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Chapter 1

Introduction

1.1 The aim of this work.

The representation problem for Banach lattices using vector measures con-
sists on determining which Banach lattices can be identified as spaces L1(�)

and L1
w(�) of integrable functions and weakly integrable functions with re-

spect to a vector measure �, respectively. It is known that every order
continuous Banach lattice with a weak unit can be identified with a space
L1(�), where � is defined in this case on a �–algebra (see [6, Theorem 8]).
If the existence of a weak order unit is not assumed (this is the case for
instance of l∞(Γ) with Γ uncountable), it is still possible to represent it but
using in this case a vector measure on a �–ring (see [9, Theorem 4]). In
the case that the space has the �–Fatou property and it has a weak unit
belonging to Ea the order continuous part of the lattice, it can be identified
with the space L1

w(�) where � is also defined on a �–algebra (see [7, The-
orem 2.5]). A similar result is possible if we forget about the weak unit
and consider vector measures defined on a �-ring, as it happens in the case
when E is order continuous. Indeed, if E has the Fatou property and Ea is
order dense in E, then E is order isometric to L1

w(�) (see [9, Theorem 8]).
Even if there exists a weak unit in the space there are two different

possibilities to represent the space which are essentially different. Namely,

1) The first one involves vector measures defined on �–algebras. In this
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6 Chapter 1. Introduction

case the existence of a weak unit in the space is necessary and the rep-
resentation theorem when applied to the case of Banach function spaces
over �–finite (but not finite) measure spaces as Banach lattice is given
by a multiplication operator different of the identity map.

2) In the second one, no weak unit is needed, the vector measure � is de-
fined on a �–ring and we must consider the extension of the integra-
tion theory to vector measures defined on �–rings due to Lewis [12] and
Masani and Niemi [15, 16], and use the associated spaces L1(�) studied
in [8]. Now, if we consider X(�) a Banach function space over a �-finite
measure space and we forget about the existence of a weak unit in the
space, the order isometry T : X(�) → L1(�) can be given, as in the gen-
eral case, by the identity map, i.e. both spaces can be directly identified
having the same elements.

In this work we are interested in provide additional information on
these representations that improves the knowledge on the behaviour of
general Banach lattices and their integral representations. More precisely,
we are interested in developing the representation theorem for a particular
class of Banach lattices using the approach explained in 2). In particular,
we deal with Banach lattices with the �-Fatou property that are “locally
order continuous”, i.e. there is a class of projections in the space such that
the range of all of them lies in the order continuous part of the lattice and
each element can be expressed as a sum of the components given by these
projections. The canonical example of these spaces is

∑
ℓ∞(I) L

1(�i), where
each �i is a probability measure, and I is a non necessarily countable in-
dex set. Therefore, our results can be applied also when there is no weak
unit in the lattice E. In Chapter 2 we present the canonical example that
motivates our results, it is also a concrete example which shows, precisely,
the differences explained in the approaches above. Chapter 4 is devoted to
prove our main result.

Another line of research appears when we try to solve this problem. The
properties that satisfy a vector measure � defined on a �–ring are directly
related to the lattice properties of the spaces L1(�) of integrable functions
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with respect to it. It will be also the aim of this work to study the effect of
certain properties of � on the lattice properties of the space L1

w(�) of weakly
integrable functions with respect to � and Chapter 3 is devoted to develop
our results in this context.

In fact, it is well-known that the space L1(�) of integrable functions with
respect to a vector measure � on a �-algebra is always order continuous. For
such a measure, the space L1

w(�) of weakly integrable functions always has
the Fatou property, the �-order continuous part (L1

w(�))a of L1
w(�) coincides

with L1(�) and the “Fatou completion” of L1(�) –the smaller Fatou Banach
function space containing L1(�)– is L1

w(�). We show that, when the decom-
position properties regarding �-finiteness of � of the �-ring ℛ where the
measure is defined become weaker, those basic facts that hold for the case
of �-algebras (i.e. finite or �-finite vector measures) are not true any more.
We also provide characterizations of these lattice properties for L1(�) and
L1
w(�) in terms of the decomposition properties of ℛ with respect to �.

We will consider three decomposition properties for �, local �-finiteness,
weak local �-finiteness andℛ-decomposability. Each of them characterize a
lattice property of L1

w(�): super order density of L1(�) in L1
w(�), the equality

(L1
w(�))a = L1(�) and a strong version of the Fatou property that implies

weak local �-finiteness, respectively.

1.2 Preliminaries and notation.

We shall deal with real Banach spaces. The topological dual of a Banach
space X is denoted by X∗ and the unit ball of X by BX .

A Banach lattice is a Banach space E with norm ∥ ⋅ ∥, endowed with an
order relation ≤ which is compatible with the algebraic structure of E such
that for every pair x, y of elements of E, there exists the supremum and
the infimum of x and y and satisfying that if x, y ∈ E with ∣x∣ ≤ ∣y∣, then
∥x∥ ≤ ∥y∥, where ∣x∣ = sup{x,−x}. An ideal of E is a closed subspace F of
E such that y ∈ F whenever y ∈ E with ∣y∣ ≤ ∣x∣ for some x ∈ F . An ideal F
in E is said to be order dense if for every 0 ≤ x ∈ E there exists an upwards
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directed system 0 ≤ x� ↑ x such that (x� )� ⊂ F . Similarly, an ideal F in E is
said to be super order dense if for every 0 ≤ x ∈ E there exists a sequence
0 ≤ xn ↑ x such that (xn)n≥1 ⊂ F . A weak unit of E is an element 0 ≤ e ∈ E
such that inf{x, e} = 0 implies x = 0. We also use the notation x ∧ y for
inf{x, y}.

A Banach lattice is �–order continuous if order bounded increasing se-
quences are norm convergent. If this property holds for arbitrary down-
wards directed systems of elements, it is said to be order continuous. We
call order continuous part Ean of E to the largest order continuous ideal in
E. It can be described as Ean = {x ∈ E : ∣x∣ ≥ x� ↓ 0 implies ∥x�∥ ↓ 0}
(see [19, Theorem 102.8]). Similarly, the �-order continuous part Ea of
E is the largest �-order continuous ideal in E, which can be described as
Ea = {x ∈ E : ∣x∣ ≥ xn ↓ 0 implies ∥xn∥ ↓ 0} (see [19, Theorem 102.8]).

E is said to be Dedekind �–complete if every non-empty finite or count-
able subset which is bounded from above has a supremum and it is Dedekind
complete if this is the case for every non-empty subset ofE which is bounded
from above. E is said to have the weak Fatou property for monotone se-
quences if it follows from 0 ≤ xn ↑ (n ≥ 1) and supn≥1 ∥xn∥ < ∞ that
x := supn≥1 xn exists in E. In this case, E is a Dedekind �–complete Ba-
nach lattice [19, Theorem 113.1]. If, in addition, ∥x∥ = supn≥1 ∥xn∥, then
E is said to have the Fatou property for monotone sequences (or simply �–
Fatou property). In a similar way, the space E is said to have the weak
Fatou property for directed sets if it follows from 0 ≤ x� ↑ and sup� ∥x�∥ <∞
that x := sup� x� exists in E. As above, E is now Dedekind complete ([19,
Theorem 107.5]). Moreover, if ∥x∥ = sup� ∥x�∥, we will say that E has the
Fatou property for directed sets.

An operator T : E → F between Banach lattices is said to be an order
isometry if it is a linear isometry which is also an order isomorphism, that
is, T is linear, one to one, onto, ∥Tx∥F = ∥x∥E for all x ∈ E and T (inf{x, y}) =

inf{Tx, Ty} for all x, y ∈ E. In this case, we say that E and F are order
isometrics.

A Banach function space over a measure space (Ω,Σ, �) is a Banach
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space E of (equivalence classes of) measurable functions which are inte-
grable with respect to � on sets of finite measure, contains all characteris-
tic functions of sets of finite measure, and satisfies f ∈ E with ∥f∥ ≤ ∥g∥
if ∣f ∣ ≤ ∣g∣ with g ∈ E. Our main reference for Banach lattices and Banach
function spaces is [13]; we also use [1, 3, 17, 18].

Throughout this work ℛ will be a �–ring of subsets of Ω, that is a ring of
sets closed under countable intersections, andℛloc the �–algebra of subsets
A of Ω which are locally in ℛ, i.e. such that A ∩ B ∈ ℛ for every B ∈ ℛ.
Measurability of the functions will be defined with respect to ℛloc and the
space of measurable real functions on (Ω,ℛloc) will be denoted byℳ(ℛloc).
We will also use the notation S(ℛloc) for the set consisting of simple func-
tions based on the �–algebra ℛloc and S(ℛ) for the set of simple functions
which are supported in ℛ.

A vector measure � : ℛ → X is a set function such that
∑

n≥1 �(An)

converges to �(∪n≥1An) in X for every sequence (An)n≥1 of pairwise disjoint
sets in ℛ with ∪n≥1An ∈ ℛ.

The semivariation ∥�∥ of � in ℛloc is given by ∥�∥(A) = sup{∣x∗�∣(A) :

x∗ ∈ BX∗}, A ∈ ℛloc, where ∣x∗�∣ is the variation of the measure x∗� : ℛ → ℝ,
that is ∣x∗�∣ is the countably additive measure ∣x∗�∣ : ℛloc → [0,∞] defined
by ∣x∗�∣(A) = sup{

∑
∣x∗�(Ai)∣ : (Ai) finite disjoint sequence in ℛ ∩ 2A}. The

semivariation is always finite on ℛ, and

∥�∥(A)

2
≤ sup

{
∥�(B)∥ : B ∈ ℛ ∩ 2A

}
≤ ∥�∥(A), A ∈ ℛloc,

see [12, Section 2], [16, Lemma 3.4 and Corollary 3.5]. A set B ∈ ℛloc is
�–null if ∥�∥(B) = 0, and a property holds �–almost everywhere (�–a.e. for
short) if it holds except on a �–null set.

Following Lewis [12] and Masani and Niemi [15], [16] we define now
what an integrable functions with respect to a vector measure on a �–ring
is. If � : ℛ → X is a vector measure, we write L1

w(�) for the space of func-
tions in ℳ(ℛloc) which are integrable with respect to the scalar measure
x∗� for all x∗ ∈ X∗. In L1

w(�), functions which are equal �–a.e. are identified;
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L1
w(�) is a Banach space when the norm

∥f∥� = sup
{∫

Ω

∣f ∣d ∣x∗�∣ : x∗ ∈ BX∗

}
,

is considered.

Moreover, it is a Banach lattice having the �–Fatou property for the �–
a.e. order and an it is an ideal of measurable functions, that is, if ∣f ∣ ≤ ∣g∣
�–a.e. with f ∈ℳ(ℛloc) and g ∈ L1

w(�), then f ∈ L1
w(�).

