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ABSTRACT

The present thesis addresses the numerical integration of Hamiltonian
systems with explicitly time-dependent potentials. These problems are
common in mathematical physics because they come from quantum,
classical and celestial mechanics.

The goal of the thesis is to construct integrators for several import-
ant non-autonomous problems: the Schrödinger equation, which is
the cornerstone of quantum mechanics; the Hill and the wave equations,
that describe oscillating systems; the Kepler problem with time-variant
mass.

Chapter  describes the motivation and the aims of the work in
the historical context of numerical integration. In Chapter  essential
concepts and some fundamental tools used throughout the thesis are
introduced.

The design of the proposed integrators is based on the composi-
tion and splitting methods and the Magnus expansion. In Chapter ,
the former is described. Their main idea is to recombine some sim-
pler integrators to obtain the solution. The salient concept of order
conditions is described in that chapter. Chapter  summarises Lie algeb-
ras and the Magnus expansion — algebraic tools that help to express
the solution of time-dependent differential equations.

The linear Schrödinger equation with time-dependent potential is
considered in Chapter . Given its particular structure, new, Magnus-
based quasi-commutator-free integrators are build. Their efficiency is
shown in numerical experiments with the Walker–Preston model of
a molecule in an electromagnetic field.

In Chapter , Magnus–splitting methods for the wave and the Hill
equations are designed. Their performance is demonstrated in numer-
ical experiments with various oscillatory systems: the Mathieu equation,
the matrix Hill eq., the wave and the Klein–Gordon–Fock eq.

Chapter  shows how the algebraic approach and the Magnus expan-
sion can be generalised to non-linear problems. The example used is
the Kepler problem with decreasing mass.

The thesis is concluded by Chapter , in which the results are re-
viewed and possible directions of future work are outlined.
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RESUMEN

Esta tesis trata sobre la integración numérica de sistemas hamiltonianos
con potenciales explícitamente dependientes del tiempo. Los problemas
de este tipo son comunes en la física matemática, porque provienen
de la mecánica cuántica, clásica y celestial.

La meta de la tesis es construir integradores para unos problemas rele-
vantes no autónomos: la ecuación de Schrödinger, que es el fundamento
de la mecánica cuántica; las ecuaciones de Hill y de onda, que describen
sistemas oscilatorios; el problema de Kepler con la masa variante en
el tiempo.

El Capítulo  describe la motivación y los objetivos de la obra en
el contexto histórico de la integración numérica. En el Capítulo  se in-
troducen los conceptos esenciales y unas herramientas fundamentales
utilizadas a lo largo de la tesis.

El diseño de los integradores propuestos se basa en los métodos
de composición y escisión y en el desarrollo de Magnus. En el Capítulo 
se describe el primero. Su idea principal consta de una recombinación
de unos integradores sencillos para obtener la solución del problema.
El concepto importante de las condiciones de orden se describe en
ese capítulo. En el Capítulo  se hace un resumen de las álgebras de Lie
y del desarrollo de Magnus que son las herramientas algebraicas que
permiten expresar la solución de ecuaciones diferenciales dependientes
del tiempo.

La ecuación lineal de Schrödinger con potencial dependiente del tiem-
po está examinada en el Capítulo . Dado su estructura particular, nue-
vos métodos casi sin conmutadores, basados en el desarrollo de Magnus,
son construidos. Su eficiencia es demostrada en unos experimentos nu-
méricos con el modelo de Walker–Preston de una molécula dentro de un
campo electromagnético.

En el Capítulo , se diseñan los métodos de Magnus–escisión para las
ecuaciones de onda y de Hill. Su eficiencia está demostrada en los ex-
perimentos numéricos con varios sistemas oscilatorios: con la ecuación
de Mathieu, la ec. de Hill matricial, las ecuaciones de onda y de Klein–
Gordon–Fock.

El Capítulo  explica cómo el enfoque algebraico y el desarrollo
de Magnus pueden generalizarse a los problemas no lineales. El ejemplo
utilizado es el problema de Kepler con masa decreciente.

El Capítulo  concluye la tesis, reseña los resultados y traza las posi-
bles direcciones de la investigación futura.
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RESUM

Aquesta tesi tracta de la integració numèrica de sistemes hamiltonians
amb potencials explícitament dependents del temps. Els problemes
d’aquest tipus són comuns en la física matemàtica, perquè provenen de
la mecànica quàntica, clàssica i celest.

L’objectiu de la tesi és construir integradors per a uns problemes
rellevants no autònoms: l’equació de Schrödinger, que és el fonament
de la mecànica quàntica; les equacions de Hill i d’ona, que descriuen
sistemes oscil·latoris; el problema de Kepler amb la massa variant en
el temps.

El Capítol  descriu la motivació i els objectius de l’obra en el context
històric de la integració numèrica. En Capítol  s’introdueixen els con-
ceptes essencials i unes ferramentes fonamentals utilitzades al llarg de
la tesi.

El disseny dels integradors proposats es basa en els mètodes de com-
posició i escissió i en el desenvolupament de Magnus. En el Capítol ,
es descriu el primer. La seua idea principal consta d’una recombinació
d’uns integradors senzills per a obtenir la solució del problema. El con-
cepte important de les condicions d’orde es descriu en eixe capítol.
El Capítol  fa un resum de les àlgebres de Lie i del desenvolupament
de Magnus que són les ferramentes algebraiques que permeten expressar
la solució d’equacions diferencials dependents del temps.

L’equació lineal de Schrödinger amb potencial dependent del temps
està examinada en el Capítol . Donat la seua estructura particular,
nous mètodes quasi sense commutadors, basats en el desenvolupament
de Magnus, són construïts. La seua eficiència és demostrada en uns
experiments numèrics amb el model de Walker–Preston d’una molècula
dins d’un camp electromagnètic.

En el Capítol  es dissenyen els mètodes de Magnus–escissió per a
les equacions d’onda i de Hill. El seu rendiment està demostrat en els
experiments numèrics amb diversos sistemes oscil·latoris: amb l’equació
de Mathieu, l’ec. de Hill matricial, les equacions d’onda i de Klein–
Gordon–Fock.

El Capítol  explica com l’enfocament algebraic i el desenvolupament
de Magnus poden generalitzar-se als problemes no lineals. L’exemple
utilitzat és el problema de Kepler amb massa decreixent.

El Capítol  conclou la tesi, ressenya els resultats i traça les possibles
direccions de la investigació futura.
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1
MOTIVAT ION

The theme of the present thesis is geometric numerical integrators for
DEs with variable coefficients. In short, the flow of a DE expresses its
solution, and some classes of equations possess flows with specific
structural properties. Geometric methods, compared to most of the
so-called general-purposed methods, are specifically tailored to preserve
these properties in numerical solutions. Besides an improvement in
qualitative behaviour, they also provide better long-time integration
results.

The motivation of geometric integration comes from many sciences:
quantum physics, molecular dynamics, physical chemistry, classical
mechanics, astronomy, molecular dynamics, numerical analysis itself,
and other branches of mathematics.

the goal of the thesis is to construct geometric numerical integrat-
ors for the linear time-dependent Schrödinger, Hill and wave equations,
and the non-linear Kepler problem with time-variant mass by taking
into account the specific structure of these problems. The new methods
are expected to be more efficient with lower computational cost and
higher accuracy, especially in large time scales.

the structure of the work is as following. In order to have a look
on a bigger picture and to explain the rationale behind the ideas used,
we provide a short overview that outlines relevant events of the history
numerical integration.

The rest of the thesis is arranged in a prevalently deductive manner.
We begin with basic definitions. The introductory chapters describe
mathematical tools that lay foundations for the design of integrators:

• discretization of DEs,

• splitting and composition methods,

• Lie algebras which simplify the analysis of Lie groups,

• the Magnus expansion (ME) that expresses the solution of time-
dependent linear DE,

• matrix exponentiation.

With respect to the main part, we describe the design of the following
types of methods:





 motivation

• unitary integrators for the Schrödinger equation (SE) with time-
dependent potentials in Chapter ;

• symplectic integrators for non-autonomous Hamiltonian systems:
the Hill equation (HE) and the wave equation (WE) in Chapter ;

• a generalisation of the above-mentioned to the non-linear case on
the example of the Kepler problem with time-dependent mass.

All the methods are constructed as symmetric schemes, therefore they
are suitable for reversible systems.

. historical overview

Although some apparatus of infinitesimal calculus was known and used
to find finding areas and quadratures of curves as early as classical
antiquity, it did not form any closed theory [].

But it was not until the late th century, when Isaac Newton and
Gottfried Leibniz created calculus. The term itself and most of the
modern notation are credited to the latter [, ]. The two scholars set
forth the idea of describing processes via DEs, both ordinary and partial.

The theory and its tools were rapidly advanced by Newton, Leibniz,
the brothers Jakob (who proposed the name ‘integral’ []) and Johann
Bernoulli [, ], and Jacopo Francesco Riccati.

Leonhard Euler extensively studied linear autonomous DEs of higher
orders and corresponding systems with constant coefficients. He also
researched some equations with variable coefficients []. Euler’s ideas
were developed by Daniel Bernoulli, Jean-Baptiste d’Alambert, Joseph-
Louis Lagrange and Adrien-Marie Legendre []. By the middle of
the th century, the theory of differential equations was shaped as
a separate branch of mathematics.

The growth of interest in DEs was prevalently driven by the applied
problems in general and celestial mechanics, physics, ballistics, etc.
The one-dimensional wave equation, which describes a vibrating string,
was discovered by d’Alambert, and the three-dimensional — by Euler.
Similar problems drew the interest of Bernoulli and Lagrange [, ].

Classical numerical integrators

Already the works of the pioneers showed the limited possibility of
the resolution of the DE in analytic form. Consequently, new ways for
integration were to be found.

Leonhard Euler created [, ] the first general approximate method
for solving initial value problem (IVP) for a st-order DE

dy(t)
dt

= f (t,y), y(t0) = y0. (.)



. historical overview 

To apply the method, we divide the time interval [t0; tf ] by n points
into n−1 time steps t0, t1, . . ., tn−1 B tf (for simplicity assume them to be
constant τ B tk − tk−1 ∀k). Then we use the simplest finite-differences Henceforth we use

the dot notation
for derivatives
with respect
to time: ẏ B dy

dt

approximation to ẏ to calculate yk B y(tk):

yk = yk−1 + τf (tk−1,yk−1). (.)

The scheme is called the explicit Euler method. This approach is general-
ised straightforwardly to linear systems of differential equations.

More advanced, in a certain manner, modifications of the Euler
method are the implicit (backward) Euler

yk = yk−1 + τf (tk ,yk)

and the implicit midpoint rule

yk = yk−1 + τf
(
tk−1 +

τ
2

,
yk−1 + yk

2

)
, (.)

which already has nd order of accuracy and is the simplest symmetric
method: the formula stays the same if we integrate backwards in time
by changing τ to −τ and yk−1 to yk .

More advanced methods can be obtained with the following logic.
we can integrate (.) and get

yk = yk−1 +

tk∫
tk−1

f (t,y(t))dt. (.)

Approximating the right-hand side with an appropriate quadrature rule,
we get a new numerical method, for instance, the implicit trapezoidal
rule:

yk = yk−1 +
τ
2
(f (tk−1,yk−1) + f (tk ,yk)). (.)

In the end of the th century Carl David Tolmé Runge used this ap-
proach with ‘prediction’ of yk by means of the Euler method []. It be-
came the foundation of a large family of integrators. These ideas were
developed by Martin Wilhelm Kutta and Karl Heun. Various optimised
versions of Runge–Kutta methods eventually became the default option
in many numerical packages [, , , ].

An s-stage Runge–Kutta method is defined through a set of coeffi-
cients ai,j , bi and ci :

yk = yk−1 + τ
s∑
i=1

biki ,

ki = f
(
tk−1 + ciτ , yk−1 + τ

s∑
j=1

aijkj

)
, i = 1, . . . ,s.

(.)



 motivation

The coefficients are usually displayed as a Butcher tableau

c A

bT
B

c1 a1,1 . . . a1,s
...

...
. . .

...

cs as,1 . . . as,s

b1 . . . bs

The matrix A of explicit methods is strictly lower triangular (i. e. ai,j ≡ 0
for j ≥ i), and these zeros are omitted for clarity. For example, we provide
tableaux for two th-order methods: the explicit 3/8-rule (on the left) and
the implicit collocation Runge–Kutta (RK) Gauss–Legendre (GL) method:

1
3

1
3

2
3 −

1
3 1

1 1 −1 1
1
8

3
8

3
8

1
8

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

As the theory of differential equations grew and their understanding
deepened, it became apparent that some problems possess properties
that hinder them from being solved ‘well’ by general methods.

One example is stiff problems which are defined in various ways
as systems: a) where implicit methods are ‘tremendously’ better than
explicit; b) with components in different timescales (i. e. fast and slow);
c) with enormous maximal eigenvalue [, , , ]. As a result,
these equations compel small time steps (hence high computational
cost) to overcome numerical instability when solved with explicit meth-
ods []. In this case linear multistep methods, which use previously
computed values to advance the solution, produce robust results. They
were introduced by John Couch Adams, Francis Bashforth and advanced
by Forest Ray Moulton and William Edmund Milne, hence the names
of explicit Adams–Bashforth and implicit Adams–Moulton methods. An-
other implicit family named the backward differentiation formula (BDF)
was introduced in the middle of th century []. Good results for
stiff problems are also obtained by the implicit Runge–Kutta methods,
described later by John Charles Butcher [, ].

Geometric integration

According to
ISO -,

accuracy is the
closeness of
agreement

between a test
result and the

accepted reference
value

Although the general methods provide convenient practical schemes
for solving many types of DEs, they suffer from certain shortcomings.
Most importantly, when a problem has some underlying geometry, most
of them fail to preserve the structural properties of solutions such as:
symplecticity, volume, energy and other first integrals [] — which has
a direct effect on the accuracy of the solution, especially for long-term
integration.



. shortcoming of the existing methods 

Fortunately, it is possible to construct specialised methods that take
into account the properties of the problem at hand and prevent the
loss of geometric structure. This approach was termed geometric in-
tegration by Jesús María Sanz Serna []. Geometric solvers were
mainly developed for Hamiltonian problems which have different struc-
tural invariants, for instance, energy and symplecticity []. However,
no method can preserve both properties []. The preservation of
structure is addressed by different approaches []: backward error
analysis; composition and splitting methods; exponential integrators;
variational integrators; Lie-group methods [].

Methods presented in this work are designed to preserve symplecticity
in Hamiltonian problems.

. shortcoming of the existing methods

As we have seen, some common problems can benefit from the applica-
tion of geometric integrators. Now, we will enumerate some issues we
strive to improve upon in new numerical schemes.

general linear methods Most classical integrators belong to
this class. They can solve a wide range of equations but have significant
disadvantages:

• explicit RK methods cannot be symplectic [] (thus, produce not
so good results for long-time integration of Hamiltonian systems)
and can be unstable for large time steps;

• implicit RK can be symplectic (as are the collocation GL methods)
and stable, but have reasonable implementation cost only up to
order , with more effort required if the system is not linear [];

• multistep methods can use variable time step and lower com-
putational expenses by changing their order, but are either not
symplectic or of low order [].

geometric methods In general, one expects structure preserva-
tion and, thus, more accurate results from geometric methods. However,
we can name several flaws related to the integration of non-autonomous
problems:

• most composition and splitting methods can be adapted to this
case, but show suboptimal results;

• integrators based on the direct application of the Magnus expan-
sion (ME) are well-suited for time-dependent problems, but the
presence of commutators makes them expensive;
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• the commutator-free methods try to circumvent the aforemen-
tioned obstacle; these methods perform well in both linear [] and
non-linear [] cases; they also show good results for oscillatory
problems; however, they are rather general;

• exponential variational methods are designed for stiff and highly-
oscillatory problems with constant linear part [] and cannot be
directly applied to the fully time-dependent case;

• the so-called Runge–Kutta–Nyström (RKN) methods for nd-order
problems ÿ = f (y) have reasonable cost and good performance,
but it is possible to make better methods for non-autonomous
problems with some specific structure.

The techniques we will use in this work are expected to produce nu-
merical algorithms that address these issues when the aforementioned
problems of interest are solved.



2
NUMER ICAL MODELL ING

In order to simulate a physical problem on a computer, mathematical
and then numerical models are created. The former encode the problem
in the formal language of mathematics, while the latter is needed to
create a suitable digital representation.

We consider physical problems that are described by differential
equations (DEs). If the equations are given in partial derivatives or have
order higher than one, then the first step is to convert them to a more
convenient st-order system of ordinary differential equations (ODEs).

. basic definitions

Following
ISO -,
capital bold letters
(A, B etc.) denote
matrices and
lowercase bold
(y . . .) – vectors

To introduce basics concepts we consider the initial value problem (IVP)
for a d-dimensional st-order system of ODEs in normal form:

ẏ(t) = f (t,y(t)), y(t0) = y0, y ∈ Cd. (.)

Every state y of the system can be represented in the phase space [].
The right-hand side function f (t,y(t)) is a vector field that at any point of
the phase space shows velocity of the solution y(t) that passes through
that point [].

The relation between an initial value y0 and the solution y(t) is ex-
pressed by a one-parametric group of transformations of the state space
called the exact flow ϕt of the system [, , ]:

ϕt(y0) = y(t) for y0 = y(t0). (.)

On the other hand, if y0 is fixed, then ϕt(y0) expresses the solution of
the IVP. The map ϕt is time symmetric: the integration from t0 to tf and
then backwards does not change the trajectory and recovers the initial
value.

Every numerical method (say, the explicit Euler (.)) is associated
with the one-parameter mapping Ψτ : yk−1 7→ yk which is called the nu-
merical flow of the system []. A method is of order p if it approximates
the exact flow with an error O

(
τp+1

)
= Ψτ (yk−1)−ϕτ (yk−1).

The adjoint method Ψ∗τ is the inverse of Ψτ with reversed time step [,
]: Ψ∗τ B Ψ−1

−τ . The adjoint method has the same order as the ori-
ginal []. If a method and its adjoint are the same: Ψ∗τ BΨτ , then it is
called symmetric (e. g. the implicit midpoint on page ).

The main scope of the thesis is the time-integration of non-autonomous
Hamiltonian systems, which are common in physics. They are de-


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scribed equations defined by means of a function with vector arguments
H(t,q,p) : R×Rd ×Rd →R, called Hamiltonian:Subscripted

gradient ∇xH
stands for

elementwise dif-
ferentiation ∂H

∂xi

ṗ= −∇qH(t,q,p), q̇= ∇pH(t,q,p). (.)

H represents the total energy of the system. When H is autonomous,
a numerical method is called energy-preserving ifH(q0,p0) ≡H(qk ,pk) ≡
const for any k.

If we put uB (q,p)T , dimu= 2d, then (.) can be written as

u̇= J2d∇uH(u), (.)

where J2d is the canonical matrix

J = J2d =

 O Id
−Id O

 . (.)

A system’s flowϕt(u) is a symplectic transformation if its Jacobian matrix
ϕ′t for t ≥ 0 verifies

ϕ′t(u)
T Jϕ′t(u) ≡ J .

Accordingly, an integrator Ψ is symplectic if

Ψ′τ (u)
T JΨ′τ (u) ≡ J . (.)

. reduction to first-order systems

Assume a nd-order system of ODEs in normal form

ÿ = f (t,y).

Then, by putting u1(t) B y and u2(t) B ẏ, we obtain the following
st-order system:

u̇=

 ẏ

f (t,y)

 .

If the equation is linear, as

ÿ = N (t)y,

then the corresponding system is

u̇=

O I

N O

u. (.)

As it has been mentioned on page , to propagate solution u in time,
the given integration interval [t0; tf ] is divided into equal small time
steps of length τ , and stepwise approximations uk to the solution values
u(tk) are evaluated at the temporal grid points tk = t0 + τk.



. fast fourier transform 

We have introduced time steps of equal length. However, general
methods, like RK, improve their efficiency if adaptive time-stepping
is used [, ]. It turns out that geometric integrators generally deteri-
orate when used with standard step size control [, ]. Consequently,
to maintain good qualitative behaviour and a slow error growth, they
should be used with fixed time step. Nevertheless, some methods were
adapted to use variable steps, retaining the benefits [, ].

Spatial discretization is necessary when a problem is formalised with
a partial differential equation (PDE) with a linear operator f (t,x):

∂y(t)

∂t
= f (t,x)y(t).

The usual way to proceed in to discretize it in space with a sufficiently
dense d-point mesh [] which yields a d-dimensional vector u. By doing
so, we obtain a first-order system of ODEs with respect to time:

u̇= F (t)u.

Alternatively, finite differences, spectral collocation methods with tri-
gonometric polynomials, the Galerkin method with Hermite basis or
other methods can be used [] for certain types of equations.

Moreover, the so-called postponed discretization can also be used [,
]. This approach is of service when certain relations, arising from
problem, are easier to treat in analytical form. Methods are constructed
using this representation and converted to a discrete (matrix) form at
the last stage.

. fast fourier transform

This is the most important algorithm
of our lifetime.

Gilbert Strang []

Partial differential equations considered in this work require calcula-
tion of spatial derivatives. Under an assumption of periodic boundary
conditions, fast Fourier transform (FFT) algorithms [] can be used to
compute them in an accurate and efficient manner.

The continuous Fourier transform F represents a function f (x) in
the basis of harmonic functions of frequency ω:

f̂ (ω)B (F f )(ω) =
∞∫
−∞

e−iωxf (x)dx.

The inverse transform F −1f̂ restores f :

f (x) =

∞∫
−∞

eiωx f̂ (ω)dω.
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Let f (x) be a periodic function with period X and {fk} is a sequence
of its values at d points {xk}B {kX/d}, k = 0, . . . ,d − 1. Then, the discrete
Fourier transform (DFT) processes {fk} in the following way:

f̂n =
1
d

d−1∑
k=0

e−
2πi
d knfk , n= 0, . . . ,d − 1;

the inverse being

fk =
d−1∑
n=0

e
2πi
d knf̂n, k = 0, . . . ,d − 1.

In other words, the DFT switches representations between a space and
its corresponding frequency (Fourier) domain.

The naive implementation, following from the definition, requires
O(d2) products. Fortunately, FFT algorithms can employ the ‘divide and
conquer’ paradigm to reduce the number of operations to O(d logd),
which is specifically notable for large sequences.

A result, important for the construction of integrators is that, given
samples of a periodic function, an FFT can be used to compute derivat-
ives of this function [, , ]. To this end, it is convenient to express
the DFT in a symmetric form. As before, let f (x) be X-periodic and d be
even, and the DFT reads [, ]:

f̂n =
1
d

d−1∑
k=0

e−
2πi
d knfk , n= −

d
2
+ 1, . . . ,

d
2

. (.)

This permutation means moving the zero frequency component to
the centre of the spectrum. After putting f̂−d/2 ≡ f̂d/2 inverse symmetric
DFT reads []:

fk =
d/2∑

n=−d/2

e
2πi
d knf̂n, k = 0, . . . ,d − 1. (.)

Then, the following procedure is applied to calculate the jth derivative
of f (x) evaluated at {xk}:
Algorithm : Periodic spectral differentiation

Data: values {fk} of f (x), derivative order j;
 centre the zero frequency compute {f̂k} with an FFT;

 compute ŵk B
(
k 2πi
X

)j
f̂k ;

 if j is odd then
 ŵd/2 B 0
 end
 compute w from ŵ with the inverse FFT;

Result: values {wk} of dj f (t)
dxj

.



. matrix exponentials 

For practical implementation it is important to take into account
the order in which the Fourier coefficients are stored []. For ex-
ample, in matlab [] and SciPy [] they are stored in an array,
where the first element is the zero frequency, then go the positive
and negative frequencies in ascending order. Consequently, functions
like fftshift/ifftshift should be applied either to the sample or
the wavenumber array.

. matrix exponentials

The core stage of the integration of linear systems is matrix exponenti-
ation. In the numerical case there are many approaches to compute mat-
rix exponentials [], and they should be chosen according to the matrix
size and structure. In this section we review some methods, relevant to
the problems we strive to solve.

.. Simplest cases

The matrix exponential of a square matrix Z is defined as the power
series

eZ =
∞∑
k=0

Z k

k!
. (.)

As a result, eO= I .
There are two particular cases when the matrix exponential is ex-

pressed trivially:
Assume a diagonal matrix D = diag{d1, . . . ,dn}. Its exponential is

computed simply by exponentiating the diagonal elements:

eD=


ed1

. . .

edn

 .

A matrix Z is called nilpotent of order k, if Z k = O. In this case,
the power series reduces to a polynomial

eZ = I + . . .+
Z k−1

(k − 1)!
. (.)

Particularly, if Z is block nilpotent or order , for instance,

Z =

O B

O O

 ,
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then its exponential does not require raising the matrix to any power:

eZ =

 I B

O I

 .

.. Scaling and squaring

The most widely used algorithm to compute the exponential of a general
matrix is the scaling and squaring with Padé rational approximation [,
, ], although more efficient methods based on Taylor polynomials
were proposed []. These general algorithms are suitable for matrix
dimensions of several hundred []. In general, given a matrix Z from
a Lie algebra g, they do not guarantee that expZ belongs to the corres-
ponding group G (see Chapter ). However, for some specific classes
of matrices there exist methods with similar computational cost that
ensure that the expZ ∈ G [].

