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Abstract 
Spray drying is widely used for powder production from liquid concentrates. 
Often low input temperatures are desired, as many materials, like proteins, 
are sensitive to heat. However, this demand leads to increased concentrate 
viscosities. Commonly used pressure swirl atomizers are limited concerning 
maximum processible viscosity. In this study, a so called Air-Core-Liquid-
Ring Atomizer is used for pilot scale spray drying of whey protein 
concentrate (WPC80) at 40 °C and hence a viscosity of 0.09 Pa s. The 
produced powder was compared to an industrially produced reference. As a 
result, no significant differences in particle size distribution and particle 
morphology were observed. 

Keywords: spray drying, atomization, ACLR, high viscous feeds, whey 
protein concentrate. 
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1. Introduction 

Spray drying is an important and widely used processing technique for powder production 
form liquid concentrates[1]. The process consists of three main steps: atomization, drying 
and powder separation. In the atomization step, the bulk concentrate is disintegrated into 
small droplets, in order to accelerate convective drying. For sufficient drying, all droplets 
have to be small enough to dry within the given residence time inside the spray dryer[2]. 
Consequently, mean droplet size and distribution width, generated in the atomization step, 
are of high importance for the subsequent processing steps. Generally, spray dryers should 
be operated at the highest possible input dry matter content, in order to insure economic 
operation[3]. Moreover, low input temperatures are desired, as many spray dried materials 
are sensitive to heat. Both demands lead to high concentrate viscosities[4] which 
complicates atomization for all known atomizer techniques[5]. On industrial scale, mainly 
pressure swirl atomizers are used. In this type of atomizer, high liquid pressures are used to 
deliver the required atomization energy. This type of atomization is very energy efficient, 
but the maximum processible viscosity is comparably low[5]. In laboratory or pilot scale 
spray dryers, often external mixing pneumatic atomizers are used. In this type of atomizer, 
the kinetic energy of compressed gas is used for droplet disintegration. In contrast to 
pressure swirl atomizers, the applied disintegration energy can be increased independently 
of the liquid flow. This allows the production of very small droplet sizes, even at high 
concentrate viscosity. However, high gas consumption rates of these atomizers do not allow 
economic operation on larger scales[3]. 

Internal mixing pneumatic atomizers (IMPA) offer the possibility to atomize high viscous 
concentrates at low gas consumption rates[6–11]. One specific IMPA, proposed for spray 
drying purposes, is the so called Air-Core-Liquid-Ring (ACLR)[12] atomizer (see Fig. 1). In 
this atomizer, liquid concentrate and atomization gas are brought into contact with each 
other in a mixing chamber, shortly before the exit orifice. The specific gas injection 
geometry induces a continuous core of compressed gas in the middle of the liquid stream, 
leading to an enforced annular two phase flow inside the exit orifice. This kind of flow 
pattern is known to deliver constant spray droplet distributions at high viscosities[12,13]. 

In the here presented study, a fresh liquid whey protein concentrate WPC 80, delivered by a 
dairy company, was processed in a pilot scale spray dryer, equipped with an ACLR 
atomizer. In order to investigate the potential of the ACLR atomizer to process high viscous 
concentrates, the input temperature before atomization was lowered (40 °C) in comparison 
to the corresponding industrial process (60 °C) of the supplier, leading to an increase of the 
viscosity by 50 % up to 0.09 Pa s. The produced powder was compared to the industrially 
produced reference by means of particle size distribution, water activity, moisture content 
and particle morphology. 
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2. Materials and Methods 

2.1 Whey protein concentrate WPC 80 

For the performed investigation, a fresh whey protein concentrate WPC 80 was used. The 
concentrate was delivered by Sachsenmilch GmbH, Leppersdorf, Germany. The 
concentration was executed in a membrane process. The dry matter content was given by 
the supplier as 36.1 %.  

As reference, an industrially spray dried WPC 80 powder of the same supplier was 
analyzed for comparison to the powder, produced in the pilot scale spray drying process 
using the ACLR atomizer (See section 2.4).  

