útil.

En la fase de construcción se consideran todas las actividades que pueden afectar de forma directa o indirecta al medio natural. Entre las más relevantes se encuentran: la ocupación del terreno, el despeje y el desbroce, el uso de maquinaria pesada, la cimentación y el montaje de los aerogeneradores, el acondicionamiento de los viales de acceso existentes, el almacenamiento de materiales y residuos, etc.

Por otro lado, en la fase de explotación se considera tanto la presencia del propio parque en la zona, como el funcionamiento del mismo. Además, se tiene en cuenta la generación de residuos durante esta fase.

Por último, en la fase del desmantelamiento del parque se tienen en cuenta diversas actividades como pueden ser el desmontaje, la restauración del terreno, la clasificación de materiales y residuos, la revalorización, etc.

12.3 INVENTARIO AMBIENTAL.

12.3.1 CLIMA.

El clima en el término municipal de Requena (Valencia) es cálido y templado, con una temperatura media anual de 13,7°C. Los meses de invierno son mucho más lluviosos que los meses de verano, con un promedio en el nivel de precipitaciones de 437 mm.

En la “Figura 68”, obtenida de la página web “Climate-Data.org”, se representa el climograma de Requena. Con línea roja se representa la evolución de la temperatura media durante cada uno de los meses del año, y con barras azules se representa el nivel de precipitaciones en cada uno de los meses del año.

El mes más seco en Requena es julio, con 16 mm de nivel de precipitación. Por otro lado, el mes más lluvioso es octubre con un promedio de 56 mm.
El mes más caluroso en Requena es agosto, con un promedio de 22,9°C. Por otro lado, enero es el mes más frío, con un promedio de temperaturas de 6,2°C.

En la "Tabla 43", obtenida también de la página web "Climate-Data.org", se pueden ver con más detalle los datos históricos de temperaturas y precipitaciones, correspondientes a cada uno de los meses del año.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
<th>Septiembre</th>
<th>Octubre</th>
<th>Noviembre</th>
<th>Diciembre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura media (°C)</td>
<td>6,2</td>
<td>6,7</td>
<td>9,3</td>
<td>11,5</td>
<td>15,1</td>
<td>16,4</td>
<td>18,8</td>
<td>22,8</td>
<td>22,9</td>
<td>19,5</td>
<td>14,5</td>
<td>9,9</td>
</tr>
<tr>
<td>Temperatura mín. (°C)</td>
<td>1,7</td>
<td>2,1</td>
<td>3,9</td>
<td>6,2</td>
<td>9,7</td>
<td>13,8</td>
<td>16,9</td>
<td>17,1</td>
<td>17,1</td>
<td>13,9</td>
<td>9,2</td>
<td>4,8</td>
</tr>
<tr>
<td>Temperatura máxima (°C)</td>
<td>10,7</td>
<td>11,4</td>
<td>14,7</td>
<td>16,9</td>
<td>20,5</td>
<td>25</td>
<td>28,8</td>
<td>28,8</td>
<td>25,2</td>
<td>19,9</td>
<td>15</td>
<td>11,6</td>
</tr>
<tr>
<td>Temperatura media (°F)</td>
<td>51,7</td>
<td>53,5</td>
<td>56,2</td>
<td>58,9</td>
<td>65.3</td>
<td>67,1</td>
<td>72,8</td>
<td>73,2</td>
<td>73,2</td>
<td>67,8</td>
<td>58,1</td>
<td>49,8</td>
</tr>
<tr>
<td>Temperatura mín. (°F)</td>
<td>32,6</td>
<td>35,9</td>
<td>43,2</td>
<td>49,5</td>
<td>56.8</td>
<td>62,4</td>
<td>66,9</td>
<td>72,2</td>
<td>73,2</td>
<td>67,8</td>
<td>58,1</td>
<td>49,8</td>
</tr>
<tr>
<td>Temperatura máxima (°F)</td>
<td>49,6</td>
<td>43,9</td>
<td>67,0</td>
<td>70,9</td>
<td>79.9</td>
<td>81,6</td>
<td>88,8</td>
<td>93,8</td>
<td>87,2</td>
<td>77,4</td>
<td>67,8</td>
<td>58,0</td>
</tr>
<tr>
<td>Precipitación (mm)</td>
<td>27</td>
<td>39</td>
<td>44</td>
<td>49</td>
<td>39</td>
<td>16</td>
<td>21</td>
<td>21</td>
<td>44</td>
<td>95</td>
<td>43</td>
<td>33</td>
</tr>
</tbody>
</table>

Tabla 43. Tabla climática. Datos históricos del tiempo en Requena.

Notar que la diferencia en la precipitación entre el mes más seco y el mes más lluvioso es de 40 mm, y a lo largo del año, las temperaturas varían en 16,7°C.

12.3.2 GEOMORFOLOGÍA Y GEOLOGÍA.

En primer lugar, en lo que se refiere a la geomorfología de la futura ubicación del parque eólico (Sierra El Matutano), se caracteriza por ser una sierra con zonas abruptas, aunque podemos encontrar zonas con pendientes pequeñas y con accesos laterales, debido a la presencia de algún repetidor de señal en su parte más alta.

La zona elegida para ubicar el parque eólico, es una zona con pendientes bajas, en la zona alta de la sierra. Además, esta zona se puede ver desde la autovía Madrid-Valencia (A3), y posee accesos laterales como se ha citado con anterioridad.

Por otro lado, para el estudio de la geología, se ha considerado la futura zona de implantación del proyecto y sus inmediaciones. Los materiales que aparecen pertenecen prácticamente todos al “Cretácico” y al “Jurásico”, como son dolomías, calcáreas y margas, arenas y arcillas, etc.

12.3.3 HIDROLOGÍA.

Dentro de la hidrología se va a distinguir entre la hidrología superficial y la subterránea.

- **HIDROLOGÍA SUPERFICIAL:**

El término municipal de Requena cuenta con varios cauces de aguas permanentes que atraviesan su territorio, el “Río Magro”, el “Río Cabriel” y el “Río Reatillo”.

El principal cauce es el “Río Magro”, que lleva caudal durante toda su cuenca, aunque éste varía según el tramo. Se puede decir que se trata de un río poco caudaloso.
Con respecto a la calidad de las aguas superficiales, en Requena hay nueve estaciones de control de sus masas de agua, con el fin de conocer su estado ecológico. De los análisis realizados, se concluye que la calidad biológica de los ríos que atraviesan el municipio de Requena es, en algunos casos, mala o dudosa, y en otros casos, buena o aceptable.