The cornerstone of the approach is the following property:

eZ =
(
eZ/2m

)2m
.

The exponent m is usually chosen to be the minimal integer to obtain
‖Z ‖/2m ≤ 1, so that eZ/2m can be efficiently and robustly computed by
the approximants. Afterwards, the exponential is restored by repeated
squaring.

.. Approximation in the Krylov subspace

Often the exponential itself is not important, but the action eZu on
a non-zero vector u is of interest. Moreover, when Z is large (with dimen-
sion being thousands) and sparse, scaling and squaring may be overly
expensive. Then, it is reasonable to approximate eZu in the Krylov
subspace.

To this end, the orthonormal basis Vm B [v1, . . . ,vm] of the subspace
is built by the Arnoldi process, which consists of the repeated multiplic-
ation of Z and u with subsequent orthogonalisation. The parameter
m is typically much smaller that the matrix dimension d. The process
requiresmmatrix–vector products (MVPs) and yieldsm+1 vectors. Next,
the exponential is approximated via the exponential of a smaller Hessen-
berg (‘almost triangular’) matrix Hm, which can be computed by scaling
and squaring:

eZu ≈ ‖u‖2Vm eHme1, (.)

where e1 is the first column of the identity matrix Id×d .
The Krylov subspaces of Z and τZ are identical [], therefore

eτZu ≈ ‖u‖2Vm eτHme1, ∀τ .
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Notice, that the resulting matrices Vm and Hm are square, as they do not
include the last obtained elements vm+1 and hm+1,m.

Let ZH be an Hermitian matrix as in the discretized SE ∂u
/
∂t =

−iZHu. Then the Lanczos algorithm [] can be used to speed up the basis
calculation, and the Hessenberg matrix becomes symmetric and tridiag-
onal. Taking into account the imaginary unit and unitarity of the state
vector (‖u‖2 = 1), the exponential is calculated as

e−iτZH u ≈ Vm e−iτTm e1. (.)

It is convenient to estimate the subspace dimensionm during iteration.
To this end, the following practical estimator can be used at step j:

errorj = hj+1,j

(2
3

∣∣∣∣eTj e−iτTj/2 e1

∣∣∣∣+ 1
6

∣∣∣∣eTj e−iτTj e1

∣∣∣∣),
where e1 and ej are the first and last column of Ij×j , respectively. Having
estimated the error, the iteration can terminate if the error is smaller
that a desired tolerance (i. e. error ≤ tol), and mB j.
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Algorithm : Arnoldi iteration []
Data: matrix Z , non-zero vector u

 normalise v1 B u/‖u‖2 ;
 for j = 1, . . . ,m do
 multiply wB Zvj ;
 for i = 1, . . . , j do
 compute the dot product hi,j = w · vi ;
 modify w = w − hi,jvi ;
 end
 compute the next elements hj+1,j B ‖w‖2 and

vj+1 B w/hj+1,j .
 end
Result: matrix of basis column vectors Vm B [v1, . . . ,vm] and

m×m upper Hessenberg matrix Hm.

Algorithm : Lanczos algorithm [, ]
Data: Hermitian matrix ZH , unitary vector u, β1 B 0

 for j = 1, . . . ,m do
 multiply wB ZHvj ;
 compute the dot product αj = w · vj ;
 modify w = w −αjvj − βjvj−1;
 compute the next elements βj+1 B ‖w‖2, vj+1 B w/βj+1;
 end
 fill the matrix Tm with tj,j B αj and tj+1,j ≡ tj,j+1 B βj+1.
Result: matrix of basis column vectors Vm B [v1, . . . ,vm] and

m×m symmetric tridiagonal matrix Tm.
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COMPOS IT ION AND SPL ITT ING METHODS

This chapter describes two important techniques for designing geo-
metric integrators: composition and splitting []. The main idea is
to combine simpler schemes with appropriate coefficients to get higher-
order methods.

First, we show how the idea is applied to autonomous problems. Then,
how it can be generalised to time-dependent ones. Finally, we explain
how suitable composition coefficients are found.

. autonomous case

.. Composition of methods

In the notation of Chapter , assume that ϕt is the flow of an autonom-
ous equation ẏ = f (y). Let ψτ be a numeric approximation of order p
to ϕτ that preserves some geometric properties of the solution.

It is possible to construct a method of a higher order in the following
way: build a composition with appropriate real coefficients a1, . . . ,as:

Ψτ B ψasτ ◦ψas−1τ · · · ◦ψa2τ ◦ψa1τ .

If it satisfies two conditions []a1 + . . .+ as = 1,

a
p+1
1 + . . .+ a

p+1
s = 0,

then the new method has at least order p+ 1. Since these equations
do not have real solutions for odd p, the procedure is only valid for
even-order methods.

However, we can compose the same method with its adjoint ψ∗τ :

Ψτ B ψbsτ ◦ψ
∗
asτ · · · ◦ψb1τ ◦ψ

∗
a1τ . (.)

Consequently, conditions for order p+ 1 become []a1 + b1 + · · ·+ as + bs = 1,

a
p+1
1 + (−1)pbp+1

1 + · · ·+ ap+1
s + (−1)pbp+1

s = 0,

allowing an order increase for odd p. This tactic produces a nd-order
symmetric method from any consistent st-order method (with p = s =
1 and a= b = 1/2):

Ψ[2]
τ = ψτ/2 ◦ψ∗τ/2 or Ψ[2]

τ = ψ∗τ/2 ◦ψτ/2.





 composition and splitting methods

By combination of these two approaches we can raise the order fur-

ther. Given an even-order symmetric scheme Ψ[p]
τ , the Suzuki–Yoshida

technique [, ] yields a symmetric scheme of order p+ 2:

SS[p+2]
τ = Ψ[p]

aτ ◦Ψ[p]
bτ ◦Ψ[p]

aτ ,

where a=
1

2− 21/(p+ 1)
, b = 1− 2a.

(.)

Compositions have the same structure-preserving properties as the ba-
sic method. However, the trade-off is that high-order methods obtained
this way lead to numerous function evaluations.

example : symmetric compositions Consider compositions

of a nd-order symmetric method Ψ[2]
τ :

SS[p]τ =
s∏
i=1

Ψ[2]
aiτ . (.)

If we do not aim to minimize the number of steps s, then we can build
methods which show a good performance.

Among th-order methods, more precise approximations are obtained
with the Suzuki fractal scheme []:

a1 = a2 = a4 = a5 =
1

4− 41/3
, a3 =

41/3

4− 41/3
. (.)

The coefficients of the th-order -stage method SS[6]9 that minimises
maxi |ai | are the following []:

a1 = a9 = 0.392161444007314

a2 = a8 = 0.332599136789359

a3 = a7 = −0.706246172557639

a4 = a6 = 0.082213596293551

a5 = 0.798543990934830.

(.)
Analogously, an optimised th-order method SS[8]17 has  stages, and its
coefficients read []:

a1 = a17 = 0.130202483088890

a2 = a16 = 0.561162981775108

a3 = a15 = −0.389474962644847

a4 = a14 = 0.158841906555156

a5 = a13 = −0.395903894133238

a6 = a12 = 0.184539640978316

a7 = a11 = 0.258374387686322

a8 = a10 = 0.295011723609310

a9 = −0.605508533830035.

(.)



. autonomous case 

A well-optimised th-order method SS[10]
35 [] has the coefficients

a1 = a35 = 0.078795722521686

a2 = a34 = 0.313096103415109

a3 = a33 = 0.027918383235078

a4 = a32 = −0.229592841593907

a5 = a31 = 0.130962061077165

a6 = a30 = −0.269733405654511

a7 = a29 = 0.074973343155891

a8 = a28 = 0.111993423999810

a9 = a27 = 0.366133449546227

a10 = a26 = −0.399105630136036

a11 = a25 = 0.103087398527471

a12 = a24 = 0.411430873955890

a13 = a23 = −0.004866360583135

a14 = a22 = −0.392033353708640

a15 = a21 = 0.051942502962450

a16 = a20 = 0.050665090759924

a17 = a19 = 0.049674370639730

a18 = 0.049317735759595.
(.)

Note: although in these examples the number of stages increases expo-
nentially each time the order grows by , it approximately doubles, not
triples as in (.).

.. System splitting

Let us turn our attention to systems ẏ = f (y), whose right-hand side
can be split into a sum of vector fields:

f (y) = f {1}(y) + f {2}(y) + . . .f {k}(y).

Suppose that each part can be solved numerically (or even analytic-
ally), with solutions being ψ{i}τ , i = 1, . . . ,k. Then the composition of
the corresponding solutions

Ψτ = ψ
{k}
τ ◦ . . . ◦ψ

{2}
τ ◦ψ

{1}
τ (.)

provides a st-order approximation to the exact solution (hence the name
splitting method).

A rather common structure of DEs is a system of two linear vector
fields

f (u)B Au+Bu. (.)

For instance, in Hamiltonian systemsAmay represent the kinetic energy
and B — the potential. Consider the autonomous case, when each part
is integrated exactly. We can compose the solutions of each part to get
the simple Lie–Trotter splitting and its adjoint [, ]: Also called

symplectic Euler,
Euler–CromerLTτ = ψ

{A}
τ ◦ψ

{B}
τ = eτAeτB,

LT∗τ = ψ
{B}
τ ◦ψ

{A}
τ = eτBeτA.

(.)

Taylor expansion shows that both of them are st-order methods, that is,
LTτ (uk) = ϕτ (uk) +O

(
τ2

)
.



 composition and splitting methods

The composition of the Lie–Trotter scheme with its adjoint gives
the symmetric nd-order Størmer–Verlet methods [, ]:Other names are:

Strang splitting,
leapfrog, Newton–

Størmer–Verlet,
Encke

SVτ = LTτ/2 ◦LT∗τ/2 = e
τ
2AeτBe

τ
2A;

SV∗τ = LT∗τ/2 ◦LTτ/2 = e
τ
2BeτAe

τ
2B .

(.)

These schemes possess the first-same-as-last (FSAL) property:

(SVτ )
k = e

τ
2AeτBe

τ
2A· · ·e

τ
2AeτBe

τ
2A︸                          ︷︷                          ︸

k times

= e
τ
2AeτB

(
eτAeτB

)k−1
e
τ
2A,

which means that k steps of the Størmer–Verlet require nearly the same
number of operations as k steps of the Lie–Trotter scheme.

. time-dependent case

A non-autonomous IVP ẏ = f (t,y), y(t0) = y0 can be written in autonom-
ous form [] by making t a dependent variable:

d
dt

ytd
=

f1
 ,

y(t0)td(t0)

=
y0

t0

 .

Accordingly, a similar procedure is possible for a split system when
applied to its parts. Let us again consider a linear two-part system,
but with time-dependence:

u̇= A(t)u+B(t)u. (.)

Two approaches [] can be used to make the system autonomous:

• ‘time averaging’ replaces the autonomous flows in (.) by the flows,
corresponding to time-dependent problems

u̇= A(t)u, t ∈ [t0 + ckτ ; t0 + (ck + ak)τ ],

u̇= B(t)u, t ∈ [t0 + dkτ ; t0 + (dk + bk)τ ];

a0 B 0, ck =
k−1∑
i=0

ai , b0 B 0, dk =
k−1∑
i=0

bi ;

(.)

• ‘time freezing’ substitutes ψ{A}akτ and ψ{B}bkτ by the flows, associated
with the autonomous vector fields of

u̇=A(t0 + dkτ ,u), t ∈ [t0 + ckτ ; t0 + (ck + ak)τ ],

u̇=B(t0 + ckτ ,u), t ∈ [t0 + dkτ ; t0 + (dk + bk)τ ].
(.)
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Note how ck and dk are switched in the time-freezing. Consequently,
time-averaging is equivalent to

d
dt


u

tA
tB

=

A(tA)u

1

0

+

B(tB)u

0

1

 , (.)

and freezing can be expressed as

d
dt


u

tA
tB

=

A(tA)u

0

1

+

B(tB)u

1

0

 . (.)

. order conditions

Splitting and composition methods are defined by means of coefficients
which define the fractional time steps of each basic scheme. They are
obtained as the solutions of so-called order conditions that are a set of
non-linear algebraic equations. There are two [] commonly used tech-
niques: based on the Baker–Campbell–Hausdorff (BCH) formula []
and generalised B-series []. We will focus on the first one.

.. Baker–Campbell–Hausdorff formula

The formula can
be generalised for
operators

When matrices A and B do not commute, it follows from (.) that
eAeB , eA+B. The BCH formula expresses

C = ln
(
eAeB

)
(.)

as a formal power series in A and B. The BCH theorem states that

C = A+B+
1
2
[A,B] +

1
12

([A, [A,B]]− [B, [A,B]]) + . . . (.)

Here square brackets stand for the default matrix commutator [A,B]B
AB −BA.

We can get its symmetric version, applying the formula twice:

eS= eA/2eBeA/2. (.)

Due to symmetry, even elements will vanish:

S = A+B − 1
24

[A, [A,B]]−
1

12
[B, [B,A]] + . . . (.)
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.. Order conditions via BCH

Let us consider a composition for an autonomous split linear sys-
tem (.):We assume this

form without loss
of generality:

a method could
start with B

Ψ[p]
τ = eτbsBeτasB . . .eτb1Beτa1A. (.)

After the sequential application of the BCH formula to the right-hand

side, we obtain Ψ[p]
τ = expP [p]τ . The exponent P [p]τ is a power series in τ :

P
[p]
τ = τ(pAA+ pBB) + τ

2pAB[A,B] + . . . (.)

Its coefficients pIJK... are multivariate polynomials in ai and bi . We want
a method of order p:

eP
[p]
τ = eτ(A+B)+O

(
τp+1

)
. (.)

Now we see that the consistency conditions pA = 1, pB = 1 should be
satisfied and for the rest pIJK... = 0.

There is one order condition for each element generated by A and B
(more formally, for each basis element of the free Lie algebra, generated
by these operators; see the next chapter). For a general, non-symmetric
splitting method their number grows drastically with the desired order
of a method. However, if we compose flows symmetrically by putting
bs B 0 and

Ψ[p]
τ = eτasAeτbs−1B · · ·eτb1Beτa1A,

ai = as+1−i , bi = bs−i , i = 1 . . . s,
(.)

then even order conditions are automatically satisfied.
In general, it is desirable to have only real positive coefficients to

avoid backward integration in time, which can be ill-defined for some
problems. Unfortunately, any splitting method of order p ≥ 3 has negat-
ive coefficients [, ]; for an elegant proof of the statement we refer
to []. Backward steps do not pose any limitation for reversible prob-
lems (Hamiltonian, in particular) but are still undesirable as they may
lower computational efficiency.

Order conditions may be easier to solve if a problem possesses a fa-
vourable structure. Consider linear equations ÿ = f (t,y). For example,Here we use

the notation
of []

Hamiltonian systems with the kinetic energy quadratic in momenta
belong to this class and are defined through H(q,p) = pTp/2+V (q)C
A(p) + B(q). Simplification occurs thanks to [B, [B, [B,A]]] ≡ O. Fur-
thermore, take ÿ = Ny equivalently described by H(q,p) = pTp/2 +
qTNq/2. It can be represented as a st-order system (.):

u̇=


O I

O O

︸  ︷︷  ︸
CA

+

O O

N O

︸  ︷︷  ︸
CB

u, (.)
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in which the order conditions for [A, [A, [A,B]]] ≡ O are also satisfied
automatically.

example : symmetric rkn methods Consider symmetric com-
positions (.) for Hamiltonian systems written as (.). Efficient
methods of this form were proposed in []. The th-order -stage

method RKN[4]
6 is defined by

a1 = a6 = 0.245298957184271

a2 = a5 = 0.604872665711080

a3 = a4 = 1/2− (b1 + b2);

b1 = b7 = 0.082984406417405

b2 = b6 = 0.396309801498368

b3 = b5 = −0.039056304922349

b4 = 1− 2(a1 + a2 + a3);
(.)

and the th-order -stage RKN[6]
11 has the following coefficients:

a1 = a11 = 0.123229775946271

a2 = a10 = 0.290553797799558

a3 = a9 = −0.127049212625417

a4 = a8 = −0.246331761062075

a5 = a7 = 0.357208872795928

a6 = 1− 2
∑5
i=1 bi ;

b1 = b12 = 0.041464998518262

b2 = b11 = 0.198128671918067

b3 = b10 = −0.040006192104153

b4 = b9 = 0.075253984301581

b5 = b8 = −0.011511387420688

b6 = b7 = 1/2−
∑5
i=1 ai .

(.)





4
MAGNUS EXPANS ION-BASED INTEGRATORS

This chapter is dedicated to the main tools used for the design of
the integrators in the present thesis: Lie groups and the Magnus ex-
pansion (ME). The ME is one of the options to express the solution of
a time-dependent problem as an infinite series. It is chosen for the fol-
lowing important property: if the solution belongs to some Lie group,
any ME truncation is in this group too. Consequently, the geometric
structure can be preserved.

. lie groups and lie algebras

.. Lie groups

A group G is a set with a binary operation × (usually called multiplica-
tion), obeying the following rules:

• a× b ∈ G if a,b ∈ G (closure);

• a× (b × c) = (a× b)× c ∀a,b,c ∈ G (associativity);

• ∃e ∈ G : e × a ≡ a× e ≡ a ∀a ∈ G (identity element);

• for any a ∈ G ∃a−1 : a× a−1 ≡ a−1 × a ≡ e (inverse elements).

A Lie groupG is a group with the structure of a differentiable manifold,
such that the mapping µ : G × G → G defined as µ(a,b) → a b−1 is
differentiable [].

In general, Lie groups are complicated objects, but their study can be
simplified by considering a connected entity called Lie algebras. Omit-
ting most formal definitions, the correspondence is expressed by the ex-
ponential mapping exp : g→ G which associates with an element α ∈ g
the element x(1) of its integral curve ẋ = αx(t), x(0) = e [].

.. Lie algebras

A Lie algebra g is a vector space, endowed with a bilinear mapping
g× g→ g, satisfying the following properties for ∀α,β,γ ∈ g:

• [α,β] = −[β,α] (skew symmetry; anticommutativity);

• [α,α] ≡ 0 (alternation);

• [α, [β,γ ]] + [β, [γ ,α]] + [γ , [α,β]] ≡ 0 (Jacobi identity).





 magnus expansion-based integrators

For any element χ ∈ g the adjoint action [] can be defined by means
of commutators:

adχαB [χ,α],

ad0
χαB α, adkχαB [χ,adk−1

χ α] .
(.)

It has the following properties:

• ad[α,β] ≡ [adα ,adβ ] ,

• adχ [α,β] ≡ [α,adχ β] + [adχα,β] .
We use lowercase

fraktur for Lie
algebras

A Lie algebra f is called free over the index set I [] if

• to any index i ∈ I corresponds an element αi ∈ f;

• for any Lie algebra g and mapping i→ βi ∈ g there exists a unique
Lie algebra homomorphism φ : f→ g, such that φ(αi) = βi ∀i ∈ I .

The definition means that a free Lie algebra only possesses properties,
common for any Lie algebra, and there are no additional assumptions.
Consequently, fmay be considered a universal object, and computations
in f can be transferred to g by the homomorphism φ.[gi ,gj ] means all

possible
commutators

[αi ,βj ] of αi ∈ gi
and βi ∈ gj

A Lie algebra g is called graded by an Abelian (commutative) group
a [] if it can be represented as a direct sum of subspaces gi , i ∈ A, in
such a way that [gi ,gj ] ⊆ gi+j . As an example, consider scaled elements
τ iαi of a free Lie algebra f. Since [τ iαi ,τ jαj ] = τ i+j [αi ,αj ] ∈ g, they
generate a graded free Lie algebra.

... Matrix Lie groups and their algebras

For our goals the following matrix Lie groups are of major interest:

the general linear group GL(d) consist of d × d invertible
square matrices. The elements of its corresponding Lie algebra gl(d)
matrices with zero trace.

the symplectic group Sp(2d) arises from both classical and
quantum mechanics. It consists of 2d×2d matricesM , such thatMT JM =
J , where J is the canonical symplectic matrix (.). Hamiltonian matrices
H : JH +HT J ≡O form the corresponding algebra sp(2d).

the special unitary group SU(d) is the group of unitary d ×d
matrices with determinant equal to 1. Its algebra su(d) is formed by
traceless skew-Hermitian matrices. SU(2) and SU(3) are widely used in
quantum physics.
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... Lie algebra bases and BCH formula

By definition, Lie algebras consists of generators and all their possible
commutators. Working with a free algebra may be cumbersome due to
the redundant elements generated by the Jacobi identity

[α, [β,γ ]] + [β, [γ ,α]] + [γ , [α,β]] ≡ 0.

Nevertheless, Lie algebra manipulation can be facilitated by the intro-
duction of an appropriate basis.

Different approaches are possible but the most used are: Lyndon–
Shirshov words [, ], right-nested (right-normed) commutator
basis [, ] and Hall sets [], which have well-defined generating
procedures.

Assume A and B be matrices of some Lie algebra. Since C in the BCH

formula C = ln
(
eAeB

)
belongs to the same algebra, representation in

the Hall basis can simplify the calculation of order conditions [].

. magnus expansion

Consider an IVP for a linear differential equation on a Lie groupG (albeit
valid in general):

u̇= Z (t)u(t), u(t0) = u0 ∈ G, Z ∈ g, (.)

to which different equations can be reduced as shown in Chapter .
We are interested in cases when u(t) is a real- or complex-valued vector
function. For convenience, in this section we will consider the equivalent
fundamental matrix solution Φ(t), such that u(t) = Φ(t)u(t0) and
Φ(t0) = I .

The solution of (.) cannot be expressed in a closed form, except
for isolated cases when the system matrix commutes with its integral
(called the Lappo-Danilevskii condition []):Z (t),

t∫
t0

Z (s)ds

 ≡O, t ≥ t0 (.)

and the solution is

Φ(t) = e
∫ t
t0
Z (s)ds

Φ(t0). (.)

Nevertheless, for a sufficiently small time interval, the solution of (.)
can be expressed by means of the Magnus expansion (ME) Ω(t; t0)
that is the exponent of the solution Φ(t) = expΩ(t; t0). We will omit
the second argument t0, which represents the initial time, unless it
causes confusion.
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.. Existence and properties

the existence and uniqueness of the solution is guaranteed by
the Peano theorem and the regularity of the exponential mapping from g

to G. Its form Z (t) = expΩ(t) is due to detZ (t) , 0 []. The following
result explains how to obtain this solution:

Theorem (Magnus []). Let Z (t) be a known function of t, and let Φ(t)
be an unknown function such that Φ(t0) = I . Then, if certain unspecified
conditions of convergence are satisfied, Φ(t) can be written as

Φ(t) = eΩ(t), (.)

where
dΩ(t)

dt
=
∞∑
k=0

Bk
k!

adkΩZ (t), (.)

Bk is the kth Bernoulli number [], and adΩ is the adjoint action. Integra-adχ αB [χ,α]

tion of (.) leads to an infinite series for Ω(t):

Ω =
∞∑
k=0

Ωk . (.)

The theorem can be reformulated and proved in terms of the dexp-inv
operator as following:

Theorem ([]). the solution of eq. (.) with initial condition Φ(t0) = I
can be written as Φ(t) = eΩ(t) with Ω(t) defined by

dΩ(t)

dt
= dexp−1

Ω Z (t), Ω(t0) = I , (.)

where

dexp−1
Ω Z (t) =

∞∑
k=0

Bk
k!

adkΩZ (t).

The first three terms of eq. (.) are

dΩ(t)

dt
= Z − 1

2
[Ω(t),Z (t)] +

1
12

[Ω(t), [Ω(t),Z (t)]] + . . .

Putting Ω(0) BO, we apply the Picard iteration Ω(k+1) =
∫ t
t0
Ω′

(k)(s)ds
and get

Ω(k) =

t∫
t0

(
Z (s)− 1

2

[
Ω(k−1)(s),Z (s)

]
+

1
12

[
Ω(k−1)(s),

[
Ω(k−1)(s),Z (s)

]]
+ . . .

)
ds
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which converges to Ω(t) as n → ∞ in an appropriately small neigh-
bourhood. Note that the Lappo-Danilevskii condition corresponds to
the case when Ω(k) ≡O, k ≥ 2.

On the other hand, according to the Magnus’s theorem, the expansion
can be represented as a series

Ω(t) =
∞∑
k=0

Ωn(t).

Its terms are expressed by means of the recursive generator S(k)n []:

S
(1)
n =[Ωn−1,Z ], S

(n−1)
n = adn−1

Ω1
Z ;

S
(k)
n =

n−j∑
m=1

[
Ωm,S(k−1)

n−m

]
, 2 ≤ k ≤ n− 1.

(.)

Then

Ω1 =

t∫
t0

Z (s)ds, Ωn =
n−1∑
k=1

Bk
k!

t∫
t0

S
(k)
n (s)ds, k ≥ 2.

In particular, the first three terms are:

Ω1 =

t∫
t0

Z (s)ds; Ω2 =
1
2

t∫
t0

s1∫
t0

[Z (s1),Z (s2)]ds2ds1;

Ω3 =
1
6

t∫
t0

s1∫
t0

s2∫
t0

[Z (s1), [Z (s2),Z (s3)]] + [[Z (s1),Z (s2)],Z (s3)]ds3ds2ds1.

