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ABSTRACT

This work presents an automated solution for tool changing in industrial robots using
visual servoing and sliding mode control. The robustness of the proposed method is
due to the control law of the visual servoing, which uses the information acquired by
a vision system to close a feedback control loop. Furthermore, sliding mode control is
simultaneously used in a prioritized level to satisfy the constraints typically present
in a robot system: joint range limits, maximum joint speeds and allowed workspace.
Thus, the global control accurately places the tool in the warehouse, but satisfying
the robot constraints. The feasibility and effectiveness of the proposed approach
is substantiated by simulation results for a complex 3D case study. Moreover, real
experimentation with a 6R industrial manipulator is also presented to demonstrate
the applicability of the method for tool changing.
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1. Introduction

The automation of industrial processes has allowed, among other things, to reduce
human exposure to repetitive and/or dangerous tasks, as well as to increase the pro-
ductivity and quality of the manufactured products. This automation has been largely
linked to the technological breakthrough of complex sensors such as vision and com-
plex actuators such as robots. Even so, there are still non-automated processes within
the production lines due to their complexity.

A good example of this situation is the tool change task performed by a robot, which
consists in switching between different tools to complete a particular set of tasks. Re-
gardless of the working environment, nowadays the change is pre-programmed and
several problems may arise: 1) discrepancies in the tool position within the warehouse
along time with respect to the first calibration; 2) misplacement of the tool in the
warehouse, which consequence is the requirement of a tool checkup sub-routine, slow-
ing down the process of tool change. 3) Both the tool and its warehouse must be
placed imperiously in fixed positions within the robot workspace. Recent advances in
tool management for the automation of manufacturing systems have been reported in
several works, such as (Bi & Zhang, 2001), (Pehlivan & Summers, 2008) and (Hashemi
et al., 2014), which highlights the significance of the tool change procedure and the
necessity of improving it.



This paper proposes the use of visual feedback control, also known as Visual Ser-
voing (VS), to provide a robust solution to overcome the aforementioned problems.
VS technique, studied for more than 30 years, refers to the motion control of a robot
system using visual feedback signals from a vision device (Chaumette & Hutchinson,
2008). For this purpose, a computer vision algorithm must be used to obtain the visual
features of the target object present in the scene and observed by the camera. This
information is used to compute the robot control law in order to achieve the desired
robot pose. Basically, VS control laws can be divided into two categories: those that
carry out VS in operational space, namely Position-Based VS (PBVS); and those that
carry out visual servoing in the image space, known as Image-Based VS (IBVS). The
main difference is that PBVS schemes reconstruct the relative pose of the object with
respect to the camera, while IBVS schemes are based on the comparison of visual fea-
tures in the image for current and desired poses. Another aspect to take into account
is the position of the vision sensor within the VS system. There are two main cases
known as eye-in-hand configuration, when the camera moves attached to the robot
end-effector, and eye-to-hand configuration, when the camera is outside the robot sys-
tem. In our case, the eye-to-hand configuration is chosen to have a broader view of
the entire workspace, allowing us to detect not only the position of the tool and the
warehouse, but also possible obstacles to be avoided.

To the best of the authors knowledge, VS has not yet been used to address the
problem tackle in this work. However, some solutions based on computer vision can be
found in literature to improve the process of automatic robot tool change. For instance,
a calibration method is presented in (Gordic & Ongaro, 2016) to correct image distor-
tion in order to obtain an accurate location of the tool center point. Similarly, other
works (Motta, de Carvalho, & McMaster, 2001) (Du & Zhang, 2013) (Yin, Ren, Zhu,
Yang, & Ye, 2013) proposed techniques for modeling and performing robot calibration
processes using a vision-based measurement system. However, none of the mentioned
approaches consider a control loop using the visual information, like proposed in this
work.

In general, to accomplish a specific task, e.g., tool changing operations, the robot
has to fulfill a number of constraints, such as not exceeding the joint range limits, not
exceeding the maximum joint speeds and not leaving the allowed workspace. Typically,
the allowed workspace is given by: the workspace limits of the robot; obstacles in the
environment that must be avoided; a possible predefined area to confine the robot in
a limited region to avoid unnecessary or not desired movements; etc. However, the
control law given by conventional VS can lead to a trajectory that would not satisfy
these constraints, for instance due to a large motion in a positioning task, due to
modeling errors or because a moving target temporarily leaves the robot workspace.

In general, the robot motion should be conditioned to fulfill the constraints but
without aborting the VS task. Different approaches have been presented to deal
with constraints in VS. For instance, combining different VS approaches: IBVS and
PBVS (Chesi, Hashimoto, Prattichizzo, & Vicino, 2004; Hafez & Jawahar, 2007; Ker-
morgant & Chaumette, 2011), PBVS and backward motion (Gans & Hutchinson,
2007), hybrid VS and translational movements (Kim, Lovelett, Wang, & Behal, 2009).
Other proposals rely on path planning algorithms (Baumann, Léonard, Croft, & Lit-
tle, 2010; Huang, Zhang, & Fang, 2014; Kazemi, Gupta, & Mehrandezh, 2013; Zhong,
Zhong, & Peng, 2015) or online corrective terms (Chen, Dawson, Dixon, & Chi-
trakaran, 2007; Corke & Hutchinson, 2001). This work deals with constraints using
sliding mode control (SMC) (Edwards & Spurgeon, 1998; Menani, Mohammadridha,
Magdelaine, Abdelaziz, & Moog, 2017; Mobayen, Tchier, & Ragoub, 2017; Mufioz-



Vazquez, Parra-Vega, & Sanchez-Orta, 2017). The generic visual servoing architecture,
such as the one used in (Ouyang, Zhang, Gupta, & Zhao, 2007), consists of two levels of
control: visual feedback and joint level control. This work considers the same architec-
ture, but redefining the first level with two objectives, visual feedback and constraints
fulfillment, which are handled using task-priority redundancy resolution (Nakamura,
Hanafusa, & Yoshikawa, 1987) and SMC. The proposed SMC algorithm for constraints
fulfillment does only activate when the robot system is about to violate the constraints
and allows to reach the limits smoothly depending on a free design parameter, whereas
the task-priority strategy allows to hierarchical satisfy the constraints while making
as small as possible the reference tracking error.

