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Abstract: In this paper, an optimal model is developed for path loss predictions 
using the Feed-Forward Neural Network (FFNN) algorithm. Drive test measurements 
were carried out in Canaanland Ota, Nigeria and Ilorin, Nigeria to obtain path loss 
data at varying distances from 11 different 1,800 MHz base station transmitters. 
Single-layered FFNNs were trained with normalized terrain profile data (longitude, 
latitude, elevation, altitude, clutter height) and normalized distances to produce the 
corresponding path loss values based on the Levenberg–Marquardt algorithm. The 
number of neurons in the hidden layer was varied (1–50) to determine the Artificial 
Neural Network (ANN) model with the best prediction accuracy. The performance 
of the ANN models was evaluated based on different metrics: Mean Absolute error 
(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), standard devia-
tion, and regression coefficient (R). Results of the machine learning processes show 
that the FNN architecture adopting a tangent activation function and 48 hidden 
neurons produced the least prediction error, with MAE, MSE, RMSE, standard de-
viation, and R values of 4.21 dB, 30.99 dB, 5.56 dB, 5.56 dB, and 0.89, respectively. 
Regarding generalization ability, the predictions of the optimal ANN model yielded 
MAE, MSE, RMSE, standard deviation, and R values of 4.74 dB, 39.38 dB, 6.27 dB, 
6.27 dB, and 0.86, respectively, when tested with new data not previously included 
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in the training process. Compared to the Hata, COST 231, ECC-33, and Egli models, 
the developed ANN model performed better in terms of prediction accuracy and 
generalization ability.

Subjects: Neural Networks; Communication Technology; Electromagnetics & 
Communication

Keywords: path loss; received signal strength; scale conjugate gradient; radio network 
planning; Artificial Neural Network

1. Introduction
The huge potentials of Information and Communication Technology (ICT) can be leveraged for the 
timely attainment of the Sustainable Development Goals (Armenta, Serrano, Cabrera, & Conte, 
2012). To this end, global interconnectedness is viewed as an enabling technological platform for 
digital transformation. Unfortunately, the coverage of mobile connectivity that is expected to drive 
digital inclusion is not yet global. In fact, sub-Saharan Africa remains the most under-penetrated 
region of the world (GSMA, 2014). Extending mobile network coverage to those who are furthest 
behind will help in bridging the wide digital divide between rural and urban areas, and provide the 
enabling technology and infrastructure for ICT-driven applications and services (Popoola, Atayero, 
Okanlawon, Omopariola, & Takpor, 2018). Consequently, public services such as health care and 
education will become more accessible and affordable (Matthews, Osuoyah, Popoola, Adetiba, & 
Atayero, 2017; Popoola, Atayero, Badejo, et al., 2018). Harnessing this golden opportunity, econo-
mies of developing countries can leapfrog in the areas of agriculture, e-commerce, and 
transportation.

Meanwhile, the need for greater cellular network capacity will exponentially increase the rate of 
deployment of base stations, making the determination of suitable locations more difficult. More so, 
the design of mobile communication networks requires a good knowledge of the wireless channel 
(Faruk, Adediran, & Ayeni, 2013; Oseni, Popoola, Enumah, & Gordian, 2014). It largely determines the 
transmission rate and the quality of signal propagation due to its complexity and randomness 
(Sotiroudis & Siakavara, 2015). Interactions between radiated electromagnetic waves and physical 
objects in wireless propagation environment often result in reflection on large plane surfaces, scat-
tering from surfaces of small size relative to the wavelength of transmission, transmission through 
dense materials like walls or floors, or shadowing by obstacles such as buildings and foliage. 
Therefore, radio waves that are transmitted by the base station antennas reach mobile devices by 
different propagation mechanisms, depending on the environment. This often results in signal fad-
ing, which may be in small scale or large scale (Rappaport, 1996). Small-scale signal fading occurs 
due to rapid fluctuations of received signal strength over a short period of time and small distance 
(Phillips, Sicker, & Grunwald, 2013); instead, large-scale signal fading takes place as average signal 
strength changes over a large distance between the base station and the mobile station (Faruk, 
Adediran, & Ayeni, 2013). The effect of large-scale fading is also known as path loss.