(.)

the convergence of the ME was thoroughly researched. The fol-
lowing theorem provides sufficient conditions for a generic bounded
operator.

Theorem ([, , ]). Let us consider eq. (.) with Φ(t0) = I , defined
in a Hilbert space, and let Z (t) be a bounded operator in this space.
Then the ME converges for t ∈ [t0; t) such that

t∫
t0

∥∥∥Z (s)
∥∥∥ds ≤ π, (.)

and eΩ(t)=Φ(t).

It is important to note that for some operators the convergence time
interval can be larger.
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In the context of numerical integration, the local convergence of
the ME makes it necessary to split the integration interval [t0; tf ] into
subintervals [tk−1; tk ] of length τ (for simplicity assume it to be constant
as in Section .), such that the expansion converges in each of them.
Then, the solution is propagated from one time point to another.

lie algebra of Ω If Z belongs to some Lie algebra g, then Ω(t)
and any truncation, containing elements Ωk , belongs to g. For this
reason, the ME is a good starting point for the construction of geometric
integrators: it will preserve the group properties of the solution.

time symmetry is another favourable property of the ME. Recall
that the exact flow ϕt (page ), which defines the solution ϕt : G→ G, is
time symmetric. In terms of the ME, it is expressed as

Ω(t; t0) = −Ω(t0; t), (.)

and implies that Ω(t) can be expanded in even powers of t, which
simplifies the construction of time-symmetric integrators.

. application to the construction of integrators

The solution of eq. (.) over a succession of steps can be expressed as

u(t) =
f∏
k=1

eΩ(tk ;tk−1)u(t0). (.)

The general procedure to design a numerical method for finding uf is
as follows:

. take a feasible truncation Ω[p] B
∑p
i=1Ωi of the infinite ME series;

. approximate the multivariate integrals of commutators in Ω[p] ;

. select a suitable exponentiation procedure.

The truncation depends on the desired order of a method, and it
shares geometric properties with the expansion itself, as it has been
shown in the previous section. An algorithm for the exponential (recall
Section .) is chosen based on the information we want to get from
the solution and the problem’s properties. Now, we will discuss how to
treat the integrals in the Magnus truncation appropriately.

.. Approximation with moment integrals

The main difficulty in applying the ME directly to get the solution in
form of (.) is to calculate multiple integrals of nested commutators,
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as it is seen from explicit expressions (.) for Ωi . However, thanks to
the underlying structure of the problem, this task can be carried out by
calculating a set of univariate integrals of Z (t) [].

To this end, define the kth central moments on one subinterval of
length τ B tn − tn−1 as:

Z (k) =

tn∫
tn−1

(
t − (tn+ τ/2)

τ

)k
Z (t)dt. (.)

Now, for convenience, we will change the variable t to work in the ‘hand-
book’ symmetric interval [−1; 1] instead of [tn−1; tn]:

t̂ = 2
t − (tn−1 + τ)

τ
↔ t =

τt̂+ (2tn−1 + τ)

2
.

Consequently, (.) becomes

Z (k) =

1∫
−1

τ
2

(
t̂
2

)k
Z (t̂)dt̂.

By approximating the integral in the kth moment with a q-point GL

quadrature rule of order p = 2q we get:

Z (k)[p] =

q∑
j=1

τ
2

(
ĉj
2

)k
ŵjZ (ĉj), (.)

where ĉj are the nodes and ŵj are the weight on [−1; 1].
To get a feasible numerical method, let us consider the (q − 1)-grade

Lagrange interpolating polynomial of Z (t̂) at the nodes ĉj :

Z̃ (t̂)B

q∑
i=1

Li(t̂)Z (ĉi),

where Li(t̂) =
q∏
j=1
j,i

t̂ − ĉj
ĉi − ĉj

, t̂ ∈ [−1; 1].
(.)

The Alekseev–Gröbner lemma [, , ] guarantees that the solution
u(t) of the initial problem and the solution ũ(t) of the modified one
with Z̃ (t) satisfy u(t)− ũ(t) = O

(
τp+1

)
[].

Afterwards, we take the Maclaurin series of Z̃ (t):

Z̃

(
τt̂+ (2tn−1 + τ)

2

)
=

q−1∑
l=0

1
l!

(τ
2

)l dlZ̃ (t̂)

dt̂l
t̂l (.)
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and define the following elements []:

ζl B τ l
1

(l − 1)!
dl−1Z̃ (t̂)

dt̂l−1

∣∣∣∣∣∣∣∣
t̂=0

= O
(
τ l

)
, l = 1, . . . ,q, (.)

which are the generators of a graded Lie algebra (as on page ).
Finally, we can combine (.), (.) and (.), which yields an

expression for the moments Z (k) in terms of the generators ζi :

Z (k)[p] =

q∑
j=1

τ
2

(
ĉj
2

)k
ŵj

q−1∑
l=0

(τ
2

)l 1
l!

dlZ̃ (t̂)

dt̂l
ĉlj

=

q∑
j=1

(
ĉj
2

)k
ŵj

q−1∑
l=0

(τ
2

)l+1 1
l!

dlZ̃ (t̂)

dt̂l
ĉlj

=

q∑
j=1

(
ĉj
2

)k
ŵj

q∑
l=1

(1
2

)l
ĉl−1
j ζl .

(.)

Henceforth, we will consider the original interval [tn−1; tn−1 + τ ] and
it is convenient to rescale the handbook quadrature nodes and weights
to [0; 1]. For compactness, we introduce a shorthand for function values
at the nodes:

Zj B Z
(
tn−1 +

τ
2

(
cj + 1

))
in t↔ Zj B Z

(
ĉj
)

in t̂. (.)

With this notation, we can write the inverse of (.) as the formal
product of a matrix and a vector of matrices:

ζi = τ

q∑
j=1

si,jZi , i = 1, . . . ,q, (.)

where si,j are the elements of the transition matrix S B T −1Q. Matrices
T and Q are defined elementwise as

(T )i,j =
1
2

1∫
−1

(
t̂
2

)i+j−2

dt̂, (Q)i,j = ŵj

(
ĉj
2

)i
,

i = 1, . . . ,q;

j = 1, . . . ,q.
(.)

For - and -point GL rules the matrices are:

S2×2 =

 1
2

1
2

−
√

3
√

3

 , S3×3 =


0 1 0

−
√

15
3 0

√
15
3

10
3 −20

3
10
3

 . (.)

It is easy to see that the elements of every row, except for the first, sum
up to zero.
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Alternatively, ζi can be expressed by means of, for example, shifted
Legendre polynomials []. The transition between the representations
(.) and the one from [] can be done by expressing the latter through
central moments.

time–space separable systems are rather common in applica-
tions, when a system’s matrix has an additively–multiplicatively separ-
able structure with respect to time t and space x: Space

coordinate x is
one-dimensionl
for simplicity

Z (t,x) = A(t) +B(x) + f (t)D(x), (.)

with f (t) being a scalar function that represents, say, an external control.
If quadrature rule nodes are symmetric with respect to the centre of
the time interval, then from (.) and (.) it follows that

ζi = τ

q∑
j=1

si,j
(
Aj + fjD(x)

)
, i ≥ 2. (.)

Furthermore, when A is absent, the calculation becomes simpler: it
reduces to scalar linear combinations of f (t) with subsequent multiplic-
ation by D:

ζi = τ


q∑
j=1

si,jfj

D(x), i ≥ 2. (.)

These relations mean that when Z contains an autonomous additive
part B, e. g., Z (t,x) = B(x) + f (t)D(x), it only persists in the first
element, ζ1. This fact plays a major part in Hamiltonian problems with
no time dependence in the kinetic energy.

As a short illustration, we write out the elements with the th-order
and the th-order GL quadrature rules. From (.) it follows immedi-
ately that

ζ1 = τ
1
2
(Z1 +Z2) = O(τ),

ζ2 = τ
√

3(Z2 −Z1) = O
(
τ2

)
;

ζ1 = τZ2 = O(τ),

ζ2 = τ

√
15
3

(Z3 −Z1) = O
(
τ2

)
,

ζ3 = τ
10
3
(Z3 − 2Z2Z1) = O

(
τ3

) (.)

.. Magnus expansion in terms of generators

Ultimately, we can express the ME in terms of free Lie algebra gener-
ators ζi . In this work we present methods up to order , for which it
is sufficient to take the -point GL rule and  generators [, , ].
In the representation below, we group elements and commutators by
order and the corresponding number of generators.
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The ME truncation then reads []:

Ω[8] =

order  with  gen.

ζ1 −
1

12
[12]+

1
12
ζ3 +

1
240

[23] +
1

360
[113]− 1

240
[212] +

1
720

[1112]

order  with  gen.

− 1
80

[14]− 1
1344

[34]− 1
2240

[124] +
1

6720
[223] +

1
6048

[313]− 1
840

[412]

+
1

6720
[1114]− 1

7560
[1123] +

1
4032

[1312] +
11

60480
[2113]− 1

6720
[2212]

− 1
15120

[11113]− 1
30240

[11212] +
1

7560
[21112]− 1

30240
[111112],

(.)
where [i1 . . . ik−1ik ] is a compact form to write the right-nested commut-
ator [ζi1 , [. . . , [ζik−1

,ζik ] ] . . .] .

example : maguns-based methods Let us examine three simple
th-order methods which use elements (.).

The simplest symmetric method of this family is the exponential
midpoint

MP[2] = exp(ζ1) = exp
(
τZ

(
tk−1 +

τ
2

))
. (.)

The second is the Magnus method, obtained by the corresponding
truncation of the ME:

MM[4] = exp
(
ζ1 −

1
12

[ζ1,ζ2]
)
= exp

(
τ
2
(Z1 +Z2) +

τ2
√

3
12

[Z1,Z2]

)
.

Provided that Zi are already evaluated, this method requires matrix–
matrix products (MMPs) and  exponentiation to propagate the fun-
damental matrix solution. However, if a state vector propagation is
considered, then matrix–vector products (MVPs) are necessary at each
iteration of the Krylov subspace approximation process.

Alternatively, we can obtain a th-order method without commutators:

CF[4]
2 = exp

(1
2
ζ1 −

1
6
ζ2

)
exp

(1
2
ζ1 +

1
6
ζ2

)
= MM[4] +O

(
τ5

)
. (.)

Compared to the straightforward Magnus method, this one requires
 exponentials and  product of the exponentials. On the other hand,
its matrix–vector cost is  per iteration.

This scheme is belongs to the efficient commutator-free (CF) family
mentioned in the thesis introduction. In [] it is defined as

CF[4]
2 = exp

(
f1,1Ž1 + f1,2Ž2

)
exp

(
f1,1Ž1 − f1,2Ž2

)
in terms of the matrix-valued coefficients Ži which define the expansion
of Z (t) into the series of shifted Legendre polynomials. We can make
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the transition to our formalism of the central moments in the following
manner: a1,1 a1,2

a2,1 a2,2

=
f1,1 f1,2

f2,1 f2,2

︸      ︷︷      ︸
BF

1 0

0 6

︸︷︷︸
BG2×2

q1,1 q1,2

q2,1 q2,2

︸      ︷︷      ︸
BQ2×2

.

Here F is the initial matrix of coefficients; G provides transition from
the Legendre polynomials to the central moments (.); Q is defined
by (.). The result is

CF[4]
2 = exp

(
τ

(
1
4
−
√

3
6

)
Z1 + τ

(
1
4
+

√
3

6

)
Z2

)
× exp

(
τ

(
1
4
+

√
3

6

)
Z1 + τ

(
1
4
−
√

3
6

)
Z2

)
.





5
SCHRÖDINGER EQUAT ION

The exposition
in this chapter
is based on
the article []

In this chapter we construct unitarity-preserving geometric integrators
for the non-autonomous Schrödinger equation (SE) with the Hamiltonian
given as the sum of the kinetic energy and a time-dependent potential.
The new methods belong to the class of quasi-commutator-free (QCF)
quasi-Magnus [] exponential integrators.

Regarding the possible structure of methods, our considerations are
the following. First of all, the use of the Magnus expansion (ME) yields
a numerical method which is ‘better’ in a sense: if a problem is autonom-
ous, then the ME provides the exact analytical solution.

Secondly, we are aiming to improve upon efficient, but general CF

methods [, , , ] by optimizing our schemes, using the structure
of the problem.

Finally, we do not concentrate on the splitting approach from Chapter 
because it may cause numerical instabilities for large time steps if both
the kinetic and potential energies have large values but cancel each
other when summed.

the schrödinger equation is the cornerstone of quantum
mechanics. Its most general form with variable coefficients, written in
units, such that the reduced Planck constant h̄= 1, reads Upright roman i

stands for
the imaginary
unit: (±i)2 = −1i

∂ψ(t,x)
∂t

= H(t,x)ψ(t,x),

ψ(t0,x) = ψ0(x), t ∈R, x ∈Rδ,

whereH(t,x) is a Hermitian operator. We assume that the wave function
ψ(t,x) and its derivatives vanish at the boundaries of the region of
interest, thus periodic boundary conditions can be considered.

According to the Copenhagen interpretation of quantum mechanics
the state of a system is fully described by a wave function ψ(t,x) which
represents the probability of finding the system at a given point of
the state space. Therefore, the square integral of the wave function
ψ(t,x) over all the space should result the probability equal to one:∫

x∈Rδ

∥∥∥ψ(t,x)∥∥∥2
dx = 1. (.)

For that reason, it is desirable to have unitarity-preserving methods.





 schrödinger equation

We are interested in quantum mechanical systems that have time-
dependent potentials, that is, the Hamiltonian has the following two-
part structure:

H(t,x) = T (x) +V (t,x)B −
∇2

2µ
+V (t,x), (.)

where µ is the reduced mass, ∇2 is the Laplacian operator, and V (t,x) is
a potential with explicit time dependence. In particular, we will focus
on the case when the potential takes a time–space separable formIntroduced

on page 

V (t,x) = Va(x) + f (t)D(x), (.)

where f (t) represents some external force, for example, a controlling
laser. It will be shown later in this chapter how this particular struc-
ture allows for simpler calculation, although the methods are valid for
the general time-dependent potentials.

the strategy in this chapter is as follows.

. To simplify the exposition, we consider the SE in one spatial di-
mension.

. As described in Chapter , we discretize the SE (.) in space, using
a mesh of d points x0, . . . ,xd−1 (the endpoint xf is not included to
the periodicity assumption), and get a st-order system of ODEs:

u̇= −iZ (t)u, u(t0) = u0,

where Z (t)B T +V (t)

and u(t)B
[
ψ(t,x0), · · · , ψ(t,xd−1)

]T
∈ Cd.

(.)

We assume a potential to have the form (.) with Va and D such
that V is a diagonal matrix. Due to (.), u should be a unit vector:
‖u‖= 1. Analogously, H is represented by a Hermitian matrix, so
the fundamental matrix solution is a unitary operator.

. For the discretized equation, our design will be based on the ME

(.), expressed through the generators of a Lie algebra. They, in
turn, are expressed by means of linear combinations of the Hamilto-
nian values Zj , computed at the nodes cj of a quadrature rule.

. To circumvent the overheads related to the commutators in the ME,
we will search for methods that approximate expΩ[p] by a com-
position (i. e. product) of exponentials that contain Zj and cheap
commutators. Unitary transformations are reversible, so we build
symmetric schemes to lower the number of order conditions to
solve.



. lie algebra 

. Despite aiming for CF methods, the cost of the exponentiation still
can be high, and we will diminish it by using an approximation
in an m-dimensional (m� d) Krylov subspace, described in Sec-
tion .. To calculate the action of the discrete Laplacian T , we will
use the FFT-based differentiation from Section .. Consequently,
the FFT–IFFT pair is the most expensive operation in this context.

. lie algebra

In order to express the ME, we associate a Lie algebra with the problem,
following Section .. For methods up to order , we will need no more
than four generators ζi , i = 1, . . . ,4.

Let us examine their commutators. Firstly, as it has been mentioned on
page , for any symmetric quadrature rule only ζ1 contains the kinetic
part T . Accordingly, under the assumption that V is diagonal, all other
ζi commute with each other: [ζi ,ζj ] = 0, ∀i, j ≥ 2. Also, note that T is
the most computationally expensive part.

Secondly, we look how the commutator [ζ1,ζj ] B [1j], j ≥ 2, acts on
the wave function ψ(t,x). Leaving out scalar factors, its core is[

− ∂
2

∂x2 ,Vj

]
ψ = −

∂2Vj
∂x2 ψ+Vj

∂2ψ

∂x2 = −
∂2Vj
∂x2 − 2

∂Vj
∂x

∂ψ

∂x
.

Consequently, the further nested commutators [i1j] yield[
Vi ,−

∂2

∂x2 ,Vj

]
ψ =

(
∂Vi
∂x

)(
∂Vj
∂x

)
ψ,

which means they are local (depend only on coordinates) and commute
with any other local operator.

In sum, commutators [23], [34], [124], [223], [1123], [2213] disappear,
and the th-order truncation (.) of the ME for this problem becomes

Ω[8] =

order  with  gen.

ζ1 −
1

12
[12]+

1
12
ζ3 +

1
360

[113]− 1
240

[212] +
1

720
[1112]

order  with  gen.

− 1
80

[14] +
1

6048
[313]− 1

840
[412] +

1
6720

[1114]

+
1

4032
[1312] +

11
60480

[2113]− 1
15120

[11113]

− 1
30240

[11212] +
1

7560
[21112]− 1

30240
[111112].

(.)
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Consider now the discretized form of the commutators [i1j]. Given
a q-point GL quadrature rule and the transition matrix S from (.),
which expresses ζi in terms of Zi , we can compute the [i1j] matrix:

[i1j] = τ3
q∑

k=1

si,kVk

q∑
k=1

sj,kVk , (.)

which is an (i+ 1+ j)-grade element.Recall (.):
Vj B V (t+ cjτ) Furthermore, when the potential has the form (.), the commutators

become

[i1j] = τ3

 q∑
k=1

si,kfk

q∑
k=1

sj,kfk

(dD(x)

dx

)2

(.)

thanks to the quadrature rule symmetry around the origin.
The above analysis leads us to the following design of integrators:

compose exponentials in such a way, that a) the stages contains as
few as possible ζ1 to lower computational cost; b) diagonal elements
ζi and commutators [i1j] with i, j ≥ 2 are included as ‘cheap’ linear
combinations if ∂V

/
∂x is available. The general form is

Υ[p]
c =

m∏
s=1

exp


q∑
i=1

xs,iζi +

q∑
i,j=1

vs,i,j [i1j]

,

where the coefficients obey time symmetry: xm−k+1,i = (−1)i+1xk,i and
vm−k+1,i,j = (−1)i+jvk,i,j for k = 1, . . . ,s.

Although we would like to obtain purely CF methods, whose stages do
not perform backwards fractional step integration (

∑q
i=1 xm,i > 0 ∀m), it

has been shown [] that there exist no such methods with order higher
than four.

Exponentials with ζ1 are approximated by the Lanczos algorithm,
described in Section ., while the rest are diagonal matrices. There-
fore, we count the cost (denoted by the subscript c) of each method in
the units of FFT–IFFT pairs, which is the most computationally expensive
operation in this case. It other words, it is the number of stages that
contain ζ1 with the discrete Laplacian T .

. fourth-order methods

The minimal requirement for a th-order method is the -point GL

quadrature with the nodes:The interval
is [0; 1]

c1 =
1
2
−
√

3
6

, c2 =
1
2
+

√
3

6
, (.)

thus
ζ1 = T +

1
2
(V1 +V2), ζ2 =

√
3(V2 −V1). (.)
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To illustrate how the tools from previous chapters are used, we take
the following straightforward symmetric scheme:

Υ[4]
2 ≡ CF[4]

2 = exp(x2,1ζ1 + x2,2ζ2)exp(x1,1ζ1 + x1,2ζ2). (.)

Immediately, x2,1 = x1,1 and x2,2 = −x1,2 due to symmetry, thus

Υ[4]
2 = exp(x1,1ζ1 − x1,2ζ2)exp(x1,1ζ1 + x1,2ζ2).

We apply the BCH formula (.) to obtain:

Υ[4]
2 = exp

(
2x1,1ζ1 + x1,1x1,2[12] +O

(
τ5

))
.

Notice that even elements are zeroed out. In the ME (.), we have only
two elements that have grade lower than  and depend only on ζ1 and
ζ2, therefore, we have two order conditions:2x1,1 = 1, (consistency)

x1,1x1,2 = − 1
12 ,

and their solution is
x1,1 =

1
2

, x1,2 = −
1
6

. (.)

The same procedure is carried out for all the rest methods in this thesis,
but, obviously, it becomes more involved as the number of stages grows.

It is possible to optimise methods by solving additional order condi-
tions if we use ζi of higher grades:

ζ1 = −iτ(T +V2),

ζ2 = −iτ

√
15
3

(V3 −V1),

ζ3 = −iτ
10
3
(V3 − 2V2 +V1).

(.)

From (.) we see that an optimisedm-stage th-order CF method should
satisfy only  order conditions:

Υ[4opt] =
m∏
s=1

exi,1ζ1+xi,2ζ2+xi,3ζ3 = exp
(
ζ1 +

1
12
ζ3 −

1
12

[12] +O
(
τ5

))
.

(.)
When we take the minimal m= 2, we have exactly  variables in the or-
der conditions:

Υ[4opt]
2 =exp(x1,1ζ1 − x1,2ζ2 + x1,3ζ3)

×exp(x1,1ζ1 + x1,2ζ2 + x1,3ζ3).
(.)
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As a result, x1,1 cannot be zero, hence the cost of  FFT–IFFT units. Al-
though viable, we discard this method because cheaper optimised com-
positions are possible.

Now, if we consider a symmetric composition with m = 3, then
the even element in the centre should disappear due to its skew-symmetry:
x2,2 = 0. A simple method with one ζ1 and three variables to solve the or-
der conditions is either

Υ[4opt]
1a =exp(−x1,2ζ2 + x1,3ζ3)

×exp(x2,1ζ1)

×exp(x1,2ζ2 + x1,3ζ3),

(.)

where x1,2 = −1/12, x1,3 = 1/24, x2,1 = 1, or

Υ[4opt]
1b =exp(−x1,2ζ2)

×exp(x2,1ζ1 + x2,3ζ3)

×exp(x1,2ζ2),

(.)

with coefficients x1,2 = −1/12, x2,1 = 1, x2,3 = 1/12. Without commutator
injection, a -stage method can have  parameters at most. To lower
the computational cost we can exclude x1,1, which leaves only one
expensive exponential with the Laplacian:

Υ[4opt]
1c =exp(−x1,2ζ2 + x1,3ζ3)

×exp(x2,1ζ1 + x2,3ζ3)

×exp(x1,2ζ2 + x1,3ζ3),

(.)

The resulting composition has  parameters to solve  order equations,
leaving one parameter for further optimization. The scheme that satis-
fies an additional condition (for [113]) has the solution []

x1,2 = −
1

12
, x1,3 =

1
60

, x2,1 = 1, x2,3 =
1

20
. (.)

In these methods the first and the last exponentials are diagonal, so
their computational cost in units of FFT–IFFT is the same as the nd-order
midpoint exponential method (.).

By adding one more stage with the Laplacian and raising the cost to
FFT–IFFT units, we obtain the following th-order scheme with  free
parameters:

Υ[4opt]
2 =exp(−x1,2ζ2 + x1,3ζ3)

×exp(x2,1ζ1 − x2,2ζ2 + x2,3ζ3)

×exp(x2,1ζ1 + x2,2ζ2 + x2,3ζ3)

×exp(x1,2ζ2 + x1,3ζ3).

(.)



. sixth-order methods 

The solution of its order equations is

x1,2 = −x1,3 = −
1

60
, x2,1 =

1
2

, x2,2 = −
2

15
, x2,3 =

1
40

,

which satisfies two of three th-order conditions: [113] and [1112]. The
condition for [212] is the only one left, which means that

Υ[4opt]
2 = exp

(
Ω[6] − 2v1,212[212] +O

(
τ7

))
.

. sixth-order methods

For th-order methods we mostly focus on QCF methods when the deriv-
atives ∂Vj

/
∂x are easily computed, so we can introduce cheap diagonal

commutators to the scheme. Otherwise, the absence of [i1j] requires
additional stages to satisfy all the conditions of order .

Continuing from the last th-order method (.), it is immediate
to see that the following scheme can fulfil all the order  conditions:

Υ[6]
2 =exp(−x1,2ζ2 + x1,3ζ3 + v1,212[212])

×exp(x2,1ζ1 − x2,2ζ2 + x2,3ζ3)

×exp(x2,1ζ1 + x2,2ζ2 + x2,3ζ3)

×exp(x1,2ζ2 + x1,3ζ3 + v1,212[212]).

(.)

The solution xi,j is the same as in (.) with additional v1,212 = 1/43200.
Its cost is  FFT–IFFT units.