 

2.2 Rheological characterization of liquid concentrates 

The rheological characterization of the liquid concentrate was performed in a rotary 
rheometer (MCR 101, Anton Paar GmbH, Graz, Austria), equipped with a coaxial cylinder 
geometry (CC 27). The measurements were conducted at temperatures of 25, 40 and 60 °C 
and shear rates between 1 and 1000 s-1. 

 

2.3 Process equipment 
 
2.3.1 ACLR Atomizer 
A scheme of the used ACLR atomizer is given in Fig. 1. All parts are produced from 
stainless steel. The atomization gas is injected into the liquid stream, shortly before the exit 
orifice. For this purpose, a gas capillary with a diameter of 1.5 mm is used, leading to gas 
injection area of 1.76 mm2. The mixing chamber length is 2.4 mm. Diameter and length of 
the exit orifice are 1.5 mm each. 

 

Fig. 1: Scheme of the used ACLR atomizer. (lmixing chamber = 2.4 mm, lexit orifice = 1.5 mm, 
dexit orifice = 1.5 mm) 
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2.3.2 Media supplies 
The concentrate was supplied by an eccentric screw pump (MD 006-12, seepex GmbH, 
Bottrop, Germany). The flow rate was adjusted to 15.7 L/h and measured by a flow meter 
(VSI 044/16, VSE GmbH, Neuenrade, Germany). The concentrate was preheated before 
atomization to 40 °C in a tube heat exchanger. As atomization gas, compressed air, 
supplied by a compressor (Renner RSF-Top 7.5, Renner GmbH, Güglingen, Germany), was 
used. Air pressure was adjusted to 0.55 MPa by a pressure regulator. The gas volume flow 
through the atomizer’s mixing chamber, resulting from gas pressure and liquid flow rate, 
was measured by a gas flow meter (ifm SD6000, ifm electronic, Essen, Germany) as 
3.7 Nm3/h. The resulting gas to liquid ratio by mass (GLR) was 0.28. 
 
2.3.3 Pilot scale spray drying process 
A pilot scale spray dryer (Werco SD20, Hans G. Werner Industrietechnik GmbH, 
Reutlingen, Germany) with a maximum water evaporation capacity of 20 kg/h was used. 
The dryer was operated at an inlet temperature of 180 °C, an outlet temperature of 95 °C 
and a drying air flow of 470 kg/h.  
 
2.4 Powder characterization 
The powders were characterized by measurement of particle size distribution, moisture 
content, water activity and morphology. Particle size distributions where measured by a 
laser diffraction spectroscope with powder dispersion unit (Horiba LA950, Retsch 
Technology GmbH, Haan, Germany). Moisture contents were calculated by weight loss 
after oven drying at 105 °C to constant mass. Water activities were measured by a 
dedicated measuring instrument (AW Sprint, Novasina, Lachen, Switzerland). 
Investigations on particle morphology were performed with an environmental scanning 
electron microscope (FEI Quanta 650 ESEM) at the Laboratory of Electron Microscopy of 
KIT, Karlsruhe. 
 

3. Results and Discussion 

3.1. Rheological characterization of liquid concentrates 

In the first step, the shear rate dependent viscosity of the fresh whey protein concentrate 
WPC 80 was investigated at different temperatures of 25, 40 and 60 °C. All investigations 
were performed in triplicate. The concentrates showed shear thinning behavior with 
increasing shear rate at all investigated temperatures. However, the decrease of viscosity 
between shear rates of 1 and 1000 s-1 was pronounced with increasing temperature level. 
Moreover, the viscosity decreases with decreasing temperature at constant shear rate. (data 
not shown) 

1224

http://creativecommons.org/licenses/by-nc-nd/4.0/


Wittner M.; Karbstein H.P.; Gaukel V. 

 
21ST INTERNATIONAL DRYING SYMPOSIUM 

EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA  
 

As high shear rates are expected in the atomization process, the viscosity at the highest 
shear rate, applicable in the used rheometer (1000 s-1) are given in Table 1. 

Table 1. Concentrate viscosity at a dry matter content of 36.1 % at a shear rate of 1000 s-1 and 
different temperatures. 