Path loss prediction models are vital tools for radio coverage estimation, determination of base 
station location, frequency allocation, antenna selection, and interference feasibility studies during 
radio network planning (Popoola, Badejo, Ojewande, & Atayero, 2017). Prior to actual mobile net-
work deployment, radio engineers use these models to understand wireless channel characteristics 
and to predict signal attenuation. Propagation models can be broadly organized into two categories, 
namely: deterministic and empirical models. Deterministic models are based on theoretical princi-
ples of diffraction (Luebbers, 1984), ray tracing (Mohtashami & Shishegar, 2012), integral equation 
(Hufford, 1952), and parabolic equation (Zelley & Constantinou, 1999); empirical models are based 
on practical measurements conducted in a particular environment. Although deterministic models 
are more accurate, they lack computational efficiency. Empirical models such as Okumura-Hata 
model (Hata, 1980), COST 231 model (Erceg, 1999), and standard propagation model (Popoola & 
Oseni, 2014b) are easy to implement with satisfactory computational efficiency in terms of time and 
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cost. However, they are not as accurate as deterministic models because they do not effectively ac-
count for the unique geographical configurations of the propagation environment. Meanwhile, the 
reliability of the radio access network depends on the accuracy of the propagation model employed. 
Hence, the need for significant improvement in the prediction accuracy of empirical models while 
maintaining model simplicity and ease of use.

Radio propagation environments have been widely categorized into rural, suburban, and urban 
(Rappaport, 1996). These environments are composed of varying unique geographical features with 
different altitude, terrain height information, land usage data, building shape and height informa-
tion, and building surface characteristics. Of all available empirical models, previous research works 
(Al Salameh & Al-Zu’bi, 2015; Faruk, Ayeni, & Adediran, 2013; Ibhaze, Ajose, Atayero, & Idachaba, 
2016; Nimavat & Kulkarni, 2012; Oseni, Popoola, Abolade, & Adegbola, 2014; Popoola & Oseni, 2014a; 
Rath, Verma, Simha, & Karandikar, 2016) have identified the Okumura-Hata, COST 231-Hata, and 
SPM path loss prediction models as appropriate for radio network planning in the 1,800 MHz band. 
These models accounts for propagation path loss based on radio parameters including heights of 
transmitter and receiver antennas, frequency of transmission, and distance between the base sta-
tion and the mobile station. However, the presence of various sources of clutter in the propagation 
environment contributes largely to propagation path loss (Oseni, Popoola, Enumah, et al., 2014). 
Modeling large scale channel fading without consideration for altitude, land use, and clutter height 
results in path loss predictions with large deviation from real measurement values.

Okumura-Hata model is an empirical formulation of the graphical path loss data that was col-
lected at 150–1,500 MHz band (Hata, 1980). The separation distance between the transmitter and 
the receiver ranges from 1 to 20 km. The appropriateness of the empirical model for path loss predic-
tion in practical environments has been widely investigated in the literature. Medeisis and Kajackas  
(2000) investigated the suitability of Okumura-Hata model for path loss prediction in different Very 
High Frequency (VHF) and Ultra-High Frequency (UHF) bands. Although the empirical model per-
formed fairly well in a built-up environment, the prediction error was significant in a rural propaga-
tion environment. A least square technique was applied to the model to reduce the high prediction 
error. The prediction accuracy of Okumura-Hata model was enhanced in Schneider, Lambrecht, and 
Baier (1996) with the details of the morphology and buildings in the wireless channel. The findings of 
the authors showed that better prediction accuracy will be obtained if morphological data and build-
ing data are incorporated into the model for rural/suburban and urban environments respectively. 
Farhoud, El-Keyi, and Sultan (2013) examined the applicability of Okumura-Hata model in the Global 
System for Mobile Communications (GSM) 900 MHz band and introduced correction factors to im-
prove the accuracy of the model for different regions in Egypt. Akhoondzadeh-Asl and Noori (2007) 
suggested another way of defining the antenna height of the base station in Okumura-Hata model. 
The empirical model was adapted for path loss predictions by performing a cubic regression on field 
measurement data that was collected in Salalah, Oman (Nadir & Ahmad, 2010). Mardeni and Pey 
(2010) optimized Okumura-Hata model for urban outdoor coverage in the Code Division Multiple 
Access (CDMA) system in Malaysia. Major differences were found in the parameters of Okumura-Hata 
model when it was applied to railway environment at 900 MHz and this findings were reported in 
Cota, Serrador, Vieira, Beire, and Rodrigues (2013). Begovic, Behlilovic, and Avdic, (2012) evaluated 
the applicability of a set of empirical models for WiMAX coverage planning at 3.5 GHz. Adeyemo, 
Ogunremi, and Ojedokun (2016) optimized Okumura-Hata model for LTE signal attenuation in Lagos, 
Nigeria using the Least Square method. The model was also tuned for TErrestrial Trunked RAdio 
(TETRA) mobile radio applications in Saudi Arabia as reported in Alamoud and Schütz (2012).