To obtain a purely CF method, we start with the same structure that
(.) has: the expensive part ζ1 in the outermost exponentials is zeroed
out by x1,1 = 0. Then, we add an inner stage, which automatically leads
to x3,2 = 0 and an increase in the cost up to  FFT–IFFT units. There is
one free parameter among the coefficients of ζ3: x1,3, x2,3 and x3,3. These
variables only appear linearly in two of the order conditions. We put
x1,3 = 0, and the scheme becomes:

Υ[6]
3 =exp(−x1,2ζ2)

×exp(x2,1ζ1 − x2,2ζ2 + x2,3ζ3)

×exp(x3,1ζ1 + x3,3ζ3)

×exp(x2,1ζ1 + x2,2ζ2 + x2,3ζ3)

×exp(x1,2ζ2)

(.)

Using the free parameter, we minimize the quality functional
∑
|xi,j |

to get short fractional time steps during the integration (which usually
leads to smaller errors):

x1,2 =−0.015446203250884

x2,1 = 0.567040718865477

x2,2 =−0.156797955467218

x2,3 = 0.085748160282456

x3,1 =−0.134081437730955

x3,3 =−0.088162987231579.

(.)



 schrödinger equation

Optimised sixth-order methods

Similarly to the th-order methods, we can take a higher-order quadrat-
ure rule to satisfy additional conditions for th-order methods in (.).
To this end we make compositions, similar to (.), with diagonal
commutators in the outermost stages:

Υ[6opt]
3 =exp(−x1,2ζ2 + x1,3ζ3 − x1,4ζ4 + v1,212[212] + v1,313[313]− v1,213[213])

×exp(x2,1ζ1 − x2,2ζ2 + x2,3ζ3 − x2,4ζ4)

×exp(−x3,2ζ2 + x3,3ζ3 − x3,4ζ4)

×exp(x4,1ζ1 + x4,3ζ3)

×exp(x3,2ζ2 + x3,3ζ3 + x3,4ζ4)

×exp(x2,1ζ1 + x2,2ζ2 + x2,3ζ3 + x2,4ζ4)

×exp(x1,2ζ2 + x1,3ζ3 + x1,4ζ4 + v1,212[212] + v1,313[313] + v1,213[213])
(.)

This scheme provides two alternatives: either discard the equation cor-
responding to [111112] or [21112]. The solutions, respectively, are

for Υ[6opt]
3a :

x1,2 = −0.013381037301689

x1,3 = 0.006456698486049

x1,4 = −0.005062980277979

x2,1 = 0.692033178955027

x2,2 = −0.200354649256364

x2,3 = 0.078762858864116

x2,4 = −0.021090755452322

x3,2 = 0.021479912126313

x3,3 = 0.006520012008462

x3,4 = 0.002452094000258

x4,1 = −0.384066357910053

x4,3 = −0.100145805383921

v1,212 = −0.000012785453959

v1,213 = 0.000013916301486

v1,313 = 0.000042648468634,

for Υ[6opt]
3b :

x1,2 = −0.008752729116750

x1,3 = 0.005323928662358

x1,4 = −0.004450414289558

x2,1 = 0.768023282768151

x2,2 = −0.239740381573067

x2,3 = 0.096007548854092

x2,4 = −0.026193474535960

x3,2 = 0.035382033447741

x3,3 = 0.007033760004535

x3,4 = 0.003681227717073

x4,1 = −0.536046565536302

x4,3 = −0.133397141708636

v1,212 = 0.000022652861510

v1,213 = 0.000050348766403

v1,313 = 0.000086455336413.
(.)



. eighth-order methods 

. eighth-order methods

In this case possible scheme structures branch off faster. From other
options, we consider methods with outermost commutators once again.
The first one has  stages with the cost of  FFT–IFFT units:

Υ[8]
5,1 =exp(−x1,2ζ2 + x1,3ζ3 − x1,4ζ4 + v1,212[212] + v1,313[313]− v1,213[213])

×exp(x2,1ζ1 − x2,2ζ2 + x2,3ζ3 − x2,4ζ4)

×exp(x3,1ζ1 − x3,2ζ2 + x3,3ζ3 − x3,4ζ4)

×exp(x4,1ζ1 + x4,3ζ3)

×exp(x3,1ζ1 + x3,2ζ2 + x3,3ζ3 + x3,4ζ4)

×exp(x2,1ζ1 + x2,2ζ2 + x2,3ζ3 + x2,4ζ4)

×exp(x1,2ζ2 + x1,3ζ3 + x1,4ζ4 + v1,212[212] + v1,313[313] + v1,213[213]).
(.)

The order conditions consist of  non-linear equations with  vari-
ables. Among four real-valued solutions the most promising in terms of
minimising the sum of coefficients are

for Υ[8]
5,1a :

x1,2 = 0.008696241374160

x1,3 = −0.008696241374160

x1,4 = −1/240

x2,1 = 0.258478395344154

x2,2 = −0.120726493065581

x2,3 = 0.051611313197706

x2,4 = −0.011893828397299

x3,1 = 1.040067278127429

x3,2 = 0.004502986469442

x3,3 = −0.029153958678289

x3,4 = −0.000872848073453

x4,1 = −1.597091346943166

x4,3 = 0.055811107042819

v1,212 = 0.000070200570963

v1,213 = −0.000140401141926

v1,313 = 0.000070200570963,

for Υ[8]
5,1b :

x1,2 = −0.005555689802628

x1,3 = 0.005555689802628

x1,4 = −1/240

x2,1 = 0.689505417442239

x2,2 = −0.250263632191044

x2,3 = 0.085548634263565

x2,4 = −0.026814053285156

x3,1 = −0.379540734471510

x3,2 = −0.136141876544218

x3,3 = −0.150901769396850

x3,4 = −0.014559460067438

x4,1 = 0.380070634058541

x4,3 = 0.202928223994648

v1,212 = 0.000001103123116

v1,213 = −0.000002206246233

v1,313 = 0.000001103123116.
(.)

Note the large absolute values of x3,1 and x4,1 in Υ[8]
5,1a; we expect this

method to be less accurate.
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Alternatively, we can move the commutators into the inner stages,
obtaining schemes similar to the one proposed in []:

Υ[8]
5 =exp(x1,2ζ1 − x1,2ζ2 + x3,3ζ3 − x1,4ζ4 + v1,212[212])

×exp(−x2,2ζ2 + x2,3ζ3 − x2,4ζ4 + v2,212[212] + v2,313[313])

×exp(x3,1ζ1 − x3,2ζ2 + x3,3ζ3 − x3,4ζ4)

×exp(x4,1ζ1 + x4,3ζ3)

×exp(x3,1ζ1 + x3,2ζ2 + x3,3ζ3 + x3,4ζ4)

×exp(x2,2ζ2 + x2,3ζ3 + x2,4ζ4 + v2,212[212] + v2,313[313])

×exp(x1,2ζ1 + x1,2ζ2 + x3,3ζ3 + x1,4ζ4 + v1,212[212]).

We make a composition of  exponentials with the commutators in
the second and the penultimate stages:

Υ[8]
5,2 =exp(x1,1ζ1 − x1,2ζ2 + x1,3ζ3 − x1,4ζ4)

×exp(−x2,2ζ2 + x2,3ζ3 − x2,4ζ4 + v2,212[212]− v2,313[213] + v2,313[313])

×exp(x3,1ζ1 − x3,2ζ2 + x3,3ζ3 − v3,4ζ4)

×exp(−x4,2ζ2 + x4,3ζ3 − x4,4ζ4)

×exp(x5,1ζ1 + x5,3ζ3)

×exp(x4,2ζ2 + x4,3ζ3 + x4,4ζ4)

×exp(x3,1ζ1 + x3,2ζ2 + x3,3ζ3 + v3,4ζ4)

×exp(x2,2ζ2 + x2,3ζ3 + x2,4ζ4 + v2,212[212] + v2,213[213] + v2,313[313])

×exp(x1,1ζ1 + x1,2ζ2 + x1,3ζ3 + x1,4ζ4).
(.)

The advantage of this design is that we have  additional variables that
can be used as free parameters for tuning the scheme, maintaining
the cost at only  FFT units.

First, we explore the case when two inner diagonal exponential are ex-
cluded by x4,2 = x4,3 = x4,4 = 0. There are  real solutions, the best with

respect to quality functional gives the method Υ[8]
5,2a that has the coeffi-

cients

x1,1 = 0.670219114423756

x1,2 = −0.304894500128406

x1,3 = 0.137339721522467

x1,4 = −0.061889862325139

x2,2 = 0.018665991927430

x2,3 = 0.006354617231456

x2,4 = 0.002775087956074

x3,1 = −0.510911558007632

x3,2 = 0.138260115373570

x3,3 = −0.117677987842383

x3,4 = 0.051942668557384

x5,1 = 0.681384887167753

x5,3 = 0.031300631510253

v2,212 = −0.000416674497669

v2,213 = −0.000283703855984

v2,313 = −0.000048291819124.

(.)

To get another method, we fix x4,3 = x4,4 = 0 and explore the set of
solutions when x4,2 has a small value in the interval [−0.1; 0.1]. For two
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distinct values of x4,2, we get relatively small coefficients for ζ1, while
the remaining coefficients remain not very large. We fix these x4,2 and
vary both x4,3 and x4,4, which results in slightly different schemes with
rather close coefficients for ζ1:

for Υ[8]
5,2b :

x1,1 = 0.312720638582279

x1,2 = −0.136763329733817

x1,3 = 0.058158591955603

x1,4 = −0.024519487903109

x2,2 = 0.118007839703159

x2,3 = −0.026642462443984

x2,4 = 0.015257525315299

x3,1 = 0.286322787565297

x3,2 = −0.290313815590736

x3,3 = −0.034594343029162

x3,4 = −0.015448368096472

x4,2 = 1/25

x5,1 = −0.198086852295151

x5,3 = 0.089489760368421

v2,212 = 0.000158096387628

v2,213 = −0.000112991943243

v2,313 = 0.000095925940695,

for Υ[8]
5,2c :

x1,1 = 0.322618899122869

x1,2 = −0.140802452623684

x1,3 = 0.059750258819098

x1,4 = −0.025031572376557

x2,2 = 0.144003840876807

x2,3 = −0.030812811435236

x2,4 = 0.016059935948481

x3,1 = 0.272663507732993

x3,2 = −0.359509883630990

x3,3 = −0.039409484358590

x3,4 = −0.015122581410081

x4,2 = 1/20

x5,1 = −0.190564813711725

x5,3 = 0.104277407282790

v2,212 = 0.000230735287877

v2,213 = −0.000157445707004

v2,313 = 0.000126306010355.
(.)

. numerical example

In this section we examine the performance of the new methods. As
it has been mentioned in the introduction to this chapter, we consider
one-dimensional problems with the wave function ψ(t,x), x ∈ R on
a sufficiently large spatial domain [x0; xf ) to ensure that its value and
its derivatives vanish. Therefore, we can impose periodic boundary con-
ditions ψ(t,x0) ≡ ψ(t,xf ) and use the FFT to approximate the Laplacian
operator.

We divide the space interval into d bins of length ∆x = (xf − x0)/d,
hence xk = x0 + k∆x, k = 0, . . . ,d − 1. The discrete representation of
ψ(t,x) is a d-dimensional vector u with components uk =

√
∆xψ(t,xk),

and its norm ‖u‖2 does not depend on t.
To check the accuracy of a method, we calculate a reference solution

uref at the final time tf with sufficiently low tolerance. Then, we take
a set of distinct (but constant) time steps τ1, . . . ,τr , which is equivalent
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to dividing the time interval [t0; tf ] into n1, . . . ,nr subintervals, respect-
ively, and simultaneous increase in final integration cost. With each of
these time steps, we obtain r solutions ũi , i = 1, . . . ,r using a method
of interest and compute the norm of the error as ‖err‖2 B

∥∥∥uref − ũi∥∥∥2
.

Finally, we plot error norm versus the corresponding final cost (i. e.,
number FFT–IFFT pair calls, which is equal to the number of steps per
the number of stages with T ) in double logarithmic scale.

We compare the following families of integrators:

• quasi-commutator-free (QCF) methods Υ[p]
c presented in this chapter;

• nd-order exponential midpoint (.) is given as a reference;

• general-purpose Magnus-based commutator-free (CF) methods
from [];

• classical explicit Runge–Kutta (RK) methods;

• implicit symplectic RK Gauss–Legendre (GL) methods.

In CF and QCF methods we approximate the exponentials by Lanczos
algorithm from Section . with the tolerance set to the machine εM ≈
2.2× 10−16 and the subspace dimension limited to mmax B 15.

The implicit RK method require solving a linear system of equations
at each step to get the coefficients. It can be done by an iterative pro-
cess, and to count the cost we assume that – iterations are sufficient,
although we obtain the solution using solvers with low tolerance.

the walker–preston model Our example is a simple model
that represents adequately multiple typical applications and may serve
as an indicative benchmark. It is a one-dimensional Schrödinger equa-
tion with time–space separable potential:

i
∂ψ(t,x)
∂t

=

(
− 1

2µ
∂2

∂x2 +Va(x) + f (t)x

)
ψ(t,x), ψ(t0,x) = ψ0(x),

(.)
where the time-dependent part f (t) = Acos(ωt) corresponds to an ex-
ternal laser field. The autonomous part is the Morse potential Va(x) =
D(1− exp(−αx))2. The initial condition is the ground state of the po-
tential:

ψ0 = σ exp
(
−
(
γ − 1

2

)
αx

)
exp(−γ e−αx).

The parameters describe the standard example of diatomic HF mo-
lecule in a strong laser field []: reduced mass µ = 1745 a. u.; D =
0.2251 a. u.; α = 1.1741 a. u.; amplitude A = A0 B 0.011025 a. u.;
frequency ω = ω0 B 0.01787 a. u.; w0 = α

√
2D/µ; γ = 2D/w0; σ is

a normalizing constant. The intervals are chosen as follows: [0; 10π/ω]
for time and [−1.3; 3.2) for space. To illustrate the sensibility of the
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methods to the parameters of the system, the experiments are repeated
with two meshes (d = 64 and d = 128) and halved parametersA= A0/2
and ω = ω0/2, leaving time steps the same.

To facilitate the comparison between methods of different order we
use the same axis limits in plots for each value d. Figures . to .
show the results for d = 64, and Figures . to . for d = 128. It is
evident that the classical RK methods have inferior performance, and
the explicit RK requires small time steps for stability (for this reason
the higher-order RK methods are removed from the graphs). The first
thing we can highlight is the better performance of the new, tailored
QCF integrators when compared to the more general CF methods. The
second is that the relative ranking of the methods does not change with
the parameters.

In the case of the th-order methods, we see that optimisation with
the th-order quadrature rule brings significant improvement both for

CF and QCF methods. Although in Figures .a and .a Υ[4opt]
1a (whose

cost is almost the same as the midpoint’s) surpasses the highly-optimised

Υ[4opt]
2 , the latter is generally to be a generally better method.
On the contrary, optimisation of th-order methods does not seem

to improve efficiency in this benchmark. Thanks to its cost of  FFT–

IFFT units, Υ[6]
2 is the most computationally efficient method, when

derivatives of the potential are available. Otherwise, Υ[6]
3 can be used

instead of CF methods.
Among the th-order methods, the best results are obtained with

the Υ[8]
5,2 schemes. It is worth noting that the microoptimisation of coef-

ficients within a family does not make a noticeable difference but Υ[8]
5,2

is, as we have expected, the worst method due to the large negative
coefficient. In this example the th-order methods do not outperform
the th-order methods due to a twice higher computational cost. Not-
withstanding, the optimised th-order and th-order methods are expec-
ted to yield more accuracy at higher (say, quadruple) precision.

. conclusions

In this chapter, we have constructed quasi-commutator-free (QCF) Mag-
nus expansion-based methods for the Schrödinger equation (SE) with
time-dependent Hamiltonian H(t,x) that can be presented as sum of
the kinetic energy T (x) and an explicitly time-dependent potential
V (t,x). The new methods gain their efficiency thanks to the adaptation
to the specific properties of the problem, hence their reduced computa-
tional cost.

We have shown appropriateness of the methods on a widely used
benchmark example. They turn out to be better than the stable mid-
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Figure .: Efficiency graphs of the th-order methods for the Walker–Preston
model with d = 64 and distinct laser parameters.
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Figure .: WPM: efficiency graphs of the th-order methods, d = 64.
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Figure .: WPM: efficiency graphs of the th-order methods, d = 64.
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Figure .: Efficiency graphs of the th-order methods for the Walker–Preston
model with d = 128 and distinct laser parameters.
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Figure .: WPM: efficiency graphs of the th-order methods, d = 128.
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Figure .: WPM: efficiency graphs of the th-order methods, d = 128.



 schrödinger equation

point scheme for all accuracies of practical interest and have similar
implementation complexity, so any user of the exponential midpoint
method might consider one of the new methods for solving this class
of problems. The numerical experiments also have shown the superior
performance of the new QCF schemes compared to the non-customised
commutator-free (CF) methods.

To sum up, the optimized th-order Υ[4opt]
2 is appropriate for use with

larger time steps when high accuracy is not required. The th-order

Υ[6]
2 is the method of choice when spatial derivatives of the potential

V (t,x) are available. Otherwise, Υ[6]
3 should be preferred. Although in

this example the th-order methods have not surpassed the lower-order
ones due to a notably higher computational cost, they may be more
accurate in higher precision arithmetic.
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6HILL AND WAVE EQUAT ION

The exposition
in this chapter
is based on
the articles [,
]

In this chapter, we address two types of problems that — after cer-
tain transformations — are represented by systems of ODEs with similar
structure. Although the general approach is the same as for the Schrödinger
equation (SE), numerical methods will differ according to the goal of
integration and the properties of the initial problems.

hill differential equation is the first problem we consider:

ÿ = N (t)y, y(t0) = y0, y ∈Rδ. (.)

Here,N (t) is a periodic matrix-valued function. Two special scalar cases
are: the Mathieu equation

ÿ+ (ω2 + εcos2t)y = 0 (.)

and the Meissner equation with a square wave

ÿ+ (ω2 + ε sign(cos2t))y = 0. (.)

These equations arise from different practical applications with peri-
odically variable systems, for example, spatially linear electric fields,
waves in periodic media, electrons in crystal lattices, in Bose–Einstein
condensates [, , , ], quadrupole devices [], microelectromech-
anical systems [], etc. The importance of applications poses the ques-
tion of the stability analysis because parametric resonances can occur.
Typically, the analytical representation of stability regions in the para-
metric space is inaccessible, and to find them one should repeatedly
calculate the solution for one period with various sets of parameters.

Recall from Section ., that we can express Hill equation (HE) (.)
as a st-order system:

d
dt

yẏ
=

 O I

N (t) O


yẏ

 ,
y(t0) = y0,

ẏ(t0) = ẏ0.
(.)

When N (t) is relatively small (say, d ∝ 100), finding the numerical
solution of the system as the fundamental matrix Φ(t) is computa-
tionally feasible. If N (t) is real and symmetric, then Φ is symplectic,
i. e. ΦT JΦ ≡ J , where J is the canonical matrix (.). The eigenvalues
of Φ form reciprocal pairs: {λ,1/λ;λ∗,1/λ∗}. Consequently, the system is λ∗ is the complex

conjugate of λ.stable if and only if its eigenvalues lie on the unit circle []. In general,
this salient property is not preserved by general-purpose integrators,
so they require small time steps to avoid numerical instability.





 hill and wave equation

The aforementioned properties urge for the creation of geometric
methods for the HE. Any symplecticity-preserving method will show
a better behaviour on long-time simulations compared to classical meth-
ods [, , , ]. Fortunately, (.) has a favourable structure that
allows for scheme tailoring.

the modified inhomogeneous wave equation with vari-
able coefficients is the second problem of interest in this chapter:

Also called non-
homogeneous

non-autonomous
WE

∂2ψ(t,x)
∂t2

= ∇2ψ(t,x) +V (t,x)ψ(t,x),

ψ(t0,x) = ψ0(x), t ∈ [t0; tf ], x ∈Rδ.
(.)

Similarly to the previous chapter, for the sake of simplicity we will use
its one-dimensional variant and assume periodic boundary conditions:

∂2ψ(t,x)
∂t2

=
∂2ψ(t,x)
∂x2 +V (t,x)ψ(t,x),

ψ(t0,x) = ψ0(x), ψ(t,x0) = ψ(t,xf ),

t ∈ [t0; tf ], x ∈ [x0; xf ).

(.)

In this setup, schemes do not suffer order reductions, and accurate
results can be obtained with high-order methods [, , , ].

To reduce this PDE to a more suitable and simpler form, we follow
a procedure similar to the one for the SE. First, we discretize in space
using a sufficiently dense grid, which results in a nd-order DE

ÿ = T y+V (t)y, y(t0) = y0, (.)

where T is the discrete Laplacian, V is the potential, and dimT =
dimV = d × d. This equation can be expressed as a st-order system:

ü=

 O I

T +V (t) O

u, u(t0) = u0, (.)

whose dimension is 2d × 2d.
It is easy to see that IVPs originating from the Hill and the wave

equation share the same basic structure. Nevertheless, there are several
differences that should be addressed.

First of all, systems (.) and (.) differ in size. The matrix N (t) in
the HE has a moderate dimension (d ∝ 100), so matrix operations are
carried out in reasonable time and exponentiating can be performed
by the scaling and squaring method described in Section .. Using
an explicit exponentiation algorithm will also provide the fundamental
matrix solution, which is necessary for estimating the eigenvalues for
stability tests. On the other hand, when solving PDEs, fidelity imposes
a requirement to discretize with a sufficiently dense mesh, and the result
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is a significantly larger (d ∝ 1000) system matrix. In this case straight-
forward matrix exponentiation may become unreasonable. Thus, an it-
erative procedure, like approximation in the Krylov subspace used for
the SE, can be employed instead.

The second point follows immediately. If we calculate the solution of
the HE as Φ(t), then numerical methods involve multiplication of block
matrices, containing polynomials of N (t). Therefore, the cost of these
schemes should be counted in terms of matrix–matrix products (MMPs)
units. Alternatively, for large systems we propagate the state vector
itself, so the cost, in general, is different and should be counted as
matrix–vector products (MVPs).

Finally, eq. (.) has inner separable structure T +V (t) that can be
used for additional optimisation.

. lie algebra

.. Time-dependent case

We start with a generalised version of eqs. (.) and (.), in which
both antidiagonal blocks are time-dependent. We examine this type
of systems and later deduce problem-specific properties from these
computations.

Assume a splittable system of ODEs

u̇=

 O O

N (t) O

︸      ︷︷      ︸
BA(t)

u+

O M(t)

O O

︸      ︷︷      ︸
BB(t)

u,

dimN = dimM = d × d, u ∈R2d.

(.)

These splitting parts are block-nilpotent of index .
Following Section ., we associate a Lie algebra with these splitting

parts to express the solution in terms of the ME (.). Given a time step
τ , the generators of the algebra read

αi B τ

O O

N̄i O

 , βi B τ

O M̄i

O O

 , (.)

where N̄i and M̄i are linear combinations of Nj and Mj respectively.
The exact form of these combinations depends on the choice of a quad- Recall that Nj B

N
(
tn+ cjτ

)
.rature rule but is similar to (.).

Now, let us examine elements spanned by αi and βi . Since generators
are block nilpotent matrices, their commutators are quite simple. Par-
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ticularly, some of these elements are same-shaped nilpotent matrices,
and other are trivially zeroes:

[αi ,αj ] ≡ [βi ,βj ] ≡O ∀i, j;

[αi ,βj ] = τ2

−M̄jN̄i O

O N̄iM̄j

 ;

[αk , [βj ,αi ] ] = τ3

 O O

N̄iM̄jN̄k + N̄kM̄jN̄i O

 ;

[βk , [βj ,αi ] ] = −τ3

O M̄jN̄iM̄k + M̄kN̄iM̄j

O O

 ;

[βi , [βj , [βk ,αl ] ] ] ≡ [αi , [αj , [αk ,βl ] ] ] ≡O ∀i, j,k, l.

(.)

Most importantly, these block nilpotent matrices are easily exponenti-
ated (as shown in Section .):

eαi =

 I O

τN̄i I

 , e[βk ,[αi ,βj ]]=

 I τ3
(
M̄jN̄iM̄k + M̄kN̄iM̄j

)
O I

 . (.)

For that reason, it is logical to build a splitting scheme which is symmet-
ric and includes easily computed commutators. As we have seen, this
splitting leads to the cheap exponentials of nilpotent matrices, while
symmetry and commutators facilitate finding good coefficients: some
equations with the commutators are easier to solve and there appear
free parameters for optimisation. A general representation for such
a family may be the following:

Ψ[p]
s =

s∏
m=1

exp


q∑
i=1

ym,iβi +
∑
i,j,k

wm,i,j,k [βk , [αi ,βj ] ]


×exp


q∑
i=1

xm,iαi +
∑
i,j,k

vm,i,j,k [αk , [βj ,αi ] ]

,

(.)

where coefficients xm,i , ym,i , vm,i,j,k and wm,i,j,k satisfy appropriate sym-
metry relations.

In principle, we strive to build methods whose computational cost
is as low as possible. However, certain systems other commutators like
[αi ,βi ] can be added if they are easy to calculate.
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.. Half-autonomous case

After general considerations, we can proceed to the Lie algebra of
the Hill eq. (.) and the wave eq. (.). Recall the split representa-
tion of their corresponding st-order systems:

Z (t) =

 O O

N (t) O

+
O I

O O

C A(t) +B. (.)