Para completar esta información, se ha consultado un estudio comparativo entre el “Río Cabriel” y el “Río Magro”, donde se concluye que el “Río Magro” es un río altamente contaminado, debido a los diferentes vertidos de aguas residuales, tanto urbanas como industriales y a la escasa o nula depuración de las aguas de estos vertidos.

También se obtuvo que, el “Índice de Calidad General” del periodo estudiado, estaba por debajo de lo admisible.

- **HIDROLOGÍA SUBTERRÁNEA:**

De los 14 sistemas acuíferos subterráneos que hay en la Comunidad Valenciana, Requena pertenece al sistema acuífero número 53, el cual abarca una superficie total de 3.100 km². Dicho sistema se encuentra dividido en tres subsistemas: Las Serranías (08.18), Plana Utiel-Requena (08.24) y Buñol-Casinos (08.23).

Requena se encuentra justamente entre 2 de los 3 subsistemas acuíferos nombrados, en concreto entre el “08.24” y “08.18”. El 74% del término municipal de Requena pertenece al subsistema “08.24” y el 22,66% al subsistema “08.18”.

La alimentación y recarga se produce prácticamente por la infiltración del agua de lluvia caída sobre sus materiales permeables. Por otro lado, las salidas del acuífero se realizan fundamentalmente al “Río Júcar”, a través de diversos manantiales.

Para conocer la calidad de las aguas, se dispone de 2 puntos de control, situados en los piezómetros, que miden la conductividad, contenido de amonio, bicarbonatos, sulfatos, nitratos, cloruros, etc.

Los resultados obtenidos son: conductividad del agua excelente, contenidos de baja concentración de amonio, concentración de bicarbonatos buena, calidad excelente respecto a los nitratos, calidad buena respecto a sulfatos, calidad muy buena en cuanto a cloruros, etc.

12.3.4 ÁREAS PROTEGIDAS.

En el “punto 5” se habla de las figuras ambientales presentes en el la actualidad en la zona de actuación, “Red Natura 2000” e “IBAs”.

Como ya se cita en dicho punto, la zona de actuación del proyecto no se ve afectada por ninguna zona de especial atención (protegida o de interés patrimonial).

A efectos de conocer las áreas protegidas del término municipal de Requena, se citan a continuación:
• Sierra de Malacara (ZEC, ZEPA, LIC).
• Hoces del Cabriel (ZEC, ZEPA, PN, LiC).
• Sierra del Negrete (LiC).
• Sierras de Martés y el Ave (ZEC, LiC).
• Valle de Ayora y Sierra del Boquerón (ZEC, LiC).
• Sierra de Martés – Muela de Cortes (ZEPA).
• Alto Turia y Sierra del Negrete (ZEPA).

12.3.5 FAUNA.

En lo que respecta a la fauna existente en los alrededores del futuro emplazamiento del parque eólico, a continuación se realiza una clasificación en diferentes grupos de las especies existentes en la zona:

• **Mamíferos:** ciervo, muflón, cabra montés, corzo, jabalí, zorro, erizo moruno, erizo europeo, tejón, gineta, garduña.

• **Aves:** águila real, águila culebrera, halcón peregrino, buitre leonado, jilguero, verdicillo, mochuelo, cormoranes, garza real, perdiz roja, búho real.

• **Reptiles:** lagartija roquera, culebra lisa europea, culebra vipersina, culebra bastardita, galápago leproso, galápago de florida, lagarto ocelado, tortuga mediterránea.

• **Anfibios:** sapo común, gallipato, rana común, sapo partero común.

• **Peces:** carpa común, carpa royal, blackbass, lucio, lucioperca, alburno, perca sol, barbo de montaña, trucha común.

• **Invertebrados:** artrópodos, arácnidos, entognatos, picnogónidos, quilópodos (cangrejos), insectos (hormiga león y esfinge colibri).

12.3.6 FLORA.

En la sierra donde se desea ubicar el parque eólico, la flora existente es prácticamente todo matorral debido a que la zona ha sufrido varios incendios a lo largo del tiempo.

Las dos especies que pueden encontrarse por la zona son las siguientes:

• **La Sabina:** árbol de hoja perenne con tronco corto que en los ejemplares maduros aparece retorcido. Es un árbol muy rústico que crece bien en climas extremos, de crecimiento muy lento y longevo, y que puede vivir más de mil años.

• **El Acebo:** arbusto perennifolio con hojas duras y lustrosas, de tipo espinoso y de crecimiento lento. Los llamativos frutos son de forma globulosa, carnosa y de color rojo.
Para realizar la valoración de los impactos ambientales se va a emplear el método de la "Matriz de Leopold".

La "Matriz de Leopold" es un método universalmente empleado para realizar la evaluación del impacto ambiental que puede producir un determinado proyecto. En sí, es una matriz interactiva simple, donde se muestran las acciones del proyecto o actividades en un eje y los factores o componentes ambientales posiblemente afectados en el otro eje de la matriz.

Cuando una acción determinada puede provocar un cambio en un factor ambiental, se apunta en la intersección de la matriz y se describe además su magnitud e importancia. Notar que la valoración de los impactos mediante este método es de carácter puramente cualitativo.

Un primer paso para la utilización de esta matriz consiste en la identificación de las interacciones existentes, para lo cual se consideran todas las actividades principales del proyecto que podrían provocar un impacto ambiental (columnas), y todos los factores ambientales asociados con estas actividades (filas).

Una vez identificadas todas las interacciones posibles, dichas casillas admiten 2 valores: a la izquierda se califica la importancia del impacto del +1 al +10, y a la derecha se califica la magnitud del impacto del -10 al +10.

En las "Tablas 44 y 45", obtenidas de la página web "Scribd", se puede consultar el significado de cada uno de los números posibles a introducir en la Matriz de Leopold, para la calificación de la magnitud e importancia de impactos positivos o negativos:

\[\text{Tabla 44 y 45. Calificación de la magnitud e importancia de impactos positivos y negativos.}\]

Partiendo de este punto, se ha elaborado la "Matriz de Leopold", obteniendo los siguientes resultados ("Figura 69"):
Análisis Estadístico de las Columnas:

\[
\text{Media} = -3,18 \\
\text{Desviación Típica} = 39,51 \\
\text{Rango de la Media} = [-42,69 , +36,33]
\]

Como se puede observar, hay 2 acciones que se salen del rango de la media por debajo, que son el **despeje y desbroce del terreno** y el **uso de maquinaria pesada**. Esta consideración se tendrá en cuenta a la hora de evaluar las posibles medidas correctoras, actuando de forma más explícita sobre estas 2 acciones.