Although L1
w(�) is not in general a Banach function space over any x∗�,

it still satisfies that convergence in norm of a sequence implies �–a.e. con-
vergence of some subsequence (see [16, Lemma 3.13] or [19, 100.6]).

A function f ∈ L1
w(�) is integrable with respect to � if for each A ∈ ℛloc

there is a (unique) vector denoted by
∫
A
fd� ∈ X, such that x∗

( ∫
A
fd�

)
=∫

A
fdx∗� for all x∗ ∈ X∗. Sometimes we write

∫
fd� for

∫
Ω
fd�. We denote

by L1(�) the space of integrable functions with respect to �.

Notice that for simple functions ' =
∑n

i=1 ai�Ai ∈ S(ℛ) we have that
' ∈ L1(�) with

∫
A
'd� =

∑n
i=1 ai�(Ai ∩ A), A ∈ ℛloc. Furthermore, S(ℛ) is

dense in L1(�) (see [12, Theorem 3.5]).

The space L1(�) is a Banach lattice for the order structure of L1
w(�); in

fact, it is an ideal of measurable functions and also within L1
w(�); see [16,

Theorem.4.10]. By [12, Theorem 3.3], L1(�) is also order continuous and
may not have weak unit (see [8, Example 2.2] for a concrete example).

The integration operator f ∈ L1(�) →
∫
fd� ∈ X is linear and continu-

ous with ∥
∫
fd�∥ ≤ ∥f∥� .

A vector measure � : ℛ → E with values in a Banach lattice E is positive
if �(A) ≥ 0 for all A ∈ ℛ. In this case, the integration operator I� : L1(�) →
E is positive (i.e. I�(f) ≥ 0 whenever 0 ≤ f ∈ L1(�)) and it can be checked
that ∥f∥� = ∥I�(∣f ∣)∥ for all f ∈ L1(�).

Each vector measure � defined on a �–algebra satisfies that �Ω ∈ L1(�)

and so ∥�∥(Ω) = ∥�Ω∥� < ∞, that is, � is bounded. It is relevant for this
paper that this does not hold in general for vector measures defined on
�–rings ([8, Example 2.1]).
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As we have already pointed out, the properties of a vector measure �

defined on a �-ring ℛ influence the space L1(�). Let us recall the conse-
quences on the lattice properties of L1(�) that produce the strong additivity
and the �–finiteness of �.

A measure � is strongly additive if (�(An))n≥1 converges to zero when-
ever (An)n≥1 is a sequence of disjoint subsets of ℛ. It is known that � is
strongly additive if and only if �Ω ∈ L1(�) —in this case, �Ω is a weak unit
for L1(�)— and if and only if all bounded measurable functions belong to
L1(�). Under this requirement � is bounded and L1(�) coincides with the
space L1(�̂), where �̂ : ℛloc → X is a vector measure that extends �. L1(�) is
then a Banach function space over (Ω,ℛloc, ∣x∗0�∣), where ∣x∗0�∣ is a bounded
control measure for �, x∗0 ∈ BX∗, [8, Theorem 2.6].

A measure � is said to be �–finite with respect to ℛ (just �–finite for
short) if there is a sequence (An)n≥1 in ℛ and a �–null set N ∈ ℛloc such
that Ω = (∪n≥1An) ∪N .

Every vector measure defined on a �–algebra is strongly additive and
range bounded. In the case of vector measures defined on a �–ring, each
strongly additive measure is �–finite (see [4, Lemma 1.1]) but the opposite
is not true (see [8, Example 2.1]).

In the general case of not strongly additive measures, there is no rela-
tion between �–finiteness and boundedness of the measure (see [8, Exam-
ple 2.2]). However —as for general Banach function spaces— �–finiteness
of a measure � is equivalent to the existence of a weak unit in the space
L1(�) and to the existence of a bounded local control measure for � (see
[8, Theorem 3.3]). Recall that a countable additive vector measure � : ℛ →
[0,∞] is a local control measure for � if it satisfies that limA⊂B,�(A)→0 ∥�(A)∥ =

0 for all B ∈ ℛ and that every �–null set in ℛloc is also �–null.

We cannot assure in this case that L1(�) is a Banach function space with
respect to any measure space (Ω,ℛloc, �), being � a local control measure
for �, but if � is �–finite, then L1(�) is an order continuous Banach lattice
with weak unit, and so L1(�) is order isometric to L1(�̂) for some vector
measure �̂ defined on a �–algebra of sets (see [6, Theorem 8]). A more
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concrete description can be done. If the measure � is �–finite and g is a
weak unit for L1(�), then L1(�) is order isomorphic and isometric to L1(�g),
where �g : ℛloc → X is the vector measure given by �g(A) =

∫
A
g d� (see [8,

Theorem 3.5]).

When no restrictions are imposed to the vector measure � on a �–ring,
the space L1(�) is still an order continuous Banach lattice and so it can be
represented as an unconditional direct sum of a family of disjoint ideals,
each of them with weak unit. Moreover by [6, Theorem 8] each one of these
ideals is the space L1 of a vector measure on a �–algebra.

Again, a concrete representation of these spaces can be given: L1(�)

can be written as an unconditional direct sum of disjoint ideals, each of
them being order isometric to L1(�A), where each �A is the vector measure
� restricted to a �–algebra as A ∩ℛ for some A ∈ ℛ.

More precisely, in the proof of Theorem 3.1 in [4], it is shown that there
exists a maximal family {A� : � ∈ Δ} of non �-null sets in ℛ with A� ∩
A� �-null for � ∕= �. Let �� be the restriction of � to the �-algebra A� ∩
ℛ = {B ∈ ℛ : B ⊂ A�} and consider the bounded linear projections P� :

L1(�) → L1(�) given by P�(f) = f�A�. Then, if f ∈ L1(�), there exists
a countable subset I in Δ such that f =

∑
�∈I f�A� �-a.e. and the sum

converges unconditionally in L1(�). Thus f is uniquely represented as an
unconditional direct sum of elements of the family of disjoint closed ideals
(P�(L1(�)))�∈Δ where every space P�(L1(�) is order isometric to L1(��) ([8,
Theorem 3.6]).



Chapter 2

Motivation

2.1 Representation theorems.

As it was already mentioned in the Introduction, vector measures can be
used for representing Banach lattices as spaces L1(�) and L1

w(�) of inte-
grable functions and weakly integrable functions, respectively. Let us ex-
plain briefly the details of the corresponding representation theorems.

∙ For the case of an order continuous Banach lattice E with a weak unit,
by a classical representation theorem, there exists a Banach function space
X(�) over a positive finite measure space (Ω,Σ, �) and an isometric order
isomorphism Φ : X(�) → E ([13, Theorem 1.b.14]; see also [19, Theorem
120.10]). As shown in the proof of the theorem, there exists a vector mea-
sure � : Σ → X(�)+ defined by �(A) := �A, A ∈ Σ such that the integration
map I� : f 7→

∫
f d� is an order isometry of L1(�) onto X(�). Then, for the

E+-valued vector measure � := Φ ∘ �, the map I� = Φ ∘ I� is an order isome-
try of L1(�) onto E which maps the weak unit �Ω of L1(�) onto a weak unit
of E.

∙When E is an order continuous Banach lattice, the key for constructing
the vector measure is a classical result which ensures that E can be then
decomposed into an unconditionally direct sum of a family of mutually dis-
joints ideals {E�}�∈Δ, each E� having a weak unit. That is, every e ∈ E has
a unique representation e =

∑
�∈Δ e� with e� ∈ E�, only countably many

13
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e� ∕= 0 and the series converging unconditionally ([13, Proposition 1.a.9]).

Each E� is an order continuous Banach lattice with a weak unit, then,
by the representation theorem described above, there exist a �-algebra Σ�

of parts of an abstract set Ω� and a positive vector measure �� : Σ� → E�

such that the integration operator I�� : L1(��)→ E� is an order isometry.

Consider now the set Ω = ∪�∈Δ

(
{�} × Ω�

)
, that is

Ω =
{

(�, !) : � ∈ Δ and ! ∈ Ω�

}
.

If we denote ∪�∈Δ({�} × A�) =
{

(�, !) : � ∈ Δ and ! ∈ A�
}

, where
A� ⊂ Ω� for all � ∈ Δ, and for every Γ ⊂ Δ we write ∪�∈Γ({�} × A�) =

∪�∈Δ({�} × A�) whenever A� = ∅ for all � ∈ Δ∖Γ, then the family ℛ of sets
∪�∈Δ({�} × A�) satisfying that A� ∈ Σ� for all � ∈ Δ and there exists a
finite set I ⊂ Δ such that A� is ��-null for all � ∈ Δ∖I, is a �-ring of parts
of Ω.

Moreover, ℛloc =
{
∪�∈Δ ({�} × A�) : A� ∈ Σ� for all � ∈ Δ

}
.

Let � : ℛ → E be the vector measure defined by �
(
∪�∈Δ ({�} × A�)

)
=∑

�∈Δ ��(A�), then the space L1(�) is order isometric to E. Even more, the
integration operator I� : L1(�)→ E is an order isometry.

∙ If E is a Banach lattice satisfying the �–Fatou property with a weak
unit belonging to the �–order continuous part Ea of E, then there exists a
vector measure � defined on a �–algebra such that E is order isometric to
L1
w(�). In the proof it is noted that in this case Ea is also order continuous.

Indeed, Ea is an ideal of E which is Dedekind �–complete as it is �–Fatou
([19, Theorem 113.1]). Then, Ea is also Dedekind �–complete and, as it is
�–order continuous, it follows that it is order continuous ([13, Proposition
1.a.8]). The proof of the representation of E as an L1

w(�) consists in taking a
vector measure � such that L1(�) is order isometric to Ea via the integration
operator I� , and extending I� to L1

w(�). The result is that this extension is
an order isometry from L1

w(�) onto E.

∙ Finally, let E be a Banach lattice with the Fatou property and such
that the order continuous part Ean of E is order dense in E. In this case,
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E has the �–Fatou property and then Ean = Ea, as we have already note.
Then, we can take the vector measure � associated to Ea as in Section 3
of [9], and so I� : L1(�) → Ea is an order isometry. The way as the vector
measure is constructed is crucial. In fact, L1

w(�) has actually the Fatou
property, where it is an open question if it is so in the general case. Then it
is possible to extend I� to the space L1

w(�) in a way that the extension is an
order isometry between L1

w(�) and E.

When our framework are order continuous Banach function spaces, the
existence of a weak unit in it, is equivalent to the space to be defined over
a �–finite measure space. Let us remark how the order isometry which we
obtain onto the corresponding L1 space works.

