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Abstract 

Modeling of dring of capillary porous media is difficult due to the complex 
and coupled heat and mass transfer that occur at dynamic liquid-gas-sold 
interface. Thus far, drying was simulated using either continuum models or 
pore-network models, both of which have limitations. In this work, the 
Lattice Boltzmann Method (LBM) is used to simulate the drying in porous 
media. The LBM is ideal for such simulations as it can incorporate complex 
effects in a simple way to exhibit realistic fluid-gas interface during drying of 
capillary porous media. 

Keywords: Lattice Boltzmann Method; Capillary Porous media; Drying, 
Pore Network. 
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1. Introduction 

Drying of porous media is one of the most energy intensive operations in numerous 
industries such as textile, food, agriculture and etc. Experimental methods have been 
established to understand the macroscopic drying kinetics, whereas experimentation for the 
detailed micro scale transport behavior such as phase and temperature distributions and the 
corresponding micro-macro interactions still need significant scientific development. 
Modeling and simulation provides an efficient method for investigating such microscopic 
behavior. Simulation of the drying of porous media is a challenging task as it involves 
mass, momentum and heat transfer in a three-phase system (solid, liquid and gas) [1]. 
Various modeling techniques have been used in the past to simulate such complex 
processes including classical continuum methods [2], discrete Pore Network Models (PNM) 
[1] and more recently, the Lattice Boltzmann Method (LBM) [3]. Classical continuum 
models simulate the complex behavior of the fluid in the porous media macroscopically. 
These models are derived from either homogenization [2] or volume averaging techniques 
[4]. The continuum assumption in these models imposes an additional length scale 
constraint on its application. Moreover, models based on Darcy’s law ignore non-
equilibrium and inertial effects as the flow is at low Reynolds numbers. 

A more promising alternative is the discrete pore network model, which is derived from 
statistical physics concepts like percolation theory, fractal concepts and scaling theory[1]. 
These involve representing the void space in a porous medium as a pore network and 
solving the governing equations on this network. Discrete pore network models are 
especially useful when the effects of pore space or long-range correlations are strong. 
Despite its various advantages, the pore network models have numerous shortcomings that 
need to be addressed. For one, the actual porous media has to be converted into a pore 
network before simulating which is a complex and time-consuming process, especially for 
more complicated and broad pore size distribution. Further, such models have always 
assumed either the pore or the throats to be of zero volume which is unrealistic [1]. The 
fluid-air interface develops dynamically with time and depends on the capillary pressures 
and the pore and throat geometry. The inclusion of these effects is necessary to improve the 
accuracy of the pore network model. The Lattice Boltzmann Method provides an alternative 
by accommodating the actual geometry of porous media. 

The LBM is a relatively new mesoscopic method [3] which has repeatedly proven its ability 
to simulate transport in porous media. It involves solving the discrete Boltzmann equation 
to reproduce the Navier-Stokes equation in the continuum limit. This can be shown by 
conducting a Chapman Enskog expansion of the Boltzmann equation [5]. It is simple and 
accurate to incorporation of complex geometries. And LBM is efficient with parallelization 
capabilities which make it ideal for simulations in porous media. Further, due to its roots in 
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statistical physics, it can easily simulate multi-physics processes including multiphase and 
multi-component flow, cavitation etc. without explicitly tracking the interface as is done in 
continuum and pore-network models.H. El. Abrach, et. al.[6] investigated the drying of 
deformable porous media using LBM, macroscopically. Sukop et.al. [7] demonstrated the 
applicability of the Lattice Boltzmann method in simulating several micro-scale porous 
phenomenon such as adsorption, wetting, liquid retention and capillary condensation. The 
present work explains on how LBM can simulate the intricate microscopic interactions 
between such phenomenon, leading to complex fluid behaviour, such as capillary pumping 
and haines jumps [8], in non-deformable porous media.  

2. Lattice Boltzmann Method (LBM) 

In LBM, the motion of fluid is described by a set of particle distribution functions (PDF), 
which helps quantify the number of particles with a particular velocity at a certain location 
in space. The evolution of this PDF with time is described by the lattice Boltzmann 
equation (LBE) with, in this case, the Bhatnagar-Gross-Krook (BGK) collision operator [9]. 
The LBE is written as 
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Where, fk is the particle distribution function in the kth direction, ck is the velocity in the 
kth direction, Fk is the forcing term and Ωk is the collision operator given by 
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Where, τ is the relaxation time and  is the equilibrium distribution function given by the 
Maxwell Boltzmann Distribution, which can be approximated into the following simple 
form: 
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The LBE is solved by discretizing the space, time and the velocity. Various different 
velocity discretization schemes have been developed. In this study, we use the two-
dimensional nine velocity model (D2Q9). 

