
UNIVERSIDAD POLITÉCNICA DE VALENCIA

Escuela Técnica Superior de Ingenierı́a Informática

PROYECTO DE FIN DE CARRERA

Distributed Goal
Oriented Computing

Autor: Javier Palanca Cámara

Dirigido por: Vicente Julián Inglada

Escuela Técnica Superior de Ingenierı́a Informática
Universidad Politécnica de Valencia

Camino de Vera, s/n
46020 Valencia, Spain

2

Contents

1 Introduction 11

2 Related Work 13

2.1 An updated OS classification . 13

2.2 Three Modern Operating Systems . 15

2.2.1 Singularity . 15

2.2.2 MINIX 3 . 15

2.2.3 XtreemOS . 16

2.3 Discussion . 16

3 Distributed Goal-Oriented Computing 17

3.1 Goal-Oriented Execution Model . 17

3.2 Goal-Oriented Execution Architecture . 18

4 Deliberation Engine 23

4.1 On-line Planner . 24

4.2 Commitment Manager . 27

5 Runtime Engine 31

6 Execution trace 35

3

7 Implementation and Results 39

7.1 The simulator . 39

7.2 Deliberation engine Tests . 41

7.2.1 Commitment Manager . 41

7.2.2 On-line Planner . 52

7.3 Test 9: Distributed Computing Performance Tests 54

8 Conclusions 57

4

List of Figures

3.1 Agent and execution module components . 19

3.2 Goal-oriented executive model . 20

4.1 Search sequence in the case-base . 26

4.2 Services Availability Query interaction protocol 29

6.1 Process model of plan Save Song to iPod . 36

6.2 Repaired plan Save Song to iPod . 38

7.1 Test 1: Trust evolution for different deadline predictions 43

7.2 Test 2: Trust evolution in a bigger scenario . 44

7.3 Test 3: Adaptive Operating System . 46

7.4 Test 4: Plan Accepted Ratio by time . 48

7.5 Test 4: Plan Accepted Ratio by quality . 49

7.6 Test 5: Plan Accepted Ratio by time (20 to 100 agents) 50

7.7 Test 5: Percentage of plans executed in time . 51

7.8 Test 6: Security test . 52

7.9 Test 7: Fault-tolerant operating system . 53

7.10 Test 8: Trust evolution and multiple errors . 55

7.11 Test 9: Distributed Computing . 56

5

6

List of Tables

4.1 Example of Case-Base of the TB-CBP . 25

4.2 Example of authentication mechanisms and their rating 28

7

8

Abstract

For current computing frameworks, the ability to dynamically use the resources
that are allocated in the network has become a key success factor. As long as the
size of the network increases, it is more difficult to find how to solve the prob-
lems that the users are presenting. Users usually do know what they want to do,
but they don’t know how to do it. If the user knows its goals it could be easier
to help him with a different approach. In this work we present a new comput-
ing paradigm based on goals. This paradigm is called Distributed Goal-Oriented
Computing paradigm. To implement this paradigm an execution framework for
a Goal-oriented Operating System has been designed. In this paradigm users ex-
press their goals and the OS is in charge of helping the achievement of these goals
by means of a service-oriented approach.

9

10

1
Introduction

The amount of developed software and its complexity has currently increased so much that
it has lead to discover that traditional paradigms of software development are not enough to
create complex software. That is why there is a constant work on new paradigms, to improve
the level of abstraction needed to develop increasingly complex applications. Among these
paradigms, we can highlight the Service-Oriented Computing paradigm and Multi-Agent Sys-
tems.

Service-Oriented Computing (SOC) is a paradigm where the fundamental component for
developing applications is the service. Using single services or service compositions it is possi-
ble to achieve solutions to problems in a decentralized manner with a high degree of adaptabil-
ity. This paradigm, coupled with the cloud-computing one, is becoming very important at the
present moment because both paradigms allow us to develop applications based on platform-
agnostic, distributed and low-cost computational elements. The use of SOC in multi-agent
systems is endorsed by the proposal of achieving the agent goals by means of the invocation
and composition of a set of services that are available within the multi-agent system.

Dickinson and Wooldridge discuss at [1] different ways to consider the relationship be-
tween multi-agent systems and service architectures. As it is summarized in that work, some
authors propose that there is no conceptual distinction between agents and services: both
are active building blocks in a loosely coupled architecture [2]. Another approach considers a bi-
directional integration where agents and services interoperate by communicating one to each
other [3]. Finally, a third approach considers that agents are who invoke services [4]. In this
proposal, agents mediate between services and users.

Since agents are intelligent entities and have social capabilities, they fit properly in a service-

11

based framework[5] where the goal-oriented computing approach is used. This approach is
based on finding solutions to problems through composition and execution of various services
offered by different agents.

This goal-oriented computing paradigm suggests that agents provide services in a ubiq-
uitous environment and users only need to express their goals. Thereby users can reach a
solution by finding a plan which achieves the selected goal with very limited and simplified
user interaction.

This functionality should be provided to agents through a specific framework that supports
service composition and their subsequent execution. Agents are providers and consumers of
services in this framework, where agents use their social capabilities to find a way to fulfill their
own goals. These capabilities should be provided to agents through a specific architecture that
supports service composition and their subsequent execution. This framework is presented in
this work as an execution module for a Goal-oriented Operating System. Current operating
systems (OS) are based on abstractions that have not evolved too much since their first designs.
However, the evolution of software engineering poses the possibility of addressing the OS
design from other points of view. The Distributed Goal-Oriented Computing paradigm offers
new ideas for the development of more intelligent and effective OS’s, which would benefit the
end-user due to the advantages of both technologies.

In this work the Distributed Goal-Oriented Computing paradigm is presented. It is also
presented an execution module for a Goal-oriented Operating System which gives support to
this paradigm following the requirements defined in this work. Some of this requirements
comprise how to define the properties of a goal and the parameters that define how good is
a plan. Some of the parameters that involve the creation and selection of a plan are time and
trust.

This work is structured as follows: Section 2 presents a related work about Operating Sys-
tem designs and trends. Section 3 presents the model and the architecture of the Distributed
Goal-Oriented paradigm used in this work. In Section 4 we talk about the operating system
deliberation engine and the various components that comprise this engine. Section 5 presents
the execution module that interacts with the deliberation engine to develop the presented
paradigm. This module is the Runtime Engine. Section 7 presents a series of experiments
to show the functionality of this Operating System. Finally, Section 8 presents the conclusions
of this work.

12

2
Related Work

2.1 An updated OS classification . 13

2.2 Three Modern Operating Systems . 15

2.3 Discussion . 16

Operating Systems research is always trying to improve security, efficiency and reliability
of Operating Systems. This is one of the great challenges of the current OS that remains to
be overcome. Several studies have focused on improving certain OS aspects as data access
or the input/output (I/O) abstractions, leading to propose new abstractions in this field (file,
object, socket, ...)[6, 7, 8]. However, no significant progress has been made in implementing OS
execution models.

2.1 An updated OS classification

Nowadays, any operating system has multiuser, interactive and multiprocessor skills due to
the evolution of computers, which made indispensable that all the OS endure it. The interest-
ing point is the vision of its purpose, due to the important differences that lie on an operating
system’s design depending on what it was created for. It depends on how the device is going
to be used for or its specific functionality. The following is an updated classification that in-
cludes the different OS differentiated by their architecture or purpose. This is not an exclusive
classification, since it represents the different approaches that can be taken during the design
of an OS. Several options can be taken simultaneously. This makes possible the creation of, for
example, a multiprocessor, extensible and general purpose operating system.

13

• Mainframe operating systems: These are systems oriented to large computers where the
computing and the input/output (E/S) power are important.

• Server operating systems: they are oriented to bring services across the net as well as to
process efficiently a large amount of requests per second.

• General purpose operating systems: they were created for mass consumption. Their
only goal is to bring, with a simple and friendly interface, the most common tools for the
daily use of a personal computer.

• Extensible operating systems: Extensible OS give support to dynamic loading of new
features in the system as required for its purpose. These new modules are loaded to
extend the OS according to the needs of each moment.

• Multiprocessor operating systems: A special OS is needed to handle and share the jobs
in computers with more than one CPU.

• Parallel operating systems: These are an extension to multiprocessor systems where the
need to run different applications on multiple processors extends to a computer network
or cluster.

• Distributed operating systems: Nowadays, there is a trend towards distribution of the
different services that an OS offers among a number of computers making use of the
network.

• Grid operating systems: These are an extension of distributed systems where there is
access to geographically distributed resources by all network nodes in a heterogeneous
grid.

• Real Time operating systems: These are OS for some very specific applications where
not only the result of an operation is provided, but also the precise moment is important.

• Embedded operating systems: These systems run on control devices which are not gen-
erally though as real computers and which do not accept user-installed systems. Typical
examples are microwave ovens, washing machines, televisions, cars, etc.

On this list of operating systems we can distinguish several groups that will outline the cur-
rent trends in OS development. Thus, operating systems are characterized as service-oriented
(such as servers), those aimed at enhancing performance or availability of the network (such as
distributed systems, grid, parallel, etc.), those systems oriented to a particular purpose (such as
real-time or embedded ones). Embedded systems become day to day more important due to
the increasingly massive introduction of mobile devices. Finally, the ever-present general pur-
pose operating systems, which are still very important given the high penetration of personal
computers in homes.