Let X(�) be an order continuous Banach function space based on a pos-
itive, finite measure space (Ω,Σ, �). Note that the constant function �Ω is
then a weak unit in X(�). In these conditions X(�) is then order isomet-
ric to an space L1(�) of integrable functions over a vector measure on a
�–algebra. In fact, let sim Σ denote the vector space of all Σ–simple func-
tions. The X(�)–valued set function � : A 7→ �A, A ∈ Σ is a positive vector
measure and I� : L1(�)→ X(�) is an order isomorphism onto its range such
that I�(') = ', for every ' ∈ sim Σ. Since sim Σ is dense in both L1(�)

and X(�), it follows that I�(f) = f for every f ∈ L1(�); in other words,
L1(�) = X(�) and I� = idX(�). Moreover, the norms in L1(�) and X(�) are
equal.

Let X(�) be an order continuous Banach function space over a �-finite
(but not finite) measure space (Ω,Σ, �). Note that the function �Ω is not a
weak unit of X(�) (it is not even in X(�)), and so, the representation theo-
rem using vector measures on �–algebras when applied to this case cannot
done the identity map since the order isometry that we obtain of L1(�) and
X(�) carries the weak unit �Ω of L1(�) onto a weak unit of X(�) which nec-
essarily fails to be the same. In this case, X(�) is order isometric to another
Banach function space over a positive, finite measure. More precisely, sup-
pose Ω =

∪+∞
n=1An with �(An) < +∞, An ∈ Σ and let g :=

∑∞
1

1
2n�(An)

�An,
then g is a weak unit in X(�). Define �g(A) :=

∫
A
gd�,A ∈ Σ and consider
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X(�g) the space of (classes of) measurable functions (note that � and �g

have the same null sets) with the norm ∥ ⋅ ∥X(�g) = ∥ ⋅ g∥X(�). The space
X(�g) is a Banach function space over the finite measure space (Ω,Σ, �g)

and the multiplication operator Mg−1 : X(�) → X(�g) is an order isometry.
Applying now the previous result, there exists an L1(�) space of integrable
functions with respect to a vector measure on a �–algebra such that the
identity map is an order isometry from L1(�) to X(�g). Consequently the
multiplication operator Mg : L1(�)→ X(�) is now an order isometry.

This is not the case when we represent X(�) as an L1 space respect to
a vector measure on a �–ring. Both spaces can be now identified having
the same elements. Indeed, suppose again Ω =

∪+∞
n=1An with �(An) < +∞,

An ∈ Σ, for every An there exists a countably additive measure �n : Σn → An

defined by �n(B) = �B, B ∈ Σn (the �–algebra of measurable sets in An)
such that the identity map is an order isometry from L1(�n) to An. Consider
the �–ring ℛ = {∪n∈IBn : I ⊂ ℕ is finite , Bn ∈ Σn} and the vector measure
A = ∪n∈IBn ∈ ℛ 7→ �(A) =

∑
n∈I �n(Bn), then the integral operator is the

identity map and a biyection that preserves order and norm between the
spaces L1(�) and X(�).

Consequently, the representation provided in the approaches above are
different. In the next section we present a concrete example which shows,
precisely, these differences.

2.2 The canonical example.

Let us consider the �–finite measure space ([0,+∞),Σ, �), with Σ the �–
algebra of Lebesgue measurable subsets and �(A) :=

∑∞
n=1

1
2n
m(A∪[n, n+1])

where m is the Lebesgue measure on [0,+∞). Let us denote by L0([0,+∞))

the set consisting of real Lebesgue measurable functions on the interval
[0,+∞) where �–a.e. equal functions are identified. Finally let us denote
by mn the Lebesgue measure on the interval [n, n + 1] for n ∈ ℕ (including
0). As usual we write

∫ n+1

n
∣f(x)∣dx instead of

∫
[n,n+1]

∣f(x)∣dmn(x). In this
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section we shall deal with the space E :=
∑

l∞ L
1(mn), i.e.

E =

{
f ∈ L0([0,+∞)) : f ∈ L1([n, n+ 1]), n ∈ ℕ and sup

n∈ℕ

∫ n+1

n

∣f(x)∣ dx <∞
}
.

This function space is a Banach lattice when endowed with the �–a.e.
order and the norm

∥f∥ := sup
n≥0

∫ n+1

n

∣f(x)∣ dx, f ∈ E.

It is in fact a Banach function space on ([0,+∞),Σ, �). This space is not
�–order continuous, since clearly �[0,+∞) ∈ E but �[0,+∞) ∕∈ Ea, where Ea is
the �–order continuous part of E, which is the space Ea =

∑
c0
L1(mn), i.e.

Ea =

{
f ∈

∑
l∞

L1(mn) : lim
n→+∞

∫ n+1

n

∣f(x)∣ dx = 0

}

=

{
f ∈

∑
l∞

L1(mn) :
( ∫ n+1

n

∣f(x)∣ dx
)
n≥0
∈ c0

}
.

It is easy to see that E has the �–Fatou property. Notice that the func-
tion �[0,+∞) is obviously a weak unit for E that is not in Ea. However, the
function g :=

∑∞
n=0

1
n+1

�[n,n+1] is also a weak unit, but g ∈ Ea. This fact will
be relevant in what follows.

Let us see which are the representations that can be obtained using the
approaches 1) and 2) explained in the Introduction.

1) First, since E is a �–Fatou Banach lattice with weak unit g belonging to
Ea, there is a vector measure � defined on a �–algebra and with values
in Ea such that E is order isomorphic and isometric to L1

w(�). In this
case, the set map mg on the Lebesgue measurable sets with values on
Ea =

∑
c0
L1(mn) given by mg(A) = g�A is a countably additive measure.

The space of integrable functions L1(mg) is

L1(mg) =
{
f ∈ L0([0,+∞)) : fg ∈ Ea

}
=

{
f ∈

∑
l∞

L1(mn) : lim
n→+∞

∫ n+1

n

∣f(x)∣g(x) dx = 0

}
.



18 Chapter 2. Motivation

Consequently, the multiplication operator Mg : L1(mg) → Ea given by
Mg(f) := fg is an order isometry —but it does not identify the functions
since maps the function �[0,+∞) into the function g, i.e. the elements
are not the same—. Moreover, the same map Mg can be extended to be
defined from L1

w(mg) to E as a bijective isometry between both spaces.

2) On the other hand, we can consider the representation theorem for order
continuous Banach lattices without considering the existence of weak
unit in E in order to represent Ea as a space L1(�), where � is a vector
measure defined on a �–ring and with values in E+

a . Recall that Ea =∑
c0
L1(mn) and so Ea can be written as an unconditional sum of the

Banach lattices L1(mn) that are order continuous and have weak units
�[n,n+1], n ∈ ℕ. For each n ∈ ℕ, if we define �n : Σn → L1(mn) by �n(A) :=

�A, A ∈ Σn, the �–algebra of measurable subsets of [n, n + 1], �n is a
vector measure such that L1(�n) is exactly (identifying functions) the
space L1(mn). If we consider now the �–ring

ℛ = {A = ∪i∈IAi : I ⊂ ℕ is finite , Ai ∈ Σi}

and the measure

A = ∪i∈IAi ∈ ℛ 7→ �(A) =
∑
i∈I

�i(Ai) ∈ Ea, (2.2.1)

the identity is a lattice isomorphism and an isometry between the spaces
L1(�) and Ea. The identity can also be seen as an isometric lattice iso-
morphism between L1

w(�) and E, since E satisfies the conditions of The-
orems ?? and 4.3 of this work.

Notice that the same analysis that we have done for E can be done for a
space G :=

∑
lp L

1(mn), 1 ≤ p <∞, and in this case the function �[0,+∞) does
not belong to G. However, it is order continuous and L1(�) = L1

w(�) so there
is a representation of G using a vector measure on a �–algebra, but it does
not identify functions directly. Notice also that the approach in 2) gives
the same structure result if we consider a non countable sum

∑
lp(I) L

1(�i),
1 ≤ p ≤ ∞, for a family {�i : i ∈ I} of probability spaces. In this case, the
approach in 1) cannot be done.



Chapter 3

The influence of the vector
measure in the lattice structure
of the spaces L1w(�)L1w(�)L1w(�)

3.1 Order continuity type properties.

In this section we introduce new requirements for the measure � and we
analyze the consequences on the spaces of weakly integrable functions with
respect to �.

We start first with a series of results on order continuity and related
topics.

Definition 3.1 We say that a vector measure � is locally �–finite with re-
spect to a �–ring ℛ (locally �-finite for short) if given a set B ∈ ℛloc with
∥�∥(B) < ∞, B can be written as B =

(
∪n≥1 An

)
∪ N , with An ∈ ℛ and

N ∈ ℛloc a �–null set.

If � es �–finite, then is clear that it is locally �–finite. However, there
are vector measures that are locally �–finite that are not �–finite. The
following example shows this.

19
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Example 3.2 Let Γ := [0,∞) and consider the �-ringℛ := {A ⊂ Γ : A finite}.
We construct three examples of vector measures taking values in spaces with
completely different topological and lattice properties by using the partition
of [0,∞) given by the intervals [n− 1, n), n ∈ ℕ.

(1) Let {en : n ∈ ℕ} be the canonical basis of c0. Let us define the set
function � : ℛ → c0 by �(A) :=

∑
n≥1

card(An)
2n

en, A ∈ ℛ with A = ∪n≥1An,
where An := A∩ [n−1, n). The function � is a vector measure onℛ, and a set
N ∈ ℛloc is �-null if and only if �(A) = 0,∀A ∈ ℛ ∩ 2N , and this happens if
and only if N = ∅. Let us show that � is locally �-finite with respect to ℛ. If
B ∈ ℛloc is finite or countable, the conditions in the definition for the sets are
clearly fulfilled. Consider an uncountable set B ∈ ℛloc. It is enough to see
that ∥�∥(B) = +∞. Since B is uncountable, there is an interval [n0 − 1, n0)

such that card
(
B ∩ [n0 − 1, n0)

)
=∞. Since the semivariation is a monotone

function, we prove that ∥�∥(B ∩ [n0 − 1, n0)) = ∞. Equivalently, it can be
seen that sup{∥�(A)∥c0 : A ∈ ℛ ∩ 2B∩[n0−1,n0)} = ∞. Consider a finite set
A ⊂ B ∩ [n0 − 1, n0) such that card(A) = n; it holds that ∥�(A)∥c0 = card(A)

2n0
=

n
2n0
→ ∞ when n → ∞, and so sup{∥�(A)∥c0 : A ∈ ℛ ∩ 2B∩[n0−1,n0)} = ∞.

Consequently, � is locally �-finite with respect to ℛ. However, it is not �-
finite since [0,+∞) cannot be written as a countable union of finite sets.

(2) Consider now � : ℛ → l1(Γ) defined by �(A) :=
∑

m≥1 am�{
m} where
A ∈ ℛ with A = {
1, 
2, . . . , 
m} and am := 1/2n if 
m ∈ [n − 1, n). It is easy
to see that � is a vector measure on ℛ, and as in the example above a set
N ∈ ℛloc is �-null if and only if N = ∅.