COST 231 extends Okumura-Hata model to cover the frequency range of 1,500–2,000 MHz (Erceg, 
1999). The transmitter antenna height and the receiver antenna height can be in the range of 30–
200 m and 1–10 m respectively. In the study conducted in dense urban areas at 1,800 MHz by Verma 
and Saini (2016), COST 231 model had the lowest RMSE with the most acceptable standard deviation 
when compared to free space, SUI, and ECC models. In addition, SPM was developed based on the 
Hata path loss formulas (Popoola, Atayero, Faruk, Calafate, Adetiba, et al., 2017; Popoola, Atayero, 
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Faruk, Calafate, Olawoyin, et al., 2017). It determines the large-scale fading of received signal 
strength over a distance range of 1–20 km. Therefore, it is appropriate for mobile channel characteri-
zation of popular cellular technologies such as GSM. Although distance is usually expressed in km in 
Hata formulas, SPM accepts distance values in meters. SPM ignored the effects of diffraction, clutter, 
and terrain. It assumed that appropriate settings of the parameters which account for only one clut-
ter class will cater for the influence of these external factors on signal propagation. The correction 
function for the mobile receiver antenna height was also ignored for hr ≤ 1.5 m since it has negligible 
values for an average mobile antenna height.

Machine learning techniques may be exploited for path loss predictions in rural and urban propa-
gation environments (Salman et al., 2017). ANN is an adaptive statistical tool that models the bio-
logical nervous system to solve regression problems. The capability of ANNs to model complex 
nonlinear functional relationships provides an opportunity to improve the accuracy of empirical path 
loss models with better computational efficiency. In this paper, an optimal model is developed for 
path loss predictions using a Feed-Forward Neural Network (FFNN) algorithm. Drive test measure-
ments are carried out in Canaanland Ota, Nigeria (Latitude 6°40′30.3″N, Longitude 3°09′46.3″E) and 
Ilorin, Nigeria (Latitude 8°29′12.5″N, Longitude 4°30′23.3″E) to obtain path loss data at varying dis-
tances from 11 different 1,800 MHz base station transmitters. Single-layered FFNNs are trained with 
normalized terrain profile data (longitude, latitude, elevation, altitude, clutter height) and normal-
ized distances to produce corresponding path loss values based on the Levenberg–Marquardt algo-
rithm. The number of neurons in the hidden layer is varied (1–50) to determine the Artificial Neural 
Network (ANN) model with the best prediction accuracy. The performance achieved by the different 
ANN models is evaluated based on metrics such as Mean Absolute error (MAE), Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), standard deviation, and regression coefficient (R).

The rest of the paper is organized as follows: Section 2 explains the data collection process and the 
development stages of the ANN model; Section 3 discusses the results of the experimentations; and 
finally, Section 4 concludes the paper and discusses future works.