This paper proposes an automatic solution to increase the robustness and flexibility
of a common problem in automation, the tool change procedure in industrial robots.
In particular, the novelty of using visual servoing to close the control loop in this
specific problem increases the robustness, in the sense that it can deal with possible
misplacement of the tool with respect to the warehouse (e.g., due to mechanical fric-
tion, due to wear of the robot over time, etc.) or due to an unexpected position of the
warehouse. Moreover, visual servoing also increases the flexibility of the process, since
it allows the system to deal with moving warehouses. Furthermore, the fulfillment of
robot constraints is addressed in this work using SMC in order to benefit from its
inherent robustness and low computational cost. This work details a general approach
to obtain robust auto tool change and can be adapted to all VS configurations. To
illustrate this generality, experiments with different VS configurations are presented
using a real 6R industrial manipulator for a auto tool change tasks.

The structure of the paper is as follows. Next section introduces some preliminaries,
while Section 3 presents the basic theory used in this work. The proposed method is
developed in Section 4, while some important remarks about the method are given in
Section 5. The proposed approach is applied in Section 6 to a complex 3D case study in
order to show its feasibility and effectiveness. Furthermore, real experimentation with
a 6R industrial manipulator is shown in Section 7 to demonstrate the applicability of
the method. Finally, some concluding remarks are given.

2. Preliminaries

Fig. 1 shows the coordinate frames involved in the eye-to-hand VS problem: F' robot
base frame; F robot end-effector frame; C' camera frame; O object frame; O* desired
object frame. Following the standard notation (Chaumette & Hutchinson, 2008), the
VS application is characterized by the visual feature vector s that depends on the
robot configuration q and also explicitly on time for the general case of a moving
target object, that is:

s =1(q, ), (1)

where 1 is the nonlinear kinematic function of the robot.
The first-order kinematics of vector s results in:

a0, . Ola)
aq 3T o

S =

= J.q+ 0s/ot, (2)

where Js/0t is due to the target motion and J; is the resulting Jacobian matrix. In



this case, 0s/0t is related to the change of the visual features (target object) in the 3D
Euclidean space. When the trajectory of the target is known, ds/Jt can be updated
using its analytical expression. Otherwise, different approaches have been proposed in
the literature when no a priori information is available, such as, feedforward control
or motion prediction, as reviewed in (Chaumette & Hutchinson, 2008). The resulting
Jacobian matrix J; can be expressed as a concatenation of three different Jacobian
matrices:

Js(qa t) = Ls(qv t) “Ve eJe(q)7 (3)

where Lg is the so-called interaction matriz related to the visual feature vector s;
¢V, is the spatial motion transformation matrix from the camera frame C to the end-
effector frame E; and ¢J. is the robot Jacobian expressed in the end-effector frame.
For more details on the computation of J, see (Corke, 2011).

The second-order kinematics of vector s is given by:

§=Jsq+ Jsq + 08/0t. (4)

The task carried out by the robot system consists on achieving a reference value for
the visual feature vector s, that is:

S(qa t) = Sref(t)’ (5)

where s,.¢(t) is the reference for the visual feature vector.

Both PBVS and IBVS require a computer vision algorithm composed of three mod-
ules: the first one performs the image processing for obtaining the image plane co-
ordinates (u;,v;) of all the visual features; the second one carries out the coordinate
transformation for converting the pixel coordinates (u;,v;) to the corresponding value
in the normalized image plane using the matrix of the camera intrinsic parameters;
and the third one, which only applies for PBVS, performs the pose estimation of the
camera (eye-in-hand) or robot (eye-to-hand) from the features of the second module.
The output of the algorithm is the visual feature vector s. This work assumes the
existence of this algorithm.

This work also assumes the existence of an underlying robot control in charge of
achieving a particular joint acceleration from an acceleration command q.. However,
the actual acceleration q will not be exactly the commanded one . due to the dy-
namics and inaccuracies of the low-level control loop. It will be assumed hereinafter
that the dynamics of the low-level control loop is fast enough compared to that of q.
so that the relationship:

q = (.jc + dm (6)

holds approximately true, where d. represents the inaccuracies of the robot control.

The goal of this paper is to design a control system that is aware of the robot
configuration and that generates the commanded acceleration to be sent to the robot
joint controllers, so that: the actual visual feature vector s is as close as possible to the
given reference value s,..r; the robot remains in its allowed workspace throughout the
process; and the joint range limits and the maximum joint speeds are not exceeded
during the operation.



3. Background theory

This section briefly reviews previous results from literature that will be subsequently
used by the proposed approach.

3.1. Task-priority scheme

In order to tackle several objectives simultaneously (Chiaverini, Oriolo, & Walker,
2008), it is useful to consider the task-priority strategy (Nakamura et al., 1987), which
consists of assigning an order of priority to the given tasks. Thus, a lower-priority task
is satisfied only by using the degrees of freedom in the null space of the higher-priority
ones. The formulation is as follows. Let us consider M tasks which consist on calcu-
lating a command vector q. to fulfill the following acceleration equality constraints:

Aiqc:bia i:17"')Ma (7)

where matrix A; and vector b; of the i¢th task are assumed known and index ¢ repre-
sents the priority order: ¢ = 1 for highest priority and ¢ = M to lowest.

The solution G, ps that hierarchically minimizes the error of equations in (7) is given
by (Siciliano & Slotine, 1991):

Gei = Gei1 + (AN;_1)T(b; — Aidei1)
Ni = Ni*l(I - (AZlel)T(Allel)% i = 11 e 7M7 QC,O = 07 NO = :[7 (8)

where I and 0 denote the identity matrix and zero column vector, respectively, of
suitable size, superscript { denotes the Moore-Penrose pseudoinverse and q.; and N;
are the solution vector and null-space projection matrix, respectively, for the set of
first ¢ tasks. The pseudoinverse may be computed via the singular value decomposition
(SVD) method (Golub & Van Loan, 1996) and using a tolerance to set to zero the
very small singular values to avoid extremely large values for the accelerations.