The measure � is locally �-finite with respect to ℛ, but it is not �-finite.
As in (1), to see that it is enough to prove that if B ∈ ℛloc is uncountable then
∥�∥(B) = ∞. Take such a set B and an interval [n0 − 1, n0) satisfying that
card

(
B ∩ [n0 − 1, n0)

)
= ∞. For every finite set A ⊂ B ∩ [n0 − 1, n0) we have

that ∥�(A)∥l1(Γ) =
∑


∈Γ ∣�(A)(
)∣ = card(A)
2n0

→∞ when the size of A increases,
and so ∥�∥(B) =∞. Therefore � is locally �-finite with respect to ℛ, but not
�-finite.

(3) Let 1 ≤ p < ∞. Consider the space lp(Γ) and the family of Lebesgue
measure spaces that are considered to be disjoint ([0, 1],ℬ, dt)i, i ∈ Γ. Take
the sequence (rk)k of the Rademacher functions in [0, 1] and consider the �-
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ring

ℛ = {A = ∪i∈Γ0Ai : Ai ∈ ℬ eachAi considered in ([0, 1],ℬ, dt)i, Γ0 finite}

and the vector measure � : ℛ →
⊕

lp(Γ) c0 given by

�(A) = �(
∪
i∈Γ0

Ai) :=
∑
i∈Γ0

�{i}(

∫
Ai

rk(t) dt)k, Γ0 ∈ ℛ.

This vector measure is well defined as a consequence of the Riemann-
Lebesgue Lemma, taking into account that the Rademacher functions define
an orthonormal system in L2[0, 1]. Clearly, it is not �-finite. However, using
the same arguments that in the examples above, it can be proved that it is
locally �-finite.

In our first result we characterize the local �–finiteness. We start with
a lemma.

Lemma 3.3 Let ℛ be a �–ring of subsets of Ω, X a Banach space and � :

ℛ → X a locally �–finite vector measure with respect toℛ. Given ' ∈ S(ℛloc)

there is ('j)j≥1 ⊂ S(ℛ) such that �j → �, �–a.e.

Proof. Let ' =
∑N

i=1 ai�Bi with ai ∈ ℝ ∖ {0} and Ai ∈ ℛloc for 1 ≤ i ≤ N .
Since for all 1 ≤ i ≤ N we have that ∥�∥(Bi) = ∥�Bi∥� ≤ ∣ai∣−1∥�∥� < ∞,
then by the local �–finiteness of � with respect toℛ, we can find a sequence
(Ain) ⊂ ℛ, that we can assume to be pairwise disjoint, and a �–null set
N i ∈ ℛloc, such that Bi =

(
∪n≥1 A

i
n

)
∪N i. Hence

' =
N∑
i=1

ai�Bi =
N∑
i=1

ai�(∪n≥1Ain

)
∪N i

=
N∑
i=1

ai�∪n≥1Ain
,

that can be written, just by reordering the sets, as

' =
+∞∑
n=1

bn�An = lim
j→+∞

j∑
n=1

bn�An , �–a.e.

□
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Theorem 3.4 Let � : ℛ → X be a vector measure on a �–ring of subsets
of an abstract space Ω and with values in a Banach space X. The vector
measure � is locally �–finite if and only if for every 0 ≤ f ∈ L1

w(�), there
exists a sequence ('n) ⊂ S(ℛ) such that 0 ≤ 'n ↑ f �–a.e. Consequently
L1(�) is super order dense in L1

w(�).

Proof. Suppose that � is locally �–finite and let 0 ≤ f ∈ L1
w(�). There exists

a sequence ( n) ⊂ S(ℛloc) such that 0 ≤  n ↑ f �–a.e. Then, there exists a
�–null set Z such that  n(!)→ f(!) for each ! ∈ Ω∖Z.

Fix n. We can write  n =
∑kn

j=1 �
n
j �Anj with (Anj )j pairwise disjoint and

�nj > 0. Then, taking �n = min{�n1 , ..., �nkn}, it follows

∥�∥(Supp  n) = ∥�Supp  n∥� ≤
1

�n
∥ n∥� ≤

1

�n
∥f∥� <∞.

So, there exist (Anj )j ⊂ ℛ and a �–null set Zn such that Supp  n =
(
∪j Anj

)
∪

Zn.
Define 'n =  n�∪ni=1∪nj=1A

i
j
∈ S(ℛ). Of course, 0 ≤ 'n ↑ and 'n ≤ f . Let

us see that 'n ↑ f �–a.e. If ! /∈ Supp f , then 'n(!) = 0 → f(!) = 0. Let
! ∈ Supp f∖

(
∪n Zn ∪ Z

)
and " > 0. Since ! /∈ Z, there exists n! such that

∣f(!)−  n(!)∣ < " for all n ≥ n!. (3.1.1)

In other hand, since ! ∈ Supp f = ∪kSupp  k, there exists k! such that
! ∈ Supp  k! =

(
∪j Ak!j

)
∪ Zk! . As ! /∈ Zk! , there exists jk! such that

! ∈ Ak!jk! ⊂ ∪
n
i=1 ∪nj=1 A

i
j for all n ≥ k!, jk! . From this and (3.1.2), for all

n ≥ ñ! = max{n!, k!, jk!}, it follows that

∣f(!)− 'n(!)∣ = ∣f(!)−  n(!)∣ < ",

that is, 0 ≤ 'n ↑ f �–a.e.
Conversely, suppose that for every 0 ≤ f ∈ L1

w(�), there exists a se-
quence ('n) ⊂ S(ℛ) such that 0 ≤ 'n ↑ f �–a.e. Let B ∈ ℛloc such that
∥B∥ < ∞. Then, 0 ≤ �B ∈ L1

w(�). So, there exists a sequence ('n) ⊂ S(ℛ)

such that 0 ≤ 'n ↑ �B �–a.e., that is, there exists a �–null set Z such that
'n(!) ↑ �B(!) for each ! ∈ Ω∖Z. Then, B =

(
∪n Supp 'n

)
∪
(
B ∩ Z), where

Supp 'n ∈ ℛ and B∩Z is �–null. Finally, since S(ℛ) ⊆ L1
w(�), L1(�) is super

order dense in L1
w(�). □
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Let us show an example of a space L1(�) of a locally �–finite vector mea-
sure �. Consider the vector measure given in Example 3.2(3). It is already
known that the space L1(�) of the vector measure � : ℬ → c0 given by
�(A) := (

∫
Ai
rk(t) dt)k ∈ c0 coincides with L1[0, 1] (see the example after The-

orem 3 in [6]). An straightforward computation using this result shows
that L1(�) =

⊕
lp(Γ) L

1[0, 1].

As we said in Preliminaries, for a vector measure � defined on a �–ring
the space L1(�) can be written as an unconditional direct sum of spaces
L1(�A) where �A is the restriction of the measure � to the �–algebra A ∩ ℛ
and A ∈ ℛ. This decomposition allows to see each function of L1(�) as a
limit —in the norm and also in order— of the sequence of partial sums
(
∑n

i=1 f�Ai)n≥1, with Ai ∈ ℛ. As we shall show in what follows, a similar
decomposition —but in order only— can be given for the space L1

w(�) when
� is a locally �–finite vector measure with respect to ℛ.

Theorem 3.5 Letℛ be a �–ring of subsets of a set Ω and X a Banach space.
If � : ℛ → X is a locally �–finite vector measure with respect to ℛ then the
space L1

w(�) can then be written as a �–a.e. pointwise direct sum of spaces
L1
w(�A), where for each A ∈ ℛ, �A is the vector measure � restricted to a �–

algebra as A ∩ ℛ. Concretely, each function f ∈ L1
w(�) can be written as a

sum —in order— of a countable set of projections over these spaces L1
w(�A).

The converse is also true.

Proof. Let {A� : � ∈ Δ} be the maximal family of non �–null sets in ℛ such
that A�∩A� is �–null for � ∕= � and such that for each B ∈ ℛ, B = ∪�∈I(B∩
A�)∪N with I countable and N ∈ ℛ a �–null set explained in section 2. For
each � ∈ Δ, consider again the �–algebra of subsets of A�, ℛ� = A� ∩ ℛ =

{B ∈ ℛ : B ⊂ A�}, let �� : ℛ� → X be the restriction of � to the �–algebra
ℛ� and consider the linear (bounded) projections P� : L1

w(�) → L1
w(�) given

by P�(f) = f�A�. Recall that the sequence (P�(L1
w(�)))�∈Δ is a family of

disjoint ideals of L1
w(�). Let f ∈ L1

w(�), we have to see that f =
∑

�∈I f�A�
�–a.e. for a countable subset I ⊂ Δ. Since by hypothesis � is locally �–finite
with respect to ℛ, by Theorem 3.4, there is a sequence ('n)n ⊂ S(ℛ) that
converges to f �–a.e. On the other hand, for each simple function ' ∈ S(ℛ),
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let us write ' =
∑k

j=1 aj�Bj such that (Bj)j ⊂ ℛ are disjoint; we have that
' =

∑k
j=1 aj�∪�∈Ij (Bj∩A�) �–a.e., being Ij ⊂ Δ countable. Thus if we take

I = ∪kj=1Ij, then '�A� = 0 �–a.e. for all � ∕∈ I. In particular, for each n,
consider In ⊂ Δ the countable set such that 'n�A� = 0 �–a.e. for all � ∕∈ In.
Then, taking into account that the support of f is contained in the union of
the supports of the functions 'n, we have that f�A� = 0 �–a.e. for all � ∕∈ I,
where I = ∪n≥1In is countable and consequently, since 'n�A� ↑ f�A�, we
obtain f =

∑
�∈I f�A� �–a.e.

For the converse, let B ∈ ℛloc with ∥�∥(B) < ∞. We have to prove
that B = (∪n≥1An)∪N , with An ∈ ℛ and N ∈ ℛloc �–null. Since ∥�B∥L1

w(�) =

∥�∥(B) <∞, the characteristic function �B ∈ L1
w(�), and then by hypothesis

it can be written as �B =
∑

�∈I �B�A� �–a.e., where I is countable. Then,
�B =

∑
�∈I �B∩A� = �∪�∈I(B∩A�) �–a.e. and B = ∪�∈I(B ∩ A�) ∪ N where

B ∩ A� ∈ ℛ (by definition of ℛloc) and N ∈ ℛloc is �–null. □

In the case of spaces of integrable functions with respect to a vector
measure defined on a �–algebra, it is well known that (L1

w(�))a = L1(�) (see
[7, p.192] or [18, p.144]). However it is an open question if it is the case
when we work with vector measures defined on �–rings. We present here
an equivalent condition.

