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Abstract

Let T = (T,≤) and T1 = (T1,≤1) be linearly ordered sets and X be a
topological space. The main result of the paper is the following:
If function f(t, x) : T × X → T1 is continuous in each variable (“t”
and “x”) separately and function f

x
(t) = f(t, x) is monotonous on

T for every x ∈ X, then f is continuous mapping from T × X to
T1, where T and T1 are considered as topological spaces under the
order topology and T×X is considered as topological space under the
Tychonoff topology on the Cartesian product of topological spaces T

and X.
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1. Introduction

In 1910 W.H. Young had proved the following theorem.

Theorem A (see [9]). Let f : R2 → R be separately continuous. If f(·, y) is
also monotonous for every y, then f is continuous.

In 1969 this theorem was generalized for the case of separately continuous
function f : Rd → R (d ≥ 2):

Theorem B (see [5]). Let f : R
d+1 → R (d ∈ N) be continuous in each

variable separately. Suppose f (t1, . . . , td, τ) is monotonous in each ti separately
(1 ≤ i ≤ d). Then f is continuous on R

d+1.

Note that theorems A and B were also mentioned in the overview [2]. In
the papers [6, 7] authors investigated functions of kind f : T×X → R, where
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(T,≤) is linearly ordered set equipped by the order topology, (X, τX) is any
topological space and the function f is monotonous relatively to the first vari-
able as well continuous (or quasi-continuous) relatively to the second variable.
In particular in [7] it was proven that each separately quasi-continuous and
monotonous relatively to the first variable function f : R × X → R is quasi-
continuous relatively to the set of variables. The last result may be considered
as the abstract analog of Young’s theorem (Theorem A) for separately quasi-
continuous functions.

However, we do not know any direct generalization of Theorem A (for sep-
arately continuous and monotonous relatively to the first variable function) in
abstract topological spaces at the present time. In the present paper we prove
the generalization of theorems A and B for the case of (separately continu-
ous and monotonous relatively to the first variable) function f : T×X → T1,
where (T,≤), (T1,≤1) are linearly ordered sets equipped by the order topology
and X is any topological space.

2. Preliminaries

Let T = (T,≤) be any linearly (ie totally) ordered set (in the sense of [1]).
Then we can define the strict linear order relation on T such that for any
t, τ ∈ T the correlation t < τ holds if and only if t ≤ τ and t 6= τ . Together
with the linearly ordered set T we introduce the linearly ordered set

T±∞ = (T ∪ {−∞,+∞} ,≤) ,

where the order relation is extended on the set T ∪ {−∞,+∞} by means of
the following clear conventions:

(a): −∞ < +∞;
(b): (∀t ∈ T) (−∞ < t < +∞).

Recall [1] that every such linearly ordered set T = (T,≤) can be equipped by
the natural “internal” order topology Tpi [T], generated by the base consisting
of the open sets of kind:

(τ1, τ2) = {t ∈ T | τ1 < t < τ2} ,(2.1)

where τ1, τ2 ∈ T ∪ {−∞,+∞} , τ1 < τ2.

Let (X, τX), (Y, τY ) and (Z, τZ) be topological spaces. By C(X,Y ) we
denote the collection of all continuous mappings from X to Y . For a mapping
f : X × Y → Z and a point (x, y) ∈ X × Y we write

fx(y) := fy(x) := f(x, y).

Recall [3] that the mapping f : X × Y → Z is refereed to as separately

continuous if and only if fx ∈ C(Y, Z) and fy ∈ C(X,Z) for every point
(x, y) ∈ X × Y (see also [6–8]). The set of all separately continuous mappings
f : X × Y → Z is denoted by CC (X × Y, Z) [3, 6–8].

Let T = (T,≤) and T1 = (T1,≤1) be linearly ordered sets. We say that a
function f : T → T1 is non-decreasing (non-increasing) on T if and only
if for every t, τ ∈ T the inequality t ≤ τ leads to the inequality f(t) ≤1 f(τ)
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(f(τ) ≤1 f(t)) correspondingly. Function f : T → T1, which is non-decreasing
or non-increasing on T is called by monotonous.

3. Main Results

Let (X1, τX1
), . . . , (Xd, τXd

) (d ∈ N) be topological spaces. Further we
consider X1 × · · · × Xd as a topological space under the Tychonoff topology
τX1×···×Xd

on the Cartesian product of topological spacesX1, . . . ,Xd. Recall [4,
Chapter 3] that topology τX1×···×Xd

is generated by the base of kind:
{
U1 × · · · × Ud | (∀j ∈ {1, . . . , d})

(
Uj ∈ τXj

)}
.

Theorem 3.1. Let T = (T,≤) and T1 = (T1,≤1) be linearly ordered sets and
(X, τX) be a topological space.

If f ∈ CC (T×X,T1) and function fx(t) = f(t, x) is monotonous on T
for every x ∈ X, then f is continuous mapping from the topological space
(T×X, τT×X) to the topological space (T1,Tpi [T1]).

Proof. Consider any ordered pair (t0, x0) ∈ T×X . Take any open set V ⊆ T1

such that f (t0, x0) ∈ V . Since the sets of kind (2.1) form the base of topology
Tpi [T1], there exist τ1, τ2 ∈ T1 ∪ {−∞,+∞} such that τ1 <1 f (t0, x0) <1 τ2
and (τ1, τ2) ⊆ V , where <1 is the strict linear order, generated by (non-strict)
order ≤1 (on T1 ∪ {−∞,+∞}). The function f is separately continuous.
So, since the sets of kind (2.1) form the base of topology Tpi [T] , there exist
t1, t2 ∈ T ∪ {−∞,+∞} such that

t1 < t0 < t2 and(3.1)

f [(t1, t2)× {x0}] ⊆ (τ1, τ2) .(3.2)

Further we need the some additional denotations.