14

One reason why no significant progress has been made in the OS execution model abstrac-
tions, such as the process, is that these abstractions are closely tied to current hardware. Pro-
cessors are designed to work optimally with processes. Thereby, when adding improvements
to the OS execution model, as well as defining new execution abstractions (as proposed in this
work) would be interesting to start thinking about adapting the hardware to such abstractions.

2.2 Three Modern Operating Systems

In this section three modern Operating Systems are presented and analyzed in order to study
the new trends in OS design and implementation. The OS analyzed are Singularity (an exper-
imental OS where have been tested new techniques like code verification, contracts or mod-
ern VM-based languages), MINIX 3 (an evolution of the classic MINIX OS where the focus is
on miniaturization of the microkernel and embedded systems), and finally XtreemOS (a dis-
tributed OS based on organizations and built on top of Linux). Some ideas about these three
OS are presented below.

2.2.1 Singularity

Singularity[9, 10] is an experimental OS developed by Microsoft Research in 2003. Its main
objective is to achieve high reliability. For this reason they have started the development of
the OS from scratch. It has been possible to experiment with new technologies and high-level
languages to build the architecture of the OS, this way they’ve achieved a very robust and reli-
able system. Therefore, one of its most critical abstractions are Software-Isolated Processes (SIP),
which represent Singularity processes. Any code running outside the kernel is running in a
SIP. The SIP is a way of encapsulating software into separate and fault tolerant components.

2.2.2 MINIX 3

MINIX is one of the most popular microkernel OS still in development. Originally designed by
Andrew S. Tanenbaum as a study Operating System for his students. Its design was a model
for the construction of other Operating Systems, while it has continued its own evolution,
reaching in 2006 the third version of the OS: MINIX 3[11].

The main objective of the third version of MINIX is reliability, devising for it a self-
reparable system. They have followed the design philosophy of microkernel, leaving in protected-
mode the minimal functionality and placing in user-mode all the remaining functionality.
Thus, the user-mode failures are not critical for the system and also, due to a system called
Reincarnation Server, failing processes are self-reparable and can be relaunched in the same
state they have failed.

15

2.2.3 XtreemOS

XtreemOS[12, 13] is a Grid Operating System. The development of this system is based on the
Linux OS and its objectives are transparency and scalability. Transparency is offered to both
the user and the application, since the great advantage of XtreemOS is still offering a Linux
interface despite the availability of certain services and resources distributed on the network.
Furthermore, this transparency allows heterogeneity among the classic applications of Linux
and those found in the Grid.

XtreemOS uses virtual organizations (VO) to encapsulate the services and resources in the
Grid. A VO administrator is responsible for its creation, management and completion, whether
it is static and dynamic.

2.3 Discussion

The biggest innovation in the field of operating systems has probably been the introduction
and expansion of the network. The leap from single centralized computing in a distributed
computing in all computers across the net, which is called cloud, has emerged a complete re-
design of the operating systems to adapt themselves to this new technology.

The functionality that is demanded today from an OS has changed from what was being
demanded lately. Factors such as cross-platform, multi-processor support or concurrency abil-
ity do not pose a technological challenge today, as we discussed earlier, and are in the vast
majority of new developments in operating systems. Key factors that make a difference in
the new OS are related to the network (such as being distributed, single image, access to ser-
vices, transparency ...) and those related to security and integrity of information. Two other
important factors remain the efficiency of the system (as much as you increase the speed of the
hardware it is still important that the OS interferes as little as possible in the response time of
applications), and one factor which becomes more important every day because the increasing
complexity of applications: reliability.

Our proposal is to focus on major current challenges of computing science that are not
solved by existing OS: the presence in the network, service-orientation and, of course, the
three major design factors inherited from the evolution of old OS: performance, security and
reliability. For all this, our proposal is oriented to increase the level of the abstractions provided
by the operating system and their services. This makes possible to offer an OS layer integrated
to the network, and security and reliability mechanisms not available in lower levels of the
architecture of the OS.

These changes begin by replacing the paradigm that is used. Changing the abstractions
that an OS uses is linked to the paradigm used. This new computing paradigm is presented
next.

16

3
Distributed Goal-Oriented Computing

3.1 Goal-Oriented Execution Model . 17

3.2 Goal-Oriented Execution Architecture . 18

In our work we define the concept of Distributed Goal-Oriented Computing as the paradigm
where heterogeneous agents can express their desires by using goals. These agents can also ful-
fill the goals by using automatic composition of services that are available in the cloud. In this
section the Distributed Goal-Oriented Computing paradigm is presented by means of showing
the model that defines it and the architecture that gives support to the related model.

3.1 Goal-Oriented Execution Model

The Goal-Oriented Execution model is inspired by the classic BDI agent model presented in
[14]. In this model there are included the abstraction of agent, knowledge base, services, goals and
plans (which are the service compositions) [15]. Its purpose is to define an execution support
based on a different computation paradigm that provides the features presented earlier in this
document. The execution model operates on an operating system kernel, which provides the
other necessary functionality of a common OS, such as memory management, security, etc.

In the Goal-Oriented Execution model, an agent A is defined through the following tuple:

A = {KB,SS,CP,GS} (3.1)

17

where:

• KB represents the agent Knowledge Base.

• SS represents a Set of Services offered by the agent. This services are used by the agent
to perform its goals, but they can also be offered to other agents to help to achieve their
own goals.

• CP represents a set of Compiled Plans provided by the agent to meet its goals.

• SG represents the Set of Goals that the agent wants to achieve.

The services that the agent can offer in the Goal-Oriented Execution model are OWL-S
services. An OWL-S service is defined by the tuple:

Si = {SP,GR,PM} (3.2)

where SP is the Service Profile, GR the Grounding and PM the Process Model of the
service. The service profile defines what the service does. The grounding defines how to interact
with the service and the process model defines how the service is used.

Moreover, OWL-S service process model can be composite processes and atomic processes. A
composite process is a set of atomic processes (which have no internal structure and run in a
single step) with an internal structure built up by composite and atomic processes and a few
control constructs (sequence, if-then-else, choice, etc).

This kind of OWL-S service is a well-defined standard which provides this model enough
power to construct all the functionality provided by an agent. The services that make up a
plan are the real executable part of a plan. A service Si is also composed of a pre-condition P ,
a post-condition Q and a set of inputs and outputs. The pre-condition P is a prerequisite for the
execution of a service. The post-condition Q is the impact that will drive the execution of the
service S and it represents the Goal entity that the agent wants to achieve. Both P and Q are
defined in the functional aspect of the service profile.

3.2 Goal-Oriented Execution Architecture

Since a composition of OWL-S services is a composition of services, which include both atomic
and composite processes and control structs, we define a Plan as a process model composed by
one or more composite process models (again, including composite services, atomic services
and control structs). A Plan defines the way to achieve some results or post-conditions by
joining different OWL-S services which can be connected. Composite services or even atomic
services can be seen as very simple plans, but we also define a plan as the result of joining
different composite services in order to achieve a goal.

18

To give support to the model presented, a Goal-Oriented Execution architecture has been
developed. The architecture is composed by the next components (Figure 3.1):

Deliberation Engine On-line PlannerCommitment Manager

Runtime
Engine

Knowledge
Base

Set of
Goals

Compiled
Plans

Set of
Services

Agent

Knowledge
Base

Set of
Goals

Compiled
Plans

Set of
Services

Agent

Knowledge
Base

Set of
Goals

Compiled
Plans

Set of
Services

Agent

OS
Knowledge

Base
OS GoalsOS Plan

Library
OS

Services

Comm Channel

make commitmentinv
oke

 se
rvi

ce

O
S

Ke
rn

el

Figure 3.1: Agent and execution module components

• Runtime Engine: The Runtime Engine takes the plans provided by their planners and
manages their execution by transferring the service execution to the OS kernel. It uses
distributed services provided by agents in other hosts if necessary.

• Deliberation Engine: It is responsible for deciding how and in what order plans are
executed. This engine negotiates with the agents which provide a service for a current
plan. This engine is permanently running in background and evaluating the goals that
are activated in the agents to be achieved and selecting them for its completion. This
component interacts concurrently with the Runtime Engine, the Commitment Manager
and the On-line Planner.

– Commitment Manager: Service provider agents negotiate with the commitment
manager their availability and, if so, quality and security parameters like their exe-
cution within a time window or the required encryption algorithm in transactions.
The security parameters can be defined by both the client or the provider. The Com-
mitment Manager will always try to reach these minimum security parameters by
negotiating with all the available agents. However, if there are no required security
parameters, the CM will always try to get the best deal for a transaction as secure

19

Goal is
possible

Goal is
consistent
with some
other goal

Select Plan

Run Plan

Check entailed
goals and

postconditions

Goal can't
be pursued

Run
Planner

Repair
Plan

[Goal not applicable]

[Goal inconsistent]

[Plan not found]

[Goal]

[Goal]

[Plan]

[Goal]

[Goal succeeds]

[Services
not available]

[Plan not available]

[Plan]

On-line Planner

Runtime Engine

Deliberation Engine

C
o

m
m

it
m

e
n

t
M

a
n

a
g

e
r

Query
Services

Availability

[Plan fails]

[Services
available]

Establish
Temporal

Commitment

[Temporal
Commitment]

Figure 3.2: Goal-oriented executive model

20

as possible. To calculate the execution within a temporal bound the agent needs to
take into account some points like: (i) the current workload, (ii) the availability of
the service at the time of the request and (iii) the availability of the needed hardware
and software resources to be able to run. For this work the agent needs the help of
the OS. The OS can help the agent to predict if it is going to be able to satisfy the
request in the defined temporal bounds, and if so, to establish a commitment with
the Deliberation Engine. This functionality is offered by the Commitment Manager.