3.2. Sliding mode control for geometric invariance

This section reviews the principles of SMC and geometric invariance theory (Garelli,
Mantz, & De Battista, 2011; Gracia, Sala, & Garelli, 2012) that will be used by the
proposed method.

Let us consider a dynamical system with n, states and n, inputs given by:

x =f(x,d) + g(x) u, 9)

where x(t) € X C R" is the state vector, d(¢t) € D C R™ is an unmeasured distur-
bance or model uncertainty, u(t) € U C R™ is the control input vector (possibly dis-
continuous), f : Rt — R"= is a vector field defined in X | J D and g : R" — R"= %"
is a set of n, vector fields defined in X.

Consider also that the system state vector x is subject to user-specified inequality
constraints ¢;(x) < 0,7 =1,..., N, where ¢;(x) is the ith inequality constraint func-
tion. Thus, the region ® of the state space compatible with the constraints on state x



is given by:
O = {x|Gi(x) <0}, i=1,...,N. (10)

The objective is to find a control input u such that the trajectories originating in
® remain in @ for all times . Mathematically, the invariance of ® is guaranteed by an
input u such that!:

A9iX) _ G ()% = Vol (x)f(x, d) + Vo (x)g(x)

u
dt
= Lpi(x,d) + Lgp(x)u <0, Vi | ¢i(x) >0, (11)

where V denotes the gradient vector, the scalar Ly¢; and the n,-dimensional row
vector Lg¢; denote the Lie derivatives of ¢;(x) in the direction of vector field f and
in the direction of the set of vector fields g, respectively. The constraints such that
¢i(x) > 0 are denoted as active constraints.

In general, any vector u such that all the scalars Lg¢;u are negative, i.e., any vector
pointing toward the interior of the allowed region, can be used to satisfy (11). This
vector may be computed, for example, by solving a linear-programming optimization
problem (Dantzig, 2016). However, the goal of this work is to use a more simple strat-
egy, involving only gradient computation and simple matrix operations. In particular,
it is proposed to use the variable structure control law below to make the set ® in (10)
invariant:

0 if max{¢;(x)} <0
u= i (12)
U, otherwise,
where vector u. is chosen to satisfy:
Lgpu. = —1ut, (13)

where matrix Lg¢ contains the row vectors Lg¢; of all active constraints, b is the num-
ber of active constraints, 1; is the b-dimensional column vector with all its components
equal to one and u™ is the switching gain to be chosen high enough to satisfy (11).
In particular, one set of sufficient, but not necessary, conditions for making the set
¢ invariant are that matrix Lg¢ is full row rank and that (Gracia, Garelli, & Sala,
2013):

b

ut > )" (max(Lyg;,0)). (14)

i=1

When the state trajectory tries by itself to leave the allowed region ®, the above
control law (12) will make u switch between 0 and u. at a theoretically infinite fre-
quency, which can be seen as an ideal sliding mode (SM) behavior with no open-loop
phase (reaching mode) (Edwards & Spurgeon, 1998; Utkin, Guldner, & Shi, 2009).

1Note that it is assumed that the constraint function ¢; is differentiable around the boundary given by ¢; = 0.



4. Proposed method

4.1. Overview of the method

Fig. 2 shows the overview of the proposal, where task-priority redundancy resolution
is used with two hierarchical priority levels:

e The first level includes the robot constraints, which are a set of constraints that
must be satisfied at all times for reasons of safety in order to avoid: exceeding the
joint range limits; exceeding the maximum joint speeds; exceeding the workspace
limits; colliding with objects in the robot environment.

e The second priority level, i.e., the one with the lowest priority, is designed for
reference tracking: control the robot so that the visual feature vector s follows
the reference s,.y. Deviations from the reference trajectory are allowed if such
deviations are required to fulfill the above constraints.

The input to these priority levels, see Fig. 2, is the robot state {q, q} and each level
gives an acceleration equality A;q. = b; (7) whose square error must be minimized.
On the one hand, the acceleration equality for the first level is obtained below using the
SMC theory presented in Section 3.2, in order to fulfill the corresponding constraints.
On the other hand, the acceleration equality for the second level is obtained below using
VS. Then, the commanded joint acceleration vector q. is computed by the priority-task
redundancy resolution block using (8) and serves as input to the joint controllers.

4.2. Lie derivatives

The theoretical developments in Section 3.2 require a dynamical system in the form

of (9). In particular, it will be considered the state vector x = [qT qT] T, the distur-
bance d = d. and the input u = §.. Thus, from (6), the state equation of the system

is given by:

. (OT | 0 O

i=lo ofx+|a]+|9]w (15)
and, hence, the Lie derivatives for ¢; are given by:

Lgd; =Vo! g = (06:/04)" (16)
Lid; =Vo) f=(0¢;/0a)" a+ (9¢;/0q)" d.. (17)

4.3. Robot constraints

The first level includes three types of constraints: those required to not exceed the
joint range limits; those required to not exceed the maximum joint speeds; and those
required to not leave the allowed workspace for the robot (e.g., to avoid collisions, to
fulfill the workspace limits, etc.).



4.8.1. Joint range limits

The following constraints are considered for the joint limits:

’ qi — qmid,z‘|

+mpg=—1+| G +mrge<0, i=1,...,n, (I8
Admnes)? g | Gl q (18)

OR,qi (CI) =—-1+

where gmiq; and Agmax,; are the mid position and maximum range of motion, respec-
tively, for joint ¢, ¢; represents the normalized joint position and mpg 4 is a safety margin
for the joint limit constraints to cater for possible errors and inaccuracies (e.g., SM
chattering band, modeling errors, robot control inaccuracies, etc.) in order to avoid
reaching the joint limits.

Since the above constraints depend only on robot configuration q, they will be
modified as follows for the sliding manifold to have relative degree one? with respect
to the control variable q.:

dUR,qi (Q)

7t = 0Rqi + KRy VUﬁ,qi q <0, (19)

PR,¢i(A,4) = 0Rrgi(a) + KR gi

where Kpg 4 is an arbitrary positive parameter that determines the rate of approach
to the boundary of the original constraint, i.e., the joint limits.