• In the case, where (t1, t0) 6= ∅ we choose any element α1 ∈ T such
that t1 < α1 < t0 and denote α̃1 := α1. In the opposite case we denote
α1 := t0, α̃1 := t1.

• In the case (t0, t2) 6= ∅ we choose any element α2 ∈ T such that
t0 < α2 < t2 and denote α̃2 := α2. In the opposite case we denote
α2 := t0, α̃2 := t2.

It is not hard to verify, that in the all cases the following conditions are per-
formed:

α1, α2 ∈ T, α̃1, α̃2 ∈ T ∪ {−∞,+∞} ;

α1 ≤ α2;

α̃1 < α̃2;

[α1, α2] ⊆ (t1, t2) , where [α1, α2] = {t ∈ T | α1 ≤ t ≤ α2} ;(3.3)

t0 ∈ (α̃1, α̃2) ⊆ [α1, α2] .(3.4)

According to (3.3), α1, α2 ∈ (t1, t2). Hence, according to (3.2), interval
(τ1, τ2) is an open neighborhood of the both points f (α1, x0) and f (α2, x0).

c© AGT, UPV, 2019 Appl. Gen. Topol. 20, no. 1 77



Ya. I. Grushka

Since the function f is separately continuous on T × X , then there exist an
open neighborhood U ∈ τX of the point x0 (in the space X) such that:

f [{α1} × U ] ⊆ (τ1, τ2) ;(3.5)

f [{α2} × U ] ⊆ (τ1, τ2) .(3.6)

The set (α̃1, α̃2)×U is an open neighborhood of the point (t0, x0) in the topology
τT×X of the space T×X . Now our aim is to prove that

(3.7) ∀ (t, x) ∈ (α̃1, α̃2)× U (f (t, x) ∈ (τ1, τ2) ⊆ V ) .

So, chose any point (t, x) ∈ (α̃1, α̃2) × U . According to the condition (3.4),
we have (t, x) ∈ [α1, α2] × U , that is α1 ≤ t ≤ α2 and x ∈ U . In accordance
with (3.5), (3.6), we have f (α1, x) ∈ (τ1, τ2) and f (α2, x) ∈ (τ1, τ2). Hence,
since the function fx(·) = f(·, x) is monotonous on T and α1 ≤ t ≤ α2, we
deduce f (t, x) ∈ (τ1, τ2) ⊆ V . Thus, the correlation (3.7) is proven. Hence,
the function f is continuous in (every) point (t0, x0) ∈ T×X . �

Theorem A is a consequence of Theorem 3.1 in the case T = X = R, where
R is considered together with the usual linear order on the field of real numbers
and usual topology.

Corollary 3.2. Let T0 = (T0,≤0), T1 = (T1,≤1), . . . , Td = (Td,≤d) (d ∈ N)
be linearly ordered sets, and (X, τX) be a topological space.

If the function f : T1 × · · · ×Td ×X → T0 is continuous in each variable
separately and f (t1, . . . , td, τ) is monotonous in each ti separately (1 ≤ i ≤ d)
then f is a continuous mapping from the topological space (T1 × · · · ×Td ×X,

τT1×···×Td×X) to the topological space (T0,Tpi [T0]).

Proof. We will prove this corollary by induction. For d = 1 the corollary is
true by Theorem 3.1. Assume, that the corollary is true for the number d− 1,
where d ∈ N, d ≥ 2. Suppose, that function f : T1 × · · · × Td × X → T0 is
satisfying the conditions of the corollary. Then we may consider this function
as a mapping from T1×X(d) to T0, where X(d) = T2×· · ·×Td×X . According
to inductive hypothesis, function f (t1, ·) is continuous on X(d) for every fixed
t1 ∈ T1. So f is a separately continuous mapping from T1 × X(d) to T0.
Moreover, f is monotonous relatively to the first variable (by conditions of the
corollary). Hence, by Theorem 3.1, f is continuous on T1 ×X(d). �

Theorem B is a consequence of Corollary 3.2 in the case T0 = T1 = · · · =
Td = X = R, where R is considered together with the usual linear order on the
field of real numbers and usual topology. In the case T0 = R, Tj = (aj, bj),
X = (ad+1, bd+1) where aj , bj ∈ R and aj < bj (j ∈ {1, . . . , d+ 1}) and inter-
vals (aj , bj) are considered together with the usual linear order and topology,
induced from the field of real numbers, we obtain the following corollary.

Corollary 3.3. If the function f : (a1, b1) × · · · × (ad, bd) × (ad+1, bd+1) →
R (d ∈ N) is continuous in each variable separately and f (t1, . . . , td, τ) is
monotonous in each ti separately (1 ≤ i ≤ d) then f is a continuous mapping
from (a1, b1)× · · · × (ad+1, bd+1) to R.
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Remark 3.4. In fact in the paper [5] the more general result was formulated,
in comparison with Theorem B. Namely the author of [5] had considered the
real valued function f (t1, . . . , td, τ) defined on an open set G ⊆ R

d+1, d ∈
N such that f is continuous in each variable separately and monotonous in
each ti separately (1 ≤ i ≤ d). But this result of [5] can be delivered from
Corollary 3.3, because for each point t = (t1, . . . , td, τ) ∈ G in the open set G
there exists the set of intervals (a1, b1) , . . . , (ad+1, bd+1) such that t ∈ (a1, b1)×
· · · × (ad+1, bd+1) ⊆ G.
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