For this scheme, the discrete velocities,  and  are given by: 
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The macroscopic properties we require, such as the density and velocity are derived from 
the PDF as 
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 2.1. Incorporating Phase Change Models 

In LBM, phase separation is achieved by incorporating a force on the particles at a node 
based on the particle density in the adjacent nodes, i.e., fluid in one node will experience a 
force in the direction with the higher neighboring density. In this study, the interaction 
force is incorporated into the model by shifting the velocity in the equilibrium distribution 
as given below: 
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It is also possible to incorporate the interaction force via direct body forcing, where an 
additional term is added after the collision process [10]. The most commonly used method 
is the one proposed by Shan and Chen for Multiphase simulation[11]The inter-particle 
force is then taken as: 
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Where, G is an interaction strength constant and is either negative or positive for attraction 
and repulsion respectively, kw is the weight function given in equation 4 and ψ is the 

effective mass, a function of density. This formulation results in an equation of state given 
by: 
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Where, cs is the velocity of sound, 0c is a parameter determined by the chosen lattice 

structure and   is a parameter that controls the magnitude of the inter-particle forces.  
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The formulation of ψ can be designed to incorporate a more accurate Equation of State if 
required[12]. Equation 8 can be rearranged to give: 
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Here, PEOS is the equation of state used, which, in this case, is the Carnahan Starling 
equation of state, given by: 
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Applying to equation 7 and combining the numerical approximations of the gradient [13], 
we get: 
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Where G is taken as -1 to ensure a positive value under the root and   is a weighting factor 
that can be tuned for each equation of state. For the CS equation of state β is taken as 1.16. 

Here, wall interaction is incorporated in a similar way, by assuming the walls to have 
density equal to the liquid density. Therefore, liquidwall ρρ = . This gives the formulation: 
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3. Simulation Results and Discussion 

In this study, we simulated the drying of two types of porous media: structured and 
irregular. The structured porous medium consisted of equally spaced horizontal and vertical 
throats intersecting in circular pores, while the irregular porous media did not exhibit any 
observable pattern. Figure 1 shows the simulated results obtained using Lattice Boltzmann 
method. In the porous medium as shown in Figure 1A, the radius of the pores are much 
higher than that of the throats. This implies that there is a sudden and large increase in 
radius of the meniscus, thereby making it unstable/instabilities during drying. Therefore, 
the interface moves rapidly to the next stable orientation. This causes the surrounding liquid 
to be pumped outward and thus causing smaller pores and throats to be filled. This 
phenomenon can be observed in Figure 1A. The emptying of the pore circled in red leads to 
the refilling of the vertical throat circled in blue. Such effects are more prominent and 
discernable near the edges of the porous media where the pumping is only possible in 
limited directions. This phenomena of Haines jump events can significantly change the 
liquid orientation in the porous media as well as cause fluctuations in drying rate. 
Predicting such phenomenon is therefore essential to creating accurate models of drying. 
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Figure 1: A) Occurance of Haines jump (red) leads ot refilling of vertical throat (blue). B) Effect of 
surface tension impedes the emptying of pore (blue). C) Large extend of sluster formation. 

Apart from the geometry of the porous media, the properties of the wetting fluid also plays 
a crucial part in the drying. One such property, the surface tension, can prevent the invasion 
of a pore even though its adjointing throats are empty, as shown in Figure 1B. It can be 
seen that the pore (circled in blue) does not invade for a considerable amount of time even 
though two of its adjacent throats are empty. As explained, emptying of pores creates 
unstable intermediate interfaces. This unstability is due to the high surface energy present at 
the interface. Therefore, to invade a pore, the surface energy of the interface has to become 
equal to or larger than the intermediate interfacial energy. This is usually achieved due to 
reduction in pressure above the interface, and so, increase in surface tension and energy. 
Hence, pores are not invaded until the surface energy of the pore reaches a threshold value. 

The structured porous media shown above is merely an approximation of the actual porous 
media, which vary widely in shape and size of both pores and throats. Figure 1C shows a 
more random type of porous media where the drying phenomena is simulated. Here, the 
wide range of sizes and shapes lead to clusters formation (red). These clusters may be very 
small and local to single throats, or large and spanning several pores. These clusters of 
liquid are bounded by interfaces of high capillarity. This implies that such clusters remain 
idle until and unless the surrounding pressure reduces sufficiently. It is therefore possible 
for clusters to exist even after the drying completes. Such bounded liquid can lead to 
significant problems in drying efficiency and quality of products and so, have to be 
accounted for. 
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4. Conclusions 

Modelling of drying of porous media has been done in the past using various techniques 
such as Pore Network Models and Continuum models and have met with some success. 
Here, we used a Carnahan Starling equation of state based high density ration Lattice 
Boltzmann Method to model the same under realistic operating conditions. The following 
key observations were made from this study: 

1. Haines jumps cause significant changes in liquid orientation and can lead to 
unexpected variations in drying rate. 

2. Surface energy of the interface plays an important role in deciding which pore to 
invade and when. 

3. Highly randomized and realistic porous media exhibit high levels of liquid entrapment 
and cluster formation 

It can be concluded that the Lattice Boltzmann Method provides an accurate and plausible 
alternative to continuum and pore network models when it comes to modeling in porous 
media. 
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