Temp. / °C Viscosity / Pa∙s 
mean std 

25 0.15 0.001 
40 0.09 0.001 
60 0.06 0.001 

 
In the industrial process the concentrate is preheated to 60 °C before atomization. 
According to the here presented data, the viscosity in the moment of atomization is 0.6 Pa∙s 
in this case. However, it is reported in literature, that the viscosity of whey protein 
concentrates might increase in the first hours of storage[14]. As the concentrate had to be 
transported from the production plant of the supplier to our pilot plant, the viscosities in the 
industrial process might be lower than the here presented values. In order to observe the 
viscosity increase over time, rheological measurements were performed directly after 
receiving the concentrate, as well as one and two days later, though no changes in viscosity 
were observed (data not shown).  
In order to investigate the potential of the used ACLR atomizer to process concentrates at 
lower preheating temperatures and therefore higher viscosities, the preheating temperature 
was lowered by 20 K to 40 °C in the performed pilot scale trial. This procedure led to an 
increase of the viscosity by 50 % up to 0.09 Pa∙s in comparison to the industrial process.  
 
3.2. Spray drying process and powder characterization 
The spray drying process with an ACLR atomizer was undisturbed during the whole trial 
time of 83 min. No sticky deposits in consequence of insufficiently dried particles were 
found inside the drying chamber after the trial. In Fig. 2 cumulative volume distributions of 
the powder particle sizes produced in the pilot scale spray dryer, as well as of the reference 
powder, are shown. The particle size measurements were performed fivefold. Both particle 
size distributions are similar. Small differences were found in fine particles, as well as in 
particles with sizes lager than 100 µm. The latter can most probably be traced back to 
agglomeration of primary particles, as the moisture content of the powder, produced in the 
pilot scale dryer, was significantly higher (9.1 %) than the one of the reference powder 
(5.4 %). Powders with increased moisture content are known to show increased stickiness 
an tension to build agglomerates[3]. However, it can be assumed, that the moisture content 
of powder can be reduced to the value of the reference powder, when the dryer height, and 
therefore the residence time inside the drying chamber, is increased to industrial level. 
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Nevertheless, water activity values of 0.20 (ACLR) and 0.12 (reference) show, that 
microbial stability is insured in both cases. 

 

Fig. 2: Cumulative volume distributions Q3 of powder particles, using ACLR atomization based 
processes (preheating temperature = 40 °C), as well as of an industrially produced reference 

powder. 

 
In Fig. 3, overview images of the industrially produced reference powder (left) and of the 
powder produced in the pilot scale process with ACLR atomizer (right) are shown. 
Regarding particle morphology, no significant differences between the powder samples 
were observed. Although, in the reference powder more wrinkled and irregularly shaped 
particles were found. This fact might be also based on the more progressed drying process, 
indicated by a lower moisture content. 

    

Fig. 3: Scanning electron microscope images of the industrially produced reference powder (left) 
and of the powder produced in the pilot scale process with ACLR atomizer (right)[15]. 
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4. Conclusions and Outlook 

In the presented study, the potential for use of an ACLR atomizer in pilot scale spray drying 
of a high viscous whey protein concentrate was shown. By decreasing the preheating 
temperature in comparison to the industrial reference process, the concentrate viscosity was 
increased by 50 % to a value of 0.09 Pa∙s. The produced powder showed similar particle 
size distribution and particle morphology as the industrially produced reference powder. 
The moisture content was significantly higher (9.1 %) than the reference value (5.4 %). 
This is based on the comparably short residence time inside the pilot scale dryer. Increasing 
the dryer height, and therefore the residence time in the drying chamber, to industrial level, 
should lead to similar moisture contents. Nevertheless, a microbial stable product was 
produced in the pilot scale process, according to the water activity value of 0.2. 
Further research will be performed in order to use the ability of the ACLR atomizer to 
atomize high viscous concentrates in spray drying processes. Besides the application of 
lower preheating temperatures this ability could also be used to atomize concentrates with 
higher initial dry matter contents, compared to currently used pressure swirl nozzles. 
Hence, the use of the ACLR atomizer offers the opportunity of energy savings and capacity 
increases in spray drying processes[16]. 
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