– On-line Planner: it is able to compose new plans on-the-fly. It also repairs and
refines running plans. This planner is executed concurrently inside the Deliberation
Engine. Its task is to help the agents to reach a goal when the agent has no pre-
compiled plans to guide it to the goal completion. This is done by composing or
repairing plans. The On-line Planner uses a TB-CBP (Temporal Bounded Case Based
Planner) to generate the plans at runtime. It uses past cases from the same service
or similar services to generate a plan with a time prediction inside the established
temporal bounds.

• OS Goals Set: The OS has its own goals to perform the corresponding tasks of an oper-
ating system. This set of goals includes all the maintenance tasks and non-critical func-
tionality.

• OS Knowledge Base: This is the knowledge that the OS has. The operating system uses
this knowledge base to perform their goals by means of the services that can invoke.

• OS Services Set: The set of basic services provided by the OS. This set of services is used
by the OS to provide the basic low-level functionality to the system agents. It includes
all the necessary stuff to manage the system and to access to restricted features only
available through the OS for security and stability reasons. Some of these features are
the communication of system drivers with the hardware, as well as other features that
allow the correct interaction among agents, service providers and the operating system.

• OS Plan Library: It provides pre-compiled plans for their execution from a set of goals.
This component is created in the design phase of the OS and its motivation is to pro-
vide pre-compiled plans for critical goals that cannot wait for a different composition or
cannot vary their execution flow due to security and efficiency reasons.

Under the Distributed Goal-Oriented Computing paradigm the goals that the agents have
are sent to the execution module for their achieve. Then, the deliberative engine chooses the
appropriate plan to meet each goal. Note that the agent model preserves its desirable features
like autonomy and pro-activity since the agent is who activates its own goals when he decides
he wants to achieve them. The deliberative engine provides the needed resources to help to
achieve the goals. Plans may be provided by the agent itself or can be compounded on-line.
These plans are a sequence of services offered by the agents both locally and remotely. It is also

21

an agent choice to share its pre-compiled plans with other agents. The basic running elements
are the services that make the plans. Plans are provided to the module in two different ways:
the off-line generation of the plan or the on-line generation of the plan by the On-Line Planner
module. Once the plan that meets the active goal is selected, the Runtime Engine activates the
services that comprise the selected plan. In Figure 3.2 the deliberation and execution processes
are shown.

Once the Goal-Oriented Execution model and architecture have been presented, in next
section we are going to show the deliberation process that is used to fulfill the agent’s goals.

22

4
Deliberation Engine

4.1 On-line Planner . 24

4.2 Commitment Manager . 27

The Deliberation Engine is the brain of the execution module. This component is in charge
of analyzing the current active goals and helping their achievement. The Deliberation Engine
is the root node which manages all the main flow of the execution process. Its main task is to
get a plan that fits properly with the activated goals. If the plan does not exist, the Deliberation
Engine will compose a new plan using its component called On-line Planner. The On-line Plan-
ner returns a set of plans that guide the agent to the fulfillment of the goal. The Deliberation
Engine uses two classifiers that help the agent to select the most proper plan. Both classifica-
tions are performed by the two components included in the Deliberation Engine: the On-line
Planner and the Commitment Manager. The On-line Planner makes a first classification using
the information retrieved from past executions. A second classification is done by the Com-
mitment Manager. It finds the best providers which offer the required services to complete
the plan. This classification establishes commitments with the provider agents to complete the
service taking into account security and temporal constraints. Temporal commitments have
different parameters like when the service must be run, when will the service end and the
probability of finishing the service in that deadline. Security commitments present some con-
straints about three security concerns: authentication, intrusion detection and encryption. This
two components are shown in more detail in Sections 4.1 and 4.2. Once a plan is selected, the
Deliberation Engine sends it to the Runtime Engine to be run.

Since a goal is activated by an agent until it is achieved, the Deliberation Engine goes

23

through different steps which involve the different components of the execution module. These
steps are:

1. Checking if it is possible to activate the goal.

2. Checking if the goal is consistent and there are no conflicts.

3. Asking the On-Line Planner for a set of plans to achieve the goal.

4. Querying the Commitment Manager for temporal and security commitments for each
service of the plan.

5. If there is no available commitment, asking the On-Line Planner for a new plan or setting
the goal as unreachable.

6. Selecting the best plan from the set of plans using the temporal and security commit-
ments and the information retrieved from past executions.

7. Sending the plan to the Runtime Engine to be executed.

8. If the plan fails, asking the On-Line Planner for a new plan or setting the goal as unreach-
able.

9. When the plan ends, updating the case-base with the results of the commitments, penal-
izing or rewarding the providers if necessary.

10. Checking entailed goals and postconditions and setting the goal as reached.

Next the components used by the Deliberation Engine to determine the service composition
are presented in more detail.

4.1 On-line Planner

Within the execution module, the responsible entity for providing plans that fulfill the agents’
goals is the On-Line Planner. This component generates plans composed on-the-fly that achieve
the goals that are activated by the agents. This generated plans complement the static pre-
compiled plans provided by the agent Plan Library. The On-line Planner is based on a CBP
(Case-Based Planning) methodology [16] that has been modified for giving a temporal bounded
response. This new model (called Temporal Bounded CBP) is composed by the same phases
as the classic CBP, but these phases have been treated to bound their execution time. Thus, the
execution time of the service composition process is known and is taken into account when
the On-line Planner is building a plan within a maximum time. This work has not as purpose

24

to introduce in detail the characteristics of a TB-CBP. A comprehensive description of this ap-
proach can be found in [17]. Anyway, a general description of the functioning of the TB-CBP
on-line planner is shown below.

The case structure used in the TB-CBP is defined as: ¡Postcondition, Precondition, {Service},
SuccessRate, ExecutionT ime¿, where Postcondition is the goal wanted to be achieved. Precondition

are the initial conditions that must be given to start the execution of services necessary to fulfill
the goal. Service is the list of services that must be executed from the state Precondition to
reach the state Postcondition. SuccessRate indicates the percentage of executions successfully
completed in the past. This term represents implicitly the confidence that the system has about
this composition. Finally, ExecutionT ime is the time required for the execution of the services.
This value is obtained by calculating the worst-case execution times of each of the services
included in the composition and combining them following the process model of the compo-
sition. This ExecutionT ime term is performed to get a temporal estimation of the execution of
the whole composition and to use it in temporal commitments. Temporal commitments will
be shown in Section 4.2. An example of the used case-base is presented in Table 4.1, where P is
Precondition, Q is Postcondition, SR is SuccessRate and ET is ExecutionT ime.

Table 4.1: Example of Case-Base of the TB-CBP

Q P Services SR ET

B A {S1} 1 4t
C A {S1,S3} 0.85 10t
C B {S3} 0.85 6t
D C {S6} 0.9 7t
E B {S7,S10,S11} 0.76 11t
E D {S8} 0.99 3t
E D {S4,S12} 0.98 7t
F C {S5,S9} 0.81 7t
F E {S13,S14} 0.98 10t
...

To complete the search of a service composition, the agent will inform about the activated
goal (Postcondition) and its knowledge base (Precondition). With this information the On-line
Planner can fulfill a service composition. To do it, the planner extracts cases from the case-base
and composes a path from the goal to be achieved until it reaches any of the beliefs that are
stored in the agent.

Let’s imagine the following situation using the information in Table 4.1. An agent has
as requirement the fulfillment of the goal F , and has in its knowledge base the items {A,B}.
These items can be used as preconditions for the fulfillment of the goal. The On-line Planner
will extract from the case-base all cases that have the goal F as Postcondition. For every

25

extracted case the algorithm will come to search in the case-base, but now Postcondition is
the set of preconditions of all the extracted cases (Precondition parameter). This process will
follow until it extracts a case whose Precondition is either defined in the agent’s knowledge
base (Precondition = A ∨ B). In Figure 4.1 we can see the progress of the search from F to A

or B. In this case, several plans are possible. In response to the needs of both the agent or the
Operating System just one plan will be chosen. In order to get a result with the best success
rate, any of the plans marked as (3) is picked. If it is required to get a plan that reaches the
goal as soon as possible, the plan marked as (1) will be chosen. Finally, if a plan that meets
within a specified temporal bound (e.g. before 22 time units) and with the highest success rate
is required, then the option (2) will be selected. As shown, the execution module can choose a
plan taking into account the agent requirements, making the system more adaptable.