The major difference is that the upper block of B is now the identity
matrix I , and this property leads to further simplifications in the Lie
algebra, whose generators become

αi B τ

O O

N̄i O

 , β1 ≡ ιB τ

O I

O O

 , (.)

where N̄i are the derivatives of the Lagrange interpolating polynomial
(.) of N (t), evaluated at the centre of time subinterval.

Thanks to the identity block I in ι, commutators (.) are signific-
antly simplified.

[αi , ι] = τ2

−N̄i O

O N̄i

 , [ι, [ι,αi ] ] = −τ3

O 2N̄i
O O

 ,

[αi , [αk + ι,αj ] ] ≡ [αi , [ι,αj ] ] = τ3

 O O

N̄iN̄k + N̄kN̄i O

 .

(.)

Compare the second and the third commutators above: the former re-
quires only one multiplication of a matrix by a scalar, while in the latter
linear combinations of matrices are multiplied.

Let us look at the explicit representation of the generators. As before,
we take the -point th-order GL quadrature rule, which is the minimum
requirement for th-order integrators and is also suitable for optimized
th-order methods. Obviously, ι does not change with quadrature rules,
so the generators are:

α1 = τA2 = τ

O O

N2 O

 , ι= τB = τ

O I

O O

 ,

α2 = τ

√
15
3

(A3 −A1) = τ

√
15
3

 O O

N3 −N2 O

 ,

α3 = τ
10
3
(A3 − 2A2 +A1) = τ

10
3

 O O

N3 − 2N2 +N1 O

 .

(.)

From this point, depending on the problem at hand, slightly different
strategies are possible for building new methods.
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. hill equation

Now, we turn our attention to the Hill equation (HE) in its (more com-
pact) st-order system representation (.):

du(t)
dt

= Z (t)u(t)B

 O I

N (t) O

u(t), u(t0) = u0.

Recall that we assume N to be periodic and have a moderate dimension,
so that we compute the solution as the fundamental matrixΦ(t): u(t) =
Φ(t)u0, and we count computation cost in the units of d-dimensional
matrix–matrix multiplications.

Assume the period of N (t) is T , thus Z (t) = Z (t+ T ). Floquet the-
ory states [, , ] that in this case Φ(t+ T ) = Φ(t)Φ(T ). Con-
sequently, u(kT ) =Φk(T )u0 for an integer k.

If N (t) is real and symmetric, then Z (t) belongs to the symplectic
algebra Sp(2d,C) and Φ(t) is symplectic. These properties formalise
the motivation: system (.) is stable if all the 2d eigenvalues λi of Φ(t)
lie on the unit disc. As ME-based schemes preserve symplecticity, they do
not push the eigenvalues out from the unit disc. Nevertheless, proposed
methods will be valid for non-symmetric and non-periodic N (t), but
their performance will depend on the problem structure.

Since the discretized HE has a relatively small dimension, we can,
in a sense, simplify methods by taking a step back. To this end, we re-
combine the two st-grade elements of the Lie algebra: ζ1 B α1 + ι.
As a result, we get formally the same Lie algebra as in Chapter . There-
fore, we can reuse some of those results, albeit with some modifications.

Let us compare the explicit forms of generators of the HE and SE. From
(.) it is easy to get the matrix form of ζi for the current problem in
terms of linear N̄i :

ζ1 = τ

O I

N2 O

 , ζi = τ

O O

N̄i O

 , i ≥ 2. (.)

Although ζ1 now does not contain the discrete Laplacian, it is still
the most expensive element to exponentiate. Namely, exp(τζi), i ≥ 2
does not require matrix multiplication at all, while exp(τζ1) can be
approximated to order 2m with symplecticity preservation at the cost
of m+ 4/3 MMP [].

For illustration, we take Υ[6]
2 because it is a typical and short scheme

of our QCF family. Its matrix form for the HE is the following:

Υ[6]
2 =exp(−x1,2ζ2 + x1,3ζ3 + v[212])exp(x2,1ζ1 − x2,2ζ2 + x2,3ζ3)

×exp(x2,1ζ1 + x2,2ζ2 + x2,3ζ3)exp(x1,2ζ2 + x1,3ζ3 + v[212])

=

 I O

τC
[6]
2 I

exp

τ2
 O I

D
[6]
2 O


exp

τ2
 O I

D
[6]
1 O



 I O

τC
[6]
1 I

 ,
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where D[p]
i are linear combinations of Nj and C[p]

i are polynomials of
N (t), arising from the commutator [212]. Assume the fundamental
solution Φk−1 at step k − 1 is divided into four d × d blocks. Then, For these methods,

FSAL means that
the outermost
parts have
the same structure
and can be
concatenated

considering the cost of symplectic approximation and the FSAL property,
it will cost 332/3 d × d-dimensional MMPs to calculate Φk .

It is possible to lower the method’s cost by decomposing the exponen-

tials. Indeed, since combinations D[p]
i are constant and real-valued in

each time subinterval, the following result can be applied []:

exp

τ
O I

D O


=

 cosh
(
τ
√
D
)

1√
D

sinh
(
τ
√
D
)

√
D sinh

(
τ
√
D
)

cosh
(
τ
√
D
)  .

If the spectral radius ρ of
√
D satisfies the condition ρ(

√
D) < π/τ, then

it can be decomposed into the following product []:

exp

τ
O I

D O


 ≈

 I O

L[s] I


 I U [s+2]

O I


 I O

L[s] I

 , (.)

where the blocks L[s] and U [s+2] are Taylor series of the hyperbolic
functions up to a sufficiently high order in τ . For s = 13 they read:

L[s] =
√
D tanh

(
τ

√
D
2

)
=
τD
2
− τ

3D2

24
+
τ5D3

240

− 17τ7D4

40320
+

31τ9D5

725760
− 691τ11D6

159667200
+O

(
τ13

)
;

U [s+2] =
1
√
D

sinh
(
τ
√
D
)
= τI +

τ3D
6

+
τ5D2

120
+
τ7D3

5040

+
τ9D4

362880
+

τ11D5

39916800
+

τ13D6

6227020800
+O

(
τ15

)
.

(.)

Note that the truncated series expansions of L[s] and U [s+2] can be bxc is the floor
functioncomputed simultaneously with only b(s − 1)/2c MMPs. More precisely,

if we want an overall th-order approximation, then we need only 
products to compute τ5D3, and with the same number of products U
will have order s+2. By construction L[s] and U [s+2] are symmetric, and
the sth-order approximation of (.) is a symplectic matrix for any s.

Now, we can substitute each inner exponential of Υ[6]
2 by (.), taking

into account that matrices with the L[s] and C[6]
i blocks commute:

Υ[6,s]
2 =

 I O

τC
[6]
2 +L

[6,s]
2 I


 I U

[6,s]
2

O I


 I O

L
[6,s]
2 +L

[6,s]
1 I


×

 I U
[6,s]
1

O I


 I O

τC
[6]
1 +L

[6,s]
1 I

 . (.)
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The scheme retains the FSAL property, and the total cost per step is

1︸︷︷︸
[212]

+ 2×
⌊ s − 1

2

⌋
︸      ︷︷      ︸
(.) twice

+ 4× 2︸︷︷︸
 stages

= 8+ s,

meaning that even with s = 8 the cost is twice lower compared to

the original Υ[6]
2 method.

Algorithm : One step of the Υ[p,s]
2, p = 4, 6 methods

Data: initial time tk−1, time step τ , initial value Φk−1

 compute N
(
tk−1 + cjτ

)
with c1 =

1
2 −

√
15

10 , c2 =
1
2 , c3 =

1
2 +

√
15

10 ;

 compute linear combinations of Nj BN (tk−1 + cjτ)

C
[4]
1 B

(
10−

√
15

)
180

N1 −
1
9
N2 +

(√
15+ 10

)
180

N3,

D
[p]
1 B

(
15− 8

√
15

)
180

N1 +
1
3
N2 +

(
15+ 8

√
15

)
180

N3,

D
[p]
2 B

(
15+ 8

√
15

)
180

N1 +
1
3
N2 +

(
15− 8

√
15

)
180

N3,

C
[4]
2 B

(√
15+ 10

)
180

N1 −
1
9
N2 +

(
10−

√
15

)
180

N3;

(.)

 if p = 6 then
 compute matrix polynomials

[212] =
τ2(N1 −N3)

2

12960
, C

[6]
i = C

[4]
i + [212], i = 1,2; (.)

 end

 decompose D[p]
m, m= 1, 2 according to (.);

 calculate approximations (.);
 propagate Φk−1 with the corresponding method;
Result: value Φk .

. time-dependent wave equation

In this section we turn our attention to the one-dimensional example
wave equation

∂2ψ(t,x)
∂t2

=
∂2ψ(t,x)
∂x2 +V (t,x)ψ(t,x),



. time-dependent wave equation 

which after discretization and transformations (.) and (.) has the same
block antidiagonal form as the HE:

du(t)
dt

=

 O I

N (t) O

u(t), u(t0) = u0, u(t) ∈R2d, (.)

where N (t)B T +V (t) and its properties should be addressed when
designing integrators.

Firstly, in contrast with the rather moderately sized HE where we need
the fundamental matrix solution to estimate stability, we now have
a large-dimensional system where we can suffice with the state vector u.
For this reason, it is convenient to propagate the solution by MVPs.

Secondly, N (t) is a negative definite and symmetric matrix. As a con-
sequence, the fundamental solution is an oscillatory symplectic trans-
formation, and it is desirable to construct symplectic integrators that
could be effective in a wide frequency band.

Finally, in many cases the discretized potential V (t) is diagonal, and
the Laplacian T is the most expensive part, so we will count the cost of
methods as the number of matrix–vector product (MVP) with T .

With these considerations for the WE, our initial step will be to split
the system according to (.) and apply the results of Section .
directly.

We will limit the order of new schemes to . Then, the corresponding
Lie algebra has three generators: the lower-triangular αi , i = 1,2,3, and ι
with the identity matrix as the upper right block. The th-order Magnus
expansion (ME) truncation is

Ω[6] = ι+α1 +
1

12
α3 +

1
12

[α2, ι]

up to order 

+
1

360
([α1, [ι,α3] ] − [ι, [α3, ι] ] )

− 1
240

[α2, [ι,α2] ] +
1

720
([ι, [α1, [ι,α2] ] ] − [α1, [ι, [α2, ι] ] ] ),

(.)

hence  order conditions to reach order , and  to reach order .

.. A general sixth-order method without commutators

The first method we derive is based on slitting methods [, ] for
the general time-dependent problem (.). It does not explicitly use
the separable structure of N = T +V .

We consider commutator-free s-stage th-order that without loss of
generality can be written as

Ψ[6]
s =

s∏
m=1

exp(ymι)exp

 3∑
i=1

xm,iαi

. (.)



 hill and wave equation

As before, we build symmetric compositions to lower the number of
order conditions. For coefficients, it means that x1,i = 0, ∀i or ys = 0;
the rest should satisfy xi,j = (−1)j+1xs−i,j , i = 1, . . . ,s−1 and yi = ys+1−i ,
i = 1, . . . ,s.

As a starting point, we take coefficients xm,i and ym of an -stage
th-order scheme (.) from [], optimised for constant N and M .
This tactic serves two purposes: it allows solving fewer order conditions
for the time-dependent case and simultaneously results in a method
efficient for autonomous problems. In that case commutators which
involve only ι and α1 vanish up to order , and he contribution of
higher orders is minimised by adding more stages than strictly necessary.
Despite the increase in cost, the scheme gains an improved accuracy
and stability.

With the initial set of ‘autonomous’ coefficients, we have a scheme
with  coefficients xm,2 and  coefficients xm,3 to solve  order conditions.
The structure of these equation makes one of the xm,2 and three of
the xm,3 as free parameters which are chosen to minimise the objective
function

∑
m(|xm,2|2 + |xm,3|2) to get smaller error. The solution is such

that the scheme starts and ends with exponentials of ι:

x1,1 = 0.184330483502666

x1,2 = −0.077156381298956

x1,3 = 0.015810389108601

x2,1 = −0.041056903297711

x2,2 = 0.014540760463978

x2,3 = 0.007553493094496

x3,1 = 0.133755679666750

x3,2 = −0.035178021085693

x3,3 = 0.012409269716451

x4,1 = 0.203764547132355

x4,2 = −0.030210447662554

x4,3 = 0.008289779992453

x5,1 = −0.011760166914960

x5,2 = −0.000581981140461

x5,3 = −0.006294997717777

x6,1 = 0.061932719821802

x6,2 = 0

x6,3 = 0.007797464944885

y1 = y12 = 0.046487454790863

y2 = y11 = −0.060691671165643

y3 = y10 = 0.218466526463407

y4 = y9 = 0.168053579483093

y5 = y8 = 0.314392364170353

y6 = y7 = −0.186708253742073.

After obtaining the solution for the coefficients xi,j , we repeat the fa-
miliar procedure: we use the th-order GL quadrature to replace the gen-
erators αi by corresponding linear combinations (.) of Nj . Since
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the generators in (.) are combined to retain nilpotent structure,
the matrix form of the method is:

Ψ[6]
11 =

 I τb12I

O I


 I O

τN̄11 I

 · · ·
 I O

τN̄1 I


 I τb1I

O I

 , (.)

where N̄m =
∑3
j=1 am,jNj , i = 1, . . . ,11. The coefficients am,j are obtained

through A= XS3×3, while yi are unchanged: bm = ym.
In this method, the most expensive part is the action of the linear

combination N̄m on the upper d-dimensional half of the vector u(t), and
there are multiplications of this type. On the other hand, the ι-blocks
require multiplying a vector by a scalar, so their cost can be neglected.
Consequently, the total cost is  d-dimensional MVPs.

.. Methods with modified potentials

In different contexts, for example, relativistic quantum mechanics,
the WE takes the form of the Klein–Gordon–Fock equation (KGFE), in which
the operator consists of two pasts: as the kinetic energy T and the vari-
able mass µ(t) or a confining potential V (t,x).

In contrast with the previous section, we will construct schemes which
take into account the split structure ofN = T +V and include (similarly
to the SE) some commutators that correspond to the time-derivatives of
V (t). This technique yields methods that predominantly use positive
fractional time steps, which is not possible for classical splitting meth-
ods of order p > 2 [], hence a smaller error at a noticeably reduced
number of stages with a lower computational cost.

We begin with the autonomous case and develop the ideas from [,
, ]. Consider both A and B in (.) to be independent of time. Then,
the simplest form of the composition (.) is

Ψ[p]
s = ebsιeasαs · · ·eb1ιea1α1

=

 I τbsB

O I


 I O

τasA I

 · · ·
 I τb1B

O I


 I O

τa1A I

 .
(.)

The coefficients am and bm are obtained through the solution of Ψ[p]
s =

eτ(A+B)+O
(
τp+1

)
. According to (.), the commutators for the autonom-

ous case have the following familiar block structure:

[B, [B,A]] =

O −2N

O O

 , [A, [B,A]] =

 O O

2N 2 O

 . (.)

Therefore, it is natural to introduce them into the scheme without
losing the nilpotent properties beneficial for matrix exponentiation.
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The enhanced composition has more coefficients to solve arising order
equations:[ABA] is

a shorthand for
the nested

commutator
[A, [B,A]]

Ψ[p]
s = eτbsB+τ

3ds [BBA]eτasA+τ
3cs [ABA]· · ·eτb1B+τ3d1[BBA]eτa1A+τ3c1[ABA],

(.)
so higher orders can be achieved with fewer stages with positive coeffi-
cients. A similar modification applied to the SE is called modified poten-
tials [, ].

Let us now assess the cost of the enhancement. The action of eτamA

on a vector u = [y, ẏ]T requires one costly d-dimensional matrix–
vector product Ny. When [A, [B,A]] containing N 2 is added, only one
more product is needed because Ny can be reused. On the other hand,
exp(τbmB)u costs virtually nothing and [B, [B,A]] is linear in N , so
the cost also increases by one multiplication. Therefore, the most ex-
pensive s-stage scheme with all the commutators included will require
3s d-dimensional MMPs. If a method of this type is symmetric, then it
has the FSAL property, leading to a lower final cost.

For the time-dependent case the inner separable structure N (t) =
T +V (t) becomes important. Following the strategy proposed in [, ,
], new methods will use appropriate time-averaging combinations of
N (t) as described in Chapter . We will use the -point GL quadrature
for both (optimised) th- and th-order methods. Using this quadrature
rule we can write out the explicit matrix of the generators αi , ι:

α1 = τ

 O O

T +V2 O

 , ι= τ

O I

O O

 ,

α2 = τ

√
15
3

O O

V̄2 O

 , α3 = τ
10
3

O O

V̄3 O

 ,

(.)

while the commutators (.) become

[αk , [βj ,αi ] ] = [αk , [ι,αi ] ] = τ3

 O O

V̄i V̄k + V̄kV̄i O

 ,

[βk , [βj ,αi ] ] = [ι, [ι,αi ] ] = −τ3

O 2V̄i
O O

 , i,k ≥ 2.

(.)

where V̄2 = V3 − V1 and V̄3 = V3 − 2V2 − V1. When they act on a vec-
tor u, exp(τ [αk , [ι,αi ] ] )u requires MVPs, while exp(τ [ι, [ι,αi ] ] ) requires
only one (as in the autonomous case). Consequently, it is advantageous
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to consider compositions (.) that only involve the cheap commutat-
ors [ι, [αj , ι] ] but not [αi , [ι,αj ] ] :

Ψ[p]
s =

s∏
m=1

exp

ymι+ 3∑
i=3

wm,i [ι, [ι,αi ] ]

exp

 3∑
i=1

xm,iαi


=

 I τbmI − τ3dm,iN̄i
O I


 I O

τ
∑3
i=j am,jNj I

 .

(.)

We build symmetric methods, so the coefficients should satisfy the fol-
lowing relations:

xm+1−k,i = (−1)i+1xk,i ;

ym+1−k = yk , wm+1−k,i = (−1)i+1wk,i ;
k = 1 . . . s. (.)

After sequential application of the BCH formula to (.), we get a par-
ticular version of the order conditions polynomial (.) that contains
only odd powers of τ :

P
[6]
τ = p1,1ι+ p1,2α1 + p3,1[ι, [α1, ι]] + p3,2[α1, [ι,α1]] + p3,3α3 + p3,4[α2, ι]

+ p5,1[ι, [ι, [α1, [ι,α1]]]] + p5,2[α1, [ι, [α1, [ι,α1]]]] + p5,3[ι, [α3, ι]]

+ p5,4[α1, [ι,α3]] + p5,5[α2, [ι,α2]] + p5,6[ι, [α1, [ι,α2]]]

+ p5,7[α1, [ι, [α2, ι]]] +O
(
τ7

)
.

Compared to the ME, there are  additional commutators (e. g. [α1, [ι,α1]])
of ι and α1 that must be cancelled out to reach a desired order, totalling
 conditions for order  and — for order .

Let us now estimate the cost of the scheme eq. (.). A linear com-
bination of αi requires one MVP, in which the most expensive part is
the discrete Laplacian T . In the other exponentials, there is also one
MVP, but if it turns out that in some stagem the commutator is not neces-
sary (i. e. dm,j = 0), then the cost virtually drops to zero, as it reduces to
the multiplication of the vector by a scalar.

... Fourth-order methods

In the previous parts of the work we have seen that optimising th-order
methods with a th-order quadrature leads to notably lower errors.
Therefore, we will use the same strategy here to solve some conditions
at order , expecting a better accuracy.

For instance, the following -stage composition

Ψ[4]
3 =exp

(1
2
α1 +

1
48

[α1, [ι,α1]]
)

×exp
(
ι− 1

12
[ι, [ι,α1]]

)
×exp

(1
2
α1 +

1
48

[α1, [ι,α1]]
) (.)
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satisfies all the autonomous conditions up to order . If we introduce
the cheap commutators in the following way:

Ψ[4]
3 =exp(x1,1α1 − x1,2α2 + x1,3α3)

×exp(y2ι+w2,1[ι, [ι,α1]] +w2,3[ι, [ι,α3]])

×exp(x1,1α1 + x1,2α2 + x1,3α3)

(.)

or

Ψ[4]
3 =exp(y1ι+w1,1[ι, [ι,α1]]−w1,2[ι, [ι,α2]] +w1,3[ι, [ι,α3]])

×exp(x2,1α1 + x2,3α3)

×exp(y1ι+w1,1[ι, [ι,α1]] +w1,2[ι, [ι,α2]] +w1,3[ι, [ι,α3]]),

(.)

then there will be only  variables to solve  equations and no free
parameters for any optimisation.

However, more intricate but cheap combinations have enough para-
meters to solve one th-order equation p5,3:

p1,1 = p1,2 = 1; (consistency)

p3,1 = p3,2 = 0, p3,3 = p3,4 =
1

12 ;

p5,3 = − 1
360 .

(.)

The schemes have  stages each but cost  MVPs (considering the FSAL

property):

Ψ[4]
3,1 =exp

(1
6
ι− 1

144
[ι, [ι,α1]] +

7
8640

[ι, [ι,α3]]
)

×exp
(1

2
α1 +

1
8
α2 +

1
24
α3

)
exp

(2
3
ι
)

×exp
(1

2
α1 −

1
8
α2 +

1
24
α3

)
×exp

(1
6
ι− 1

144
[ι, [ι,α1]] +

7
8640

[ι, [ι,α3]]
)

(.)

and

Ψ[4]
3,2 =exp

(1
6
ι
)

exp
(1

2
α1 +

1
8
α2 +

1
24
α3

)
×exp

(2
3
ι− 1

72
[ι, [ι,α1]] +

7
4320

[ι, [ι,α3]]
)

×exp
(1

2
α1 −

1
8
α2 +

1
24
α3

)
exp

(1
6
ι
)
.

(.)



. time-dependent wave equation 

By taking stages with more elements, it is possible to satisfy additional
th-order conditions besides (.) at the cost of one additional MVP. For
example, p5,6 = −p5,7 = 1/720 are fulfilled by

Ψ[4]
4,1 =exp

(1
6
ι+

1
240

[ι, [ι,α1]] +
1

720
[ι, [ι,α2]] +w1,3[ι, [ι,α3]]

)
×exp

(1
2
α1 +

1
8
α2 +

1
24
α3

)
×exp

(
2
3
ι− 1

45
[ι, [ι,α1]] +

7− 8640w1,3

4320
[ι, [ι,α3]]

)
×exp

(1
2
α1 −

1
8
α2 +

1
24
α3

)
×exp

(1
6
ι+

1
240

[ι, [ι,α1]]−
1

720
[ι, [ι,α2]] +w1,3[ι, [ι,α3]]

)
,

(.)

where w1,3 is a free parameter which we put to w1,3 = 0.
Alternatively, p5,3 = −p5,4 = −1/360 and (.) are satisfied by means

of a composition that starts with αi :

Ψ[4]
4,2 =exp

(
3−
√

3
6

α1 +
1

12
α2 +

5−
√

3
120

α3

)
×exp

(
1
2
ι+
−2+

√
3

48
[ι, [ι,α1]] +

−2+
√

3
960

[ι, [ι,α3]]

)
×exp

(√
3

3
α1 +

√
3

60
α3

)
×exp

(
1
2
ι+
−2+

√
3

48
[ι, [ι,α1]] +

−2+
√

3
960

[ι, [ι,α3]]

)
×exp

(
3−
√

3
6

α1 −
1

12
α2 +

5−
√

3
120

α3

)
.

(.)

... Sixth-order methods

For methods of order , it is compulsory to solve the full set of  order

conditions arising from the polynomial P [6]τ .
As we strive to achieve minimal computational cost, we consider

the shortest possible compositions. Methods with  or  (symmetric)
stages either do not have enough parameters or do not yield real solu-
tions.



 hill and wave equation

We examine -stage symmetric composition. The first one is

Ψ[6] =exp(x1,1α1 − x1,2α2 + x1,3α3)exp(y1ι)

×exp(x2,1α1 − x2,2α2 + x2,3α3)exp(y2ι)

×exp(x3,1α1 − x3,2α2 + x3,3α3)

×exp(y3ι+w3,1[ι, [ι,α1]] +w3,3[ι, [ι,α3]])

×exp(x3,1α1x3,2α2 + x3,3α3)

×exp(y2ι)exp(x2,1,x2,2,x2,3)

×exp(y1ι)exp(x1,1α1x1,2α2 + x1,3α3)

(.)

and has only one free parameter. Unfortunately, an exhaustive analysis
has not found real solutions. However, it is possible to construct another
composition with cost :

Ψ[6]
6 =exp(y1ι+w1,1[ι, [ι,α1]]−w1,2[ι, [ι,α2]] +w1,3[ι, [ι,α3]])

×exp(x1,1α1 − x1,2α2 + x1,3α3)

×exp(y2ι)exp(x2,1α1 − x2,2α2 + x2,3α3)

×exp(y3ι)exp(x3,1α1 + x3,3α3)exp(y3)

×exp(x2,1α1 + x2,2α2 + x2,3α3)exp(y2)

×exp(x1,1α1 + x1,2α2 + x1,3α3)

×exp(y1ι+w1,1[ι, [ι,α1]] +w1,2[ι, [ι,α2]] +w1,3[ι, [ι,α3]])

(.)