2. Materials and method

2.1. Field measurement and data collection
Extensive measurement campaigns were conducted in Canaanland Ota, Ogun State, Nigeria 
(Latitude 6°40′30.3″N, Longitude 3°09′46.3″E) and Ilorin, Kwara State, Nigeria (Latitude 8°29′12.5″N, 
Longitude 4°30′23.3″E) to obtain path loss data at varying distances from eleven different 1,800 MHz 
base station transmitters. Two different locations were selected to accommodate sufficient diversity 
in the propagation environment. Typical urban, suburban, and rural propagation environments were 
covered by the planned survey routes. A total of eleven survey routes (R1–R11) were mapped out to 
cover radio wave propagation in the antenna direction of each of the base station transmitters. 
Survey routes R1–R8 are located within Canaanland Ota, Ogun State, Nigeria, while the remaining 
three (R9–R11) are within Ilorin, Kwara State, Nigeria. Typical urban, suburban, and rural propaga-
tion environments were covered by the planned survey routes.

Radio Frequency (RF) signal measurements were carried out by drive test under good climatic 
conditions. Also, good vehicular accessibility to base station locations were considered for a smooth 
test drive. Distances covered by the drive routes are considered long enough to allow the noise floor 
of the receiver to be reached. The data collection process was performed with the use of the 
Transmission Evaluation and Monitoring System (TEMS) network performance investigation soft-
ware (Popoola, Atayero, & Faruk, 2018; Popoola, Atayero, Faruk, & Badejo, 2018). TEMS Investigation 
has data collection, real-time network data analysis, and post-data processing capabilities. This net-
work testing software ran on an Intel Core i5–3210MCPU@2.50 GHz speed with 4 GB Random Access 
Memory (RAM) and 64-bit Windows 7 operating system. A TEMS mobile station, the software USB 
dongle, and a Garmin Global Positioning System (GPS) were connected to the laptop. The whole set-
up was carefully placed in a vehicle, and the vehicle was driven at an average speed of 40 km/h. This 
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speed was maintained to minimize Doppler effects. The data collected were pre-processed in 
Microsoft Excel 2016.

2.2. ANN model design and development
A single-layered feed-forward neural network architecture, comprised of six input neurons and one 
output neuron, was designed for model training and development, as shown in Figure 1. The pre-
processed path loss data obtained through drive test measurements along the eleven survey routes 
were combined, sorted, and later divided into training data-set and testing data-set. The training 
and testing datasets are stored in matrix form with 9,074 and 1,297 instances, respectively. Testing 
data-set comprised of data instances that are not included in the training data-set. The testing data-
set was created to evaluate the generalization ability of the ANN models. The input data variables of 
the datasets include longitude, latitude, elevation, altitude, clutter height, and distance. The single 
target output of the ANN model is the corresponding path loss value for the specified input vector 
matrix.

A minimum-maximum normalization process was performed on the input matrices of both data-
sets to prevent impulsive changes due to large variation in the datasets (Popoola, Misra, & Atayero, 
2018). The scaling of the data prevented larger values from overshadowing the smaller values. It 
also aided the learning process by avoiding untimely saturation of hidden nodes. The min-max nor-
malization equation is given by Equation (1).

Figure 1. ANN model 
architecture.
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where

pi = data range of four input values

m = maximum normalized value = 0.9

n = minimum normalized value = −0.9

ymin = minimum values of the activated function

ymax = maximum values of the activated function

In order to determine the ANN model with the best prediction accuracy, the number of neurons in 
the hidden layer was varied from 1 to 50. The ANN models were trained based on the Levenberg–
Marquardt learning algorithm. A non-linear relationship was established between the normalized 
input variables and the single output variable based on learning rule. Neural network model design, 
training, validation, and testing were all done using Machine Learning and Statistics Toolbox avail-
able in MATLAB 2017a produced by MathWorks Inc. The learning approach used was the supervised 
back propagation owing to its popularity and ease of learning. The path losses were determined by 
the values of the input variables, and the errors generated in the process of supervised learning were 
approximated. For the artificial neurons to approximate functions in a flexible manner, a linear acti-
vation function was employed at the input layer. At the hidden layer, the input data were trans-
formed into non-linear form using the hyperbolic tangent sigmoid activation function as represented 
by Equation (2).