F C

E

D

D
B

A

{S5,S9}, 0.81, 7t

{S1,S3,S5,S9}, 0.684, 17 t

{S13,S14}, 0.98, 10 t

{S7,S10,S11,S13,S14}, 0.74, 21 t

{S4,S12,S13,S14}, 0.96, 17 t
{S8,S13,S14}, 0.91, 13 t

{S4,S12,S13,S14}, 0,86, 24 t
{S6,S8,S13,S4}, 0.90, 20 t

{S1,S3,S6,S8,S13,S4}, 0.765, 30 t
{S1,S3,S4,S12,S13,S14}, 0.731, 34 t

{S3,S5,S9}, 0.684, 13 t
{S3,S6,S8,S13,S4}, 0.765, 24 t

{S3,S4,S12,S13,S14}, 0.731, 30 t

(1)
(3)

(2)

(3)

Figure 4.1: Search sequence in the case-base

This component applies a first classification to select a plan that fulfills the active goal
within the agent requirements. This classification has into account past executions of the cases
that have been retrieved from the TB-CBP. The plan selection is done by using the success rate
and the execution time of the retrieved compositions. Thus, the On-line Planner uses static
knowledge to select the plan but it has not into account the environment conditions and the
agents workload at the current moment. Since a plan is composed by single services and each
service can be provided by different agents at the same moment, a second classification must be
done to be able to select the best providers for each single service of the plan. This classification

26

does take into account the security mechanisms of the provider host and the agents workload
at the current moment. This function is performed by the Commitment Manager which is
presented below.

4.2 Commitment Manager

This component is designed to select the best provider agents that offer the single services of
a plan that has been selected by the On-line Planner. The Commitment Manager is related
to a framework called SAES [18] which allows us to compose services and to ensure their
fulfillment on time. The main difference with the SAES approach is that, by introducing the
service framework as part of the operating system, it has more information to make better
security commitments and temporal predictions.

The main function of the Commitment Manager is to check if the set of services offered
as a plan by the On-Line Planner will be available to fulfill the request and to establish two
kinds of commitments with the agents that provide the selected services: security and temporal
commitments.

Security Commitments

One of the main purposes of this work is to establish a secure environment where services can
be invoked with some grants of privacy, integrity and access control. If we focus on the current
challenges in infrastructure security we can organize them in three levels: the Network level,
the Host level and the Application level [19]. Since there are different network topologies, both
in public and private clouds, and the Commitment Manager has no management abilities over
the network, the Network level is out of the scope of this work. As the Commitment Manager
is integrated into the OS we can afford security concerns at the Host Level. At this level we
can apply Host-based Intrusion Detection Systems (HIDS) to keep data integrity. At this level
it is also possible to apply audit mechanisms and server virtualization. The access control
mechanism can be also placed at this level. Finally, the Application level depends exclusively
on the application program, this is, the agents. At this level the agent can manage encryption
mechanisms, application authentication and authorization and secure coding.

The Commitment Manager classifies the security level of a service in three categories:
authentication[20], detection[21] and encryption[22]. The better the security level is in each
category, the more confidence will be deposited at the service provider. Each CM has a table to
prioritize different mechanisms for each category: cryptographic algorithms for the encryption
level, intrusion detection systems and firewalls for the detection level and access control sys-
tems for the authentication level. As an example, Table 4.2 shows a little set of authentication
mechanisms and how the Commitment Manager would rate them.

27

Table 4.2: Example of authentication mechanisms and their rating

Auth mechanism Rating

One-time password 0.95
Time-based authentication 0.87
Two factor authentication 0.91

Closed-loop authentication 0.73
Username and password 0.1

Digest Access authentication 0.4
... ...

The CM asks for security information to each agent that is providing any of the services
included in the selected plan. Each agent answers notifying its security level with the tuple
< A,D,E > , where A stands for authentication and authorization mechanisms, D stands for
detection and auditing mechanisms and finally E stands for encryption mechanisms. The CM
assigns a value to the security commitments by adding the values of the tables that represent
each of the A,D,E categories (like Table 4.2) and applies a weight with the confidence that the
CM has in the provider agent. If security has failed too much in the past and the agent has
been penalized, its confidence will be low and, therefore, the applied weight will be low.

Temporal Commitments

To establish this kind of commitments the Commitment Manager sends a call for proposals to
all agents that can offer the services involved in the composed service (see Figure 4.2). Each
agent analyses when the service can completed, and then each agent returns a proposal to
the Commitment Manager. The proposal consists of a tuple < Tstart, Tduration, P > where
Tstart indicates the moment when the service can start its execution, Tduration indicates the
necessary time to complete the service and P is the probability, as said by the provider agent, of
finishing the service successfully. This value represents the probability of reaching a successful
execution and is extracted from its success rate of executions.

On one hand, the On-line Planner obtains a quality measure (the success rate) which is used
to estimate the best plan. On the other hand, the Commitment Manager calculates a probabil-
ity that indicates if the composition can be completed in time, taking into account the service
provider agents workload. This information refines the success rate obtained by the On-line
Planner because it takes into account the current situation of the agent that offers the service
and the real conditions of the environment. With all this information, a pre-commitment be-
tween the agent and the Commitment Manager is established.

When all agents have answered to the Commitment Manager, the CM must calculate the
success probability associated to the whole service composition. To do that, the Commitment
Manager uses the P value, which was sent by all agents. This probability is weighted with

28

Inform(Plan)

CFP (service)

Refuse

Propose

Commitment
Manager

m

n

m - n

[service not available]
Request(replan)

n - l Refuse_proposal

Acept_Proposal

 l

On-Line Planner Agent's

Inform (commitment)

failure

Figure 4.2: Services Availability Query interaction protocol

the confidence that the Commitment Manager has on these agents. The service composition
success probability (SCSP) is calculated as follows:

SCSP =

N∏
i=0

Pi∗ωi

where ωi ∈ [0, 1] is the weight associated to the agent that provides the service. This weight is
related to the previously fulfilled commitments and represents the confidence that the Com-
mitment Manager has on this agent; e.g. an agent that has many unfulfilled commitments will
have a low confidence.

Once the Commitment Manager calculates the security level and the service composition
success probability, it sends the composed service and the temporal and security commitments
to the deliberation engine. The deliberation engine analyses if it is a suitable composition. If

29

it agrees with the service composition, it communicates to the Runtime Engine that the service
executions can start. When this is the case, the pre-commitments established with the agents
are confirmed by the Commitment Manager. If the deliberation engine does not agree with the
service composition, the Commitment Manager breaks the pre-commitments, freeing the slack
reserved by the agents.

The Commitment Manager is also in charge of ensuring that the acquired commitments
are fulfilled. In case where a commitment cannot be fulfilled, the Commitment Manager pe-
nalizes the agent which provides the service. This penalty is captured through the confidence
weights that are applied when the Commitment Manager updates the service composition
success probability.

30

5
Runtime Engine

The Runtime Engine is the component in charge of managing the entities that are running in
the system. This includes driving the execution of the process model of the active plans and
scheduling the services that are invoked by a plan, both the local and the remote invocations.

The execution of an atomic service is much like a traditional operating system’s process
abstraction. These services are scheduled and executed by the Runtime Engine with a proper
context. These services have also a life cycle inherited from traditional processes[23]. The
states of the service life cycle are: (i) ready to run, (ii) running and (iii) sleeping.

As stated before, the Runtime Engine also manages the life cycle of plans. The execu-
tion of plans is made in collaboration with the Deliberation Engine’s Commitment Manager.
While the Commitment Manager is in charge of ensuring that the temporal commitments are
achieved, the Runtime Engine checks that every step of the plan is properly executed. This
includes to ensure that, before executing a service, all its preconditions are true and that, af-
ter executing the service, all their postconditions have been achieved. This part is carried out
by following the OWL process model (PM) at each step, following the logical flow that de-
termines its preconditions and postconditions. The task of visiting the process model of each
active plan and check the preconditions and postconditions of each node belongs exclusively
to the Runtime Engine.

Algorithm 1 shows the steps followed by the Runtime Engine:

1. The Runtime Engine (RE) extracts a plan from the list of selected plans created by the
Deliberation Engine.

2. The first action is to check that the plan’s precondition is valid and can be executed.

31

foreach Plan in selectedPlans() do0.1

if checkPreCondition(Plan) == True then0.2

ServiceQueue = emptyQueue()0.3

n = selectFirstNode(Plan)0.4

append(ServiceQueue, n)0.5

while hasNodes(ServiceQueue) do0.6

n = getNode(ServiceQueue)0.7

if checkPreCondition(n) == True then0.8

invoke(n)0.9

if checkPostCondition(n)== True then0.10

foreach Node in neighbors(n) do0.11

append(ServiceQueue,Node)0.12

end0.13

end0.14

end0.15

remove(ServiceQueue, n)0.16

end0.17

if checkPostCondition(Plan) == True then0.18

return True0.19

end0.20

else0.21

replanning()0.22

end0.23

end0.24

end0.25

Algorithm 1: The Runtime Engine algorithm

3. At this moment the plan is selected as a running plan. The RE selects the first node of the
plan from its service graph and invokes the service by appending it to the scheduler’s
ready queue.

4. Before executing a service the Runtime Engine previously checks its precondition and,
after the service execution is finished, it checks the service postcondition. If the postcon-
dition is valid the execution of the plan can continue.

5. Once the service finishes its execution, the RE extracts from the process model all its
neighbors and checks their preconditions. These neighbors are all the nodes that are
directly accessible from the given node through a control construct.