Análisis Estadístico de las Filas:

\[
\text{Media} = -5,83 \\
\text{Desviación Típica} = 16,79 \\
\text{Rango de la Media} = [-22,62 , +10,96]
\]

Se puede apreciar como el factor ambiental de la **atmósfera** es el único que se sale del rango, por lo que se prestará especial atención a las acciones que generan mayor impacto sobre dicho factor ambiental.

12.5 INTERACCIONES Y MEDIDAS CORRECTORAS.

Partiendo del análisis de la “**Matriz de Leopold**” y en concreto de las acciones que más repercusión parece que pueden tener sobre el medio ambiente, las cuales se citan a continuación:

- Despeje y desbroce del terreno.
• Uso de maquinaria pesada.
• Acciones que puedan repercutir sobre la atmósfera.

Las medidas correctoras que se van a tomar se citan a continuación:

En primer lugar, a la hora de realizar el despeje y desbroce del terreno, únicamente se realizarán estas acciones en la zona de influencia de cada uno de los aerogeneradores, respetando los alrededores de estos y la vegetación existente. También se realizarán estas acciones en el momento del acondicionamiento de los viales existentes.

A la hora de emplear maquinaria pesada, se hará uso de neumáticos especiales que no dañen el terreno de la zona de actuación. Además, se mantendrá funcionando este tipo de maquinaria únicamente el tiempo necesario para realizar sus tareas. En ningún caso se mantendrá en marcha cualquier vehículo de este tipo mientras no se esté empleando.

Por último, para dar acciones correctores sobre acciones que puedan perjudicar a la atmósfera cercana a la zona de actuación, se propone que únicamente acceda a la zona más alta y zona de trabajo del parque la maquinaria y el transporte exclusivamente necesarios. Todo el personal de trabajo del parque, deberá estacionar su vehículo en un parking habilitado en una zona más alejada, y se trasladará hasta la zona de trabajo mediante vehículos eléctricos para varias personas habilitados con tal fin.

12.6 CONCLUSIONES.

Haciendo uso de un buen análisis de las posibles repercusiones que pueden tener los trabajos a realizar para la construcción, explotación y desmantelamiento del parque eólico en el medio ambiente, se ha obtenido como resultado que ciertas acciones pueden perjudicar más que otras al medio ambiente cercano.

Con ello, se han presentado ciertas medidas correctoras para intentar evitar, en la medida de lo posible, que estas acciones alteren el medio ambiente.

Como conclusión, se puede decir que la denominada “Matriz de Leopold” es un buen método de análisis para este tipo de proyectos y para este tipo de análisis de impactos medioambientales. De un vistazo rápido, se puede ver que acciones son más perjudiciales que otras y en que grado.
13 ESTUDIO DE VIABILIDAD ECONÓMICA.

13.1 PRESUPUESTO TOTAL. INVERSIÓN INICIAL.

<table>
<thead>
<tr>
<th>Capítulo 1 - Aerogeneradores</th>
<th>Ud</th>
<th>€/Ud</th>
<th>€</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Aerogenerador "E82/2000" de "ENERCON"</td>
<td>10</td>
<td>1.450.000</td>
<td>14.500.000</td>
</tr>
<tr>
<td>1.2 Transporte</td>
<td>10</td>
<td>25.000</td>
<td>250.000</td>
</tr>
<tr>
<td>1.3 Instalación mecánica</td>
<td>10</td>
<td>16.500</td>
<td>165.000</td>
</tr>
<tr>
<td>1.4 Instalación eléctrica</td>
<td>10</td>
<td>34.600</td>
<td>346.000</td>
</tr>
<tr>
<td>1.5 Sistema de puesta a tierra</td>
<td>10</td>
<td>1.200</td>
<td>12.000</td>
</tr>
<tr>
<td>1.6 Pruebas y puesta en marcha</td>
<td>10</td>
<td>3.800</td>
<td>38.000</td>
</tr>
</tbody>
</table>

Total Capítulo 1: 15.311.000

<table>
<thead>
<tr>
<th>Capítulo 2 - Obra Civil</th>
<th>Ud</th>
<th>€/Ud</th>
<th>€</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Acondicionamiento viales de acceso (m³)</td>
<td>4.138</td>
<td>0,7</td>
<td>2.689,7</td>
</tr>
<tr>
<td>2.2 Despeje y desbroce del terreno (m³)</td>
<td>4.745</td>
<td>0,5</td>
<td>2.562,3</td>
</tr>
<tr>
<td>2.3 Excavación pozos aerogeneradores (m³)</td>
<td>7.738</td>
<td>6,3</td>
<td>48.749,4</td>
</tr>
<tr>
<td>2.4 Hormigón de limpieza "HM-20/P/40/IIa" (m³)</td>
<td>183</td>
<td>61,3</td>
<td>11.208,8</td>
</tr>
<tr>
<td>2.5 Hormigón Cimentación "HM-30" (m³)</td>
<td>2.423</td>
<td>73,1</td>
<td>177.121,3</td>
</tr>
<tr>
<td>2.6 Acero "IP-500-S" para armadura (kg)</td>
<td>253.650</td>
<td>0,9</td>
<td>218.139,0</td>
</tr>
<tr>
<td>2.7 Encofrado metálico (m²)</td>
<td>884</td>
<td>7,9</td>
<td>7.001,3</td>
</tr>
<tr>
<td>2.8 Zanja 60x60 cm (m)</td>
<td>3.083</td>
<td>58,4</td>
<td>180.047,2</td>
</tr>
<tr>
<td>2.9 Zanja 85x85 cm (m)</td>
<td>744</td>
<td>67,2</td>
<td>49.996,8</td>
</tr>
<tr>
<td>2.10 Arqueta 250x150x150 cm</td>
<td>20</td>
<td>725,0</td>
<td>14.500,0</td>
</tr>
<tr>
<td>2.11 Montaje virola aerogenerador</td>
<td>10</td>
<td>5.300,0</td>
<td>53.000,0</td>
</tr>
</tbody>
</table>