 

The most suitable number of neurons in the hidden layer was determined through experimenta-
tion. The complete training data-set was divided into 70% training, 15% validation, and 15% testing 
sub-datasets in the ANN model design (Adetiba, Iweanya, Popoola, Adetiba, & Menon, 2017; Adetiba 
& Olugbara, 2015). For each instance of number of hidden neurons, the model training was per-
formed ten times to account for any inconsistency. The prediction accuracies and the generalization 
ability of the ANN models were evaluated based on different metrics such as MAE, MSE, RMSE, stand-
ard deviation, and R, relative to the target values in the training and testing datasets, respectively. 
The mathematical expressions of these statistical performance metrics are given by Equations 
(3)–(7).
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where μ = the mean prediction error in decibel; PL = path loss.

For each hidden neuron instance, average values of the five performance metrics across the ten 
iterations were computed.

3. Results and discussion
Terrain profile data and path loss data obtained through drive test measurements are presented 
and analyzed in this section. Also, the performance results of the ANN models that were obtained in 
the process of experimentation are interpreted and discussed. Furthermore, an optimal ANN model 
was identified based on prediction accuracy and generalization ability. Finally, a comparative analy-
sis of the prediction results of the developed ANN model and those of Hata, COST 231, ECC-33, and 
Egli was performed to validate the choice of feed-forward network approach as the optimal option 
for path loss predictions.

In this study, the propagation environments are described in terms of their respective terrain pro-
file. Table 1 presents the terrain profile characteristics of the survey routes (R1-R11). It can be seen 
that the average values of latitude, longitude, elevation, altitude, clutter height, and distance from 
the serving base station transmitter differ essentially from one route to another. Also, the corre-
sponding mean path loss varies across the eleven routes. This occurs because the radio propagation 
mechanism in wireless channels depends on the terrain profile characteristics along the path of the 
radio wave transmission (Rappaport, 1996). Figure 2(a)–(n) show the boxplots of latitude, longitude, 
elevation, altitude, clutter height, and distance in the training and testing datasets, respectively. The 
statistical distribution of the terrain profile data, and their corresponding path loss data, further 
proved the differences between the routes under investigation.

Data obtained from extensive field measurement campaigns along the eleven routes in Ota and 
Ilorin, Nigeria were combined together and pre-processed. The resulting data collected from real 
scenarios along the eleven survey routes is considered large enough to prevent any case of over-
fitting during the ANN model development. The comprehensive data-set was divided into training 

(7)R =

∑n

i=1

�
PLi,measured − PLmeasured, mean

�2
−
∑n

i=1

�
PLi,predicted − PLi,measured

�2

∑n

i=1

�
PLi,measured − PLmeasured, mean

�2

Table 1. Mean terrain profile data of survey routes
Route Longitude Latitude Elevation 

(m)
Altitude 

(m)
Clutter 

height (m)
Distance 

(m)
Path loss 

(dB)
R1 3.1651 6.6777 54.34 59.81 4.95 409.47 142.81

R2 3.1672 6.6742 54.18 61.39 4.92 496.65 140.30

R3 3.1600 6.6727 48.61 52.21 6.93 447.42 146.34

R4 3.1659 6.6792 56.79 60.66 7.35 587.23 127.34

R5 3.1585 6.6714 48.22 50.85 7.29 796.74 126.30

R6 3.1585 6.6714 48.22 50.85 7.29 796.74 126.30

R7 3.1626 6.6783 54.22 64.46 8.48 374.94 140.78

R8 3.1597 6.6732 48.92 58.82 6.53 608.12 141.10

R9 4.5103 8.4887 325.67 337.18 7.56 669.21 126.36

R10 4.5092 8.4820 336.90 349.33 6.94 724.90 129.88

R11 4.5022 8.4821 331.77 345.40 5.73 688.28 136.70
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Figure 2 . Boxplots of variables 
in (a)–(g) training data-set  
(h)–(n) testing data-set.