Definition 3.6 We define a vector measure � to be weakly locally �-finite
whit respect to ℛ (weakly locally �-finite for short) if for every B ∈ ℛloc with
∥�∥(B) < ∞ and satisfying that ∥�∥(Bn) → 0 whenever (Bn) ⊂ B and Bn ↓
with ∩nBn being �-null, it follows that there exist (An) ⊂ ℛ and a �-null set
N such that B =

(
∪n An

)
∪N .

Theorem 3.7 The vector measure � is weakly locally �–finite if and only if(
L1
w(�)

)
a

= L1(�).

Proof. Suppose that � is weakly locally �–finite. Note that L1(�) ⊂
(
L1
w(�)

)
a
.

Let us prove the converse containment. Let 0 ≤ f ∈
(
L1
w(�)

)
a

and ( n) ⊂
S(ℛloc) such that 0 ≤  n ↑ f �–a.e. Then, there exists a �–null set Z such
that  n(!)→ f(!) for each ! ∈ Ω∖Z.
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Fix n. We can write  n =
∑kn

j=1 �
n
j �Anj with (Anj )j pairwise disjoint and

�nj > 0. Then, taking �n = min{�n1 , ..., �nkn}, it follows

∥�∥(Supp  n) = ∥�Supp  n∥� ≤
1

�n
∥ n∥� ≤

1

�n
∥f∥� <∞.

Moreover, given (Bk) ⊂ Supp  n such that Bk ↓ with ∩kBk being �–null,
we have that �Bk ↓ 0 �–a.e. and �Bk ≤ �Supp  n ≤ 1

�n
f ∈

(
L1
w(�)

)
a
. So,

∥�∥(Bk) = ∥�Bk∥� → 0. Therefore, there exist (Anj )j ⊂ ℛ and a �–null set Zn

such that Supp  n =
(
∪j Anj

)
∪ Zn.

Define 'n =  n�∪ni=1∪nj=1A
i
j
∈ S(ℛ). Of course, 0 ≤ 'n ↑ and 'n ≤ f . Let

us see that 'n ↑ f �–a.e. If ! /∈ Supp f , then 'n(!) = 0 → f(!) = 0. Let
! ∈ Supp f∖

(
∪n Zn ∪ Z

)
and " > 0. Since ! /∈ Z, there exists n! such that

∣f(!)−  n(!)∣ < " for all n ≥ n!. (3.1.2)

In other hand, since ! ∈ Supp f = ∪kSupp  k, there exists k! such that
! ∈ Supp  k! =

(
∪j Ak!j

)
∪ Zk! . As ! /∈ Zk! , there exists jk! such that

! ∈ Ak!jk! ⊂ ∪
n
i=1 ∪nj=1 A

i
j for all n ≥ k!, jk! . From this and (3.1.2), for all

n ≥ ñ! = max{n!, k!, jk!}, it follows that

∣f(!)− 'n(!)∣ = ∣f(!)−  n(!)∣ < ".

Then, f ≥ f −'n ↓ 0 �–a.e. This implies that ∥f −'n∥� → 0 as f ∈
(
L1
w(�)

)
a
.

Since ('n) ⊂ S(ℛ) and S(ℛ) is dense in L1(�), we have that f ∈ L1(�). The
same holds for a general function f by taking positive and negative parts.

Suppose now that
(
L1
w(�)

)
a

= L1(�). Let B ∈ ℛloc with ∥�∥(B) < ∞ and
satisfying that ∥�∥(Bn) → 0 whenever (Bn) ⊂ B and Bn ↓ with ∩nBn being
�-null. Let us see that �B ∈

(
L1
w(�)

)
a
. Note that �B ∈ L1

w(�) as ∥�∥(B) <∞.
Let fn ∈ L1

w(�) be such that �B ≥ fn ↓ 0 �–a.e. Then,∪
N≥1

∩
k≥1

∪
n≥k

{
! ∈ Ω : ∣fn(!)∣ > 1

N

}
=
∪
N≥1

∩
k≥1

{
! ∈ Ω : ∣fk(!)∣ > 1

N

}
is a �–null set. In particular, for each fixed N ≥ 1, the set ∩k≥1

{
! ∈ Ω :

∣fk(!)∣ > 1
N

}
is �–null. Since,

{
! ∈ Ω : ∣fk(!)∣ > 1

N

}
⊂ Supp fn ⊂ B and{

! ∈ Ω : ∣fk(!)∣ > 1
N

}
↓ with ∩k≥1

{
! ∈ Ω : ∣fk(!)∣ > 1

N

}
being �-null, then

∥�∥(
{
! ∈ Ω : ∣fk(!)∣ > 1

N

}
)→ 0.
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Given " > 0, take N" such that N" ≥ 2∥�∥(B)
"

. Noting that fn = fn�B ≤
�B ≤ 1, we have that

∥fn∥� ≤
∥∥fn�{!∈Ω: ∣fn(!)∣≤ 1

N"
}
∥∥
�

+
∥∥fn�{!∈Ω: ∣fn(!)∣> 1

N"
}
∥∥
�

≤ 1

N"

∥�∥(B) + ∥�∥
({
! ∈ Ω : ∣fn(!)∣ > 1

N"

})
≤ "

2
+ ∥�∥

({
! ∈ Ω : ∣fn(!)∣ > 1

N"

})
≤ "

for all large enough n.
So, �B ∈

(
L1
w(�)

)
a

= L1(�). Then, there exists ('n) ⊂ S(ℛ) such that
'n → �B in norm and �–a.e., that is, there exists a �–null set Z such that
'n(!)→ �B(!) for each ! ∈ Ω∖Z. Hence, B = Supp �B ⊂

(
∪n Supp 'n

)
∪ Z,

and soB =
(
∪nB∩Supp 'n

)
∪(B∩Z), whereB∩Supp 'n ∈ ℛ (as Supp 'n ∈ ℛ)

and B ∩ Z is �–null. Therefore � is weakly locally �–finite. □

The following example shows that locally �–finiteness and weakly lo-
cally �–finiteness are not equivalent conditions on �.

Example 3.8 Let Γ := (0,+∞), the �–ring ℛ := {A ⊂ Γ : A is finite} and
� : ℛ → c0(Γ) defined by �(A) :=

∑

∈A

1


�{
} =

∑n
i=1

1

i
�
i when A ∈ ℛ with

A = {
1, 
2, . . . , 
n} ⊆ (0,+∞). Clearly, � is a vector measure, but it is not
locally �–finite since we can find B ∈ ℛloc = 2Γ with ∥�∥(B) < +∞ such that
B ∕=

(
∪n≥1 An

)
∪ N , for every An ∈ ℛ, n ∈ ℕ and every �–null set N ∈ ℛloc.

Indeed, let B = [2,+∞) ∈ ℛloc. Since sup
∈Γ ∣�(A)(
)∣ = sup1≤i≤m{ 1

 i
, 0} ≤ 1

2
,

when A = {
1, 
2, . . . , 
m} ∈ ℛ ∩ 2[2,+∞), then

1

2
∥�∥(B) ≤ sup{∥�(A)∥c0(Γ) : A ∈ ℛ ∩ 2B} ≤ 1

2
,

therefore we get that ∥�∥(B) < +∞. On the other hand, as in Example 3.2 a
set N ∈ ℛloc is �–null if and only N = ∅. Since B cannot be expressed as a
countable union of finite sets, � is not locally �–finite.

In order to see that (L1
w(�))a = L1(�) let us first show that L1

w(�) = 
l∞(Γ)

and L1(�) = 
c0(Γ):
To see that L1

w(�) = 
l∞(Γ), fix x∗ = (�
)
∈Γ ∈ (c0(Γ))∗ = l1(Γ). Clearly for
all A ∈ ℛ the scalar measure (x∗�)(A) = x∗(�(A)) =

∑

∈A �


1



and for all
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B ∈ ℛloc its variation ∣x∗�∣(B) =
∑


∈B ∣�
∣
1


. Hence∫

B

∣f ∣ d∣x∗�∣ =
∑

∈B

∣f(
)∣∣�
∣
1



,

for all B ∈ ℛloc, in particular for B = Γ, and then f ∈ L1(∣x∗�∣) if and only
if
∑


∈Γ ∣f(
)∣∣�
∣ 1
 <∞, and so f ∈ L1
w(�) if and only if f 1



∈ l∞(Γ).

Let us show now that L1(�) = 
c0(Γ). Indeed, given ' ∈ S(ℛ) and B ∈
ℛloc it is easy to see that

∫
B
'd� = (' 1



�B)
∈Γ. Then, by [8, Proposition 2.3],

f ∈ L1(�) if it is a limit �–a.e. of a sequence ('n)n≥1 in S(ℛ) such that∫
B
'n d� converges in c0(Γ), with B ∈ ℛloc. Moreover, in this case∫

B

f d� = lim
n→∞

∫
B

'n d� = lim
n→∞

('n
1



�B) = ( lim

n→∞
'n)

1



�B = f

1



�B.

Taking in particularB = Γ we obtain that f ∈ L1(�) if and only if f 1


∈ c0(Γ).

Moreover, if f ∈ L1(�), since � is a positive measure, [18, Lemma 3.13] gives

∥f∥� = ∥
∫

Γ

∣f ∣ d�∥c0(Γ) =
∥∥∣f ∣1




∥∥
c0(Γ)

= ∥f 1



∥c0(Γ).

Finally, let us show that (L1
w(�))a = L1(�). To see this, let f ∈ 
l∞(Γ) ∖


c0(Γ), then there is an " > 0 such that H = {
 ∈ Γ : ∣
−1f(
)∣ ≥ "} is not
finite. Let {
1, 
2, . . .} ⊂ H; we have that ∣
−1

i f(
i)∣ ≥ " for all i ∈ ℕ. If we
define the sequence (fn)n≥1 in 
l∞(Γ) given by

fn(
) =

⎧⎨⎩"
, if 
 = 
i, i ≥ n

0, in other case

it is clear that fn ↓ 0 and ∣
−1
i f(
i)∣ ≥ " = (
−1

i )
i" ≥ 
−1
i fn(
i) for all i ≥

n, from which ∣f(
)∣ ≥ fn(
) for all n ∈ ℕ and 
 ∈ Γ. But ∥fn∥
l∞(Γ) =

∥
−1fn∥l∞(Γ) = sup
∈Γ ∣
−1fn(
)∣ = " for all n ∈ ℕ. Therefore ∥fn∥
l∞(Γ) ↛ 0

and f ∕∈ (
l∞(Γ))a. Consequently, (
l∞(Γ))a ⊆ 
c0(Γ) and the equality is
obtained, since the opposite inclusion always holds.