6. This process continues until the service process model reaches a final node or their ser-

32

vices fail and a plan reparation is needed (using the On-line Planner).

7. When the plan finishes, the Runtime Engine checks its postcondition. If it is valid, the
goal that has motivated the execution of the plan is marked as pursued. Otherwise, a
new plan is requested to the On-line Planner.

The Agent is the main entity that motivates this execution model. Agents can flow through
different states, depending on their current role:

• Applicant: The agent has goals to pursue and does not offer any service.

• Provider: The agent offers services to other agents but has no current goal.

• Provider-Applicant: The agent has goals to pursue and also provides some services for
both its own use and for other applicant agents use.

• Inert: The agent has neither current goals nor provided services. This is the case when
the agent is ready to leave the system.

Once the Runtime Engine executes a plan it notifies the On-Line Planner in order to per-
form the retain step, this is, to store the new case (whether it is successful or not) to keep the
case-base updated.

33

34

6
Execution trace

This chapter will expose a sample trace where the different steps that this execution module
follows to achieve a goal are shown. For simplicity we have prepared a simple scenario with
a few elements and a single goal to achieve. To show the flexibility of the system we will
simulate an error in the trace, showing the fault tolerance of the module.

In this example there is an agent that acts as an interface of the user (the client agent) and a
set of services distributed around the different nodes of the network. Each of these services is
provided by an agent and is hosted in a node which is connected to the node where the client
agent is hosted. The prepared scenario is designed to perform a very common task: saving
a song in an iPod. In this scenario the client agent just expresses its goal (Song in Ipod),
and has some previous knowledge in its knowledge base: the audio he wants to save (PCM
Audio) and some metadata (title, author, genre,...) about the song (Song Metadata). These
knowledge items will act as the preconditions of the plan that is going to be executed.

When the client agent activates the goal the Deliberation Engine looks for a plan to fulfill
the goal. Since there is not a plan that is able to perform the goal expressed by the client
agent, the On-line planner generates a plan that is able to perform the desired goal starting
from the known KB items as preconditions. This plan is shown in Figure 6.1. The iPod only
works with MP3 encoded audio (and the precondition expressed by the agent is encoded in
raw format), so the generated plan will include the needed services to encode the raw audio to
the MP3 format. The services that encode audio were previously executed in the system, that
is why there is a Case included in the generated plan in Figure 6.1. The dashed box represents
a service provided by the operating system of the client agent. For this reason the service is
hosted in the same node than the client agent.

35

SEQUENCE

Time and
Frequency
Analysis

I: PCM Audio
O: Frequency Domain Transform

PARARELL

Quantization
Entropy

Encoding Packaging

I: Frequency Domain Transform
I: Psychoacoustic Data
O: Quantized Data

Psychoacoustic
Analysis

I: PCM Audio
O: Psychoacostic Data

I: Quantized Data
O: Encoded Audio

I: Encoded Audio
I: Song Metadata
O: MP3 File

USB
Write

Add Song
to iPod

I: MP3 File
O: Byte Stream

I: Byte Stream
O: Data Sent

Validate
Song in iPod

I: Data Sent
I: Song Metadata
O: Song In iPod

SEQUENCE

PLAN: Save Song to iPod
Inputs: PCM Audio, Song Metadata

Outputs: Song in iPod

CASE: Encode MP3

Figure 6.1: Process model of plan Save Song to iPod

As an example, we’ll follow an execution trace using this plan:

1. Initially, the Deliberation Engine would select a goal of an agent. For simplicity there is
only one goal, which is Song in iPod. Since there is only one goal, the Deliberation Engine
selects it.

2. The On-line Planner generates a plan to fulfill the goal (Figure 6.1), as stated before.

3. As long as the plan meets the precondition (the agent knows PCM Audio and Song

Metadata), the deliberative engine will select the plan for its execution since its post-
condition is compatible with the desired goal (it generates Song in iPod).

4. The first services to be executed are Psychoacoustic Analysis and Time and Frecuency

Analysis. Before running them, the Commitment Manager establishes temporal com-
mitments with their hosts.

5. The Runtime Engine executes the services Time and Frecuency Analysis and Psychoacoustic
Analysis, achieving as effects the values Frequency Domain Transform and Psychoacoustic
Data. The Commitment Manager checks that the temporal commitments were accom-
plished, rewards the services and performs the retain stage in the Case-Base of the On-
line Planner.

6. Next service is Quantization. After the establishment of the temporal commitments,
the Runtime Engine executes the service Quantization, achieving as effect the value
Quantized Data. Once again the Commitment Manager rewards the service and re-
tains the case.

7. To show the advantages of running this model, we introduce an error at this point. Let
us assume that the service Entropy Encoding is unavailable (the agent that provides

36

the service is not connected, the service is saturated, or maybe the output is not a real
MP3 file). This situation generates that the Commitment Manager punishes the case
representing the service.

8. At this time, the Runtime Engine would ask the On-line Planner a repair of the running
plan to continue the execution of this agent.

9. The planner would return the plan shown in Figure 6.2. This repaired plan continues
where the other plan has failed its execution and replaces the failed service with other
structure thanks to other services found in the distributed system. The new plan has
a very similar structure but replaces the encoding service with a choice for other three
time domain encoding services (PCM Encoding, Differential PCM Encoding and
Adaptive PCM Encoding).

10. At this moment the Commitment Manager needs to establish a commitment with the ser-
vice which ensures a lower execution time and offers a better trust value. To do this, the
CM asks the case-base for old trust stored values and asks the providers hosts about their
temporal commitments. With this information the Runtime Engine selects for execution
the Adaptive PCM Encoding service.

11. Finally the execution of the plan is ongoing through the services Packaging, Add Song

to iPod, USB Write and Validate Song in iPod. At each step a temporal com-
mitment is established and the service executed is punished or rewarded depending on
the case.

12. When the execution of the service Validate Song in iPod has finished, the client
agent has in its knowledge base the fact Song in iPod, so the goal has been achieved
and it can be removed from the agent set of goals.

A remarkable aspect of the client agent is that despite the selected plan has failed, it has
been able to achieve its goal on a completely transparent way to the agent through the ability of
replanning of the execution module. With this module the success degree of goal achievement
is higher than on classic BDI systems. This module has also the ability of providing system
services for the plan composition, allowing the OS to work with this paradigm, as is the case
of the USB Write service.

37

SEQUENCE

Time and
Frequency
Analysis

I: PCM Audio
O: Frequency Domain Transform

PARARELL

Quantization

Entropy
Encoding

PackagingI: Frequency Domain Transform
I: Psychoacoustic Data
O: Quantized Data

Psychoacoustic
Analysis

Pulse Code
Modulation
Encoding

CHOICE

Differential PCM
Encoding

Adaptive PCM
Encoding

I: PCM Audio
O: Psychoacostic Data

I: Quantized Data
O: Encoded Audio

I: Encoded Audio
I: Song Metadata
O: MP3 File

I: Quantized Data
O: Encoded Audio

I: Quantized Data
O: Encoded Audio

I: Quantized Data
O: Encoded Audio

USB
Write

Add Song
to iPod

I: MP3 File
O: Byte Stream

I: Byte Stream
O: Data Sent

Validate
Song in iPod

I: Data Sent
I: Song Metadata
O: Song In iPod

SEQUENCE

REPAIRED PLAN: Save Song to iPod
Inputs: PCM Audio, Song Metadata

Outputs: Song in iPod

Figure 6.2: Repaired plan Save Song to iPod

38

7
Implementation and Results

7.1 The simulator . 39

7.2 Deliberation engine Tests . 41

7.3 Test 9: Distributed Computing Performance Tests 54

In order to evaluate the architecture presented here for the development of goal-oriented
operating systems, this work presents a set of tests and results that validate the proposal. A
discrete simulator has been developed to test all the features and advantages provided by an
Operating System implementing the Distributed Goal-Oriented paradigm. In this section we
present how the simulator works and how the different tests that have been done by analyz-
ing what the different components of the proposal (runtime engine and deliberation engine
components: commitment manager and on-line planner) contribute to the system.

7.1 The simulator

The operating system simulator allows us to test the provided functionality proposed by this
work, but avoiding the complexity of developing the full operating system low-level abstrac-
tions. This simulator implements the main components of the goal-oriented operating system
execution module that are needed for our purposes. This is mainly the execution module,
which comprises the runtime engine and the deliberation engine (including the on-line plan-
ner and the commitment manager). The runtime engine is in charge of executing the services
that are invoked by any running plan. The deliberation engine selects the goals that are acti-

39

vated and finds a plan which performs the goal within a temporal commitment.

The simulator also supports the representation of a distributed environment, where there
are several goal-oriented operating systems which offer their services in a shared network
using a common publish-subscribe protocol (like ZeroConf[24] or XMPP[25]). Thanks to this
protocol, when an agent registers or unregisters a new service every OS in the same network
receives a notification of this event and updates its case-base.

The environment also simulates a global time service which synchronizes the clock in every
OS in the network. If a new OS is added to the environment it gets automatically synchronized
with the rest of the system. This global time service is very useful for establishing proper tem-
poral commitments and uses known solutions for clock synchronization in distributed real-
time systems[26].