Since the order conditions are non-linear equations, there are two famil-
ies of solutions that depend on the same parameter w1,3:

for Ψ[6]
6a :

x1,1 = 0.564248616311064

x1,2 = −0.176690750968964

x1,3 = −0.313516035197005

x2,1 = −0.239362702177329

x2,2 = −0.057187275163375

x2,3 = 0.613049370231532

x3,1 = 0.350228171732531

x3,2 = 0

x3,3 = −0.515733336735721

y1 = 0.186856563115511

y2 = 0.552058166051478

y3 = −0.238914729166989

w1,1 = −5.414454638226355× 10−26

w1,2 = −0.002294120141002

w1,3 = 1/1000;

for Ψ[6]
6b :

x1,1 = 0.911084237567662

x1,2 = −0.089268394480535

x1,3 = −0.028447058456873

x2,1 = 0.174005954233266

x2,2 = 0.075685506226831

x2,3 = 0.034479151199232

x3,1 = −1.170180383601855

x3,2 = 0

x3,3 = 0.071269147848614

y1 = 0.402019603896500

y2 = 0.532939685630854

y3 = −0.434959289527354

w1,1 = 5.647154890872904× 10−26

w1,2 = 0.000920165692567

w1,3 = 0.



. time-dependent wave equation 

The disadvantage is that not all the coefficients for the autonomous part
are positive.

However, with one additional product and total cost , we obtain
solution with positive coefficients for the autonomous part when 0.3 <
x3,1 < 0.4:

Ψ[6]
7,1 =exp(x1,1α1 − x1,2α2 + x1,3α3)exp(y1ι)

×exp(x2,1α1 − x2,2α2 + x2,3α3)

×exp(y2ι+w2,1[ι, [ι,α1]]−w2,2[ι, [ι,α2]])

×exp(x3,1α1 − x3,2α2 + x3,3α3)

×exp(y3ι)

×exp(x3,1α1 + x3,2α2 + x3,3α3)

×exp(y2ι+w2,1[ι, [ι,α1]] +w2,2[ι, [ι,α2]])

×exp(x2,1α1 + x2,2α2 + x2,3α3)

×exp(y1ι)exp(x1,1α1 + x1,2α2 + x1,3α3)

(.)

Fixing x3,1 = 1/3, we get

x1,1 = 0.051458286600180

x1,2 = −0.007607519969111

x1,3 = −0.007310852657106

x2,1 = 0.115208380066487

x2,2 = −0.064270386358967

x2,3 = 0.040001852838863

x3,1 = 1/3

x3,2 = 0.054976313297277

x3,3 = 0.008975666484911

y1 = 0.058085523104699

y2 = 0.269824135673790

y3 = 0.344180682443021

w2,1 = −0.001784230468531

w2,2 = 0.000368903662768.

(.)

At the cost of  products there are many possibilities. For instance,

a family of methods Ψ[6]
8,1 with one additional parameter y0, added to

the outermost stages of Ψ[6]
7,1 (.):

Ψ[6]
8,1 =exp(y0ι)exp(x1,1α1 − x1,2α2 + x1,3α3)

×exp(y1ι)exp(x2,1α1 − x2,2α2 + x2,3α3)

×exp(y2ι+w2,1[ι, [ι,α1]]−w2,2[ι, [ι,α2]])

×exp(x3,1α1 − x3,2α2 + x3,3α3)

×exp(y3ι)

×exp(x3,1α1 + x3,2α2 + x3,3α3)

×exp(y2ι+w2,1[ι, [ι,α1]] +w2,2[ι, [ι,α2]])

×exp(x2,1α1 + x2,2α2 + x2,3α3)exp(y1ι)

×exp(x1,1α1 + x1,2α2 + x1,3α3)exp(y0ι).

(.)



 hill and wave equation

In this case we start from the coefficients (.) with y0 = 0 and then

increase y0 to minimize
∑
i

(∣∣∣yi ∣∣∣2 + ∣∣∣xi,1∣∣∣2) which yields:

x1,1 = 0.153132961756204

x1,2 = −0.092876346639766

x1,3 = 0.022461739927107

x2,1 = 0.013533704910463

x2,2 = 0.050116838506557

x2,3 = 0.009170580973135

x3,1 = 1/3,

x3,2 = −0.079279474173539

x3,3 = 0.010034345766425

y0 = 53/2000,

y1 = 0.156724739535823

y2 = 0.145665509223912

y3 = 0.342219502480528

w2,1 = −0.001891832186460

w2,2 = 0.001497252599416.

Alternatively, we can formally add more parameters:

Ψ[6]
8,2 =exp(x1,1α1 − x1,2α2 + x1,3α3)

×exp(y1ι)exp(x2,1α1 − x2,2α2 + x2,3α3)

×exp(y2ι+w2,1[ι, [ι,α1]]−w2,2[ι, [ι,α2]])

×exp(x3,1α1 − x3,2α2 + x3,3α3)

×exp(y3ι)exp(x4,1α1 + x4,3α3)exp(y3ι)

×exp(x3,1α1 + x3,2α2 + x3,3α3)

×exp(y2ι+w2,1[ι, [ι,α1]] +w2,2[ι, [ι,α2]])

×exp(x2,1α1 + x2,2α2 + x2,3α3)exp(y1ι)

×exp(x1,1α1 + x1,2α2 + x1,3α3),

(.)

but y3 turns out to be fixed; x4,2 should be zero due symmetry; x4,3 does
not influence the solution. Thus, only x4,1 is left. The minimisation of
the functional produces the following coefficients:

x1,1 = 0.050464730342452

x1,2 = −0.005130147412848

x1,3 = −0.011087056214938

x2,1 = 0.111201936324214

x2,2 = −0.065004872268242

x2,3 = 0.043422732113659

x3,1 = 1/3

x3,2 = −0.056691613668185

x3,3 = 0.009330990767946

x4,1 = 1/100

x4,2 = 0

x4,3 = 0

y1 = 0.051501998994974

y2 = 0.273039285884142

y3 = 0.175458715120884

w2,1 = −0.001789878228315

w2,2 = 0.000383001386749.



. time-dependent wave equation 

Method for separable diagonal potentials

In various noteworthy applications V (t) has a separable structure (.),
that is V (t) = f (t)D, where f (t) is a scalar function, representing some
external force, and D is a diagonal matrix.

In this case, further improvement is possible thanks to as simple form
of the commutators (.):

[ι,αi ] = τ2

D̄1 O

O −D̄1

 , i ≥ 2;

[ι, [ι,αi ]] = −τ3

O D̄3

O O

 ; [αi , [ι,αj ] ] = τ3

O O

D̄4 O

 ,

(.)

where D̄i are functions of V and, thus, are also diagonal matrices.
This simple structure allows introducing more parameters to a scheme.

For instance, the following composition with some coefficients xi does
not contain α1 (the kinetic part T ):

exp


D̄4 D̄5

D̄6 −D̄4


= exp

(
x1ι+ x2α2 + x3α3 + x4[ι,α2] + x5[ι,α3]

+x6[α2, [ι,α2]] + x7[ι, [ι,α2]] + x8[ι, [ι,α3]]
)
.

(.)
It is a 2× 2 block matrix, consisting of diagonal matrices D̄i , and it has
a low exponentiaton cost and contributes up to  independent paramet-
ers.

As for the autonomous part, we can use compositions with α1:

x1ι+ x2[ι, [ι,α1]] =

O 2x2T + D̄7

O O

 ;

x3α1 + x4[α1, [ι,α1] ] =

 O O

(y1T + D̄8)(y2T + D̄9) + D̄10 O

 .

(.)

Then, we add commutators with the same structure:

x1ι+ x2[ι, [ι,α1]] + x3[ι, [ι,α2]] + x4[ι, [ι,α3]]

=

O 2x2T + D̄11

O O

 (.)

and

x1α1 + x2α2 + x3α3 + x4[α1, [ι,α1] ] + x5[α2, [ι,α2] ]

=

 O O

(y1T + D̄12)(y2T + D̄13) + D̄14 O

 .
(.)



 hill and wave equation

The last two matrices are nilpotent; their exponentials will require  and
 calculations of the action of T on a d-dimensional vectors, respectively.

Consequently, new methods can use additional parameters without
significant increase in cost. Their general form would be similar to (.)
but with additional commutator, contributing to the block diagonal
stages:x

dg
m,i stand for

the coefficients of
αi included to

the block diagonal
matrices (.)

Ψ[p]
m =

s∏
m=1

exp
(
ymι+ x

dg
m,2α2 + x

dg
m,3α3 + zm,2[ι,α2] + zm,3[ι,α3]

+wm,1[ι, [ι,α1]] +wm,3[ι, [ι,α3]]
)

× exp
(
xm,1α1 + x

dg
m,2α2 + x

dg
m,3α3 + vm,1,1[α1, [ι,α1]]

)
.

(.)

The application of the BCH formula gives rise to  order conditions.
After an extensive analysis of this type of schemes, we propose

Ψ[6]
5 =exp(y1ι+ z1,2[ι,α2])

×exp(x2,1α1 − x2,2α2 + x2,3α3)

×exp(y3ι+ z3,2[ι,α2])

×exp(x4,1α1 − x4,2α2 + x4,3α3)

×exp(y5ι+w5,1[ι, [ι,α1]] +w5,3[ι, [ι,α3]])

×exp(x4,1α1 + x4,2α2 + x4,3α3)

×exp(y3ι+ z3,2[ι,α2])

×exp(x2,1α1 + x2,2α2 + x2,3α3)

×exp(y1ι+ z1,2[ι,α2]).

(.)

The solution

x2,1 = 0.240042507426491

x2,2 = −0.066189698716673

x2,3 = 0.038622655574735

x4,1 = 0.259957492573509

x4,2 = −0.068421380317335

x4,3 = 0.003044011091932

y1 = 0.089100765990115

y3 = 0.286949960842075

y5 = 0.247898546335620

w5,1 = −0.002855510275609

w5,3 = −0.000317745321648

z1,2 = −0.000976189642908

z3,2 = −0.005012400162261

(.)

leads to particularly small error terms at higher orders.

. numerical examples

In this section we study and demonstrate the performance of the new
methods valid for solving systems of the form (.). Specifically, for
the Hill equation we choose the following methods:



. numerical examples 

Table .: The orders of decomposition of the two best performing methods

ω / / /    

ε = 1

s of Υ[4,s]
1c ,  ,  ,  ,  ,  ,  , 

s of Υ[6,s]
2 ,  ,  ,  ,  ,  ,  , 

ε = 1/10

s of Υ[4,s]
1 ,  ,  ,  ,  ,  ,  , 

s of Υ[6,s]
2 ,  ,  ,  ,  ,  ,  , 

• decomposed QCF methods Υ[4opt,s]
2 , Υ[6,s]

2 , Υ[8,s]
5,1a, Υ[8,s]

5,2b that have
shown their efficiency in the SE numerical example;

• splitting schemes for the WE obtained in this chapter;

• decomposed CF methods: CF[4opt,s]
3 , CF[6,s]

5 , CF[8,s]
11 ;

• symplectic RKN methods (.) and (.);

• explicit RKs of orders , , and ;

• implicit symplectic RKGL methods of orders  and .

For the numerical experiments with the WE we do not use the QCF

methods, but include the scheme (.).

.. Mathieu equation

The first performance test is executed employing the Mathieu equation

ÿ+ (ω2 + εcos2t)y = 0, (.)

written as a first-order system (.). We will intergate
on [0; π]
throughout this
subsection

First, we want to know a reasonable order of decomposition for
the Υ[p,s] and CF[p,s] methods. To this end, we take a th-order and
a th-order method and integrate for t ∈ [0; π] with the identity matrix
I2×2 as the initial condition and then measure the norm of the error of
the fundamental matrix Φ at the final time. This procedure is repeated
for different time steps and different choices of ε, ω, and s. Table .
summarises the values of s that provided the best performances for
ω = 5k , k = −3, . . . ,3 (the better one comes first). We observe that good
results are obtained when the order of decomposition (.) is s = p+4,
which we will use in our experiments.

To compare the performance of the schemes, we consider two cases:
weaker time dependence with ω = 1/5, ε = 1/5 and a stronger one with



 hill and wave equation

ω = 5, ε = 5. We integrate for one period and then plot the error in
the fundamental matrix solution at the final time versus the computa-
tion cost in units of MMPs in double logarithmic scale. In each figure
the axis range of subfigures is the same to simplify the comparison of
different orders.

First, we make in-family comparison of the splitting methods to chose
only one of each order because we expect them to perform similarly.

Figure . shows that the best ones are Ψ[4]
3,2 and Ψ[6]

7 .
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Figure .: Efficiency graphs of the splitting methods with commutators
for the Mathieu equation.

Now we can compare different families of methods. From Figures .
to . we observe that the standard explicit and implicit RK methods
in all cases (except one low-oscillatory) perform worse than the more
specialised methods. We also see that the ME-based decomposed in-
tegrators Υ[p,s] perform noticeably better when there is a strong time
dependence with high frequency ω. Nevertheless, they and the new
Magnus–splitting schemes produce good results in the less oscillatory
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scenario, in which the highly optimised RKN are expected to be the most
efficient. It is possible thanks to a comparable cost, lowered by the de-
composition (.).

As we have seen, the performance of the methods changes with para-
meters. Now, we examine how the accuracy depends on the frequency
ω. We fix ε = 1, put the time step τ B π/20 and measure the norm
of the error in Φ for ω ∈ [0,10], ∆ω = 5/1000. The results are shown in
Figure .. We observe that the new QCF methods show a slower error
growth as frequency of the problem increases, albeit the CF methods
are more accurate in some cases. In this context, it is important that
the latter require – times more MMPs.

To illustrate how the methods are applied to the problem of finding
stability regions, we take τ B π/5 fix ε B 5 and consider ω ∈ [0; 5].
We compute the distance |λi − 1+ εM | between the eigenvalues and We add

the machine εM
to avoid
singularities
in log‖error‖2
when plotting

the unit circle. From Figure . we can conclude that the explicit RK

methods with few time steps cannot adequately find the regions of
stability. On the other hand, every symplectic methods shows good
results, and with larger time steps the th-order methods show better
accuracy than the higher-order methods (which is a quite common
case). Consequently, the overall strategy may be the following: first, do
a fast search with a low-order method; then, rectify the boundaries of
the regions with high-order methods with small time step.

.. Hill equation

The second benchmark we use is the matrix Hill equation:

Ÿ + (B0 +B1 cos2t+B2 cos4t)Y = 0 (.)

where B0, B1, B2 have dimension d × d. We put B0 B d2I + P , where P
is a Pascal matrix, that is,

p1,i = pi,1 = 1, pi,j = pi−1,j + pi,j−1, 1 < i, j ≤ d,

and set B1 B εI , B2 B ε/10I We consider d ∈ {5, 7}, εB d and εB d/10.
As in the Mathieu equation example, we integrate for t ∈ [0; π] and
measure norm of the error in the fundamental matrix solution Φ at
the final time.

As for in the Mathieu example, the best splitting methods have turned

out to be Ψ[4]
3,2 and Ψ[6]

7 , so we omit their comparison graphs. Figures .
to . show the performance of the schemes for various parameters.
Thanks to their lower computational cost, the decomposed Υ[p,s], as

long as the Magnus–splitting Ψ[6]
11 , methods consistently produce better

results in both oscillatory (larger d) and nearly autonomous (small ε)
cases.
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Figure .: Efficiency graphs of the th-order families for the Mathieu equation
with slow and fast time dependence.
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Figure .: Mathieu: efficiency graphs of the th-order methods.
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Figure .: Mathieu: efficiency graphs of the th-order methods.
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Figure .: Error growth vs. the frequency ω of the Mathieu equation.
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Figure .: Stability regions of the Mathieu equation with ε = 5 obtained by different methods.
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Figure .: Efficiency graphs of the th-order families for the Hill equation with d = 5.
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Figure .: HE: efficiency graphs of the th-order methods, d = 5.
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Figure .: HE: efficiency graphs of the th-order methods, d = 5.
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Figure .: Efficiency graphs of the th-order families for the Hill equation with d = 7.
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Figure .: HE: efficiency graphs of the th-order methods, d = 7.
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Figure .: HE: efficiency graphs of the th-order methods, d = 7.



. numerical examples 

.. Wave equation

First, we consider the wave equation with time-dependent potential
with amplitude σ and frequency ω:

∂2
tψ(t,x) = ∂2

xψ(t,x)− σ
(
1+

1
5

cosωt
)
x2ψ(t,x);

ψ(t0,x) = e−
1
2 (x−3)2

+ e−
1
2 (x+2)2

, ψ̇(t0,x) = 0;

ψ(t,−10) ≡ ψ(t,10).

(.)

We choose the spatial interval to be [−10; 10] and integrate for t ∈
[0; 10π]. For the numerical experiments we take a spatial mesh with
d = 128 points and two (low and high) values of the frequency ω
and the coefficient σ . As before, we compute the reference solution
with a sufficiently small time step. Then, for each method we plot
the error norm versus the number of MVPs. The results are shown in
the Figure ..

When σ and ω are small, the oscillations are low, and the equation
becomes ‘almost’ harmonic oscillator. The best methods to solve this
type of problem is the new Magnus–splitting method Ψ[6]

11 , which is de-
signed to solve the autonomous harmonic oscillator with high precision
by exploiting several free parameters for optimisation. Unfortunately,
for higher-oscillatory example the new methods do not show perform-
ance improvement. On the other hand, their cost is lower, for example,

 MVPs of Ψ[6]
7 versus  for the RKN[6]

11 , which leaves room for fur-
ther optimisation of this family of schemes. Nevertheless, the most of
the new schemes are better than the RK methods.

Regarding order , we observe that the introduction of cheap commut-
ators to the schemes results in methods with a performance comparable

to the RKN[4]
6 method, but with a .– times lower computational cost.

.. Klein–Gordon–Fock equation

The second example is the Klein–Gordon equation with time-dependent
mass [] with the same initial and boundary condition as in the previ-
ous example:

∂2
tψ(t,x) = ∂2

xψ(t,x)−
µ2

(1+ t)2ψ(t,x),

ψ(t0,x) = e−
1
2 (x−3)2

+ e−
1
2 (x+2)2

, ψ̇(t0,x) = 0;

ψ(t,−10) ≡ ψ(t,10),

(.)

which we integrate over time interval [0,10π] with µ= 1/5 and µ= 5.
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Figure .: Efficiency of the methods for the wave equation.

Overall, the results shown in Figure . are similar to the previous

examples: RKN methods, Ψ[6]
11 and Ψ[6]

7 show comparable high efficiently.

The important difference it that the specifically tailored Ψ[6]
5 shows

notable improvement, both when initial mass µ is small, and the time
dependence of the problem contributes less, and when µ is relatively
large.

. conclusions

In this chapter we have presented three classes of numerical integrators.
The algebraic structure of the considered problems has allowed us
to build families of symplectic schemes with low computational cost.

The first family, based on the Magnus expansion, addresses problems
of moderate dimension, like the Mathieu and the matrix Hill equation.
In this case matrix–matrix product (MMP) are feasible and the solution
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Figure .: Efficiency of the methods for the Klein–Gordon–Fock equation.

is obtained in terms of the fundamental matrix, which allows to examine
the system stability via its eigenvalues.

The second and the third family employ the splitting approach and ap-
proximate the solution given by the Magnus expansion (ME). The former
does not contain commutators and is highly optimised for the harmonic
oscillator, while the latter incorporates cheap commutators which leads
to a reduced number of order conditions to be satisfied by the coeffi-
cients of the schemes. Commutators allow overcoming the order barrier
on the negative coefficients, which allows for better accuracy at a low
computational cost. These methods are advantageous when the system
dimension is large, which appears, for example, from the discretization
of PDEs like the wave equation. It is worth noting that such a setup
leaves possibility to build methods, using more optimising coefficients
and keeping their cost lower that of the methods from the literature.
Moreover, since the HE and the WE have similar structure, the splitting
schemes can also be applied to the HE.



 hill and wave equation

The numerical experiments have showed all new methods perform
efficiently on the scalar Mathieu equation and the matrix Hill equation,
but the Magnus-based family shows better results for highly oscillatory
problems.

The th- and th-order splitting schemes, in comparison with the highly
optimised schemes from the literature, have shown their superiority
for moderately oscillatory problems. Moreover, a notably lower com-
putational cost leaves room for further optimisation by adding more
stages.



7
NON-L INEAR CASE : KEPLER PROBLEM

In the earlier chapters we have built Magnus expansion-based methods
for linear problems: the Schrödinger equation, the Hill equation, and
the WE. Fortunately, a similar approach can be used to design integ-
rators for non-linear systems. In this chapter, we illustrate the idea by
the example of the time-dependent Kepler problem.

the kepler problem , in which two bodies interact by a central
force proportional to the inverse square of the distance between them, is
one of the most studied dynamical systems in classical mechanics. It is
a typical example of an integrable system [] often used as benchmark
for numerical integration methods for differential equations, ranging
from Runge–Kutta (RK) schemes with adaptive step size to multistep
methods []. More importantly, its geometric structure is the reason of
great attention in the context of structure-preserving numerical meth-
ods, such as energy-preserving and symplectic integrators [, ].

In many-body problems, which describe the motion of planetary
systems, the Kepler problem plays a fundamental role, because in an
appropriate set of coordinates (e. g., heliocentric or Jacobi []), can be
derived from a Hamiltonian of the form

H(q,p) = HK (q,p) + εHI (q,p), (.)

where HK corresponds to the Keplerian motion of each planet, εHI is
a perturbation with a small parameter ε introduced by the interplanet-
ary interaction. In one of the early works [] a symmetric nd-order
symplectic scheme was successfully used to study the chaotic behaviour
of the solar system, and since then many efficient symplectic integrators
have been designed with this near-integrable structure in mind [, ,
, , ].

Each of the aforementioned schemes require solving transcendental
equations to determine with great accuracy the phase state of each
body subjected to the Hamiltonian HK . In practice, it is carried out by
numerical integration as follows. We write the Hamiltonian function
for the Kepler problem as

H(q,p) =
1
2
pT p−µ1

r
, (.)





 non-linear case : kepler problem

where µ= GM, G is the gravitational constant,M Bm1+m2 is the total
mass, and p,q ∈R3, r = ‖q‖=

√
qT q. The mapping advancing the solu-

tion in time from t0 to t can be expressed as

(q(t),p(t)) ≡ΦK (t,q0,p0,µ) = (fqq0 + gqp0, fpq0 + gpp0) (.)

in terms of functions fq, fp, gq, gp that are determined through the map-
ping ΦK (t,q,p,µ) [, ]:

r B ‖q‖, u = qT p, E =
1
2
pT p−µ1

r
, a = −

µ

2E
,

w =

√
µ

a3 , σ = 1− r
a

, ψ =
u

wa2 , wt = x − σ sinx+ψ(1− cosx);

fq = 1+
a(cosx − 1)

r
, gq = t+

sinx − x
w

,

fp = −
aw sinx

r(1− σ cosx+ψ sinx)
, gp = 1+

cosx − 1
1− σ cosx+ψ sinx

,

(.)

where x is evaluated by numerical iteration. Depending on the time step
and the values of q and p, it usually suffices to make – iterations to
reach the round-off accuracy.

Various astronomical problems are modelled by (.) with explicitly
time-dependent mass. Some examples of system with the loss of mass
are: evolving planetary systems [], the revolution of exoplanets around
binary star systems [] with stellar loss mass [], and the two-body
problem with varying mass [, ]. In those situations one has to solve
in an accurate and efficient way the dynamics of the Hamiltonian

H(t,q,p) ≡ T +V (t) =
1
2
pT p−µ(t)1

r
, (.)

where now µ(t) is a time-variant mass. A natural question arises: can
the design approach, valid for the linear problems, be applied to time-
dependent non-linear equations? The answer is positive, and in this
chapter we show how to adapt the QCF quasi-Magnus integrators from
the previous chapter to the Kepler problem. The strategy used is gen-
erally the same, and we will highlight the main differences, appearing
from non-linearity.

. lie derivatives and poisson brackets

In contrast to the linear case, the derivation process of the non-linear
schemes is done by introducing the formalism of Lie derivatives and Lie
transformations [, , ]. The autonomous equations of motion are (.)

q̇= p, ṗ= −µ q
r3 , (.)



. lie derivatives and poisson brackets 

and the corresponding Hamiltonian vector is xH = (∇pH , −∇qH)T .
We introduce the Lie derivative LxH (the generalisation of commutator),
whose action on a differentiable function G(q,p) is

LxHG = (J∇uH)T∇uG = −(∇uH)T J∇uG = −{H ,G}= {G,H}. (.)

Here uB (q,p)T, and J is the basic canonical matrix (.). The Poisson
bracket {H ,G} of scalar functions H(q,p) and G(q,p) is defined as

{G,H}=
∑
i

(
∂G
∂qi

∂H
∂pi
− ∂G
∂pi

∂H
∂qi

)
.

Consequently, in terms of the Poisson bracket (.) can be written in
a form similar to (.)

u̇i = {ui ,H}. (.)