3.2 Fatou type properties of L1
w(�).

In the case of �–algebras it is known that the “�–Fatou completion” of
L1(�) is L1

w(�) (see the comments just before Proposition 2.4 in [7, p.191]).
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This can be easily extended to the case of �–finite vector measures on �–
rings. However, this property does not hold any more under just weak
�–finiteness assumptions on �. In the following example we show a vector
measure that is locally �–finite and there is a �–Fatou ideal that strictly
contains L1(�) and is strictly contained in L1

w(�).

Example 3.9 Let Γ be an uncountable index set, and consider as in Ex-
ample 3.2 the �–ring ℛ of the finite subsets of Γ. Let � : ℛ → l∞(Γ) be
the vector measure given by �(A) :=

∑

∈A0

�{
}. The corresponding spaces
of integrable functions can be easily calculated and are L1(�) = c0(Γ) and
L1
w(�) = l∞(Γ) (see [8, Example 2.2]). Let us write l∞0 (Γ) for the Banach lat-

tice of the bounded functions ℎ : Γ → ℝ of countable support. It has the
�–Fatou property. However, L1(�) ⫋ l∞0 (Γ) ⫋ L1

w(�).

As we have said in Preliminaries, it is also known that the space L1
w(�)

of weakly integrable functions with respect to a vector measure on a �–
ring has the �–Fatou property. When the �–ring is actually a �–algebra,
the space L1

w(�) has also the Fatou property. Indeed, the space L1
w(�) is a

Banach function space on a finite positive measure space (see Section 2)
and since it has the �–Fatou property, by [19, Theorem 112.3], L1

w(�) has
the weak Fatou property. Now, [7, Proposition 2.1] yields that L1

w(�) has
the Fatou property. In the general case, this is an open question. In this
section we provide a partial answer.

Recently, it has been proved that every Banach lattice with the Fatou
property such that its �–order continuous part is order dense in it, is order
isometric to a L1

w(�) space with respect to a vector measure on a �–ring ([9,
Theorem 8]). A further reading allows us to notice that the measure that
is used in the constructive proof of this result satisfy a good decomposition
property that is isolated and treated here. As we show it is in a sense the
key for the Fatou property to be satisfied for the space L1

w(�).

Let us define now a decomposition property for the vector measure that
will be shown to be in a sense equivalent to the fact that L1

w(�) has the
Fatou property. We will show first in Remark 3.10 that it is always possible
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to obtain a disjoint decomposition of Ω using elements of ℛ union a (non
necessarily measurable) �–null set (notice that this notion can be defined
for any subset of Ω in the following way: B ⊂ Ω is �–null if and only if
supA∈ℛ ∥�∥(A) = 0).

Remark 3.10 Consider a �–ring ℛ of subsets of Ω and a vector measure �
on it. Then there is a class of pairwise disjoint sets {Ai : i ∈ I} ⊆ ℛ and
a disjoint �–null subset N ⊆ Ω such that A = ∪i∈IAi ∪ N . To show this we
use Zorn’s Lemma. Consider the family Z of all disjoint classes of subsets
of ℛ. Take the order given by the inclusion of classes. If we consider a chain
{Fj ∈ Z : j ∈ J}, J ⊂ I, then clearly F0 = ∪j∈JFj belongs to Z. Then there
is a maximal element F of Z. Let us show that Ω ∖ ∪A∈FA is a �–null set. If
this is not the case, there is an element A ∈ ℛ such that ∥�∥(A) > 0. But this
implies in particular that there is a set A ∈ ℛ that is disjoint to the elements
of F . This contradicts the maximality of F .

Such kind of decomposition properties for �–rings are already known.
The one that is normally used in the setting of vector measure integration
is due to Brooks and Dinculeanu [4, Theorem 3.1], see also for instance
[8, Theorem 3.6]. However for the following definition we need a maximal
decomposition as the one above.

Definition 3.11 A vector measure � over a �–ring ℛ of subsets of an ab-
stract set Ω is said to be ℛ–decomposable if there exists a maximal decom-
position of Ω as in Remark 3.10 given by (Ω�)�∈Δ in ℛ and N �–null such
that

(1) for every arbitrary family (A�)�∈Δ of elements or ℛ such that A� ⊂ Ω�

for all � ∈ Δ, the union ∪�∈ΔA� is in ℛloc, and

(2) for every arbitrary family of �–null sets (Z�)�∈Δ inℛ such that Z� ⊂ Ω�

for all � ∈ Δ, the union ∪�∈ΔZ� is �–null.
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Example 3.12 It can be easily seen that the property given above depends
on the particular maximal decomposition that we consider, even for the
case of finite measures on �–algebras. Take the Lebesgue measure space
([0, 1],ℒ, �). Obviously, it is ℒ–decomposable; just take the maximal decom-
position given by the single set {[0, 1]}. Notice also that ℒ is a �–algebra and
so ℒloc = ℒ. Consider now the maximal decomposition given by the single
points, i.e. {{
} : 
 ∈ [0, 1]}, and the �–null set N = ∅. Take a non Lebesgue
measurable set A ⊂ [0, 1]. Then A = ∪
∈A{
}, but it is not in ℒloc. So (1)

in Definition 3.11 is not satisfied. Moreover, {{
} : 
 ∈ [0, 1]} is a family of
�–null sets, but �

(
{{
} : 
 ∈ [0, 1]}

)
= �([0, 1]) = 1, that also contradicts (2).

Remark 3.13 All the classical examples of vector measures areℛ-decompo-
sable; consequently the corresponding space L1

w(�) has the Fatou property.
This is the case when the vector measure is actually defined on a �–algebra;
clearly, �–finiteness of � implies that � is ℛ–decomposable. Moreover, dis-
crete vector measures are ℛ–decomposable as well, i.e. if Γ is an abstract
uncountable set, ℛ = {A ⊂ Γ : A is finite }, ℛloc = 2Γ and � : ℛ → X for a
Banach space X.

Theorem 3.14 Let ℛ be a �–ring of subsets of Ω, X a Banach space and
� : ℛ → X an ℛ–decomposable vector measure. Then L1

w(�) has the Fatou
property and L1(�) is an order dense ideal in it.

Proof. For every I ⊂ Δ finite, consider ΩI = ∪�∈IΩ� and the �–algebra
ΣI =

{
∪�∈I A� : A� ∈ Σ� for all � ∈ I

}
of parts of ΩI and Σ� = ℛ∩Ω�. Note

that ΩI ⊂ Ω and ΣI ⊂ ℛ. Denote by �I : ΣI → X the restriction of � to ΣI .
Since �I is a vector measure defined on a �–algebra, L1

w(�I) has the Fatou
property.

For each f ∈ ℳ(ℛloc), denote by f I the function resulting from the re-
striction of f to ΩI . Of course, f I ∈ℳ(ΣI). For every x∗ ∈ X∗, it follows∫

ΩI

∣f I ∣ d∣x∗�I ∣ =
∫

Ω

∣f ∣�ΩI d∣x∗�∣. (3.2.1)
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Indeed, for every A ∈ ΣI we have that ∣x∗�I ∣(A) = ∣x∗�∣(A) and so it is
routine to check that (3.2.1) holds for f ∈ S(ℛloc). For a general f the result
follows by applying the monotone convergence theorem. Then, for every
f ∈ L1

w(�) we have that f�ΩI ∈ L1
w(�) and so f I ∈ L1

w(�I) with ∥f I∥�I =

∥f�ΩI∥� . Note that if Z is a �–null set then Z ∩ ΩI is �I–null.
Consider 0 ≤ f ∈ L1

w(�) and choose ('n)n≥1 ⊂ S(ℛloc) such that 0 ≤ 'n ↑
f . For each n ≥ 1 and I ⊂ Δ finite, we define �(n,I) = 'n�ΩI ∈ S(ℛ). Then
(�(n,I))(n,I) ⊂ L1(�) is an upwards directed system 0 ≤ �(n,I) ↑ f . Moreover
sup(n,I) �(n,I) = f and consequently L1(�) is order dense in L1

w(�). Indeed,
�(n,I)(!) ≤ 'n(!) ≤ f(!), ! ∈ Ω, then �(n,I) ≤ f and so �(n,I) ≤ f �–a.e.
Furthermore, let ℎ ∈ L1

w(�) with �(n,I) ≤ ℎ �–a.e, then ℎ ≥ 0 except on a
�–null set M ∈ ℛloc and for every n ≥ 1 and I ⊂ Δ finite �(n,I) ≤ ℎ̃ := ℎ�Ω∖M

except on a �–null set Z(n,I) in ΩI . In particular, for every n ≥ 1 and � ∈ Δ,
�(n,{�}) ≤ ℎ̃ except on a �–null set Z(n,{�}) in Ω�. Note that ∪�∈ΔZ(n,{�}) ∈ ℛloc

is �–null, so Z := ∪n≥1∪�∈ΔZ(n,{�}) ∈ ℛloc is �–null. For every ! ∈ Ω ∖Z ∪N ,
there is just one � ∈ Δ : ! ∈ Ω� and then �(n,{�})(!) = 'n(!) ≤ ℎ̃(!) for all
n ≥ 1, so f(!) ≤ ℎ̃(!). Hence, f ≤ ℎ̃ �–a.e. and also f ≤ ℎ �–a.e.

Let (f� )� ⊂ L1
w(�) be an upwards directed system 0 ≤ f� ↑ �–a.e. such

that sup� ∥f�∥� < ∞. Then, (f I� )� ⊂ L1
w(�I) is an upwards directed sys-

tem 0 ≤ f I� ↑ �I–a.e. and sup� ∥f I� ∥�I = sup� ∥f��ΩI∥� ≤ sup� ∥f�∥� < ∞.
Since L1

w(�I) has the Fatou property, there exists fI = sup� f
I
� in L1

w(�I) and
∥fI∥�I = sup� ∥f I� ∥�I .

Now from each I = {�} with � ∈ Δ we construct the function f : Ω → ℝ
given by f(!) = f{�}(!), ! ∈ Ω�. Remark that it is well defined as the
family (Ω�)�∈Δ is a disjoint family. Since � is ℛ–decomposable, f−1(B) =

∪�∈Δ(f{�})
−1(B) is in ℛloc for all Borel set B on ℝ and then we have that

f ∈ ℳ(ℛloc). Noting also that in this case ∪�∈ΔZ� is �–null whenever
Z� ⊂ Ω� is ��–null for all � ∈ Δ and so by a similar argument to the one
used above, we have that f = sup� f� . Furthermore, for every I ⊂ Δ finite,
fI = f I �–a.e. Let us see now that f ∈ L1

w(�). Fix x∗ ∈ X∗. For every I ⊂ Δ

finite,

∑
�∈I

∫
Ω�

f d∣x∗�∣ =
∫

Ω

f�ΩI d∣x∗�∣ =
∫

ΩI

fI d∣x∗�I ∣ ≤ ∥fI∥�I ≤ sup
�
∥f�∥� <∞.
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Then
∑

�∈Δ

∫
Ω�
f d∣x∗��∣ converges. Hence, there exists a countable set J ⊂

Δ such that
∫

Ω�
f d∣x∗�∣ = 0 for all � ∈ Δ∖J and so f =

∑
�∈J f�Ω� ∣x∗�∣–a.e.