Total Capítulo 2: 765.015,7

<table>
<thead>
<tr>
<th>Capítulo 3 - Infraestructura eléctrica</th>
<th>Ud</th>
<th>€/Ud</th>
<th>€</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Conductor aluminio 12/20 kV 150 mm² (m)</td>
<td>26.952</td>
<td>21,7</td>
<td>585.505,2</td>
</tr>
<tr>
<td>3.2 Conjunto terminal MT 12/20 kV 150 mm² (Al)</td>
<td>40</td>
<td>83,6</td>
<td>3.344,0</td>
</tr>
<tr>
<td>3.3 Celda modular de línea para circuitos</td>
<td>20</td>
<td>3.610,6</td>
<td>72.212,0</td>
</tr>
<tr>
<td>3.4 Celda modular de protección con fusibles para turbinas</td>
<td>10</td>
<td>3.958,2</td>
<td>39.582,0</td>
</tr>
<tr>
<td>3.5 Celda modular de protección con I.A. para circuitos</td>
<td>5</td>
<td>3.791,7</td>
<td>18.958,5</td>
</tr>
<tr>
<td>3.6 Celda modular de remonte de cables</td>
<td>5</td>
<td>1.833,2</td>
<td>9.166,0</td>
</tr>
<tr>
<td>3.7 Celda modular de protección con I.A. para línea de salida</td>
<td>1</td>
<td>5.125,5</td>
<td>5.125,5</td>
</tr>
<tr>
<td>3.8 Celda modular de protección con fusibles para línea de salida</td>
<td>1</td>
<td>3.144,2</td>
<td>3.144,2</td>
</tr>
<tr>
<td>3.9 Celda modular de medida para turbinas</td>
<td>10</td>
<td>2.765,3</td>
<td>27.653,0</td>
</tr>
<tr>
<td>3.10 Celda modular de medida para líneas de salida</td>
<td>2</td>
<td>3.338,4</td>
<td>6.676,8</td>
</tr>
<tr>
<td>3.11 Celda modular de línea para línea de salida</td>
<td>1</td>
<td>4.327,9</td>
<td>4.327,9</td>
</tr>
<tr>
<td>3.12 Ensayo de aislamiento y rigidez dieléctrica</td>
<td>1</td>
<td>5.100,0</td>
<td>5.100,0</td>
</tr>
<tr>
<td>3.13 Mediciones de tensiones de paso y contacto</td>
<td>1</td>
<td>4.600,0</td>
<td>4.600,0</td>
</tr>
<tr>
<td>3.14 Línea fibra óptica transmisión de señales (m)</td>
<td>3.625</td>
<td>3,5</td>
<td>12.506,3</td>
</tr>
<tr>
<td>3.15 Accesorios línea fibra óptica</td>
<td>1</td>
<td>15.200,0</td>
<td>15.200,0</td>
</tr>
<tr>
<td>3.16 Cable de cobre desnudo 50 mm² P.A.T. (m)</td>
<td>3.632</td>
<td>6,7</td>
<td>24.334,4</td>
</tr>
<tr>
<td>3.17 Tubo 160/20 mm (m)</td>
<td>8.984</td>
<td>9,6</td>
<td>85.797,2</td>
</tr>
</tbody>
</table>

Total Capítulo 3: 923.233,0
13.2 PRODUCCIÓN Y BENEFICIO ANUAL OBTENIDO.

La producción total neta anual esperada para el parque eólico de 20 MW objeto del proyecto, es de 67.341,5 MWh/año. Partiendo de este dato de producción anual, y de un precio medio de la prima obtenida por la venta de cada MWh de 68 €/MWh, se espera obtener unos ingresos anuales de:

\[
\text{Ingreso Anual} = 67.341,5 \frac{\text{MWh}}{\text{año}} \times 68 \frac{\text{€}}{\text{MWh}} = 4.579.222 \text{ €/año}
\]

En el siguiente punto se analiza el flujo de caja del proyecto, partiendo desde el año cero desde la realización de la inversión inicial. Se considera para ello que, un porcentaje del 25 % del beneficio anual obtenido por la producción energética del parque eólico, va a ser destinado al mantenimiento del mismo durante el año considerado. Se analiza también el “payback” o periodo de retorno de la inversión del proyecto en el tiempo.
13.3 FLUJO DE CAJA Y AÑOS DE RETORNO DE LA INVERSIÓN “PAYBACK”.

Con una inversión total a realizar de **24.680.153,73 €**, con unos ingresos anuales de **4.579.222 €/año**, y considerando que el **25 %** del beneficio anual obtenido va a ir destinado al mantenimiento del parque (1.144.805,5 €), el flujo de caja del proyecto a lo largo de los 25 años siguientes a la realización de la inversión, se puede ver detallado en la “Tabla 46”.

<table>
<thead>
<tr>
<th>Año</th>
<th>Inversión Inicial + mantenimiento €/año</th>
<th>Producción Anual MW/año</th>
<th>Ingresos Anuales €/año</th>
<th>Flujo de Caja €</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>25.824.999,2</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>-31.245.737,2</td>
</tr>
<tr>
<td>2020</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>-17.811.320,7</td>
</tr>
<tr>
<td>2021</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>-14.376.904,2</td>
</tr>
<tr>
<td>2022</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>-10.942.487,7</td>
</tr>
<tr>
<td>2023</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>-7.508.071,2</td>
</tr>
<tr>
<td>2024</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>-4.073.654,7</td>
</tr>
<tr>
<td>2025</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>-639.238,2</td>
</tr>
<tr>
<td>2026</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>2.795.178,3</td>
</tr>
<tr>
<td>2027</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>6.299.594,8</td>
</tr>
<tr>
<td>2028</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>9.664.011,3</td>
</tr>
<tr>
<td>2029</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>13.098.427,8</td>
</tr>
<tr>
<td>2030</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>16.532.844,3</td>
</tr>
<tr>
<td>2031</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>19.967.260,8</td>
</tr>
<tr>
<td>2032</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>23.401.677,3</td>
</tr>
<tr>
<td>2033</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>26.836.093,8</td>
</tr>
<tr>
<td>2034</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>30.270.510,3</td>
</tr>
<tr>
<td>2035</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>33.704.926,8</td>
</tr>
<tr>
<td>2036</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>37.139.343,3</td>
</tr>
<tr>
<td>2037</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>40.573.759,8</td>
</tr>
<tr>
<td>2038</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>44.008.176,3</td>
</tr>
<tr>
<td>2039</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>47.442.592,8</td>
</tr>
<tr>
<td>2040</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>50.877.009,3</td>
</tr>
<tr>
<td>2041</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>54.311.425,8</td>
</tr>
<tr>
<td>2042</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>57.745.842,3</td>
</tr>
<tr>
<td>2043</td>
<td>1.144.805,5</td>
<td>67.341,5</td>
<td>4.579.222,0</td>
<td>61.180.258,8</td>
</tr>
</tbody>
</table>

Tabla 46. Flujo de Caja del Proyecto.