(a) (h)

(b) (i)

(c) (j)
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(d) (k)

(e) (l)

(f) (m)

(g) (n)

Figure 2. (Continued).
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and testing sub-datasets for model training and model generalization ability testing, respectively. 
Tables 2 and 3 present the first-order descriptive statistics (mean, median, mode, standard devia-
tion, variance, kurtosis, skewness, range, minimum, and maximum) of the input and output varia-
bles in the training and testing datasets, respectively. The statistical distributions show that the 
instances of the testing data are different from those of the training data. These facts are presented 
to ensure that the generalization ability test conducted for the developed ANN model is valid. The 
claim is further substantiated with the frequency distribution plots of path loss in the training and 
testing datasets, as shown in Figure 3(a) and (b), respectively.

Figure 3. Frequency 
distributions of path loss in (a) 
training data and (b) testing 
data.

(a)

(b)
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Single-layered FFNNs were trained with the training data-set based on the Levenberg–Marquardt 
learning algorithm. The number of neurons in the hidden layer was varied from 1 to 50 to determine 
the ANN model with the best prediction accuracy and generalization ability. The prediction error is 
plotted against the number of hidden neurons in Figure 4. There seem to be no obvious changing 
rules that govern the variation in the prediction error as the number of hidden neurons increases. 
However, it was observed that the correlation between the target path loss values and the predicted 
path loss values increases as the number of hidden neurons increases. The response of R to changes 
in the number of hidden neurons is illustrated in Figure 5.

The optimal ANN model was determined based on MAE, MSE, RMSE, standard deviation, and R of 
the predicted path loss values relative to the target path loss values in both training and testing 
datasets. Results of the machine learning processes show that the FNN architecture that employs 
the tangent activation function and 48 hidden neurons produced the least prediction error with MAE, 

Figure 5. Relationship between 
the number of hidden neurons 
and R.

Figure 4. Relationship between 
the number of hidden neurons 
and RMSE.
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MSE, RMSE, standard deviation, and R values of 4.21 dB, 30.99 dB, 5.56 dB, 5.56 dB, and 0.89, respec-
tively. Regarding the generalization ability, the predictions of the optimal ANN model yielded MAE, 
MSE, RMSE, standard deviation, and R values of 4.74 dB, 39.38 dB, 6.27 dB, 6.27 dB, and 0.86, respec-
tively when tested with new data not previously included in the training process. The network archi-
tecture of the optimal ANN model is shown in Figure 6.

As mentioned earlier, the complete training data-set was divided into 70% training, 15% valida-
tion, and 15% testing sub-datasets. Figure 7 shows the degree of correlation between the path loss 

Table 2. Descriptive statistics of input and output variables in training data-set
Longitude Latitude Elevation 

(m)
Altitude 

(m)
Clutter 
height 

(m)

Distance 
(m)

Path loss 
(dB)

Mean 3.3525 6.9310 91.09 97.62 6.86 586.65 135.19

Median 3.1626 6.6756 52.00 59.00 6.00 539.00 136.00

Mode 3.1629 6.6751 52.00 55.00 6.00 709.00 145.00

Standard 
deviation

0.4690 0.6309 96.97 99.32 3.79 354.04 12.34

Variance 0.2200 0.3981 9,402.79 9,863.83 14.35 125,341.53 152.39

Kurtosis 5.2368 5.2371 5.24 5.24 4.46 2.33 3.05

Skewness 2.0582 2.0583 2.05 2.05 1.68 0.46 −0.57

Range 1.3630 1.8275 323.00 323.00 12.00 1,552.00 74.00

Minimum 3.1515 6.6665 30.00 41.00 4.00 1.00 89.00

Maximum 4.5145 8.4940 353.00 364.00 16.00 1,553.00 163.00

Total 
samples

9,074 9,074 9,074 9,074 9,074 9,074 9,074

Table 3. Descriptive statistics of input and output variables in testing data-set
Longitude Latitude Elevation 

(m)
Altitude 

(m)
Clutter 
height 

(m)

Distance 
(m)

Path loss 
(dB)