By the monotone convergence theorem f ∈ L1(∣x∗�∣) and∫
Ω

f d∣x∗�∣ =
∑
�∈Δ

∫
Ω�

f d∣x∗�∣ for all x∗ ∈ E∗.

Therefore, f ∈ L1
w(�) and ∥f∥� ≤ sup� ∥f�∥� . The equality follows, as ∥f�∥� ≤

∥f∥� for all � . Consequently, L1
w(�) has the Fatou property. □

In the converse direction, it is also possible to give a partial answer. We
need first the following result with no further conditions on the measure.

Proposition 3.15 Let ℛ be a �–ring of subsets of Ω, X a Banach space and
� a vector measure. If the space L1

w(�) has the Fatou property and L1(�) is
an order dense ideal in it, then (L1

w(�))a = L1(�).

Proof. Clearly L1(�) ⊂ (L1
w(�))a = (L1

w(�))an = {f ∈ L1
w(�) : ∣f ∣ > f� ↓ 0 ⇒

∥f�∥� ↓ 0} as L1
w(�) has the Fatou property. Let 0 ≤ f ∈ (L1

w(�))an. By the
order density of L1(�) there exists an upwards directed system 0 ≤ f� ↑ f
�-a.e. so such that f ≥ f − f� ↓ 0 �-a.e. Then ∥f − f�∥� ↓ 0. Hence, for every
n ≥ 1, there exists an index �n such that ∥f − f�n∥� < 1

2n
and completeness

of L1(�) yields that f�n converges to f in norm in L1(�). □

Under the requirements of the preceding proposition, there exists a �–
ring ℛ̃ of parts of an abstract set Ω̃ and a ℛ̃–decomposable vector measure
�̃ : ℛ̃ → L1(�) such that the operator integration I�̃ is an order isometry
between L1(�̃) and L1(�). Moreover, I�̃ can be extended to L1

w(�̃) and this
extension is an order isometry from L1

w(�̃) to L1
w(�) (see [9, Theorem 4 and

Theorem 8]). Remark also that if � is ℛ–decomposable, the conditions in
proposition above hold, and so (L1

w(�))a = L1(�) and � is weakly locally
�–finite.

Theorem 3.14 and the remarks above give in such a way a characteriza-
tion of the Fatou property of L1

w(�).

Corollary 3.16 Letℛ be a �–ring of subsets of Ω, X a Banach space and � :

ℛ → X a vector measure. If � is ℛ–decomposable, then L1
w(�) has the Fatou
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property and L1(�) is an order dense ideal in it. In the converse direction,
if the space L1

w(�) has the Fatou property and L1(�) is an order dense ideal
in it, then there exists a �–ring ℛ̃ and a ℛ̃–decomposable vector measure
�̃ : ℛ̃ → L1(�) such that L1

w(�) and L1
w(�̃) are order isometric as well as L1(�)

and L1(�̃).

Remark 3.17 Even in the case of L1 spaces on a scalar measure space
(Ω,Σ, �), the corollary above find applications. It allows to prove that the
space L1(�) can always be represented as a L1(�) of an ℛ–decomposable
measure. Actually, consider L1(�) with � : Σ → ℝ a scalar measure. It is
�–order continuous and has the �–Fatou property. By [19, Theorem 113.4 ]
it is then order continuous and has the weak Fatou property. Consequently,
it has the Fatou property. Corollary 3.16 yields that there exists a �–ring ℛ
and an ℛ–decomposable vector measure � : ℛ → L1(�) such that L1(�) and
L1(�) are order isometric, since L1(�) = L1

w(�) is trivially true for a scalar
measure �.

We finish this section introducing the last new requirement on � that we
will need to establish a new representation theorem in the next chapter.

The construction of Brooks and Dinculeanu used in the proof of Theorem
3.5 motivates the following definition.

Definition 3.18 We say that a family {A� ∈ ℛ : � ∈ Δ} of non �–null sets
is a �–local decomposition of ℛ with respect to � if it satisfies that

1) A� ∩ A� is �–null for each � ∕= �, and

2) for each B ∈ ℛ, B = ∪�∈I(B ∩A�)∪N where I is countable and N ∈ ℛ
is �–null.

The existence of a maximal �–local decomposition of ℛ with respect to
� for any vector measure is proved in [4, Theorem 3.1]. Let us show two
more examples of such structures without the maximality requirement.
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Example 3.19 (1) In the example E =
∑

l∞ L
1(mn) that we have explained

in Chapter 2, the class of sets
{

[n, n + 1] : n ∈ ℕ ∪ {0}
}

is obviously
a �–local decomposition of ℛ with respect to the measure � defined in
(2.2.1).

(2) Consider a non countable set of indexes I, a disjoint family of order con-
tinuous Banach function spaces Xi(�i) over probability measure spaces
(Ωi,Σi, �i) and the space E :=

∑
l∞(I) Xi(�i). Take the �–ring ℛ0 :=

{∪ni=1Ai : Ai ∈ Σi, 1 ≤ i ≤ n ∈ ℕ} and the vector measure �0 : ℛ0 → E

given by �0(B) :=
∑n

i=1 �Ai, B = ∪ni=1Ai. Then the class {Ωi : i ∈ I} is a
�–local decomposition of ℛ0 with respect to �0.

Definition 3.20 We shall say that the measure � is locally �–integrable if
there exists a �–local decomposition {A�}�∈Δ of ℛ with respect to � such
that for every f ∈ L1

w(�), supp(f) = ∪n≥1(supp(f)∩A�n) �–a.e., �n ∈ Δ for all
n ∈ ℕ, and f�A�n ∈ L1(�).

Clearly, each measure � that is locally �–integrable is locally �–finite
with respect to ℛ, which implies that in this case (L1

w(�))a = L1(�). How-
ever, these properties are not equivalent. The vector measure given in [8,
Example 2.2] provides an example of a locally �–finite measure that is not
locally �–integrable. Let us explain this. Consider the set [0,∞) and the
vector measure �0 : Pf → l∞([0,∞)) given by �0(A) := �A, where Pf is the
�–ring of finite parts of [0,∞) and A ∈ Pf . It is shown in [8] that in this
case L1

w(�0) = l∞([0,∞)) and L1(�0) = c0([0,∞)). To see that the measure is
locally �–finite, it is enough to notice that for every B ⊂ [0,∞), ∥�0∥(B) = 0

if and only if B is countable. However, �0 cannot be locally �–integrable,
since �[0,∞) ∈ l∞([0,∞)) and its support is not countable.

Regarding the structure of the space of weakly integrable functions with
respect to a locally �–integrable vector measure �, notice that in this case
L1
w(�) can be written as a (pointwise) direct sum of a family of disjoint ide-

als, each of them being order isometric to L1(�A), where each �A is the vector
measure � restricted to a �–algebra as A ∩ ℛ for some A ∈ ℛ. Namely, � is
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locally �–integrable if and only if each 0 ≤ f ∈ L1
w(�), f = supn≥1

∑n
k=1 f�A�k

with f�A�k ∈ L
1(�) for a fixed �–local decomposition of ℛ with respect to �.





Chapter 4

Representation theorems for
Banach lattices with the
���–Fatou property

Let E be a Dedekind �–complete Banach lattice. Then for each 0 ≤ x ∈ E,
the projection Px : E → Px(E) given by Px(e) := supn≥1(nx ∧ e) if e ≥ 0 and
Px(e) = Px(e

+) − Px(e−) for the general case can be defined. On the other
hand, as it was already mentioned in the Introduction, since the �–order
continuous part Ea of E is an ideal of a Dedekind �–complete Banach lat-
tice, Ea is also Dedekind �–complete and Ea is then order continuous (see
for instance [13, Proposition 1.a.8]) and can be then written as an uncondi-
tional sum (non necessarily countable) of a family of pairwise disjoint ideals
{E�}�∈Δ, each of them with a weak unit e� > 0. Concretely, each x ∈ Ea can
be written as x =

∑
�∈Δ x�, x� ∈ E� being this decomposition unique with a

countably family of x� ∕= 0, and this series converges unconditionally ([13,
Proposition 1.a.9]).

If we read the proof of this result carefully, it can be seen that for the or-
der continuous Banach lattice Ea there is a family of pairwise disjoint posi-
tive elements {e�}�∈Δ such that E� = Pe�(Ea) is an ideal (a band in fact) for
which each e� is a weak unit, and for 0 ≤ x ∈ Ea, there is a countably set of
subindexes �, {�1, �2, . . .} such that

∑∞
n=1 Pe�n (x) converges unconditionally

to x. In fact, the family {e�}�∈Δ can always be found and it can be assumed

37
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to be maximal if necessary. This construction motivates the following

Definition 4.1 Let F be a Dedekind �–complete Banach lattice. We say that
a family {e�}�∈Δ of disjoint positive elements of F is a �–local decomposition
of F if it satisfies that for every 0 ≤ x ∈ F there is a countable set of indexes
(�k)k≥1 ⊂ Δ such that supn≥1

∑n
k=1 Pe�k (x) = x.

Using the representation explained above, each order continuous Ba-
nach lattice E is order isomorphic and isometric to a space of integrable
functions with respect to a vector measure on a �–ring (see the Introduc-
tion). Let us recall again the details that are necessary to establish the
notation that will be used in the rest of the section. Since E is order contin-
uous, it can be written as a direct unconditional sum of ideals {E� : � ∈ Δ}
of E that are order continuous and have weak unit e�. For each E� there
is a set Ω�, a �–algebra Σ� and a vector measure �� : Σ� → E� such that
L1(��) is order isomorphic and isometric to E�. Concretely, each E� is order
isomorphic and isometric to a Banach function space X(��) with respect to
a probability space (Ω�,Σ�, ��) that associates the weak unit e� of the first
space with the weak unit �Ω� of the second one. If we consider the vector
measure A ∈ Σ� 7→ ��(A) = �A ∈ E� —identifying E� with X(��)—, then
the integration map from L1(��) to E� is an order isometry —that is, in fact,
the identity map—.

If we take now Ω = ∪�∈Δ

(
{�} × Ω�

)
and the �–ring ℛ of parts of Ω

consisting of sets ∪�∈Δ({�} × A�) satisfying that A� ∈ Σ� for all � ∈ Δ and
there exists a finite set I ⊂ Δ such that A� is ��-null for all � ∈ Δ∖I, the
set function � : ℛ → E defined by

�
(
∪�∈Δ ({�} × A�)

)
=
∑
�∈Δ

��(A�).