Every operating system in the simulation environment has also a communication module
that is in charge of managing communications between the nodes of the network. A node is a
representation of a goal-oriented operating system. This message passing system simulates a
time-bounded environment which allows us for predictability of end to end operations.

Since this is an ad-hoc simulator developed for our OS testing purposes, it allows us to
change some parameters in order to explore some interesting behaviors. We can parameterize
architectural issues, such as the number of nodes in the network, the number of agents per
node, or the number of services or goals that an agent has. The simulator has a scripting
system that loads a configuration for the desired environment. The script can define the initial
configuration of the environment (number of nodes, agents, distribution of the services by
agent, goals, preconditions, etc), setting up the scenario that is desired for the simulation. It
can also schedule different events that will be processed during the simulation in order to
change the environment at runtime.

To compare the different behaviors, a set of internal parameters can be changed. The prob-
ability that a service fails during its execution is parameterizable in the simulator. This way
we can check how the operating system behaves in a fault tolerant environment. We can also
modify the precision of calculating a temporal commitment in the simulator. Changing the
prediction algorithm or the quality of the algorithm itself we can compare different nodes hav-
ing responses that are not equal for a same request. This is a good way of detecting how the
system adapts itself to a changing environment. This kind of tests will be presented in next
sections.

Below all the tests have been conducted using the same methodology and with at least 20
repetitions to extract a statistically significant mean and standard deviation. This test of signifi-
cance ensures with great confidence that the null hypothesis was avoided.

Next, the set of tests performed in this work are presented. They have been divided into
two main test suites: Deliberation Engine Tests, where its main components have been tested

40

(Commitment Manager and On-line Planner), and Performance Tests, where some advantages
of this distributed system are presented.

7.2 Deliberation engine Tests

The deliberation engine is the component that introduces a reasoning process in the proposed
operating system. It is in charge of selecting the best available services that can fulfill the
activated goals and with the best possible conditions. The deliberation engine components
that perform this functionality are the On-line Planner and the Commitment Manager. In this
work we have developed a set of tests in order to validate their expected functionality.

7.2.1 Commitment Manager

The main aim of the Commitment Manager (CM) is to establish temporal commitments be-
tween a service provider and a client. When the client invokes a service he needs to communi-
cate to the service’s Commitment Manager to get a proper time prediction of when the service
response is going to be ready. This prediction is not an easy estimation, since there are lots of
factors than can influence in the results (mainly, the workload of the system). The CM must
work side by side with the Runtime Engine, which schedules all the running services in the
resource (the microprocessor). The scheduling algorithm is very important for the prediction
task, since it has to be able to accomplish the established temporal commitments. At the same
time, it should get a good performance and a high degree of interactivity in the system.

The way to do this is through resource reservation. The Runtime Engine reserves at least the
50% of the current remaining processor using first-come priorities. This scheduling algorithm
ensures that each service will have a minimum of resources allocated for its execution. This
means that if a service has a 50% of processor and another service has a 25% of processor, since
the first service has twice the allocated resources, it will work twice faster. This is a pessimistic
case because the slack time is shared by all the running services.

This algorithm ensures that a running service has a percentage of processor assigned, so
it is easy for the Commitment Manager to calculate the response time and establish a tempo-
ral commitment with the client. Since the priority is assigned using first-come preferences,
and it always assigns the half of the remaining processor time, the Commitment Manager can
calculate the response time (<) using the equation showed in 7.1.

<P = 2P ∗WCETP (7.1)

Where, P is the priority of the service and WCETP is the worst-case execution time of the
service, which is provided by the service provider agent. This is a pessimistic approach since it

41

ignores the slack time that is gained when the processor is idle. Improvements to this algorithm
are being prepared and will be proposed in future work, including priority promotions when
a service finishes and estimation of time gained when there are priority promotions.

Below are the tests that check the proper functionality of the Commitment Manager. These
tests show how the system tries to select always the best services that are available to perform
the agents goals.

Test 1: Trust evolution for different deadline predictions

In this experiment we are going to show how the trust that a client node has in different
provider nodes evolves as time passes, focusing their requests on the more reliable nodes.
The trust will be changing due that not all the nodes in the distributed system have the same
accuracy when calculating the deadline predictions.

The first experiment has being designed using the following scenario at the initial state:

• There are 3 agents registered in the system: 1 client agent and 2 provider agents, which
offer the same service with the same precondition P and postcondition Q.

• The network is composed by 3 nodes: Each agent is hosted in one of the three nodes in
the same network.

• The client agent has the necessary knowledge to run the service (P) and activates the goal
G which is the same as the two services postconditions (this is, G=Q).

• The nodes that host the service have different accuracies to calculate the response time:

– First node has an accuracy of 90% calculating the deadline prediction of the response
time (called GoodProviderHost).

– Second node has an accuracy of 20% calculating the deadline prediction of the re-
sponse time (called BadProviderHost).

Each experiment makes a request to any of the available services every time step. This is,
the client agent activates its goal and selects a plan to perform its goal. After the execution
of the service, the agent resets its knowledge base and re-activates the goal once more. As
time passes, the case-base acquires more experience about the nodes confidence. Figure 7.1
shows the results of running this test. The X axis represents time (in simulator steps) and
the Y axis represents the cumulative sum of services provided by each node, which is a good
representation of the trust that the client has in each node. At the start time, the trust in each
node is equal. This is because there are no previous known experiences and the case-base of the
client is empty, so the client has the same trust on each provider. As time passes, the number
of invocations to each node varies due to the accuracy of the BadProviderHost is not very good

42

and he fails continuously when calculating a proper response time. This makes his trust value
going down and, therefore, most of the invocations are done to the GoodProviderHost, as is
presented in the related figure.

Figure 7.1: Test 1: Trust evolution for different deadline predictions

Note that the Deliberation Engine is not only using the trust value (extracted from the case-
base) to determine which service provider to choose. The Deliberation Engine gives a chance to
other providers by using an on-line learning algorithm[27] which decides to explore or exploit
its solutions. This is done by adjusting a threshold value during the execution of the operating
system. That is why the BadProviderHost provided services are not stuck. They grow more
slowly than the GoodProviderHost ones, but sometimes have a new chance.

Test 2: Trust evolution in a bigger scenario

This experiment shows a similar approach to the previous study (Test 1). The main difference
of this test is the size of the agents and nodes sets, which is bigger than in Test 1. This test shows

43

how the trust in the nodes with a good deadline accuracy grows while the system learns about
the environment. The scenario is designed with the following elements:

• There are 51 agents registered: 1 client agent and 50 provider agents which provide the
same service.

• There are 51 nodes in the network: Each agent is distributed in one node. Only one agent
per node.

• The client activates the goal that invokes the service offered by the providers.

• The deadline accuracy of the nodes is distributed equally in four groups: 5%, 33%, 67%
and 100%.

Figure 7.2: Test 2: Trust evolution in a bigger scenario

The execution of this experiment is equal to the execution of Test 1. The client agent resets
its knowledge base and re-activates the goal every time step. Figure 7.2 shows the results of

44

the experiment. The X axis represents once more the time. The Y axis represents if a service
was requested by the client at each time instant. Each dot represents a request to the node that
is represented in the Y axis. So, the density of the dot cloud shows how popular is a group
of nodes. When the density is large enough and the dots are very close, the representation
becomes a straight line.

The middle line is just a mark to divide the dot cloud in the dense area (top-left) and the
sparse area (bottom-right). Both areas show how the vast majority of the service requests are in
the dense zone. This is again because the OS case-base learns, as time passes, which hosts are
more reliable. These results demonstrate that the behavior of the system is what was expected.
As we increase the time, the number of requests to the less confident nodes gets decreased.

Test 3: Adaptive Operating System

This experiment shows how the Operating System is able to adapt itself to changes in the
environment. The adaptation of the system is very important, since it allows the system to
have a dynamic behavior which is able to re-configure itself to take full advantage of current
circumstances. For this test we have designed an scenario formed by the following elements:

• There are 5 agents registered: one client agent and four provider agents, offering the
same service.

• There are 5 nodes in the network: each agent is distributed in a different node.

• The client activates the goal that invokes the service offered by the providers.

• The accuracy of the nodes at the initial step is distributed as follows:

– Host1: 100%

– Host2: 75%

– Host3: 50%

– Host4: 25%

In this experiment we are going to change the accuracy of some of the nodes to show how
the system adapts itself on changing environments. We are going to activate 3 events to change
the environment. Specifically, the following events have been scheduled:

• Step 50000: Host 1 accuracy decreases to 20%

• Step 300000: Host 3 accuracy increases to 80%

• Step 600000: Host 4 increases to 90% and Host 2 decreases to 20%

45

Figure 7.3 shows how the trust of the nodes (Y axis) changes when the environment under-
goes these major changes (marked with the vertical bounding boxes). This trust value repre-
sents the trust that the client node has in the other nodes. Adaptation takes time to occur due to
the learning algorithm that the deliberation engine is applying. In step 50000 we can see how
the Host 1 stops increasing its trust due to the first event. Note that this change takes some
time to occur. When the second event occurs (step 300000), the trust value of Host 3 begins to
increase (its deadline prediction is improved by 80%). Meanwhile the Host 1 trust continues
decreasing and the other two hosts maintain their trust value. This third event changes again
the system behavior, giving more trust to the Host 4, which has increased its accuracy to 90%.
Its trust is growing quickly since its new accuracy is quite good. Parallel to this, Host 2 begins
decreasing its trust value.