4.3.2. Maximum joint speeds
The following constraints are considered for the joint speeds:
N | dil _ ~

PRsi(d) = =1+ - +mps=—-1+]¢;

Gmax,i

+mps <0, i=1,...,n, (20)

where ¢max,i and —@max,; are the maximum and minimum speed, respectively, for joint
1, El represents the normalized joint velocity and mpg s is the safety margin for the
joint speed constraints. Note that both speed limits have been considered symmetric.
If that would not be case the constraint (20) can be easily split into two constraints
for maximum and minimum speeds.

4.83.3. Robot workspace

In order to avoid that points of the robot enter or leave certain predefined re-
gions, the robot workspace must be constrained. Some examples requiring this type
of constraint are the following: for certain applications, the robot must be con-
fined in a limited region depending on the tasks to avoid unnecessary or not de-
sired movements, e.g., the camera retreat phenomenon (Chaumette, 1998); in a col-
lision avoidance problem, the region defined by the obstacle must be avoided; and,
in general, the predefined workspace limits for the robot must be fulfilled. Thus,
the Cartesian position p; = [z; y; z;]* of every point j of the robot must be-
longs to the allowed workspace ®ws(p;j) = {pPj| orwsi(Pj) <0 Vi}, where op ysi
is the constraint function of the object representing the obstacle or the workspace
limits, e.g., this function could be the negative value of the distance from position
p; to the boundary surface of an obstacle. Thus, the allowed C-space results in

2From (6), it follows that QBR,qi (and q) explicitly depends on signal qc, i.e., the sliding manifold has relative
degree one with respect to the discontinuous action u, as required by SM theory (Edwards & Spurgeon, 1998).



Pos(a) = {a] orwsi(lj(A)) = orwsij(d) <0 Vi,j}, where 1; is the kinematic func-
tion of the Cartesian position of point j.

As in Section 4.3.1, constraint functions o g si; depend on the robot configuration
q and, hence, they will be modified as follows for the sliding manifold to have relative
degree one with respect to the control variable q.:

dUR,wsij (Q)
dt
=0 Rwsij + KRwsi VO R wsij 4 <0, (21)

(z)R,wsij(qa Q) :UR,wsij(q) + KR,'wsi

where Kg s is an arbitrary positive parameter that determines the rate of approach
to the boundary surface of object .

The infinite number of robot points to consider in the foregoing expression can
be reduced to a set of characteristic points such that the distance from every point
on the links boundary surface to the closest robot characteristic point is less than a
selected value, which is used to enlarge the workspace constrained region. Regarding
the workspace limits’ constraint, typically only the robot end-effector is considered.

4.8.4. Equality for the robot constraints

The derivatives of the constraint functions ¢ggi, @R, and @rusi; are
needed to compute the Lie derivatives {Lg¢r gi,Lg®R si,Lg®rwsij} and
{LtéRgi» LtdR.si» LidRwsij} with (16)—(17). From (18)-(21), these derivatives
result in:

(00rqi/0Q)" =Vog i + Kr i Hop g (22)
(0¢R,si/0q)" =0 (23)
(00 R,wsij/09)" =V0heij + Krwsi€l HoRwsij (24)
(00Rqi/04)" =KrqiVohy=Kpge[0 -+ sign(@) -+ 0] (25)
(06R,si/04)" =Voha=[0 --- sign(g) --- 0 (26)
(00 Rwsij/04)" =KRwsiVOh wsij (27)

where Hy R 4i, and Hyp sij denote the Hessian matrix of second-order derivatives of
OR,qi, and OR wsij, respectively, sign(-) represents the sign function and only the ith
element in (25) and (26) is not zero.

Therefore, according to (16) and (25)—(27), equation (13) for this level results in:

T +
Krg VTUR,q 1b,q“§,q
V¢R7ST = - 1b7su§,s
KR,TUS VG-R,'ws 1b’wsuR,ws

= Lgppd. = — uj, (28)

where Kpgg,and Kpg,s are diagonal matrices with diagonal entries Kg g,
and KRp i, respectively; matrices {VO'R’q,VQbR’S,VO'R’wS} contain the wvectors
{VOR.4i: VORsi, VORwsij}, see (25)—(27), of all active constraints; {uﬁwuﬁs,uﬁws}
are the chosen value of switching gain for each type of robot constraint; and

{1p,45 1b.6, Lpws} are column vectors with all its components equal to one and their



size is equal to the number of active constraints of each type.
Thus, by comparing (28) with (7), it is obtained that A; = Lg¢p and by = —u,.

4.3.5. Gradient vectors for the robot constraints

According to (28), only the gradient vectors of the active constraints (i.e., those with
¢Rr,i > 0) are required to compute the control action of the first level. In particular,
the gradient vectors Vog 4 and Vg 4 for the joint range and joint speed constraints
are straightforward obtained from (25) and (26), respectively, as:

VO'Rgi = [0 cee sign(@) cee 0 (29)

Vors=[0 - sign(q;) - 0], (30)

whereas the gradient vectors Vopg ,.; for the workspace constraints are obtained as
follows:

vO'R,wsij = (apj/aq) (80R,wsi/apj) = OJEJ (80R,wsi/8pj) ) (31)

where 9J pj is the Jacobian matrix for the robot point p; expressed in the robot base
frame, which is obtained from the robot kinematics.

4.4. Reference tracking

This work considers the classical operational space robot control (Siciliano, Sciavicco,
Villani, & Oriolo, 2009) that, taking into account (4) and (6), is given by:

Jode =8, — (Jodo + J.q + 05/0t), (32)

where §. is the commanded acceleration for the visual feature vector.
Furthermore, the classical acceleration-based kinematic controller is considered for
trajectory tracking (Khalil & Dombre, 2002), that is:

éc :éref — KTJ,G — KTﬂ]é, (33)

where e = s—s,. ¢ is the visual feature error and Krj, and K, are the correction gains
for the position and velocity errors, respectively. Note that, in this case, the dynamics
(poles) are given by the roots of the polynomial with coefficients [1 K7, Kr,], e.g.,
the critically damped response is given by K7, = 2/Kr, .