A = ∪i∈IAi ∈ ℛ 7→ �(A) =
∑
i∈I

�i(Ai) ∈ E

is a vector measure and the operator integral is a bijection that preserves
the order and the norm between the spaces L1(�) and E. Note that for every
� ∈ Δ, I� carries �{�}×Ω� in e�.
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Theorem 4.2 Let E be a �–Fatou Banach lattice with a �–local decompo-
sition of E, {e�}�∈Δ, such that {Pe�(E) : � ∈ Δ} ⊆ Ea. Then there is a
vector measure � defined on a �–ring with values on E+

a such that there ex-
ists and order isometry T from E into a sublattice, T (E), of L1

w(�). Moreover
T (Pe�(e)) = P�{�}×Ω�

(T (e)), for all � ∈ Δ and e ∈ E+.

Proof. Since a �–Fatou Banach lattice is in particular Dedekind �–complete
then the existence of a �–local decomposition for E makes sense. Since Ea
is an order continuous Banach lattice there is a vector measure defined
on a �–ring, ℛ, and with values in E+

a such that Ea and L1(�) are order
isometric. Let us call T : Ea → L1(�) to this order isometry.

Let us extend T to E+. In order to do that let e ∈ E+ and define en =∑n
k=1 Pe�k (e). Recall that, by the comments just above, this decomposition

is unique. By hypothesis

e = sup
n≥1

en = sup
n≥1

n∑
k=1

Pe�k (e)

with (en)n ⊂ Ea. Let us define

T (e) := sup
n≥1

T (en).

T is well defined. Indeed, since (en)n ⊂ Ea, en ↑ supn en = e and T is
an order isomorphism in Ea then T (en) ↑. On the other hand T is also an
isometry on Ea so

sup
n≥1
∥T (en)∥� = sup

n≥1
∥en∥ ≤ ∥e∥.

Hence, by the �–Fatou property of L1
w(�), there exists supn≥1 T (en) ∈ L1

w(�)

and ∥ supn≥1 T (en)∥� = supn≥1 ∥T (en)∥� .
Clearly, T is positive in E+ since it is so in Ea.
T is an isometry in E+ since E is �–Fatou and hence

∥T (e)∥� = ∥ sup
n≥1

T (en)∥� = sup
n≥1
∥T (en)∥� = sup

n≥1
∥en∥ = ∥e∥.

A direct computation shows that T is linear in E+.
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Moreover, since T : E+ → L1
w(�)+ is additive, there is a unique positive

and linear map T : E → L1
w(�) that extends this operator. Note that in fact

for e ∈ E then e = e+ − e− and T (e) := T (e+)− T (e−).
Let us show that T is a lattice homomorphism. By using [17, Lemma

1.3.11], to see this, it is enough to see that T (e+) ∧ T (e−) = 0 for all e ∈ E.
Let e, ẽ ∈ E+ such that e ∧ ẽ = 0 and (en)n≥1 ⊂ Ea y (ẽm)m≥1 ⊂ Ea sequences
such that e = supn≥1 en and ẽ = supm≥1 ẽm. Since e ∧ ẽ = 0, we have that
en ∧ ẽm = 0, for all n,m ≥ 1. Hence, since T is a lattice homomorphism, we
obtain that,

0 = T (0) = T (en ∧ ẽm) = T (en) ∧ T (ẽm),

in Ea, and therefore

T (e) ∧ T (ẽ) =
(

sup
n≥1

T (en)
)
∧
(

sup
m
T (ẽm)

)
= sup

n≥1
sup
m≥1

(
T (en) ∧ T (ẽm)

)
= 0.

Since e+ ∧ e− = 0 for all ∀e ∈ E the result holds for the general case.
Finally T : E → T (E) is an isometric lattice isomorphism. Indeed, in

this setting, by [13, Theorem 1.17], we have that ∣T (e)∣ = T (∣e∣) for all e ∈ E
and then T is an isometry in E, since for all e ∈ E,

∥T (e)∥� = ∥ ∣T (e)∣ ∥� = ∥T (∣e∣)∥� = ∥ ∣e∣ ∥ = ∥e∥,

and so we obtain that T is injective and bicontinuous, so T : E → T (E) is
an isometric lattice isomorphism since the inverse map is also positive (see
for instance [13, page 2]).

It remains to prove that T (Pe�(e)) = P�Ω�
(T (e)), for all � ∈ Δ and e ∈ E+.

Let e ∈ E+, (�k)k≥1 the corresponding countable family of indexes given
by the �–local decomposition. First notice that if � is not in (�k)k≥1 the
result holds trivially by the construction of T . So fix k ∈ ℕ. By definition
Pe�k (e) = supm≥1(me�k ∧ e) ∈ Ea. Since me�k ∧ e ↑ supm≥1(me�k ∧ e) = Pe�k (e)

in Ea and this space is order continuous, (me�k ∧ e)m≥1 converges in norm
in Ea and the limit is supm≥1(me�k ∧ e). Then, by the continuity of T in Ea,

T (Pe�k (e)) = T
(

sup
m≥1

(me�k ∧ e)
)

= T
(

lim
m→∞

(me�k ∧ e)
)

= lim
m
T (me�k ∧ e).

On the other hand, each increasing sequence in a Banach lattice that con-
verges in the norm converges also in the order (see [19, Theorem 100.4])
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therefore
lim
m→∞

T (me�k ∧ e) = sup
m≥1

(
T (me�k) ∧ T (e)

)
=

sup
m≥1

(
m�{�k}×Ω�k

∧ T (e)
)

= P�{�k}×Ω�k
(T (e)),

as T (e�k) = �{�k}×Ω�k
. □

We shall call a measure � as the one that is given in Theorem 4.2 a
representing measure for E. As it has been shown, each representing mea-
sure � has an associated operator T . In the rest of the section we use this
notation without further explanations.

The following theorem is a representation theorem for Banach lattices
with a �–local decomposition by means of a locally �–integrable represent-
ing measure.

Theorem 4.3 Let E be a �–Fatou Banach lattice with a �–local decompo-
sition of E, {e�}�∈Δ, such that {Pe�(E) : � ∈ Δ} ⊆ Ea. Then the following
assertions are equivalent:

1) There is a measure � representing for E such that E is order isometrically
isomorphic to L1

w(�).

2) There is a measure � representing for E that is locally �–integrable.

Proof. Let us start by showing that 1) implies 2). Suppose that there is a
measure � representing for E such that E is order isometrically isomorphic
to L1

w(�) and let f ∈ L1
w(�)+. Then there exists e ∈ E+ such that T (e) = f . By

the hypothesis, e can be written as e = supn≥1

∑n
k=1 Pe�k (e) so by Theorem

f = T (e) = T
(

sup
n≥1

n∑
k=1

Pe�k (e)
)

= sup
n≥1

T
( n∑
k=1

Pe�k (e)
)

= sup
n≥1

n∑
k=1

T
(
Pe�k (e)

)
= sup

n≥1

n∑
k=1

P�{�k}×Ω�k
(T (e)) = sup

n≥1

n∑
k=1

P�{�k}×Ω�k
(f) = sup

n≥1

n∑
k=1

f�{�k}×Ω�k
,

where f�{�k}×Ω�k
is an element of L1(�) since it is the image of the element

Pe�k (e) belonging to Ea by T . Therefore supp(f) ⊆ ∪∞k=1{�k} × Ω�k . The
extension to all functions is straightforward.



42 Chapter 4. ���–Fatou Banach lattices as L1
wL
1
wL
1
w spaces

Let us prove now that 2) implies 1). Assume that the representing measure
� for E is locally �–integrable and take f ∈ L1

w(�)+. Then it can be written
as f =

∑
k≥1 f�{�k}×Ω�k

= supn≥1

∑n
k=1 f�{�k}×Ω�k

with f�{�k}×Ω�k
∈ L1(�).

Thus f = supn≥1 fn where fn =
∑n

k=1 f�{�k}×Ω�k
and so fn ↑ f with (fn)n≥1 ⊂

L1(�). For each n ≥ 1, consider ẽn = T−1(fn) ∈ Ea, and define e := supn≥1 ẽn.

Note that T−1(fn) ↑ in Ea ⊂ E with

∥T−1(fn)∥ = ∥fn∥� ≤ ∥f∥� <∞,

therefore the �–Fatou property of E gives the existence of supn≥1 ẽn ∈ E

with

∥ sup
n≥1

ẽn∥ = sup
n≥1
∥ẽn∥,

and the definition above makes sense. We have to see now that T (e) = f .
First of all note that, for each k ≥ 1, since ẽk ≤ supk≥1 ẽk = e then fk =

T (ẽk) ≤ T (e) and hence

T (e) ∧ fk = fk, k ≥ 1. (4.0.1)

In order to see that T (e) = f let us show now that ∥T (e) − f∥� = 0. Since
en ≤ e, we obtain that

en = en ∧ e = en ∧ (sup
k≥1

ẽk) = sup
k≥1

(en ∧ ẽk)

and therefore

T (en) = T
(

sup
k≥1

(en∧ẽk)
)

= sup
k≥1

T
(
en∧ẽk

)
= sup

k≥1

(
T (en)∧T (ẽk)

)
= sup

k≥1

(
T (en)∧fk

)
.

On the other hand T (e), T (en), f and fn belong to L1
w(�), so T (e), T (en), f

and fn belong to L1(∣x∗�∣) for all x∗ ∈ X∗. Therefore, applying the Monotone
Convergence Theorem for the scalar measure ∣x∗�∣, the �–Fatou property
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of L1
w(�) and (4.0.1) we obtain∫

Ω

T (e) d∣x∗�∣ =

∫
Ω

(
sup
n≥1

T (en)
)
d∣x∗�∣ = sup

n≥1

∫
Ω

T (en) d∣x∗�∣

= sup
n≥1

∫
Ω

sup
k≥1

(T (en) ∧ fk) d∣x∗�∣ = sup
n≥1

sup
k≥1

∫
Ω

(
T (en) ∧ fk

)
d∣x∗�∣

= sup
k≥1

∫
Ω

sup
n≥1

(T (en) ∧ fk) d∣x∗�∣ = sup
k≥1

∫
Ω

(sup
n≥1

T (en)) ∧ fk d∣x∗�∣

= sup
k≥1

∫
Ω

(
T (e) ∧ fk

)
d∣x∗�∣ = sup

k≥1

∫
Ω

fk d∣x∗�∣

=

∫
Ω

f d∣x∗�∣, x∗ ∈ X∗.

Therefore,
∫

(T (e) − f) d∣x∗�∣ = 0. Taking the supremum on x∗ ∈ BX∗, we
obtain that ∥T (e) − f∥� = 0, and so f = T (e). The result for arbitrary
functions is then direct. □

Remark 4.4 Note that the �–local decomposition for E is necessary in the
theorem, since L1

w(�) always has a �–local decomposition whenever � is lo-
cally �–integrable.
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