If G is a vector function, then LxH in (.) acts on each of its components.
Let ϕt be the exact flow corresponding to (.). For any infinitely

differentiable map G, the Taylor series of G(ϕt(u0)) at t = t0 is given by

G(ϕt(u0)) =
∑
k≥0

(t − t0)k

k!
(LkxHG)(u0) = exp

(
(t − t0)LxH

)
[G](u0), (.)

where exp
(
tLxH

)
is the Lie transformation. If we introduce the operator

Θt [G](u)B G(ϕt(u)) = acting on differentiable functions, then we can
write

G(ϕt(u)) ≡Θt [G](u) = exp
(
(t − t0)LxH

)
[G](u),

so that the solution of (.) is obtained by replacing G(u) in (.) by
the identity map Id(u) ≡ u:

ϕt(u0) =
∑
k≥0

(t − t0)k

k!
(LkxH Id)(u0) = exp

(
(t − t0)LxH

)
[Id](u0).

An important distinction between linear and non-linear cases is called
Vertauschungssatz []. Given the flows ϕ{1}t1 and ϕ{2}t2 corresponding to
the differential equations u̇= f {1}(u) and u̇= f {2}(u), respectively, they
are applied as(

ϕ
{2}
t2
◦ϕ{1}t1

)
(uk−1) = exp

(
t1Lf {1}

)
exp

(
t2Lf {2}

)
[Id](uk−1).

Note how the indices  and  are rearranged depending on whether one
is dealing with maps or with exponentials of operators. This relation is
generalised by induction to any number of flows [].
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In the non-autonomous problem one can still formally write the oper-
ator Θt associated with the exact flow as the Lie transformation corres-
ponding to a function Ω(t; t0),

ϕt(u0) =Θt [Id](u0) = exp
(
LxΩ(t;t0)

)
[Id](u0), (.)

which can be approximated for sufficiently small time intervals [tk−1; tk ]
by the corresponding Magnus expansion (ME) or its appropriate trun-
cation [, ]. Similarly to the linear case, the ME is an infinite series

Ω(t; t0) =
∞∑
m=1

Ωm(t; t0), (.)

but now it involves multiple integrals of nested Poisson brackets of
scalar Hamiltonians:

Ω1(t; t0) =

t∫
t0

H(s,q0,p0)ds

Ω2(t; t0) = −
1
2

t∫
t0

s1∫
t0

{
H(s1,q0,p0),H(s2,q0,p0)

}
ds2ds1.

Further terms are obtained by familiar generating procedures (.) [].

. magnus-based methods for non-linear problems

To obtain numerical methods, we need to approximate the operator Θt
up to order p. In the general non-autonomous case (.), it is expressed
as the composition of numerical flows:

uk =
(
ψ
{s}
τ ◦ψ

{s−1}
τ ◦ · · · ◦ψ{2}τ ◦ψ

{1}
τ

)
(uk−1),

where ψ[j]
τ corresponds to the Lie transformation exp

(
B̂m

)
B exp

(
LxBm

)
that can be expressed as a function of Hj B H(tk−1 + cj ,qk−1,pk−1)
evaluated at quadrature nodes cj . Therefore, taking into account the Ver-

tauschungssatz, we can express one step of the method as uk = Ψ[p]
h [Id]uk−1,

where

Ψ[p]
h = exp

(
x1B̂1

)
exp

(
x2B̂2

)
· · ·exp

(
xs−1B̂s−1

)
exp

(
xsB̂s

)
. (.)

In order to approximate the non-linear ME, we adhere to the same
strategy as in Chapter . We take the Lagrange interpolant H̃(t) of
the time-dependent Hamiltonian H . As in the linear case, it approx-
imates the solution at the end of the subinterval up to order p, that is,
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u(t)− ũ(t) = O
(
τp+1

)
[]. In our specific case with time-variant mass

(.), it is only necessary to interpolate µ(t):

H̃ =
1
2
pT p− µ̃(t)

1
r

.

As before, we define graded generators ζi through time derivatives of H̃
at the centre of [tk−1; tk ]:

ζl B τ l
1

(l − 1)!
∂l−1H̃(t)

∂tl−1

∣∣∣∣∣∣∣∣
t=tk−1+

τ
2

= O
(
τ l

)
. (.)

Four elements ζi , i = 1, . . . ,4 will suffice to build schemes up to order ,
and the resulting algebra is formally the same that we used in Chapter 
about the SE. With these elements, the truncation of the ME reads

Ω[8] = ζ1 +
1

12
ζ3 +

1
12
{12} − 1

240
{23}+ 1

360
{113} − 1

240
{212} − 1

720
{1112}

+
1

80
{14}+ 1

1344
{34} − 1

2240
{124}+ 1

6720
{223}+ 1

6048
{313} − 1

840
{412}

− 1
6720

{1114}+ 1
7560

{1123} − 1
4032

{1312} − 11
60480

{2113}+ 1
6720

{2212}

− 1
15120

{11113} − 1
30240

{11212}+ 1
7560

{21112}+ 1
30240

{111112}
(.)

where {ij . . . k`} represents the nested Poisson bracket {ζi , {. . . , {ζk ,ζ`} . . .}}.
Note how in comparison with (.) the signs in the expansion change.

The requirement that the scheme (.) provides an approximation
to the exact solution up to a given order p implies that the coefficients
xi have to satisfy corresponding order conditions, which are obtained
by reproducing the exact solution provided by (.) with (.) up to
order p.

For example, if we take Ω[2] = ζ1 = τH(tk−1 + τ/2), then the method

Ψ[2] = exp
(
B̂
)
, with B= τH

(
tk−1 +

τ
2

)
,

agrees with the operator Θτ up to order O
(
τ2

)
. On the other hand,

the scheme in terms of the mapping ΦK (τ ,u,µ) reads

xk = ϕ
[2]
h (uk−1) =ΦK

(
τ ,uk ,µ

(
tk−1 +

τ
2

))
(.)

and is nothing but the nd-order midpoint rule.
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To illustrate how the Magnus-based methods work in the non-linear

case, we take the same th-order method Υ[6]
2 with brackets (commutat-

ors). With -point GL quadrature rule ζi have the familiar form

ζ1 = τH2 = τ(T +V2) = τ(T −µ2
1
r
),

ζ2 =

√
15h
3

(H3 −H1) = −τ
√

15
3

(µ3 −µ1)︸    ︷︷    ︸
Bµ̄2

1
r

,

ζ3 =
10h

3
(H3 − 2H2 +H1) = −τ

10
3

(µ3 − 2µ2 + µ1)︸             ︷︷             ︸
Bµ̄3

1
r

.

As in the SE, only ζ1 depends on momenta through T , so {ζ2,ζ3} = 0.
Consequently, it is also possible to lower the number of order conditions

needed to approximate exp
(
Lx

Ω[6]

)
. Triple Poisson brackets {i1j} are

easily expressed by means of averaged masses:

{ζi , {ζ1,ζj }}= −µ̄i µ̄j
1
r4 , i, j ≥ 2. (.)

Linear combinations of ζi give rise to a Hamiltonian function which
corresponds to a scaled autonomous Kepler problem with a modified
but constant mass µ̄, that is,

F =
∑
i

xiζi = x1τ
(1

2
pT p− µ̄1

r

)
, with x1 , 0.

Its flow can be determined with the mappingΦK given in (.). If the simple
nested brackets (.) are introduced, then the flow of

G =
∑
i≥2

xiζi + v{i1j}= −τµ̄
1
r
− τ3vµ̄i µ̄j

1
r4

is also easy to obtain, since it only depends on coordinates. In con-
sequence, the composition

Υ[6]
2 =exp

(
−x1,2ζ̂2 + x1,3ζ̂3 + v1,212[ζ̂2, [ζ̂1, ζ̂2]]

)
×exp

(
x2,1ζ̂1 − x2,2ζ̂2 + x2,3ζ̂3

)
×exp

(
x2,1ζ̂1 + x2,2ζ̂2 + x2,3ζ̂3

)
×exp

(
x1,2ζ̂2 + x1,3ζ̂3 + v1,212[ζ̂2, [ζ̂1, ζ̂2]]

)
(.)

approximates exp
(
Lx

Ω[6]

)
up to order . Here [ζ̂2, [ζ̂1, ζ̂2]] is the Lie

bracket corresponding to the Hamiltonian vector field of the function
{ζ2,ζ1,ζ2}. The solution for the coefficients is the same as for the SE:

x1,2 = −
1

60
, x1,3 =

1
60

, x2,1 =
1
2

, x2,2 = −
2

15
, x2,3 =

1
40

. v1,212 =
1

43200
.
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Alternatively, the scheme can be expressed compactly in terms of linear
combinations:

Υ[6]
2 =exp

(
τ(V̄1 + τ

2Ĉ212)
)
exp

(
a2τ(T̂ +

1
a2
V̄2)

)
×exp

(
a3τ(T̂ +

1
a3
V̄3)

)
exp

(
τ(V̄4 + τ

2Ĉ212)
)
,

(.)

with

V̄i =
3∑
j=1

ai,j V̂j , Ĉ212 = −v1,212
5
3
(µ3 −µ1)

2 1
r4 ,

where the coefficients

A=


10+
√

15
180 −1

9
10−
√

15
180

15+8
√

15
190

1
3

15−8
√

15
180

a2,3 a2,2 a2,1

a1,3 a1,2 a1,1

 ;

a2 =
3∑
j=1

a2,j =
1
2

,

a3 =
3∑
j=1

a3,j =
1
2

,

(.)

are obtained with (.) and (.) as A= XS.
In this method the most computationally expensive part in the map-

ping ΦK , which is computed by the iterative procedure (.). It also
possesses the FSAL property: r B ‖q‖ from the fourth stage can be dir-
ectly used in the first and the second stages during the following time
step. Consequently, the relative cost of the outermost flows can be neg-
lected, and it is reasonable to measure the overall cost of this family of
methods as the number of ΦK calls.

. numerical examples

In this section we compare the new time-symmetric symplectic integ-
rators with other well-established methods. However, we do not aim to
test all possible scenarios, but just to illustrate how different schemes
perform in one particular example.

The first competing family will be symmetric composition methods.
If we take the nd-order midpoint rule (.) as a basic integrator, then
we can obtain higher-order methods as

SS[p]m ≡ ψ
[2]
ζmh
◦ · · · ◦ψ[2]

ζ2h
◦ψ[2]

ζ1h
, (.)

whose coefficients for various orders are given on page ; these are

the methods SS [4]3 , SS [6]9 , and SS [8]17 . It is important to note that composi-
tion methods of order higher than two necessarily involve some negative
coefficients, and therefore a backward integration in time at some inner



 non-linear case : kepler problem

stages. Given a decreasing function µ(t), backward integration repres-
ents a non-physical effect of an increase in the mass.

Commutator-free exponential integrators CF[4opt]
3 , CF[6]

5 , and CF[8]
11

[], originally proposed for the numerical integration of linear problems
can also be adapted to the non-linear setting, eventually resulting in
schemes of the form (.).

Finally, for the sake of completeness, we also include popular ODE

solvers provided by MATLAB:

• the embedded variable-step Dormand–Prince RK[4(5)] th-order
method (ode);

• the variable-step and variable-order Adams–Bashforth–Moulton
solver AB[13], designed for problems with stringent error toler-
ances (ode).

We count the computational cost of the Magnus-based methods as
the number of ΦK calls. For the adaptive methods, it is less obvious how
to estimate the computational cost in order to compare them with the ex-
ponential algorithms. Obviously, we can count the number of the vector
field (i. e. right-hand side) evaluations. However, fully assess the cost,
we should know the overhead for estimating the local and global errors
and to change either the time step or the order of the method, as well as
the cost of evaluating the mass µ(t) (for some problems this could be
the most costly part, depending on the model used). For these reasons,
we will consider two evaluations of the vector field (and the cost to
change the order/time step) be computationally equal to one call of
ΦK . Different choices for the relative cost would result in a small shift
of the corresponding curves, although the overall conclusions should
remain the same.

We illustrate the performance of the new schemes on the classical
Eddington–Jeans law for the secular evolution of mass in binary systems
[],

µ̇= −γµδ, µ(0) = µ0

or, equivalently,

µ(t) = (µ1−δ
0 + γ(δ − 1)t)

1
1−δ . (.)

Note that for non-integer values of δ the computational cost of evaluat-
ing µ(t) cannot be neglected. We consider the -dimensional case with
δ = 1.4, µ0 = 1, γ = 10−2, initial conditions

q0 = (1− e,0), p0 =
(
0,

√
(1+ e)/(1− e)

)
,

with e = 0.2 and e = 0.8 and final time tf = 20. We numerically com-
pute the reference solution (q(tf ),p(tf )) to high accuracy and plot
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the two-norm error of (q,p) at the final time versus the computational
cost (the number of ΦK calls) for different time steps.

Figures below show the results obtained for methods of each order:
th-order in the top, th-order in the second, th-order in the third row.
The graphs for the smaller value of the eccentricity are given in the left
column. The best method of each order, along with the classic reference
methods, ode and ode of Matlab, are summarized in Figure ..

From the graphs we conclude that the symplectic methods have better
general performance than the classical adaptive methods. Moreover,
the adaptation of methods by the inclusion of cheap Poisson brackets
leads to a notable performance gain compared to the general-purpose
CF methods.

For this type of problems, among the new methods, Υ[6]
2 is a method

of choice for low and medium accuracies, while Υ[8]
5b should be chosen

for high accuracies.

. conclusions

In this chapter we have considered the numerical integration of the two-
body gravitational problem with a time-varying mass. The exact flow cor-
responds to a symplectic transformation, and different symplectic integ-
rators from the literature can be adapted to solve this non-autonomous
systems. However, none of these symplectic methods are designed to
solve Hamiltonian systems with this particular structure. This is a rel-
evant problem and new specifically designed symplectic integrators
have been built. These new schemes can be seen as a generalization
of the commutator-free quasi-Magnus exponential integrators and are
based on compositions of symplectic flows corresponding to linear com-
binations of the Hamiltonian function and certain Poisson brackets. The
implementation makes use of the mapping that solves the autonomous
problem for averaged masses at each intermediate stage. In the autonom-
ous case the schemes provide the exact solution, so they also show a high
performance in the adiabatic limit.

We have built time-symmetric methods of order four, six and eight
that can be used with any quadrature rule of the order of the method or
higher. Some proposed methods are optimized using a quadrature rule
of higher order than the order of the method as well as by adding free
parameters into the scheme in order to satisfy certain order conditions
at higher orders.

The new methods have shown to be more efficient that other sym-
plectic schemes to all desired accuracies on several numerical examples.
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Figure .: Efficiency graphs of the th-order methods for the Kepler problem with mass defined by DE (.).
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Figure .: KPDE: efficiency graphs of the th-order methods.
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Figure .: KPDE: efficiency graphs of the th-order methods.
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Figure .: KPDE: comparison of the best methods of each order.

Algorithm : One step of the Υ[6]
2 methods for the Kepler prob-

lem with a time-variant mass
Data: initial time tk−1, time step τ , initial value (qk−1,pk−1)

T ;

 compute µ
(
tk−1 + cjτ

)
with c1 =

1
2 −

√
15

10 , c2 =
1
2 , c3 =

1
2 +

√
15

10 ;

 compute linear combinations of µ̄j B µ(tk−1 + cjτ) with
coefficients (.): µ̄m =

∑3
j=1 am,jµj , i = 1, . . . ,4 ;

 assign temporary variables qB qk−1, pB pk−1, and r B ‖q‖;
 compute the first stage:

p= p− τµ̄1
q
r3 − τ

3 1
6480

(µ3 −µ1)
2 q
r6 ;

 propagate the solution in the second and the third stages with
(.) :

(q,p) =ΦK (a2τ ,q,p, µ̄2/a2)

(q,p) =ΦK (a3τ ,q,p, µ̄3/a3)

 compute r = ‖q‖ and the final stage

p= p− τµ̄4
q
r3 − τ

3 1
6480

(µ3 −µ1)
2 q
r6 ;

 assign: qk = q, pk = p.
Result: value (qk ,pk)T.





8CONCLUS ION

In this chapter we summarise the obtained results and outline some
possibilities for future research. We have build efficient numerical in-
tegrators for the following problems with explicitly time-dependent po-
tentials: the Schrödinger equation (SE), the HEs, the wave equation (WE)
and the KGFE, the non-linear Kepler problem with time-variant mass.

schrödinger equation

For the linear SE with time-dependent potentials, we have designed
exponential quasi-commutator-free (QCF) methods based on the Mag-
nus expansion (ME). Their efficiency comes from two sources. Firstly,
if compared to high-performing, but more general commutator-free (CF)
methods, the new ones exploit the structure of the problem. It allows
using fewer stages thanks to the introduction of commutators which,
in turn, are cheaply computed. Secondly, we approximate the matrix
exponentials in the Krylov subspace. This approach significantly lowers
the total cost of the methods in the case of large-dimensional problems.

As regards future work in this area, it seems possible to apply the same
technique to tailoring methods for other problems with special structure
which may allow additional optimisation, for instance, when the poten-
tial have a simpler structure or when the evolution is adiabatic. Addi-
tionally, the adaptation of geometric adaptive time-stepping procedures
seems to be worth investigating.

wave equation

For the wave equation (WE) we have build efficient Magnus–splitting
schemes with low computational cost. These methods benefit from
the incorporating of cheap commutators to some stages, which is also
called the modified potentials approach.

Concerning the future work, it seems interesting to adapt the integrat-
ors to the problems, for example, from acoustics, in which the common,
autonomous Laplacian is replaced with the derivatives of space- and
time-dependent functions.





 conclusion

hill equation

For the Hill equation (HE), we have build both Magnus-based and split-
ting methods. For the numerical integrations of problems with highly
oscillatory solutions, exponential integrators usually show a high per-
formance. It remains important to analyse when one should turn to
exponential integrators and this could depend either on the initial
conditions as well as on the size of the spatial mesh or the external
interactions.

kepler problem

In the last chapter we have show how the Magnus methods work in
a non-linear setting, and as an illustration we have used the Kepler
problem with decreasing mass.

We consider two direction of future work. Firstly, exploring the pos-
sibility to use the new methods for many-body problems, for instance,
planetary systems with stars that lose mass. Secondly, building methods
for other non-linear problems.



B IBL IOGRAPHY

. ABRAHAM, R.; MARSDEN, J. E.; RATIU, T.; CUSHMAN, R.
Foundations of mechanics. nd ed. Addison-Wesley Publishing
Company, . ISBN X.

. ADAMS, F. C.; ANDERSON, K. R.; BLOCH, A. M. Evolution of
planetary systems with time-dependent stellar mass-loss. Monthly
Notices of the Royal Astronomical Society. , vol. , no. , pp.
–. Available from DOI: ./mnras/stt.

. AGRACHEV, A. A.; SACHKOV, Y. L. Control theory from the geo-
metric viewpoint. Springer Berlin Heidelberg, . Available
from DOI: ./----.

. ALONSO-MALLO, I.; CANO, B.; REGUERA, N. Avoiding or-
der reduction when integrating linear initial boundary value
problems with Lawson methods. IMA Journal of Numerical Ana-
lysis. , pp. drw. Available from DOI: ./imanum/
drw.

. ALVERMANN, A.; FEHSKE, H. High-order commutator-free ex-
ponential time-propagation of driven quantum systems. Journal
of Computational Physics. , vol. , no. , pp. –.
Available from DOI: ./j.jcp....

. ANOSOV, D. V. Phase space. In: Encyclopedia of Mathematics.
.

. ARCHIBALD, T.; FRASER, C.; GRATTAN-GUINNESS, I. The
history of differential equations, –. Oberwolfach Reports.
, pp. –. Available from DOI: ./owr//
.

. ARNAL, A.; CASAS, F.; CHIRALT, C. A general formula for the
Magnus expansion in terms of iterated integrals of right-nested
commutators. Journal of Physics Communications. , vol. , no.
, pp. . Available from DOI: ./-/aab.

. ARNOLD, V. I. Mathematical methods of classical mechanics. Springer
New York, . Available from DOI: ./---
-.

. AUER, J.; KROTSCHECK, E.; CHIN, S. A. A fourth-order real-
space algorithm for solving local Schrödinger equations. The
Journal of Chemical Physics. , vol. , no. , pp. –.
Available from DOI: ./..

. BADER, P. Geometric integrators for Schrödinger equations. .
PhD thesis. Universitat Politècnica de València.



http://dx.doi.org/10.1093/mnras/stt479
http://dx.doi.org/10.1007/978-3-662-06404-7
http://dx.doi.org/10.1093/imanum/drw052
http://dx.doi.org/10.1093/imanum/drw052
http://dx.doi.org/10.1016/j.jcp.2011.04.006
http://dx.doi.org/10.4171/owr/2004/51
http://dx.doi.org/10.4171/owr/2004/51
http://dx.doi.org/10.1088/2399-6528/aab291
http://dx.doi.org/10.1007/978-1-4757-2063-1
http://dx.doi.org/10.1007/978-1-4757-2063-1
http://dx.doi.org/10.1063/1.1404142


 bibliography

. BADER, P.; BLANES, S. Solving the pertubed quantum harmonic
oscillator in imaginary time using splitting methods with com-
plex coefficients. In: Advances in Differential Equations and Ap-
plications. Springer International Publishing, , pp. –.
Available from DOI: ./----_.

. BADER, P.; BLANES, S.; CASAS, F. An improved algorithm to com-
pute the exponential of a matrix. . Available from arXiv: http:
//arxiv.org/abs/.v [math.NA].

. BADER, P.; BLANES, S.; CASAS, F.; KOPYLOV, N. Novel sym-
plectic integrators for the Klein–Gordon equation with space-
and time-dependent mass. Journal of Computational and Applied
Mathematics. , vol. , pp. –. Available from DOI:
./j.cam....

. BADER, P.; BLANES, S.; CASAS, F.; KOPYLOV, N.; PONSODA, E.
Symplectic integrators for second-order linear non-autonomous
equations. Journal of Computational and Applied Mathematics. ,
vol. , pp. –. Available from DOI: ./j.cam..
..

. BADER, P.; BLANES, S.; KOPYLOV, N. Exponential propagators
for the Schrödinger equation with a time-dependent potential.
The Journal of Chemical Physics. , vol. , no. , pp. .
Available from DOI: ./..

. BADER, P.; BLANES, S.; PONSODA, E.; SEYDAOĞLU, M. Sym-
plectic integrators for the matrix Hill equation. Journal of Com-
putational and Applied Mathematics. , vol. , pp. –.
Available from DOI: ./j.cam....

. BADER, P.; ISERLES, A.; KROPIELNICKA, K.; SINGH, P. Effective
approximation for the semiclassical Schrödinger equation. Found-
ations of Computational Mathematics. , vol. , no. , pp. –
. Available from DOI: ./s---.

. BADER, P.; ISERLES, A.; KROPIELNICKA, K.; SINGH, P. Efficient
methods for linear Schrödinger equation in the semiclassical
regime with time-dependent potential. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Science. ,
vol. , no. , pp. . Available from DOI: ./
rspa...

. BERNSTEIN, D. S. Matrix mathematics. theory, facts, and formulas.
Princeton University Press, .

. BEZANSON, J.; EDELMAN, A.; KARPINSKI, S.; SHAH, V. B.
Julia: a fresh approach to numerical computing. SIAM Review.
, vol. , no. , pp. –. Available from DOI: ./
.

http://dx.doi.org/10.1007/978-3-319-06953-1_21
https://arxiv.org/abs/http://arxiv.org/abs/1710.10989v1
https://arxiv.org/abs/http://arxiv.org/abs/1710.10989v1
http://dx.doi.org/10.1016/j.cam.2018.10.011
http://dx.doi.org/10.1016/j.cam.2017.03.028
http://dx.doi.org/10.1016/j.cam.2017.03.028
http://dx.doi.org/10.1063/1.5036838
http://dx.doi.org/10.1016/j.cam.2016.09.041
http://dx.doi.org/10.1007/s10208-013-9182-8
http://dx.doi.org/10.1098/rspa.2015.0733
http://dx.doi.org/10.1098/rspa.2015.0733
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671


bibliography 

. BLANES, S.; BUDD, C. J. Adaptive geometric integrators for
Hamiltonian problems with approximate scale invariance. SIAM
Journal on Scientific Computing. , vol. , no. , pp. –
. Available from DOI: ./s.

. BLANES, S.; CASAS, F.; OTEO, J. A.; ROS, J. The Magnus expan-
sion and some of its applications. Physics Reports. , vol. ,
no. -, pp. –. Available from DOI: ./j.physrep.
...

. BLANES, S.; CASAS, F.; ROS, J. Processing symplectic methods
for near-integrable Hamiltonian systems. Celestial Mechanics and
Dynamical Astronomy. , vol. , no. , pp. –. Available
from DOI: ./A:.

. BLANES, S.; MOAN, P. C. Practical symplectic partitioned Runge–
Kutta and Runge–Kutta–Nyström methods. Journal of Computa-
tional and Applied Mathematics. , vol. , no. , pp. –.
Available from DOI: ./s-()-.

. BLANES, S.; MOAN, P. C. Fourth- and sixth-order commutator-
free Magnus integrators for linear and non-linear dynamical
systems. Applied Numerical Mathematics. , vol. , no. , pp.
–. Available from DOI: ./j.apnum...
.