It is interesting to remark that the acceleration-based robot control given by (32)—
(33) has already been used in VS applications by (Fakhry & Wilson, 1996) for PBV'S
and by (Keshmiri, Xie, & Mohebbi, 2014) for IBVS. Note that this control requires
the discrete-time derivatives {$,ds/0t,J,}, which can be computed using numerical
differentiation, e.g., the well-known backward Euler approximation, see the actual
implementation of the Appendix. Note also that some kind of filtering should be
previously applied to the actual variable when non-negligible noise is present.

4.4.1. Adaptive gain for the kinematic controller

In this work, the gains of the kinematic controller are selected as follows. On the one
hand, the correction gain of the velocity error is chosen to obtain an overdamped

10



response, i.e., K1, > 2,/Kr ). On the other hand, the correction gain of the position
error is designed depending on the position error as follows:

B e KT7p(O)
Krp(e) =K1,(00) — (K1,p(0) — K p(o))e Kp(0) = Krp(00) - (34)

where the design parameters Kr,(0), K7,(c0) and K7 ,(0) represent the gain for
zero error, the gain for infinite error, and the time-derivative of the gain for zero
error, respectively. The advantage of this adaptive expression is that allows to use a
smaller gain at the beginning when the initial error is large in order to obtain a smooth
behavior and a larger gain at the end when the final error is small in order to achieve
quickly the reference value.

4.4.2. Visual feature and Jacobian matrix

The typical visual feature vector s used in IBVS and PBVS (Chaumette & Hutchin-
son, 2008) are considered in this work.The Jacobian matrix Js required for the control
law (32) of the reference tracking is computed from (3) using the values of the in-
teraction matrix Lg, the transformation matrix ¢V, from the camera to the robot
end-effector and the robot Jacobian ¢J.. Matrix €J. is obtained from the robot model,
“V. is updated with the pose estimation algorithms and the robot model, whereas the
interaction matrix L represents the well-known interaction matrix typically used in
VS (Chaumette & Hutchinson, 2008).

4.5. Chattering

Discrete-time implementations of the proposed SMC makes the system leave the ideal
SM and oscillate with finite frequency and amplitude inside a band around ¢ = 0,
which is called chattering (Edwards & Spurgeon, 1998). The upper bound for the
chattering band of the method can be obtained from the Euler-integration of (13),
yielding:

A¢p=Ts |Lgpu.| =Tsut 1, (35)

where T, is the sampling period of the robot system and the value of u™ is

{uE} @ uE’ o uE} o uEyw .} for the robot and workspace constraints. This chattering am-

plitude must be lower than the error allowed in the fulfillment of the constraints, i.e.,
the safety margins {mp ¢, MR s, MR,0, MR,ws}-

5. Additional remarks

5.1. Advantages and disadvantages of the proposal
Advantages of the proposed approach:

e Using visual servoing to close the control loop in the specific problem of tool
changing increases the task robustness, in the sense that it can deal with possible
misplacement of the tool with respect to the warehouse (e.g., due to mechanical
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friction, due to wear of the robot over time, etc.) or due to an unexpected position
of the warehouse.

e Visual servoing increases the flexibility of the process, since it allows the system

to deal with moving warehouses.

e SMC is used in a prioritized level to satisfy the robot constraints (range limits,

speed limits and allowed workspace), whose main benefits are robustness and
low computational cost, inherent to SMC approaches.

Main limitations of the method:

e The SMC algorithm uses linear extrapolation (i.e., local first-order derivatives)

5.2.

to predict the value of the constraint functions at the next time step. Hence, the
algorithm may be blocked in trap situations (Gracia et al., 2012). In general,
these failure situations could be anticipated by evaluating a priori the robot task
with the complete geometric data of the problem, if available. Moreover, in some
cases, this failure situations can be avoided using high-level planning (Latombe,
1991), although its complexity and computational cost are substantially greater
than those of the method proposed in this work, see the Appendix.

Like other SMC applications, the proposed method has the chattering draw-
back, see Section 4.5. Nevertheless, the chattering problem becomes negligible
for reasonable fast sampling rates, see (35).

Guidelines for the paramaters design

Safety margins for the constraints: The value of {mp 4, mp, s, Mg s} should be
as small as possible in order to fully utilize the available allowed space (e.g., the
ellipsoid representing the workspace limits for the workspace constraint), but
not too small to cater for possible errors and inaccuracies (SM chattering band,
modeling errors, robot control inaccuracies, etc.) in order to avoid accidentally
exceeding the boundary of the allowed space.

Constraint approaching parameters: The value of constraint approaching param-
eters { KR gi, Krwsi} for the constraints (join limits and workspace constraints),
can be seen as the time constant of the braking process when approaching the
boundary of the original constraints ;. Hence, when approaching the constraint
boundary at high velocity, it is reached in approximately 3K; seconds and the
velocity perpendicular to the constraint boundary is also reduced to zero after
that time.

Control action amplitude: The value of {uﬁq, uj%s, uE,wS} should be as close as
possible to the lower bound given by (14) to have reduced chattering band and
high chattering frequency (Section 4.5).

Sampling time: The sampling time T should be small enough to have small chat-
tering band (35). The minimum possible value is determined by the computation
time of one iteration of the proposed algorithm, which is around 15 microseconds
for the case study in Section 6 (see the Appendix).

6. Simulation

A three-dimensional (3D) case study is presented in this section to demonstrate the
general feasibility and effectiveness of the proposed method. The proposal is tested
for eye-to-hand camera-robot-warehouse configuration and IBVS, although other VS
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controllers could be considered. The simulation results presented in this section were
obtained using MATLAB®. Details of pseudo-code and computing time for actual
implementation of the proposed strategy appears in an Appendix at the end of the
paper.