These results show how the operating system adapts itself when unexpected events change
the known environment. In this experiment the client agent changes its trust in the different
nodes of the network, changing consequently the number of requests done to each one of the
nodes.

Figure 7.3: Test 3: Adaptive Operating System

46

Test 4: Accepted Plans Ratio

These tests have the purpose of showing the adaptability of the system in different situations
of the workload and user preferences. To simulate this, during the tests two variables have
been parametrized. These variables are established by the Deliberation Engine to manage the
quality and quantity of plans that are accepted to be executed.

This two variables are the maximum slack time that the deliberation engine gives to run
the plan and the minimum quality that the deliberation engine requires (this quality value
is the SCSP provided by the Commitment Manager). Also, the number of agents has been
continuously increased at each iteration to get a bigger number of active goals, which increases
the system’s workload.

The maximum slack time (MaxTime) represents the amount of time that the deliberation
engine is prepared to give for the execution of a plan. Any plan whose time execution predic-
tion exceeds this parameter will be excluded. The minimum quality accepted (MinQ) by the
deliberation engine represents the lower limit that is accepted among all the plans proposed
by the On-Line Planner. The quality of every plan is obtained by the Commitment Manager
and represents the probability of success in the execution of the plan (SCSP).

Both parameters, the MaxTime and the MinQ, are dynamically adjusted by the deliberation
engine to adapt itself to the current requirements of the system. It will always try to minimize
the execution time and maximize the quality obtained. But in these tests we are going to study
how both parameters modify the ratio of accepted plans, because we do not want a system that
is so strict that does not accept new jobs, since its main purpose is to run plans. This is the
reason why these parameters (MaxTime and MinQ) are dynamic, to adapt them to the current
demanded workload of the system.

The relationship between the time estimated by the deliberation engine and the percent-
age of plans accepted and executed before their deadline is studied. Different qualities have been
analyzed with the purpose of seeing how this parameter affects the result.

The first test set was executed for a static number of agents. These agents provide services
and express static goals. We have run the simulation with different values of MaxTime and
MinQ for the deliberation engine. In Figure 7.4 the accepted and achieved plan ratio for different
qualities is shown. For each MaxTime value (from 1 to 7 time units), that represent the maxi-
mum time to execute the services, three bars represent the minimum qualities (20%, 50% and
90%) accepted. The figure shows that the trend in the percentage of accepted plans increases
as time increases. When the MaxTime parameter is increased the set of plans that meet the
specified time is bigger. Similarly, the proportion of achieved plans is always greater for high
quality values. This is because the number of accepted plans is lower but with higher quality,
so their success chances are higher.

Figure 7.5 allows us to validate this last result. This figure shows the percentage of plans

47

accepted and executed before their deadline, but this case comparing it to quality. For each quality
value (from 30% to 90%) three maximum times (1, 4 and 7 time units) have been analyzed.
Here the trend is to decrease the accepted ratio when the quality is increased. This is because
the deliberation engine is more strict with the plans it accepts for higher values of required
quality. In this figure we can appreciate that the quality parameter is more relevant than the
time parameter when the system workload is not critical. We can also appreciate that for high
values of quality (i.e. 90%), the accepted plans ratio is very low, but almost all of them were
successfully achieved, regardless of the allowed execution time.

Test 5: Stress Test

To see how the system workload affects to the number of accepted plans a stress test has been
performed. The method used in this test set to stress the system has been putting a high load by
increasing the number of agents. The more agents in the system, more activated goals, which
results in more running plans. Figure 7.6 shows the variation of the number of accepted plans
when the number of agents is increased, parametrizing the maximum time (MaxTime) and the

Figure 7.4: Test 4: Plan Accepted Ratio by time

48

Figure 7.5: Test 4: Plan Accepted Ratio by quality

minimum quality (MinQ). In this work we are showing the evolution of the accepted plans
ratio when the number of agents is increased for sets of 20, 30, 50, 70, 90 and 100 agents. In
these figures it is appreciated that the behavior is what is expected and desirable. This means
that the accepted ratio is decreased when the workload is increased. Comparing each graph,
shows a progressive decrease in the number of plans accepted when the number of agents is
larger and the system is more stressed. The higher ratios occur for the worst time and quality
parameters. Therefore is the responsibility of the deliberation engine to balance the parameters
of time and quality to maximize the utilization of the system. Meanwhile the execution time
parameter will be minimized and the quality parameter will be maximized to improve the
results of each executed plan.

To analyze with more detail how these parameters modify the goodness of selected plans
we have designed another test. This test (Figure 7.7) presents the relationship between the
maximum time to achieve the plan, the minimum requested quality and how this affects to
the number of plans that finish before their deadline. For lower time values the percentage of
achieved plans is higher because the number of accepted plans is very low. This is because
there is not enough time to execute the most of the compiled plans. We can also see that for

49

Figure 7.6: Test 5: Plan Accepted Ratio by time (20 to 100 agents)

high values of quality the number of plans that finish in time is always high. Therefore, it is
observed the correct behavior of the deliberation engine, which is able to predict the execution
of the services to fulfill the required quality parameters and select only the plans that will fulfill
their commitments.

Test 6: Security Commitments

An specific test has been done to check the relevance of the security commitments. This test
is intended to check how important is selecting a provider that applies the proper security
policies to transactions. It is also very important to trust your provider, so your providers
confidence level must be dynamic and well calculated. For this test we have prepared a sce-
nario where a client agent activates a goal that is fulfilled by a set of agents, each one of them
with a different security level. This test is run with three different OS configurations: an OS

50

Figure 7.7: Test 5: Percentage of plans executed in time

without Commitment Manager that does not apply any kind of commitment when selecting a
service (the selection is random); an OS with a CM that only performs temporal commitments
(t-commitments), however, no security commitments are done. That is, it selects the service
with a lower execution time and a higher success rate; Finally, a third OS with a CM that per-
forms t-commitments and s-commitments (security commitments). In this case security and
temporal parameters are taken into account. To test the robustness of the system we have
introduced a sniffer in the simulator that spies the communications between all the agents,
trying to steal passwords that are exchanged when invoking services. If the security level of
the service is high, the password is encrypted with a strong algorithm. If the security level is
very high the access control uses one-time passwords, this makes very difficult to steal a useful
password. When the security level is low the password is very easy to be decrypted. Finally,
when the security level is very low the password is not encrypted. As shown in Figure 7.8,
the percentage of stolen passwords for a system with s-commitments is very low. As long
as the services that are selected for execution are those that have the highest security levels,
passwords are rarely stolen. It improves with time as the confidence is better calculated, based
on experience. Nevertheless, the percentage of stolen passwords is very similar when the CM
performs only t-commitments and when there is no CM in the OS. This is because the selection
of services based on security parameters is completely random. We can even see that, in some
cases, the percentage of stolen passwords is higher with t-commitments than without com-
mitments. This is because security algorithms are usually big time consumers, so the selected
services tend to be those with the lowest security level.

51

Figure 7.8: Test 6: Security test

7.2.2 On-line Planner

The On-line Planner is the component that allows to compose plans that fulfill the agents goals.
This planner uses a time-bounded case based planner (TB-CBP) to create the requested plans
by reasoning about past cases. Using a planner to achieve the active goals provides agents an
interesting feature: plan repairing, which makes the operating system fault tolerant. This is
the functionality that we are going to check with these tests. How the system increases its fault
tolerance in unreliable environments and how this affects to the rate of completed goals.

Test 7: Fault-tolerant operating system

This test has as objective to check how the operating system is able to complete the goals that
are active, even if a service execution fails and the plan becomes unuseful. In order to do that,
the simulator can be parametrized with an error probability, which defines the probability of
a service to fail. This test is defined with the following elements:

52

• Only 1 host is created, there is no need of distributing the test in this case.

• There are 50 registered agents, each of which has 50 goals to activate.

• There are 300 services equally distributed throughout all agents.

Figure 7.9: Test 7: Fault-tolerant operating system

In this experiment all the goals, services and agents knowledge items are randomly gener-
ated. There is only one parameter that will be changed during the test, the error probability.
This parameter will be changed from 10% to 99% in steps of 10. Figure 7.9 shows the results
of this experiment. The X axis shows the error probability assigned to the services. The Y
axis shows the percentage of success for all the goals activated. Note that the percentage of
success is not 100%, since the data is randomly generated and there is not always a path from
the preconditions to the goals. What is shown in Figure 7.9 is that the percentage of success of
the goals is constant, despite the error probability that the services have. These results are so
relevant because they conclude that the proposed operating system is highly fault-tolerant.

53

Test 8: Trust evolution and multiple errors

This experiment shows how the combination of previous experiments can affect to the trust
of the nodes of the system. This experiment combines the error probability of the running
services and the accuracy of the response time calculated by the Commitment Manager.

This experiment has the following scenario:

• There are 5 agents registered in the system: 1 client agent and 4 provider agents.

• The network is composed by 5 nodes: Each agent is hosted in one of the five nodes.