. BLANES, S. Time-average on the numerical integration of non-
autonomous differential equations. SIAM Journal on Numerical
Analysis. , vol. , no. , pp. –. Available from DOI:
./m.

. BLANES, S.; CASAS, F. On the necessity of negative coefficients
for operator splitting schemes of order higher than two. Applied
Numerical Mathematics. , vol. , no. , pp. –. Available
from DOI: ./j.apnum....

. BLANES, S.; CASAS, F. A concise introduction to geometric numer-
ical integration. Chapman and Hall/CRC, .

. BLANES, S.; CASAS, F.; MURUA, A. Splitting methods for non-
autonomous linear systems. International Journal of Computer
Mathematics. , vol. , no. , pp. –. Available from
DOI: ./.

. BLANES, S.; CASAS, F.; MURUA, A. Splitting methods in the
numerical integration of non-autonomous dynamical systems.
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales.
Serie A. Matematicas. , vol. , no. , pp. –. Available
from DOI: ./s---.

http://dx.doi.org/10.1137/s1064827502416630
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1023/A:1008311025472
http://dx.doi.org/10.1016/s0377-0427(01)00492-7
http://dx.doi.org/10.1016/j.apnum.2005.11.004
http://dx.doi.org/10.1016/j.apnum.2005.11.004
http://dx.doi.org/10.1137/17m1156150
http://dx.doi.org/10.1016/j.apnum.2004.10.005
http://dx.doi.org/10.1080/00207160701458567
http://dx.doi.org/10.1007/s13398-011-0024-8


 bibliography

. BLANES, S.; CASAS, F.; MURUA, A. Symplectic time-average
propagators for the Schrödinger equation with a time-dependent
Hamiltonian. The Journal of Chemical Physics. , vol. , no.
, pp. . Available from DOI: ./..

. BLANES, S.; CASAS, F.; THALHAMMER, M. High-order commutator-
free quasi-Magnus exponential integrators for non-autonomous
linear evolution equations. Computer Physics Communications.
, vol. , pp. –. Available from DOI: ./j.
cpc....

. BLANES, S.; DIELE, F.; MARANGI, C.; RAGNI, S. Splitting and
composition methods for explicit time dependence in separable
dynamical systems. Journal of Computational and Applied Math-
ematics. , vol. , no. , pp. –. Available from DOI:
./j.cam....

. BÖHME, C.; REISSIG, M. A scale-invariant Klein–Gordon model
with time-dependent potential. Annali dell’universita di Ferrara.
, vol. , no. , pp. –. Available from DOI: ./
s---.

. BRUGNANO, L.; MAZZIA, F.; TRIGIANTE, D. Fifty years of
stiffness. In: Recent Advances in Computational and Applied Math-
ematics. Springer Netherlands, , pp. –. Available from
DOI: ./----_.

. BUTCHER, J. C. Coefficients for the study of Runge–Kutta integ-
ration processes. Journal of the Australian Mathematical Society.
, vol. , no. , pp. . Available from DOI: ./
s.

. CANNON, J. T.; DOSTROVSKY, S. The evolution of dynamics:
vibration theory from  to . Springer New York, .
ISBN .

. CASAS, F. Sufficient conditions for the convergence of the Mag-
nus expansion. Journal of Physics A: Mathematical and Theoretical.
, vol. , no. , pp. –. Available from DOI:
./-///.

. CASAS, F.; MURUA, A. An efficient algorithm for computing the
Baker–Campbell–Hausdorff series and some of its applications.
Journal of Mathematical Physics. , vol. , no. , pp. .
Available from DOI: ./..

. CASTRO, A.; MARQUES, M. A. L.; RUBIO, A. Propagators for the
time-dependent Kohn–Sham equations. The Journal of Chemical
Physics. , vol. , no. , pp. –. Available from DOI:
./..

http://dx.doi.org/10.1063/1.4978410
http://dx.doi.org/10.1016/j.cpc.2017.07.016
http://dx.doi.org/10.1016/j.cpc.2017.07.016
http://dx.doi.org/10.1016/j.cam.2010.06.018
http://dx.doi.org/10.1007/s11565-012-0153-9
http://dx.doi.org/10.1007/s11565-012-0153-9
http://dx.doi.org/10.1007/978-90-481-9981-5_1
http://dx.doi.org/10.1017/s1446788700027932
http://dx.doi.org/10.1017/s1446788700027932
http://dx.doi.org/10.1088/1751-8113/40/50/006
http://dx.doi.org/10.1063/1.3078418
http://dx.doi.org/10.1063/1.1774980


bibliography 

. CELLEDONI, E.; ISERLES, A. Approximating the exponential
from a Lie algebra to a Lie group. Mathematics of Computation.
, vol. , no. , pp. –.

. CHIBRIKOV, E. S. A right normed basis for free Lie algebras and
Lyndon–Shirshov words. Journal of Algebra. , vol. , no. ,
pp. –. Available from DOI: ./j.jalgebra..
..

. CHIN, S. A. Symplectic integrators from composite operator fac-
torizations. Physics Letters A. , vol. , no. , pp. –.
Available from DOI: ./s-()-.

. COOLEY, J. W.; TUKEY, J. W. An algorithm for the machine
calculation of complex Fourier series. Mathematics of Computation.
, vol. , no. , pp. –. Available from DOI: ./
s----.

. CURTISS, C. F.; HIRSCHFELDER, J. O. Integration of stiff equa-
tions. Proceedings of the National Academy of Sciences. , vol. ,
no. , pp. –. Available from DOI: ./pnas...
.

. DANBY, J. M. A. Fundamentals of Celestial Mechanics: nd Revised
and Enlarged Edition. nd ed. Willmann-Bell, Inc., . ISBN
-.

. DRAGT, A. J. Lie methods for nonlinear dynamics with applications
to accelerator physics. .

. DREWSEN, M.; BRØNER, A. Harmonic linear Paul trap: Stability
diagram and effective potentials. Physical Review A. , vol. ,
no. . Available from DOI: ./physreva...

. EINKEMMER, L.; OSTERMANN, A. Overcoming order reduc-
tion in diffusion-reaction splitting. part : Dirichlet boundary
conditions. SIAM Journal on Scientific Computing. , vol. ,
no. , pp. A–A. ISSN -. Available from DOI:
./.

. FARRÉS, A.; LASKAR, J.; BLANES, S.; CASAS, F.; MAKAZAGA,
J.; MURUA, A. High precision symplectic integrators for the
Solar system. Celestial Mechanics and Dynamical Astronomy. ,
vol. , no. , pp. –. Available from DOI: ./
s---.

. HAIRER, E.; LUBICH, C.; WANNER, G. Geometric numerical in-
tegration: structure-preserving algorithms for ordinary differential
equations. Springer Verlag, .

http://dx.doi.org/10.1016/j.jalgebra.2006.03.036
http://dx.doi.org/10.1016/j.jalgebra.2006.03.036
http://dx.doi.org/10.1016/s0375-9601(97)00003-0
http://dx.doi.org/10.1090/s0025-5718-1965-0178586-1
http://dx.doi.org/10.1090/s0025-5718-1965-0178586-1
http://dx.doi.org/10.1073/pnas.38.3.235
http://dx.doi.org/10.1073/pnas.38.3.235
http://dx.doi.org/10.1103/physreva.62.045401
http://dx.doi.org/10.1137/140994204
http://dx.doi.org/10.1007/s10569-013-9479-6
http://dx.doi.org/10.1007/s10569-013-9479-6


 bibliography

. HAIRER, E.; SÖDERLIND, G. Explicit, time reversible, adaptive
step size control. SIAM Journal on Scientific Computing. ,
vol. , no. , pp. –. Available from DOI: ./
.

. HAIRER, E.; WANNER, G. Solving ordinary differential equations II:
Stiff and differential-algebraic problems. Springer Berlin Heidelberg,
. Available from DOI: ./----.

. HAIRER, E.; WANNER, G.; NØRSETT, S. P. Solving ordinary dif-
ferential equations I: Nonstiff problems. Springer Berlin Heidelberg,
. Available from DOI: ./----.

. HOCHBRUCK, M.; OSTERMANN, A. Exponential integrators.
Acta Numerica. , vol. , pp. –. Available from DOI:
./s.

. HOFSTÄTTER, H.; KOCH, O. Non-satisfiability of a positivity con-
dition for commutator-free exponential integrators of order higher
than four. . Available from arXiv: http://arxiv.org/abs/
.v [math.NA].

. HUNDSDORFER, W.; VERWER, J. Numerical solution of time-
dependent advection-diffusion-reaction equations. Springer Berlin
Heidelberg, . Springer Series in Computational Mathematics.
ISBN ---. Available from DOI: ./---
-.

. ISERLES, A.; NØRSETT, S. P. On the solution of linear differential
equations in Lie groups. Phil. Trans. R. Soc. A. , vol. , no.
, pp. –. Available from DOI: ./rsta..
.

. ISERLES, A.; QUISPEL, G. R. W. Why geometric integration?
. Available from arXiv: http://arxiv.org/abs/.
v [math.NA].

. ISERLES, A. A first course in the numerical analysis of differential
equations. Cambridge University Press, . Available from DOI:
./CBO.

. ISERLES, A.; MUNTHE-KAAS, H. Z.; NØRSETT, S. P.; ZANNA,
A. Lie-group methods. Acta Numerica. , vol. . Available
from DOI: ./s.

. JOHNSON, S. G. Notes on FFT-based differentiation. .

. JONES, E.; OLIPHANT, T.; PETERSON, P. et al. SciPy: open source
scientific tools for Python. .

http://dx.doi.org/10.1137/040606995
http://dx.doi.org/10.1137/040606995
http://dx.doi.org/10.1007/978-3-642-05221-7
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1017/s0962492910000048
https://arxiv.org/abs/http://arxiv.org/abs/1709.08473v1
https://arxiv.org/abs/http://arxiv.org/abs/1709.08473v1
http://dx.doi.org/10.1007/978-3-662-09017-6
http://dx.doi.org/10.1007/978-3-662-09017-6
http://dx.doi.org/10.1098/rsta.1999.0362
http://dx.doi.org/10.1098/rsta.1999.0362
https://arxiv.org/abs/http://arxiv.org/abs/1602.07755v1
https://arxiv.org/abs/http://arxiv.org/abs/1602.07755v1
http://dx.doi.org/10.1017/CBO9780511995569
http://dx.doi.org/10.1017/s0962492900002154


bibliography 

. KAHAN, W.; LI, R.-C. Composition constants for raising the
orders of unconventional schemes for ordinary differential equa-
tions. Mathematics of Computation. , vol. , no. , pp.
–. Available from DOI: ./s- - -
-.

. KATZ, V. J. A history of mathematics. rd ed. Pearson/Addison-
Wesley, . ISBN ---.

. KLARSFELD, S.; OTEO, J. A. Recursive generation of higher-
order terms in the Magnus expansion. Physical Review A. ,
vol. , no. , pp. –. Available from DOI: ./
physreva...

. KOMLENKO, Y. V. Fundamental matrix. In: Encyclopedia of Math-
ematics. .

. LASKAR, J. Analytical framework in Poincare variables for the
motion of the solar system. In: Predictability, Stability, and Chaos
in N-Body Dynamical Systems. Springer US, , pp. –.
Available from DOI: ./----_.

. LASKAR, J.; ROBUTEL, P. High order symplectic integrators for
perturbed Hamiltonian systems. Celestial Mechanics and Dynam-
ical Astronomy. , vol. , no. , pp. –. Available from
DOI: ./a:.

. LEIMKUHLER, B.; REICH, S. Simulating Hamiltonian dynamics.
Cambridge University Press, . ISBN . Available
from DOI: ./cbo.

. LUBICH, C. From quantum to classical molecular dynamics: reduced
models and numerical analysis. European Mathematical Society,
. ISBN ----.

. MAGNUS, W.; WINKLER, S. Hill’s equation. John Wiley and Sons,
.

. MAGNUS, W. On the exponential solution of differential equa-
tions for a linear operator. Communications on Pure and Applied
Mathematics. , vol. , no. , pp. –. Available from DOI:
./cpa..

. MAJOR, F. G.; WERTH, G.; GHEORGHE, V. N. Charged particle
traps. Springer-Verlag, . ISBN ----. Available
from DOI: ./b.

. MATHWORKS. Matlab manual. Expm. .

. MATHWORKS. Matlab manual. Fast Fourier transform. .

. MCLACHLAN, N. W. Theory and application of mathieu functions.
Dover, New York, .

http://dx.doi.org/10.1090/s0025-5718-97-00873-9
http://dx.doi.org/10.1090/s0025-5718-97-00873-9
http://dx.doi.org/10.1103/physreva.39.3270
http://dx.doi.org/10.1103/physreva.39.3270
http://dx.doi.org/10.1007/978-1-4684-5997-5_7
http://dx.doi.org/10.1023/a:1012098603882
http://dx.doi.org/10.1017/cbo9780511614118
http://dx.doi.org/10.1002/cpa.3160070404
http://dx.doi.org/10.1007/b137836


 bibliography

. MCLACHLAN, R. I. On the numerical integration of ordinary
differential equations by symmetric composition methods. SIAM
Journal on Scientific Computing. , vol. , no. , pp. –.
Available from DOI: ./.

. MCLACHLAN, R. I.; QUISPEL, G. R. W. Splitting methods. Acta
Numerica. , vol. . Available from DOI: ./s.

. MOAN, P. C. Efficient approximation of Sturm-Liouville problems
using Lie-group methods. . Technical report.

. MOAN, P. C.; NIESEN, J. Convergence of the Magnus series.
Foundations of Computational Mathematics. , vol. , no. , pp.
–. Available from DOI: ./s---.

. AL-MOHY, A. H.; HIGHAM, N. J.; RELTON, S. D. New algorithms
for computing the matrix sine and cosine separately or simultan-
eously. SIAM Journal on Scientific Computing. , vol. , no. ,
pp. A–A. Available from DOI: ./.

. MOLER, C.; LOAN, C. V. Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Review.
, vol. , no. , pp. –. Available from DOI: ./
s.

. MUNTHE-KAAS, H.; OWREN, B. Computations in a free Lie
algebra. Philosophical Transactions of the Royal Society A: Mathem-
atical, Physical and Engineering Sciences. , vol. , no. ,
pp. –. Available from DOI: ./rsta...

. MURUA, A.; SANZ-SERNA, J. M. Order conditions for numerical
integrators obtained by composing simpler integrators. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences. , vol. , no. , pp. –.
Available from DOI: ./rsta...

. NIST Handbook of Mathematical Functions Hardback and CD-ROM.
Cambridge University Press, . ISBN .

. OMELYAN, I. P.; MRYGLOD, I. M.; FOLK, R. Construction of
high-order force-gradient algorithms for integration of motion in
classical and quantum systems. Physical Review E. , vol. ,
no. . Available from DOI: ./physreve...

. OTEO, J. A.; ROS, J. The Magnus expansion for classical Hamilto-
nian systems. Journal of Physics A: Mathematical and General. ,
vol. , no. , pp. –. Available from DOI: ./
-///.

. PLATONOV, V. P. Lie group. In: Encyclopedia of Mathematics.
. ISBN .

http://dx.doi.org/10.1137/0916010
http://dx.doi.org/10.1017/s0962492902000053
http://dx.doi.org/10.1007/s10208-007-9010-0
http://dx.doi.org/10.1137/140973979
http://dx.doi.org/10.1137/s00361445024180
http://dx.doi.org/10.1137/s00361445024180
http://dx.doi.org/10.1098/rsta.1999.0361
http://dx.doi.org/10.1098/rsta.1999.0365
http://dx.doi.org/10.1103/physreve.66.026701
http://dx.doi.org/10.1088/0305-4470/24/24/011
http://dx.doi.org/10.1088/0305-4470/24/24/011


bibliography 

. RACKAUCKAS, C.; NIE, Q. Differentialequations.jl – a perform-
ant and feature-rich ecosystem for solving differential equations
in julia. Journal of Open Research Software. , vol. . Available
from DOI: ./jors..

. RAHOMA, W. A. Investigating exoplanet orbital evolution around
binary star systems with mass loss. Journal of Astronomy and Space
Sciences. , vol. , no. , pp. –. Available from DOI:
./JASS.....

. RAHOMA, W. A.; EL-SALAM, F. A. A.; AHMED, M. K. Analytical
treatment of the two-body problem with slowly varying mass.
Journal of Astrophysics and Astronomy. , vol. , no. -, pp.
–. Available from DOI: ./s---y.

. REUTENAUER, C. Free Lie algebras. Oxford University Press,
.

. RICHARDS, J. A. Analysis of periodically time-varying systems.
Springer Berlin Heidelberg, . Available from DOI: ./
----.

. SAAD, Y. Analysis of some Krylov subspace approximations
to the matrix exponential operator. SIAM Journal on Numerical
Analysis. , vol. , no. , pp. –. Available from DOI:
./.

. EL-SAFTAWY, M. I.; EL-SALAM, F. A. A. Second-order theory for
the two-body problem with varying mass including periastron
effect. p. , vol. , no. , pp. –. Available from DOI:
./s---.

. SANZ-SERNA, J. M. Symplectic integrators for Hamiltonian prob-
lems: an overview. Acta Numerica. , vol. , pp. . Available
from DOI: ./s.

. SANZ-SERNA, J. M.; CALVO, M. P. Numerical Hamiltonian prob-
lems. Springer, . ISBN .

. SANZ-SERNA, J. M.; VERWER, J. G.; HUNDSDORFER, W. H.
Convergence and order reduction of Runge–Kutta schemes ap-
plied to evolutionary problems in partial differential equations.
Numerische Mathematik. , vol. , no. , pp. –. ISSN
-X. Available from DOI: ./BF.

. SANZ-SERNA, J. M. Geometric integration. In: The state of the art
in numerical analysis. OXFORD UNIV PR, . ISBN .

. SHAMPINE, L. F.; REICHELT, M. W. The Matlab ODE suite.
SIAM Journal on Scientific Computing. , vol. , no. , pp.
–. Available from DOI: ./s.

http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.5140/JASS.2016.33.4.257
http://dx.doi.org/10.1007/s12036-009-0012-y
http://dx.doi.org/10.1007/978-3-642-81873-8
http://dx.doi.org/10.1007/978-3-642-81873-8
http://dx.doi.org/10.1137/0729014
http://dx.doi.org/10.1007/s11071-017-3341-4
http://dx.doi.org/10.1017/s0962492900002282
http://dx.doi.org/10.1007/BF01396661
http://dx.doi.org/10.1137/s1064827594276424


 bibliography

. SHENG, Q. Solving linear partial differential equations by expo-
nential splitting. IMA Journal of Numerical Analysis. , vol. ,
no. , pp. –. Available from DOI: ./imanum/..
.

. SHIRSHOV, A. I. Subalgebras of free Lie algebras. Mat. sbornik.
, vol. , no. , pp. –.

. SÖDERLIND, G.; JAY, L.; CALVO, M. Stiffness –: sixty
years in search of a definition. BIT Numerical Mathematics. ,
vol. , no. , pp. –. Available from DOI:  .  /
s---.

. SOFRONIOU, M.; SPALETTA, G. Derivation of symmetric com-
position constants for symmetric integrators. Optimization Meth-
ods and Software. , vol. , no. -, pp. –. Available
from DOI: ./.

. SPEISER, D. Discovering the principles of mechanics -:
Essays by David Speiser. Discovering the principles of mechanics
-. Ed. by WILLIAMS, K.; CAPARRINI, S. Birkhäuser,
. ISBN ----.

. STRANG, G. Wavelets. American Scientist. , vol. . Available
from DOI: ./.

. SUZUKI, M. Fractal decomposition of exponential operators with
applications to many-body theories and Monte Carlo simulations.
Physics Letters A. , vol. , no. , pp. –. ISSN -
. Available from DOI: ./-()-N.

. SUZUKI, M. General theory of fractal path integrals with applic-
ations to many-body theories and statistical physics. Journal of
Mathematical Physics. , vol. , no. , pp. –. Available
from DOI: ./..

. THALHAMMER, M. A fourth-order commutator-free exponen-
tial integrator for nonautonomous differential equations. SIAM
Journal on Numerical Analysis. , vol. , no. , pp. –.
Available from DOI: ./.

. TREFETHEN, L. N. Spectral methods in Matlab. SIAM, .

. TURNER, K. L.; MILLER, S. A.; HARTWELL, P. G.; MACDON-
ALD, N. C.; STROGATZ, S. H.; ADAMS, S. G. Five parametric
resonances in a microelectromechanical system. Nature. ,
vol. , no. , pp. –. Available from DOI: ./
.

. VARADARAJAN, V. S. Lie groups, Lie algebras, and their represent-
ations. Springer Verlag, .

http://dx.doi.org/10.1093/imanum/9.2.199
http://dx.doi.org/10.1093/imanum/9.2.199
http://dx.doi.org/10.1007/s10543-014-0503-3
http://dx.doi.org/10.1007/s10543-014-0503-3
http://dx.doi.org/10.1080/10556780500140664
http://dx.doi.org/10.2307/29775194
http://dx.doi.org/10.1016/0375-9601(90)90962-N
http://dx.doi.org/10.1063/1.529425
http://dx.doi.org/10.1137/05063042
http://dx.doi.org/10.1038/24122
http://dx.doi.org/10.1038/24122


bibliography 

. VERAS, D.; HADJIDEMETRIOU, J. D.; TOUT, C. A. An exoplan-
ets response to anisotropic stellar mass loss during birth and
death. Monthly Notices of the Royal Astronomical Society. ,
vol. , no. , pp. –. Available from DOI: ./
mnras/stt.

. VINBERG, E. B. Lie algebra, graded. In: Encyclopedia of Mathem-
atics. .

. WALKER, R. B.; PRESTON, R. K. Quantum versus classical dy-
namics in the treatment of multiple photon excitation of the an-
harmonic oscillator. The Journal of Chemical Physics. , vol. ,
no. , pp. . Available from DOI: ./..

. WIELEITNER, H. History of mathematics from Decartes to the
middle of the XIX century. nd ed. Ed. by YUSHKEVICH, A.
Nauka, .

. WISDOM, J.; HOLMAN, M. Symplectic maps for the n-body prob-
lem. The Astronomical Journal. , vol. , pp. . Available
from DOI: ./.

. YOSHIDA, H. Construction of higher order symplectic integ-
rators. Physics Letters A. , vol. , no. -, pp. –.
Available from DOI: ./-()-.

. YUSHKEVICH, A. (ed.). History of mathematics from the ancient
times to the beginning of the XIX century. Nauka, .

. ZHONG, G.; MARSDEN, J. E. Lie-Poisson Hamilton-Jacobi theory
and Lie-Poisson integrators. Physics Letters A. , vol. , no.
, pp. –. Available from DOI: ./-()
-.

http://dx.doi.org/10.1093/mnras/stt1451
http://dx.doi.org/10.1093/mnras/stt1451
http://dx.doi.org/10.1063/1.435085
http://dx.doi.org/10.1086/115978
http://dx.doi.org/10.1016/0375-9601(90)90092-3
http://dx.doi.org/10.1016/0375-9601(88)90773-6
http://dx.doi.org/10.1016/0375-9601(88)90773-6



	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Motivation
	1.1 Historical overview
	1.2 Shortcoming of the existing methods

	2 Numerical modelling
	2.1 Basic definitions
	2.2 Reduction to first-order systems
	2.3 Fast Fourier transform
	2.4 Matrix exponentials
	2.4.1 Simplest cases
	2.4.2 Scaling and squaring
	2.4.3 Approximation in the Krylov subspace


	3 Composition and splitting methods
	3.1 Autonomous case
	3.1.1 Composition of methods
	3.1.2 System splitting

	3.2 Time-dependent case
	3.3 Order conditions
	3.3.1 Baker–Campbell–Hausdorff formula
	3.3.2 Order conditions via BCH


	4 Magnus expansion-based integrators
	4.1 Lie groups and Lie algebras
	4.1.1 Lie groups
	4.1.2 Lie algebras
	4.1.2.1 Matrix Lie groups and their algebras
	4.1.2.2 Lie algebra bases and BCH formula


	4.2 Magnus expansion
	4.2.1 Existence and properties

	4.3 Application to the construction of integrators
	4.3.1 Approximation with moment integrals
	4.3.2 Magnus expansion in terms of generators


	5 Schrödinger equation
	5.1 Lie algebra
	5.2 Fourth-order methods
	5.3 Sixth-order methods
	5.4 Eighth-order methods
	5.5 Numerical example
	5.6 Conclusions

	6 Hill and wave equation
	6.1 Lie algebra
	6.1.1 Time-dependent case
	6.1.2 Half-autonomous case

	6.2 Hill equation
	6.3 Time-dependent wave equation
	6.3.1 A general sixth-order method without commutators
	6.3.2 Methods with modified potentials
	6.3.2.1 Fourth-order methods
	6.3.2.2 Sixth-order methods


	6.4 Numerical examples
	6.4.1 Mathieu equation
	6.4.2 Hill equation
	6.4.3 Wave equation
	6.4.4 Klein–Gordon–Fock equation

	6.5 Conclusions

	7 Non-linear case: Kepler problem
	7.1 Lie derivatives and Poisson brackets
	7.2 Magnus-based methods for non-linear problems
	7.3 Numerical examples
	7.4 Conclusions

	8 Conclusion
	 Bibliography