In the proposed case study, a classical 6R serial manipulator with spherical wrist in
ceiling position is considered. Fig. 3 depicts the VS application in consideration with
the following elements: 6R robot, target object, sphere representing a forbidden area,
as well as the involved frames: robot base frame F', camera frame C, object frame
O, initial object frame O, desired object frame O*! for the first phase (positioning
task) and desired object frame O*? for the second phase (tracking task). The desired
trajectory for the moving object during the tracking phase is also represented in Fig. 3
as a dotted line.

The robot Jacobian ¢J. can be readily obtained (Siciliano et al., 2009) taking into
account the Denavit-Hartenberg parameters of the 6R robot shown in Table 1.

Link 4 0; (rad) d; (m) a; (m) «; (rad)
1 Q1 —0.400 0.025 /2
2 . 0  —0455 0
3 @ 0  —0.035 —7/2
4 q4 —0.420 0 /2
5 g 0 0 —x/2
6 g6 —0.080 0 s

Table 1.: Denavit-Hartenberg parameters for the 6R robot.

The constraint functions og s for the ellipsoid representing a forbidden area and
O R,wst for the ellipsoid representing the workspace limits are given by:

(36)

Tji—To Yi—Yo 2 %"
UR,wso(pj) =1-

Tox Toy Toz

2

T
i —T Y — Yz A
Tlx Tly Tlz

7 (37)
2

ORws(Pj) =1 —

where {r,,r;} and {p,,p;} are the radii and centers, respectively, of the ellipsoids,
MRwso a0d ME s are the safety margins for the constraints and p; is the Cartesian
position of the considered point of the robot.

Therefore, the partial derivative of og s and og s With respect to p;, which is
needed for computing the gradient vector in (31), results in:

DO R wso 1 Tj—To Yi—Yo % —Z2]"
p; 1 ORuwso(P) [ T T3y T2 ] (38)
DO R wsl 1 rp—x Y-y oz —alt
;1= onwa(py) [ A A } (39)

Simulation was run under the following conditions:

i) Parameters used for the camera: focal lengths f, = 640 and f, = 480 pixels;
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ii)

iii)

iv)

vi)

vii)

viii)

ix)

principal point [ug, vg] = [320, 240].

Parameters used for the joint limit constraints: safety margin mgr, = 0; con-
straint approaching parameter Kpg 4 = 0.2; control action amplitude u};’ = 50;
mid position and maximum range of motion for the fifth joint gmiqs = —1.16
rad and Agmax,s = 0.46 rad, respectively. The range limit constraint for the
remaining joints are omitted for simplicity.

Parameters used for the joint speed constraints: safety margin mpg s = 0; control
action amplitude uE, s = 10; and maximum speed for all the joints ¢max; = 0.7
rad/s.

Parameters used for the robot workspace limits constraint: safety margin
mR,wst = 0; constraint approaching parameter Kg s = 0.3; control action am-

plitude u;g’wsl = 8; radius of the ellipsoid object r; = [0.75 0.75 O.SO]T m; and

center of the ellipsoid object p; = [O 0 —O.G]T m.
Parameters used for the robot constraint for collision avoidance: safety margin
MRwso = 0; constraint approaching parameter Kg s = 0.1; control action

amplitude ujfz’wso = 15; radius of the ellipsoid object r, = [0.20 0.50 O.2O]T

m; and center of the ellipsoid object p, = [0.34 —0.62 —0.95]T m.

For simplicity, only the Cartesian position p. of the robot end-effector will
be evaluated as point p; in the constraint for collision avoidance and in the
workspace limits constraint. The Jacobian matrix OJpe for this point, which is
needed to compute the gradient vectors in (31), can be readily obtained (Sicil-
iano et al., 2009) taking into account the Denavit-Hartenberg parameters of the
6R robot shown in Table 1.

Parameters used for the kinematic controller (33)-(34): correction gain for the
velocity error Kr, = 3\/Kr,; parameters of the adaptive position gain for the
positioning phase K7,(0) = 10, K7,(c0) = 0 and K7,(0) = 20; and parameters
of the adaptive position gain for the tracking phase K7,(0) = 50, K7 (c0) =1
and Kr,(0) = 10.

The initial configuration considered for the robot is given by the joint posi-
tion vector q(0) = [-0.87 —0.83 2.30 —0.87 —1.16 —1.27]T rad, yield-
ing an initial robot pose given by the transformation matrix “Mpg(0) =

[0.43 —0.32 —0.26 —1.7741 0.1006 —1.8989]", where it has been used the
following compact notation for the homogeneous transformation matrix: the first
three elements are the Cartesian coordinates in meters and the last three ele-
ments are the roll, pitch and roll angles, respectively, in radians.

The target object has four markers given by the following points with respect

to the object frame: Op; = [~0.03 —0.03 0] m, Opy = [0.03 —0.03 0]"

m, Ops = [0.03 0.03 0] m, Ops = [-0.03 0.03 0]" m, that is, the four
markers are the vertices of a square with a side length of 6 centimeters.

The object is positioned in the tool, and its position and orientation with re-
spect to the end-effector frame is given by the transformation matrix *Mg =
[0 0 01 0 —m/2 O]T in compact notation.

The desired object frame for the positioning task (first phase of the simulation)
is given by the transformation matrix “Mp. = [04 0 —1.09 —m/2 0 O]T
in compact notation. For the tracking task (second phase of the simula-
tion), a moving target object is considered, starting from fMop-1 and with
the circular trajectory given by the transformation matrix “Mop.2(t) =
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[#c+7rcos(t+a) ye+rsin(t+a) —1.09 —x/2 0 O]T in compact nota-
tion, where [z.,y.] = [0.412,0.222] m is the center, » = 0.23 m is the radius,
and a = 265 is the phase of the circular trajectory. The analytical expression of
the trajectory is used to update ds/0t.

xi) The algorithm was computed with a sampling time T of 1 milliseconds and the

disturbance vector d. has been considered zero.

The results of the simulation are depicted at different figures.

Fig. 4 shows that the error is made zero for both phases. Note that the positioning
task ends at around time instant 6.5 s, and the error during the tracking task is affected
because of the robot workspace constraint.