Partiendo de los datos de la “Tabla 46”, se ha realizado el siguiente gráfico de barras (“Figura 70”), donde se puede ver de forma rápida y visual el periodo de retorno de la inversión, bien conocido como “payback”:

![Figura 70. Periodo de retorno de la inversión o payback.](image)

A partir del año **2026**, se recupera la inversión inicial realizada y se comienza a obtener beneficio del parque eólico. Es decir, son necesarios **8 años** desde la puesta en marcha de la instalación para la total recuperación de la inversión inicial realizada, un período de retorno
a tener muy presente en este tipo de proyectos. A partir del octavo año, todo ingreso por producción energética será beneficio propiamente dicho, con la instalación ya amortizada.

13.4 ANÁLISIS DEL VAN EN FUNCIÓN DEL TIPO DE INTERÉS CONSIDERADO.

Por último, se ha realizado un análisis del VAN en función del tipo de interés considerado, para un periodo de amortización de 25 años y para un periodo de 8 años. El tipo de interés comienza en el valor de un 2% y va aumentado en intervalos de 2%.

En primer lugar se ha considerado un periodo de amortización de 25 años. Los resultados obtenidos aparecen en la “Tabla 47”. Para amortizar el proyecto en un intervalo de 25 años, se puede llegar a considerar un tipo de interés de hasta un 16%.

<table>
<thead>
<tr>
<th>Coste Capital</th>
<th>VAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td>63.577.282,17 €</td>
</tr>
<tr>
<td>4%</td>
<td>45.712.012,94 €</td>
</tr>
<tr>
<td>6%</td>
<td>32.712.866,53 €</td>
</tr>
<tr>
<td>8%</td>
<td>23.057.210,74 €</td>
</tr>
<tr>
<td>10%</td>
<td>15.740.822,12 €</td>
</tr>
<tr>
<td>12%</td>
<td>10.090.515,94 €</td>
</tr>
<tr>
<td>14%</td>
<td>5.647.701,30 €</td>
</tr>
<tr>
<td>16%</td>
<td>2.084.978,47 €</td>
</tr>
<tr>
<td>18%</td>
<td>-790.783,70 €</td>
</tr>
<tr>
<td>20%</td>
<td>-3.168.859,90 €</td>
</tr>
<tr>
<td>22%</td>
<td>-5.154.649,30 €</td>
</tr>
<tr>
<td>24%</td>
<td>-6.832.980,22 €</td>
</tr>
<tr>
<td>26%</td>
<td>-8.267.086,78 €</td>
</tr>
<tr>
<td>28%</td>
<td>-9.504.744,45 €</td>
</tr>
<tr>
<td>30%</td>
<td>-10.582.517,39 €</td>
</tr>
<tr>
<td>32%</td>
<td>-11.528.735,49 €</td>
</tr>
</tbody>
</table>

Tabla 47. VAN a 25 años según el tipo de interés considerado.

Por último, se ha considerado un periodo de amortización de 8 años, igual al “payback” obtenido para el proyecto. Los resultados obtenidos aparecen en la “Tabla 48”. Para amortizar el proyecto en un intervalo de 8 años, se puede llegar a considerar un tipo de interés de hasta un 8%.

<table>
<thead>
<tr>
<th>Coste Capital</th>
<th>VAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td>7.720.046,54 €</td>
</tr>
<tr>
<td>4%</td>
<td>5.005.774,22 €</td>
</tr>
<tr>
<td>6%</td>
<td>2.611.065,21 €</td>
</tr>
<tr>
<td>8%</td>
<td>490.176,25 €</td>
</tr>
<tr>
<td>10%</td>
<td>-1.395.147,81 €</td>
</tr>
<tr>
<td>12%</td>
<td>-3.077.033,92 €</td>
</tr>
<tr>
<td>14%</td>
<td>-4.582.571,63 €</td>
</tr>
<tr>
<td>16%</td>
<td>-5.934.592,24 €</td>
</tr>
<tr>
<td>18%</td>
<td>-7.152.880,41 €</td>
</tr>
<tr>
<td>20%</td>
<td>-8.253.752,64 €</td>
</tr>
<tr>
<td>22%</td>
<td>-9.251.529,59 €</td>
</tr>
<tr>
<td>24%</td>
<td>-10.158.423,12 €</td>
</tr>
<tr>
<td>26%</td>
<td>-10.984.954,79 €</td>
</tr>
<tr>
<td>28%</td>
<td>-11.740.218,92 €</td>
</tr>
<tr>
<td>30%</td>
<td>-12.492.100,62 €</td>
</tr>
<tr>
<td>32%</td>
<td>-13.067.457,19 €</td>
</tr>
</tbody>
</table>

Tabla 48. VAN a 8 años según el tipo de interés considerado.
13.5 CONCLUSIONES.

Como conclusiones al estudio económico y de rentabilidad del proyecto, queda demostrado que este proyecto de un parque eólico de 20 MW de potencia instalada en el término municipal de Requena, con conexión a la red de distribución de 132 kV, tiene una alta rentabilidad económica en el tiempo.

Este tipo de instalaciones poseen una vida útil muy elevada si se realiza un buen mantenimiento de las mismas. Se estima que, como mínimo, pueden funcionar durante 20 años sin necesidad de verse sometidas a ningún tipo de reforma. A partir de los 20 años de funcionamiento, dependiendo del estado de las instalaciones, se pueden realizar reformas pro-alargamiento de vida útil de las mismas.

Con un periodo de retorno de la inversión inicial o “payback” del proyecto de 8 años, queda muy lejos todavía el periodo de 20 años estimado para una posible reforma del parque. Por ello, se concluye que el proyecto es totalmente viable económicamente, ya que durante un mínimo de 12 años a partir del octavo año de la puesta en marcha, toda la producción energética del parque se convertirá en beneficio neto con la instalación ya amortizada, siempre salvando el porcentaje del 25 % destinado al mantenimiento del parque.

14 CONCLUSIONES GENERALES DEL PROYECTO.

Tras realizar los estudios ambiental y económico del presente proyecto, la conclusión general a la que se llega es muy clara y concisa: la construcción y explotación del parque eólico de 20 MW, ubicado en la “Sierra El Matutano” y objeto del presente proyecto, es totalmente viable en términos ambientales y totalmente rentable económicamente hablando.

Del estudio de impacto ambiental, se han obtenido las 3 acciones que podrían llegar a repercutir en el medio ambiente cercano. De este modo, conociendo estas acciones, se han tomado unas medidas para que éstas afecten lo menos posible al medio ambiente.

En el estudio económico, se ha elaborado el presupuesto total del proyecto, se ha obtenido el periodo de retorno de la inversión, y se ha realizado un análisis del VAN en función del tipo de interés considerado.

El periodo de retorno de la inversión obtenido ha sido de 8 años, un periodo relativamente bajo e interesante para este tipo de instalaciones, cuya vida útil sobrepasa los 20 años. Actualmente en España se están construyendo parques eólicos, y esto quiere decir que son rentables en el tiempo, por lo que el periodo de retorno obtenido parece ser razonable.