• The client agent has the necessary knowledge to run the service (P) and activates the goal
G which is the same that the two services postconditions (G=Q).

• All services have the same behavior but the nodes that host the service have different
accuracies to calculate the response time and different error probabilities for the services:

– Host1 has an accuracy of 90% calculating the deadline prediction and a service error
probability of 10%.

– Host2 has an accuracy of 90% calculating the deadline prediction and a service error
probability of 90%.

– Host3 has an accuracy of 10% calculating the deadline prediction and a service error
probability of 10%.

– Host4 has an accuracy of 10% calculating the deadline prediction and a service error
probability of 90%.

Figure 7.10 shows the results of this test. These results show that there is no relevant differ-
ence between nodes with different configurations. The client does not discriminate on the basis
of the situation that generated an error (a bad deadline prediction or a service error). What the
client can see is that the service has not been provided conveniently (maybe its execution failed
or was not provided in time), so the provider is punished. The figure shows how Host 1, which
is the most reliable overall, has the higher number of requests. On the other hand, Host 4 is
probabilistically the less reliable node, thus it has the lower number of requests.

7.3 Test 9: Distributed Computing Performance Tests

Finally, a performance test has been done to check how this computing paradigm can improve
the execution of goals. The Operating System implementing the Distributed Goal-Oriented
Computing paradigm has a great impact in the performance of the system. Having an Oper-
ating System that not only helps agents to perform their goals, but also searches services to
compose the plans on other hosts, largely increases the concurrence of the distributed system.

54

Figure 7.10: Test 8: Trust evolution and multiple errors

Test 6 (Figure 7.11) shows how increasing the number of nodes that offer services (X axis)
decreases the mean time for achieving goals (Y axis). This behavior is highly significant as
nodes are added to the network. To run this test, a large enough set of goals has been activated
at every experiment. Each experiment has a different number of nodes (1 to 50) and the agents
are distributed equally around the nodes. This way we can perform the activated goals with a
higher degree of concurrency and, accordingly, with less time.

We can see in this experiment how important is to increase the amount of nodes in the
network. Specifically, the first ten nodes contribute with a great impact to decrease the time
needed to fulfill the activated goals. Experiments with 10 or more nodes do not have as much
impact as the first experiments, but are always decreasing. In conclusion, the ability of dis-
tributing the execution in an automatic and transparent way increases reasonably the perfor-
mance of the system.

55

Figure 7.11: Test 9: Distributed Computing

56

8
Conclusions

We have presented in this work a Distributed Goal-Oriented Computing paradigm based on
the automatic composition of plans. These plans are formed by distributed services provided
by agents. Agents are also the entities who express their own goals and try to fulfill them
by means of the plans. To implement this paradigm an execution module for a Goal-oriented
Operating System has been designed. The OS purpose is to help agents to achieve their goals
by means of a service-oriented approach.

The OS execution module is divided in two components which are in charge of performing
this paradigm. The Deliberation Engine obtains the services needed to achieve the agents goals
and stores them in a case base to reason about past cases. This component also takes time and
trust constraints into account. This is done either to obtain a result before a deadline, or just to
improve the quality of the result.

The case base introduced in the Deliberation Engine uses a Temporal Bounded CBP al-
gorithm to obtain plans that guarantee their execution before a deadline (using the temporal
commitments given by the Commitment Manager) and that have a high success degree (rea-
soning about the trust stored in the case base). This TB-CBP has allowed us to compose on-line
plans that give solutions to the goals of the agents following temporal constraints. To guar-
antee that the agents execute their services before their deadline, the Deliberation Engine pro-
vides a Commitment Manager which is in charge of analyzing the workload and establishing
a temporal commitment between the agents and the Deliberation Engine.

The results of this work have shown how the Operating System adapts itself to the environ-
ment where it is deployed. It selects the providers which offer better temporal commitments
and trust values and distributes the workload around these providers proportionally. Also,

57

having an On-line Planner in the OS makes it more reliable and fault-tolerant. This is because,
even if a service execution fails, the OS will look for a new plan transparently and without user
interaction. In fact, the user is not even aware of this.

This proposal opens the possibility of designing service-based operating systems directed
by goals using this paradigm. These OS can be extended continuously with new services and
plans driven by the user needs. These plans are added by means of the services offered by
other users and by their composition, thanks to the new goals defined by the users. The OS
architecture defined in this work allows us to use this computing paradigm, since there are
some capabilities that only the OS can provide (like soft real-time constraints and temporal
commitments).

58

Bibliography

[1] M Wooldridge and I Dickinson. Agents are not (just) web services: considering bdi agents
and web services. Proc. of SOCABE’2005, Jan 2005.

[2] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive algo-
rithms for collaborative filtering. In In Proceedings of the 14th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI98), pages 43–52. Morgan Kaufmann, 1998.

[3] Dominic Greenwood and Monique Calisti. An automatic, bi-directional service integra-
tion gateway. In Proc. Workshop on Web Services and Agent-Based Engineering (WSABE’2004),
2004.

[4] E. Sirin and B. Parsia. Planning for semantic web services. In Proc. Workshop on Semantic
Web Services: Preparing to Meet the World of Business Applications, 2004.

[5] Javier Palanca, Vicente Julian, and Ana Garcı́a-Fornes. A goal-oriented execution module
based on agents. In 44th Hawaiian International Conference on System Sciences, page 277,
2011.

[6] R Pike, D Presotto, K Thompson, and H Trickey. Plan 9 from Bell Labs. Computing Systems,
8(3):221, Jan 1995.

[7] A Montz, D Mosberger, S O’Malley, L Peterson, and et al. Scout: A communications-
oriented operating system. Hot OS, Jan 1995.

[8] R Rashid, D Julin, D Orr, R Sanzi, R Baron, A Forin, D Golub, and M Jones. Mach: a system
software kernel. COMPCON Spring ’89. Thirty-Fourth IEEE Computer Society International
Conference: Intellectual Leverage, Digest of Papers, pages 176—178, 1989.

[9] Galen C Hunt, James R Larus, D Tarditi, and T Wobber. Broad New OS Research: Chal-
lenges and Opportunities. Proceedings of the 10th Workshop on Hot Topics in Operating Sys-
tems, Jan 2005.

59

[10] Galen C Hunt, James R Larus, M Abadi, Mark Aiken, P Barham, and et al. An overview
of the singularity project. MSR-TR-2005-135, Jan 2005.

[11] Jorrit N Herder, H Bos, B Gras, P Homburg, and Andrew S Tanenbaum. Minix 3: A highly
reliable, self-repairing operating system. Operating System Review, Jan 2006.

[12] T Cortes, C Franke, Y Jégou, and T Kielmann. Xtreemos: a vision for a grid operating
system. White paper, Jan 2008.

[13] I Johnson, B Matthews, and C Morin. Xtreemos: Towards a grid operating system with
virtual organisation support. UK eScience All Hands Meeting, Jan 2007.

[14] A Rao and M Georgeff. BDI agents: From theory to practice. Proceedings of the first inter-
national conference on multi-agent systems (ICMAS95), pages 312—319, Jan 1995.

[15] L de Silva and L Padgham. Planning as needed in BDI systems. International Conference
on Automated Planning and Scheduling, 2005.

[16] Luca Spalzzi. A survey on case-based planning. Artif. Intell. Rev., 16(1):3–36, 2001.

[17] M. Navarro, S. Heras, V. Julian, and V. Botti. Incorporating Temporal-Bounded CBR tech-
niques in Real-Time Agents. Expert Systems with Applications, 38(3):2783–2796, 2011.

[18] Elena Del Val, Marti Navarro, Vicente Julian, and Miguel Rebollo. Ensuring time in ser-
vice composition. In SERVICES 2009. 2009 IEEE Congress on Services, volume 1, pages
376–383. IEEE Computer Society, 2009.

[19] Tim Mather, Subra Kumaraswamy, and Shahed Latif. Cloud Security and Privacy: An En-
terprise Perspective on Risks and Compliance. O’Reilly Media, Inc., 2009.

[20] M. Zviran and W.J. Haga. A comparison of password techniques for multilevel authenti-
cation mechanisms. The Computer Journal, 36(3):227, 1993.

[21] J.S. Balasubramaniyan, J.O. Garcia-Fernandez, D. Isacoff, E. Spafford, and D. Zamboni.
An architecture for intrusion detection using autonomous agents. In Computer Security
Applications Conference, 1998, Proceedings., 14th Annual, pages 13–24. IEEE, 1998.

[22] R.M. Needham and M.D. Schroeder. Using encryption for authentication in large net-
works of computers. Communications of the ACM, 21(12):993–999, 1978.

[23] D RITCHIE and K Thompson. The unix time-sharing system. Communications of the ACM,
Jan 1973.

[24] Zero Configuration Networking: http://www.zeroconf.org.

[25] XMPP Pub-Sub: http://www.xmpp.org/extensions/xep-0060.html.

60

[26] Hermann Kopetz and Wilhelm Ochsenreiter. Clock Synchronization in Distributed Real-
Time Systems. IEEE Transactions on Computers, C-36(8):933 –940, aug. 1987.

[27] R.S. Michalski, J.G. Carbonell, and T.M. Mitchell. Machine learning: An artificial intelligence
approach, volume 1. Morgan Kaufmann, 1985.

61