Fig. 5 shows that: all the constraints are fulfilled, i.e., max(¢;) < 0 (see third plot);
the joint limit constraint for the fifth joint (dark line in the first plot) becomes active
during the first phase; the speed constraint becomes active during both phases and
for up to five different joints (see second plot); the constraint for collision avoidance
becomes active around time interval 3s-4s (see fourth plot) during the first phase; and
the workspace constraint becomes active during the both phases (see fourth plot). It
is interesting to remark that in some phases of the simulation there are up to three
active constraints at a time.

Fig. 6 shows the trajectories followed by the visual features in the image plane.
Finally, Fig. 7 depicts six snapshot frames of a 3D representation of the robot at
different time instants, whereas a detail view of the ellipsoid obstacle is shown in
Fig. 8, where it can be seen that the constraint for collision avoidance is fulfilled.

A video of this simulation can be played at https://media.upv.es/player/7id=
28f5bbal0-17f4-11e7-a875-bd62e853f1c3.

7. Real experimentation

Real experiments for automatic tool change with a 6R industrial manipulator are
presented in this section to demonstrate the applicability of the proposed method. The
experimentation has been carried out with the following setup (see Fig. 9): a Kuka
Agilus R900 sixx manipulator in ceiling position (i.e., the same robot simulated above)
equipped with a robot controller that allows external real-time communication using
the Ethernet UDP protocol; a general purpose web cam for image acquisition; and an
external PC with Ubuntu 12.04 OS prompted with real time kernel that implements
the computer vision algorithms and the control algorithms proposed in this work. The
position of the markers are updated using the dot tracker in ViSP (Visual Servoing
Platform) (Marchand, Spindler, & Chaumette, 2005).

Two different experiments are conducted: the first one uses a static warehouse,
whilst the second one uses a moving warehouse. For the first one, IBVS is considered
with the eye-to-hand configuration. IBVS has its main advantage in the fact that
it is inherently robust to camera calibration and target modeling errors (Hutchinson,
Hager, & Corke, 1996). This is suitable for compensating robot positioning errors with
respect to an static warehouse, which reference features are previously computed by the
well-known teaching-by-showing method (Chaumette & Hutchinson, 2008; Hutchinson
et al., 1996). However, in the case of a moving warehouse, this method is not feasible
in practice and therefore PBSV has to be used. Hence, the second experiment with a
moving warehouse considers PBVS to overcome the aforementioned IBVS limitation.

The experiments were run under the following conditions:
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i) Parameters used for the kinematic controller: correction gain for the position
error K, = 0.025 and velocity error Kt , = 3,/ K p.

ii) The control period Ty is set to 0.1 seconds due to the requirements of image
acquisition and processing.

iii) The commanded joint accelerations . computed by the proposed algorithm are
double integrated to obtain the commanded joint positions q. sent to the robot
controller.

iv) Four markers define the warehouse and the tool, representing the vertices of a
square with a side length of 17 centimeters in both cases.

v) For the first experiment, an obstacle has been considered and the robot con-
straint used for collision avoidance has the following parameters: safety margin
MRwso = 0.1; constraint approaching parameter Kpg s, = 0.1; control action
amplitude uﬁw so = 15; an ellipsoid enveloping the obstacle is defined with the

following parameters: radius r, = [0.30 0.45 O.GO]T m; and center of the el-

lipsoid obstacle p, = [0.20 0.40 —1.15]T m. Note that this ellipsoid is known
a priori and is used to represent the obstacle in order to illustrate the behavior
of the proposed visual servoing with constraints. In general, the online detection
and accurate 3D positioning of the obstacles in the environment may require
additional sensing and algorithms. However, this is out of the scope of this work.

As in the simulation case, only the Cartesian position p. of the robot end-
effector will be evaluated as point p; in the constraint for collision avoidance.
The Jacobian matrix °J pe for this point, which is needed to compute the gradient
vectors in (31), can be readily obtained (Siciliano et al., 2009) taking into account
the Denavit-Hartenberg parameters of the 6R robot shown in Table 1.

In the first experiment, two cases are considered: the first one uses no al-
gorithm to avoid the obstacle, while the second one uses the proposed SMC
method to satisfy constraints. The video for both cases can be played at (video
at double speed) https://media.upv.es/player/?7id=934eal60-14a6-11e7-a875
-bd62e853f1c3. Fig. 10 shows that the error in the second case is made zero, thus the
VS task is accomplished, and subsequently the robot places the tool in the warehouse,
see the video mentioned above. Fig. 11 shows the trajectories followed by the visual
features in the image plane. Note that, although the dot tracker identifies the markers
in the warehouse, this information is not used in this experiment. The ending of the
servoing is defined in the image using the teaching-by-showing method, as aforemen-
tioned. Fig. 12 shows that the robot workspace constraint becomes active around time
interval 5s—12s, whereas Fig. 13 shows a detail view of the ellipsoid defined to envelope
the obstacle and how the constraint for collision avoidance is fulfilled.

It is interesting to remark that, despite that the sampling time of the real platform
used for experimentation is not very small, 0.1 s, the performance of the proposed
SMC algorithm is satisfactory.

The second experiment has been conducted to illustrate the flexibility of the pro-
posed method with a moving warehouse. This experiment shows how the robot success-
fully follows the warehouse and performs the auto tool change task. The video of this
experiment can be played at https://media.upv.es/player/?7id=al770050-bbdc
-11e8-a361-599725480ca3. Fig. 14 shows several frames from the video: Fig. 14(a-c)
(interval 10s—49s in the video) show how the robot follows the moving warehouse;
Fig. 14(d-e) (interval 50s—1m07s in the video) correspond to the process of placing the
first tool in the warehouse; Fig. 14(f-1) (interval 1m08s—1m33s in the video) show how
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the warehouse is moved again before taking the second tool; and Fig. 14(j-k) (interval
1m34s—1mb5s in the video) show how the tool change is successfully completed.

8. Conclusions

An automated approach for tool changing in industrial robots using visual servoing
and sliding mode control has been presented. In particular, the main task used image-
based visual servoing to properly place the tool in the warehouse, whereas sliding mode
control was used in a prioritized level to satisfy the robot constraints (range limits,
speed limits and allowed workspace).