Por estas razones, y cumpliendo con uno de los objetivos del presente proyecto, como es el desarrollo de las energías renovables en España y en concreto en la Comunidad Valenciana, la construcción de este parque eólico de 20 MW es totalmente viable tanto ambientalmente como económicamente.
Figura 5. Localización Parques Eólicos C.V.
Figura 7. Sierra El Matutano (Vista desde Rotonda).
Figura 8. Accesos Sierra El Matutano.
Figura 11. Lugares de Importancia Comunitaria de la C.V. (LIC).
Figura 12. IBAs (Áreas de Importancia para las Aves en España).
Figura 13. Parques Naturales de la C.V.
Figura 14. Parajes Naturales Municipales de la C.V.
Figura 15. Rosa de vientos de frecuencias a 80 metros.
Figura 16. Rosa de vientos de potencias a 80 metros.
Figura 17. Rosa de velocidades del viento a 80 metros.
Figura 18. Rosa de vientos de turbulencias a 80 metros.
Figura 19. Ley de Distribución de Weibull a 30, 60, 80 y 100 metros.
Figura 20. Probabilidades de aparición de velocidades de viento a 30, 60, 80 y 100 metros.
Figura 22. Curvas de potencia y del coeficiente de potencia del “E82/2000”.
Figura 23. Curva de potencia del “V90/2000”.
Figura 24. Curva de potencia del “HARVESTER 2.0 MW”.
Figura 25. Función de Weibull a 85 metros.
Figura 26. Probabilidades de aparición de velocidades de viento a 85 metros.
Figura 27. Diagrama de densidad de producción del “E82/2000”.
Figura 28. Función de Weibull a 95 metros.
Figura 29. Probabilidades de aparición de velocidades de viento a 95 metros.
Figura 30. Diagrama de densidad de producción del “V90/2000”.
Figura 31. Función de Weibull a 100 metros.
Figura 32. Probabilidades de aparición de velocidades de viento a 100 metros.
Figura 33. Diagrama de densidad de producción del “HARVESTER 2.0 MW”.
Figura 34. Disposición de aerogeneradores en alineaciones contiguas.
Figura 35. Recorrido de la olineación de los 10 aerogeneradores del parque eólico.
Figura 36. Perfil de elevación del terreno.
Figura 37. Ubicación de los 10 aerogeneradores que componen el parque eólico.
Figura 38. Líneas en dirección W-E para obtención de perfiles del terreno.
Figura 40. Perfil del terreno dirección W-E aerogenerador 2.
Figura 41. Perfil del terreno dirección W-E aerogenerador 3.
Figura 42. Perfil del terreno dirección W-E aerogenerador 4.
Figura 43. Perfil del terreno dirección W-E aerogenerador 5.
Figura 44. Perfil del terreno dirección W-E aerogenerador 6.
Figura 45. Perfil del terreno dirección W-E aerogenerador 7.
Figura 46. Perfil del terreno dirección W-E aerogenerador 8.
Figura 47. Perfil del terreno dirección W-E aerogenerador 9.
Figura 49. Recorrido zanjas internas parque eólico.
Figura 50. Esquema unifilar simplificado Circuito 1.
Figura 51. Cable “Al Eprotenax H Compact 12/20 kV”.
Figura 52. Configuración y disposición de los 5 circuitos eléctricos en la zanja de conexión con la subestación del parque.
Figura 55. Fusibles media tensión.
Figura 56. Esquema unifilar celda modular aerogeneradores 1, 3, 5, 8 y 10.
Figura 57. Esquema unifilar celda modular aerogeneradores 2, 4, 6, 7 y 9.
Figura 58. Celda modular de medida con aislamiento en aire.
Figura 59. Distribución interior del edificio de control de 20 kV de la subestación.
Figura 60. Celda modular de protección con interruptor automático, con aislamiento en gas SF6.
Figura 61. Celda modular de remonte de cables.
Figura 62. Sistema de protección contra el rayo en un aerogenerador.
Figura 63. Ejemplo de transformador de potencia 132/120 kV.
Figura 64. Aislador cerámico de apoyo para instalaciones de intemperie de A.T.
Figura 65. Equipo Compacto Híbrido Aislado en SF6 (HIS) – Siemens.
Figura 66. Paso de cerrado a abierto del interruptor automático de potencia.
Figura 67. Seccionador de aislamiento y puesta a tierra: Posición neutra, seccionador cerrado, y cuchilla de tierra cerrada.
Figura 68. Climograma de Requena.
Figura 69. Matriz de Leopold de calificación de impactos.
Figura 70. Periodo de retorno de la inversión o payback.

16 ÍNDICE DE TABLAS.

Tabla 1. Coordenadas UTM, huso 30, ETRS89 rectángulo rojo.
Tabla 2. Coordenadas UTM, huso 30, ETRS89 de los 10 aerogeneradores.
Tabla 3. Distribución por direcciones a 80 metros.
Tabla 4. Desviciación típica y turbulencia en función de la dirección del viento.
Tabla 5. Velocidad, factor de escala y factor de forma para diferentes alturas.
Tabla 6. Velocidad del viento en función de la altura.
Tabla 7. Clase de turbinas eólicas (Norma IEC 61400-1).
Tabla 10. Datos generales “V90/2000”.
Tabla 12. Datos generales “HARVESTER 2.0 MW”.
Tabla 13. Potencia del “HARVESTER 2.0 MW” en función de la velocidad del viento.
Tabla 15. Distancias circuitos eléctricos.
Tabla 16. Niveles de aislamiento de los cables y sus accesorios.
Tabla 17. Intensidades máximas admisibles (servicio permanente; corriente alterna; cables unipolares aislados de hasta 18/30 kV enterrados bajo tubo).
Tabla 18. Factor corrector para temperaturas del terreno distintas de 20°C.
Tabla 19. Resistividad térmica del terreno.
Tabla 20. Factor corrector para resistividades térmicas del terreno distintas de 1,5 Km/W.
Tabla 21. Factor corrector por distancia entre tornillos o cables tripolares.
Tabla 22. Factor corrector para profundidades distintas de 1 m.
Tabla 23. Coeficientes correctores globales.
Tabla 27. Sección mínima necesaria por calentamiento circuito A5-A6.
Tabla 28. Valores máximos de densidad de corriente para conductores de aluminio.
Tabla 29. Caídas de tensión en las líneas de la instalación.
Tabla 30. Características eléctricas celda modular de línea.
Tabla 31. Características eléctricas celda modular de protección con fusibles.
Tabla 32. Características eléctricas celda modular de medida.
Tabla 33. Características eléctricas celda modular de protección con interruptor automático.
Tabla 34. Características eléctricas celda modular de remonte de cables.
Tabla 35. Distancia mínima entre fase y tierra en el aire (cm).
Tabla 36. Distancia mínima entre fases en el aire (cm).
Tabla 37. Niveles de aislamiento nominales para materiales del grupo B.
Tabla 38. Distancias de seguridad (zona de peligro y zona de proximidad).
Tabla 39. Características tubos huecos de aleación de aluminio 100/90 mm.
Tabla 40. Características cables desnudos de aluminio homogéneo “ARBUTIS”.
Tabla 41. Características y dimensiones aisladores cerámicos de apoyo.
Tabla 42. Factores para el cálculo de las tensiones de paso y contacto máximas.
Tabla 43. Tabla climática. Datos históricos del tiempo en Requena.
Tabla 44. Calificación de la magnitud e importancia de impactos positivos.
Tabla 45. Calificación de la magnitud e importancia de impactos negativos.
Tabla 46. Flujo de Caja del Proyecto.
Tabla 47. VAN a 25 años según el tipo de interés considerado.
Tabla 48. VAN a 8 años según el tipo de interés considerado.

17 ÍNDICE DE FÓRMULAS.

Fórmula 1. Intensidad de turbulencia.
Fórmula 2. Factor de forma de la distribución de Weibull.
Fórmula 3. Variación de la velocidad del viento con la altura.
Fórmula 4. Número de horas que sopla el viento para cada velocidad.
Fórmula 5. Producción anual de cada aerogenerador.
Fórmula 6. TIR simple.
Fórmula 7. Intensidad nominal.
Fórmula 8. Intensidad máxima admisible por el cable.
Fórmula 9. Caída de tensión máxima en una línea trifásica.
Fórmula 10. Distancia mínima entre elementos en tensión no protegidos y las zonas de paso de personal (ITC-RAT 15).
Fórmula 11. Distancia mínima entre elementos en tensión no protegidos y las zonas de paso de personal (RD 614/2001).
Fórmula 12. Distancia mínima en horizontal entre puntos en tensión y los cerramientos (ITC-RAT 15).
Fórmula 13. Fuerza máxima real actuante sobre los tubos del embarrado debido a una corriente de cortocircuito trifásica.
Fórmula 14. Tensión máxima real actuante sobre los tubos del embarrado debido a una corriente de cortocircuito trifásica.
Fórmula 15. Tensión máxima que admiten los tubos huecos circulares paralelos.
Fórmula 16. Reacciones en los aisladores soporte.
Fórmula 17. Resistencia total de puesta a tierra mallazo de cobre (ITC-RAT 13).
Fórmula 18. Resistividad aparente de una capa superficial.
Fórmula 19. Tensión de contacto admisible.
Fórmula 20. Tensión de paso admisible.
Fórmula 21. Tensión de contacto máxima.
Fórmula 22. Tensión de paso máxima.
Fórmula 23. Factor “K_m”.
Fórmula 24. Factor “K_s”.
Fórmula 25. Factor “K_i”.
Fórmula 26. Longitud “L_M”.
Fórmula 27. Longitud “L_S”.

18 REFERENCIAS

Plan de Energías Renovables 2011-2020 (PER):

Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica:

Ley 24/2013, de 26 de diciembre, del Sector Eléctrico:

Real Decreto 337/2014, de 9 de mayo, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23:

Reglamento Electrotécnico para Baja Tensión (Real Decreto 842/2002, de 2 de agosto) e Instrucciones Técnicas Complementarias ITC BT:
Real Decreto 223/2008, de 15 de febrero, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias ITC-LAT 01 a 09:

Normativa particular de la compañía distribuidora (Iberdrola Distribución):

Instrucción de Hormigón Estructural EHE-08 (Real Decreto 1247/2008 de 18 de julio):

Pliego de Prescripciones Técnicas Generales para recepción de cementos RC-08:

Código Técnico de la Edificación (CTE):

Ley 21/2013, de 9 de diciembre, de evaluación ambiental:

Ley 6/2014, de 25 de julio, de la Generalitat Valenciana, de prevención, calidad y control ambiental de actividades en la Comunitat Valenciana:

Ley 7/2002, de 3 de diciembre, de la Generalitat Valenciana, de protección contra la contaminación acústica:

Ley 3/2014, de 11 de julio, de la Generalitat Valenciana, de vías pecuarias de la Comunitat Valenciana:

Ley 4/1998, de 11 de junio, del Patrimonio Cultural Valenciano, modificada por la Ley 5/2007, de 9 de febrero:

Ley 5/2007, de 9 de febrero, de modificación de la Ley 4/1998, de 11 de junio, del Patrimonio Cultural Valenciano:

Orden de 9 de marzo de 1971, de seguridad e higiene en el trabajo:

Ley 31/1995 de 8 de noviembre, de prevención de riesgos laborales:

Acuerdo de 26 de julio de 2001, del Gobierno Valenciano, por el que se aprueba el Plan Eólico de la Comunidad Valenciana (PECV):

Acuerdo de 28 de julio de 2017, del Consejo, por el que se modifica el Acuerdo de 26 de julio de 2001, de aprobación del Plan Eólico de la Comunidad Valenciana (PECV):

http://www.dogv.gva.es/disposicio?sig=006942/2017&L=1&url_lista

Orden de 31 de julio de 2001, de la Consejería de Industria y Comercio, por la que se realiza la convocatoria pública para el desarrollo y ejecución del Plan Eólico de la Comunidad Valenciana:

https://www.dogv.gva.es/portal/ficha_disposicion_pc.jsp?sig=3181/2001&L=1

Orden 5/2017, de 20 de febrero, de la Conselleria de Economía Sostenible, Sectores Productivos, Comercio y Trabajo, por la que se establecen las bases reguladoras para la concesión de ayudas del Instituto Valenciano de Competitividad Empresarial (IVACE), en el marco de los fondos de Compensación y Promoción vinculados al Plan eólico de la Comunitat Valenciana:

Estudio eólico y análisis de la producción neta:

http://atlaseolico.idae.es/meteosim/

Norma “IEC 61400-1”: Selección de la clase de turbina eólica:

http://www.academia.edu/17382670/IEC_61400-1

Aerogenerador “E82/2000” de “ENERCON”:

https://www.thewindpower.net/manufacturer_es_3_encon.php

Aerogenerador “V90/2000” de “VESTAS”:

https://www.vestas.com/en/products/turbines/v90-2_0_mw#
https://www.thewindpower.net/manufacturer_es_14_vestas.php