The robustness and flexibility achieved with the proposed method is mainly due
to the control law of the image-based visual servoing, which uses the information
acquired by a vision system to close a feedback control loop. The proposed approach
only requires a few program lines and has a short computation load, see the Appendix.

The feasibility and effectiveness of the proposed approach was illustrated in simu-
lation for a complex 3D case study. Furthermore, the applicability of the method was
demonstrated with real experimentation using a conventional 6R industrial manipu-
lator for tool changing.

Appendix. Computer Implementation

The pseudo-code of the proposed method is shown below. The algorithm is executed
at a sampling time of T seconds and uses the following auxiliary functions:

e Constraint functions and gradient vectors for the robot constraints:
{qu,qi(qa q)a ¢R,si(q)7 ¢R,wsij (q» Q)} and {VO-R,qi(q)a V¢R,si(q)a vO'R,wsij (q)}
Jacobian matrix Js(q,t).

Visual feature vector (which is obtained with the computer vision algorithm
described in Section 2) and its reference: s(q,t) and s,¢(t).

Moore-Penrose pseudoinverse function (Section 3.1): (-)'.

Robot sensors: GetRobotState(), which returns the current robot state given by
q and q.

Actuators: SendToJointControllers(q.), which sends the current commanded
joint acceleration vector to the joint controllers.

The computation time per iteration of the algorithm in a computer with Intel Core
i7-4710HQ processor at 2.5 GHz clock frequency using MATLAB® R2015b (compiled
C-MEX-file) was around 15 microseconds for the case study example in Section 6.
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Algorithm executed at sampling time of T seconds

1 while s < s.y,q do

2 [q, ] =GetRobotState();

3 $= (s —Sprev)/Ts ; // Discrete-time derivative
4 Sref = (Sref — Srefprev)/Ts ; // Discrete-time derivative
5 Sref = (Sref — Srefprev)/Ts ; // Discrete-time derivative
6 Jo=(J, - Jsprev)/Ts ; // Discrete-time derivative
7 éc:éref_]:(T,p(S_sref) _KT,U(é_Sref) ; // Eq. (33)

KR# VO'%H
8 A= V¢£7 s with the gradients of all active constraints:
KR,ws VU%,ws
QZ)R,qi >0, ¢R,Si > 0, QZ)R,wsij >0; // Eq. (28)

9 by =—uj; // Eq. (28)
10 Ay=1Jy; // Eq. (32)
11 by =§ —Jq—08/0t; // Eq. (32)
12 §e1 =Alby; // Eq. (8), i=1
13 Ni=I-AfA;; // Eq. (8), i=1
14 G =G + (A2N1)T(by — Agqen) // Eq. (8), i=2
15 SendToJointControllers(q.2);

16 Sprev = S ; // For next iteration
17 Sref,prev = Sref // For next iteration
18 Sref.prev = Sref // For next iteration
19 Js,prev =Js; // For next iteration
20 end
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Figure 1.: Frames involved in eye-to-hand visual servoing.
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Figure 2.: Overview of the proposed approach.
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Figure 3.: System used for 3D simulation: 6R robot, target object with four markers,
sphere representing a forbidden area and coordinate frames.
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Figure 4.: Visual features error: e, ; (solid, blue) and e, ; (dashed, magenta).

24



1 2 3 4 5 6 7 8 9 10 11 12 13 14

02 B I
—~—
3 o |
vy I
K -0.2p
= l
0.4+ I

1 2 3 4 5 6 7 8 9 10 11 12 13 14

¢R,wso B i :
PRwsl f —@ | i
¢R,s i : i

|
| i

|

|

|

©

|

|

|

¢R,q5 |

active constraints

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (s)

Figure 5.: From top to bottom plots: (1) joint postions q (the horizontal dashed line
represents the joint limit for the active constraint, which is depicted with a dark
line); (2) joint speeds q (the horizontal dashed lines represent the speed limit for all
the joints); (3) maximum value of the constraint functions ¢;; (4) horizontal lines
indicating when a constraint is active (the dashed vertical lines correspond to the time
instants of the frames in Fig. 7 and the circles indicate the active constraints at those
instants). The thick dashed vertical line represents the time instant when the desired
camera frame is changed from “Mgw1 to FMgee.
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Figure 6.: Feature trajectories in the image plane for the case study.
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Figure 7.: Sequence of frames (frames 1 to 6) showing the robot configuration during
the simulation, the actual path follwed by the robot end-effector (solid, blue) and the
ideal path for no constraints (dotted, red). The active constraints at each frame are
shown in Fig. 5.

27



Figure 8.: Detailed view of the fulfillment of the constraint for the ellipsoid obstacle.
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Figure 9.: Experimental setup: 6R serial industrial manipulator in ceiling position with
markers in the tool and the warehouse, camera out of the robot (eye-to-hand), obstacle
and robot PC.
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Figure 10.: Visual features error: e, ; (solid, blue) and e, ; (dashed, magenta).
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Figure 11.: Feature trajectories in the image plane for the first experiment.
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Figure 12.: From top to bottom plots: (1) joint positions q; (2) joint speeds q; (3)
constraint function ¢y,s,. Once the VS task is accomplished, around time instant 46 s,

it can be observed the robot movement to place the tool in the warehouse and to go
back.
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Figure 13.: Detailed view of the fulfillment of the constraint for the obstacle avoidance
in the first experiment. The lines represent the trajectory of the robot end-effector
when the proposed SMC method is used (dark-blue) or not (light-cyan) from initial
pose (E-frame) to final pose (E*-frame). A graphical model of the robot is drawn at
time instant 30 s. When the SMC method is not active the safety zone enveloping the
obstacle is invaded resulting in a collision and the task is aborted.
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(d) 50s

(g) 1m17s

(j) 1mdds

Figure 14.: Frames of the video of the second experiment.

for each frame.

(b) 26s

(e) 1m07s

(h) 1m23s
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(c) 33s

(f) 1m08s

(i) 1m33s

(k) 1mbbs

The time instant is indicated