Aerogenerador “HARVESTER 2.0 MW” de “W2E”:

https://www.thewindpower.net/manufacturer_es_119_w2e.php

Cables “Al Eprotenax H Compact 12/20 kV” de “PRYSMIAN”:

https://www.prysmianclub.es/catalogos/catalogo-y-guia-media-tension/

Celdas modulares de “Ormazabal Velatia”:

Subestación de maniobra 132 kV de intemperie en simple barra:

“Proyecto básico de subestación de maniobra 132 kV de intemperie y en simple barra” de “Iberdrola Distribución Eléctrica” (Ref. PMT 2.71.10 Edición 01, Octubre de 2016).
19 PLANOS DEL PROYECTO

PLANO 1. PLANO DE UBICACIÓN
PLANO 2. PLANO DE EMLAZAMIENTO
PLANO 3. PLANO Nº1 AEROGENERADOR “E82/2000”
PLANO 4. PLANO Nº2 AEROGENERADOR “E82/2000”
PLANO 5. ESQUEMA UNIFILAR INSTALACIÓN ELÉCTRICA INTERIOR (20 kV)
PLANO 6. PLANO DISTRIBUCIÓN INTERIOR EDIFICIO DE CONTROL DE 20 kV
PLANO 7. ESQUEMA UNIFILAR SUBESTACIÓN DE MANIOBRA EN 132 kV
PLANO 8. PLANO EN PLANTA SUBESTACIÓN DE MANIOBRA EN 132 kV
PLANO 9. PLANO SECCIONES SUBESTACIÓN DE MANIOBRA EN 132 kV
PLANO 10. PLANO P.A.T. SUBESTACIÓN DE MANIOBRA EN 132 kV
PROYECTO DE INGENIERÍA DE UN PARQUE EÓLICO DE 20 MW DE POTENCIA NOMINAL Y CONEXIÓN A LA RED DE 132 kV.

PLANO DE UBICACIÓN DEL PARQUE EÓLICO.

Autor: Rafael García García
Fecha: Enero 2019
Escala: 1:1,150,000 / 1:125,000
PROYECTO DE INGENIERÍA DE UN PARQUE EÓLICO DE 20 MW DE POTENCIA NOMINAL Y CONEXIÓN A LA RED DE 132 kV.

PLANO DE EMPLAZAMIENTO DEL PARQUE EÓLICO.

Rafael García García

Enero 2019

1:25.000
Tramo Torre Inferior (32 m)
Tramo Torre Medio (32 m)
Tramo Torre Superior (21 m)

Detalle Cimentación
Extremo Superior Torre

Unión Tramos Torre

Detalles Tornillos Uniones
AEROGÉNERADOR ASÍNCRONO 2MW
INTERRUPTOR AUTOMÁTICO
INTERRUPTOR-SECCIONADOR DE 3 POSICIONES
FUSEL
LÍNEA SUBTERRÁNEA DE MT

CIRCUITO 1: A2 - Cable Modular de Líneas 1 (3x150 mm²)
20/6.6 kV - 2.000 kVA

CIRCUITO 1-A2 (3x150 mm²)
20/6.6 kV - 2.000 kVA

CIRCUITO 2: A4 - Cable de Líneas 2
20/6.6 kV - 2.000 kVA

CIRCUITO 2-A4 (3x150 mm²)
20/6.6 kV - 2.000 kVA

CIRCUITO 3: A6 - Cable de Líneas 3
20/6.6 kV - 2.000 kVA

CIRCUITO 3-A6 (3x150 mm²)
20/6.6 kV - 2.000 kVA

CIRCUITO 4: A8 - Cable de Líneas 4
20/6.6 kV - 2.000 kVA

CIRCUITO 4-A8 (3x150 mm²)
20/6.6 kV - 2.000 kVA

CIRCUITO 5: A10 - Cable de Líneas 5
20/6.6 kV - 2.000 kVA

CIRCUITO 5-A10 (3x150 mm²)
20/6.6 kV - 2.000 kVA

ESQUEMA UNIFILAR INSTALACIÓN ELÉCTRICA INTERIOR

PROYECTO DE INGENIERÍA DE UN PARQUE EÓLICO DE 20 MW DE POTENCIA NOMINAL Y CONEXIÓN A LA RED DE 132 kV.

Rafael García García

Enero 2019
TRABAJO FIN DE MÁSTER EN INGENIERÍA INDUSTRIAL

PROYECTO DE INGENIERÍA DE UN PARQUE EÓLICO DE 20 MW DE POTENCIA NOMINAL Y CONEXIÓN A LA RED DE 132 kV.

DISTRIBUCIÓN INTERIOR EDIFICIO DE CONTROL (20 kV)

Escala: 1:75

Fecha: Enero 2019

Autor: Rafael García García
Entrada Línea 132 kV

20 kV 132 kV

3 x TI

3 x TT Inductivo

Posición de Línea

Posición de Conexión o Entrega

3 x TI + IA + Seccionador

3 x TI + IA + Seccionador con P.A.T.

Entrada Línea 132 kV

Posición de Línea

3 x TI + IA + Seccionador con P.A.T.

Salida Línea 132 kV

TT Capacitivo

TT Capacitivo

PROYECTO DE INGENIERÍA DE UN PARQUE EÓLICO DE 20 MW DE POTENCIA NOMINAL Y CONEXIÓN A LA RED DE 132 kV.

ESQUEMA UNIFILAR SIMPLIFICADO SUBESTACIÓN 132 kV

Rafael García García
PROYECTO DE INGENIERÍA DE UN PARQUE EÓLICO DE 20 MW DE POTENCIA NOMINAL Y CONEXIÓN A LA RED DE 132 kV.

PLANO EN PLANTA SUBESTACIÓN DE MANIOBRA EN 132 kV

1:200
SECCIÓN A-A'

SECCIÓN B-B'

TRABAJO FIN DE MÁSTER EN INGENIERÍA INDUSTRIAL

PROYECTO DE INGENIERÍA DE UN PARQUE EÓLICO DE 20 MW DE POTENCIA NOMINAL Y CONEXIÓN A LA RED DE 132 kV.

PLANO SECCIONES SUBESTACIÓN DE MANIOBRA EN 132 kV

Rafael García García

Enero 2019

1:100
PROYECTO DE INGENIERÍA DE UN PARQUE EÓLICO DE 20 MW DE POTENCIA NOMINAL Y CONEXIÓN A LA RED DE 132 kV.

PLANO P.A.T. SUBESTACIÓN DE MANIOBRA EN 132 kV

Rafael García García