Mean 3.3581 6.9388 92.09 98.63 6.94 586.58 134.79

Median 3.1626 6.6756 52.00 59.00 6.00 539.00 136.00

Mode 3.1574 6.6700 52.00 58.00 6.00 356.00 145.00

Standard 
deviation

0.4752 0.6392 98.31 100.66 3.90 354.46 12.33

Variance 0.2258 0.4085 9,665.56 10,131.94 15.22 125,642.90 152.15

Kurtosis 5.0327 5.0330 5.04 5.03 4.13 2.33 2.88

Skewness 2.0080 2.0081 2.00 2.00 1.60 0.46 −0.48

Range 1.3631 1.8274 322.00 323.00 12.00 1,541.00 69.00

Minimum 3.1515 6.6665 30.00 41.00 4.00 1.00 94.00

Maximum 4.5145 8.4939 352.00 364.00 16.00 1,542.00 163.00

Samples 1,297 1,297 1,297 1,297 1,297 1,297 1,297
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values predicted by the optimal ANN model, and their corresponding target path loss values in the 
three sub-datasets of the training data-set. R values of 0.8940, 0.8815, and 0.8861 were obtained for 
training, validation, and testing, respectively. The overall R value for the model training process is 
0.8913. These values are high enough to guarantee high prediction accuracy during radio network 
planning and optimization within Nigerian propagation environments. For the testing data, the de-
gree of correlation between the predicted output values and the target values is depicted in Figure 
8. With an R value of 0.8599 for the testing data-set, the developed optimal ANN model proved to 
have a good generalization ability, considering instances that are not included previously in the 
model training process.

Figure 7. R values for optimal 
ANN model training and 
validation.

Figure 6. Optimal ANN model 
architecture.
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Finally, a comparative analysis of the prediction results of the developed ANN model, and those of 
Hata, COST 231, ECC-33, and Egli, was performed to validate the choice of the feed-forward network 
approach as the optimal option for path loss predictions. The measured path loss values and the 
corresponding predicted path loss values were plotted against the distance of the mobile station 
from the base station transmitter in Figures 9 and 10. The prediction accuracy of the ANN model was 
compared to those of the empirical models (Hata, COST 231, ECC-33, and Egli) using the training and 
testing datasets. In general, it was observed that the four empirical models present the same overall 
behaviour. However, the ECC-33 model over-predicted the path loss, while the Egli model under-
predicted the path loss across the distance range considered. On the other hand, the Hata and COST 

Figure 8. R value for optimal 
ANN model testing.

Figure 9. Path loss predictions 
of ANN and empirical models 
on training data.
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231 models were more conservative, but the prediction results of the ANN model were more accu-
rate. As can be observed, the results achieved for both training and testing datasets using the ANN 
now present a much greater resemblance with the measured data. In fact, the ANN results resemble 
a smoothed version of the original data, accurately mimicking the fluctuations detected at different 
distances.

The results of the performance evaluation are presented in Tables 4 and 5 for the training and 
testing datasets, respectively. The goodness of the results achieved via the ANN model can be fur-
ther emphasized by observing the results shown in Tables 4 and 5. Overall, it can be seen that empiri-
cal models are unable to accurately represent the measurement data in the 1,800 MHz band for the 
target regions of Nigeria. In particular, we consider that such failure is associated to the typical en-
vironmental conditions, including a combination of buildings and dense foliage, which make them 
significantly different from the conditions used to tune these models. For the training data, findings 
showed that the ANN model achieved average values of 4.21 dB, 30.99 dB, 5.56 dB, 5.56 dB and 0.89, 

Figure 10. Path loss predictions 
of ANN and empirical models 
on testing data.

Table 4. Performance evaluation of ANN and empirical models on training data
Model MAE (dB) MSE (dB) RMSE (dB) Standard deviation (dB) R
Hata 15.43 399.67 19.99 17.28 0.16

COST 231 14.63 364.32 19.09 17.28 0.16

ECC-33 13.85 307.22 17.53 13.74 0.16

Egli 36.38 1,642.57 40.53 18.11 0.16

ANN 4.21 30.99 5.56 5.56 0.89

Table 5. Performance evaluation of ANN and empirical models on testing data
Model MAE (dB) MSE (dB) RMSE (dB) Standard deviation (dB) R
Hata 15.46 402.50 20.06 17.57 0.14

COST 231 14.71 368.54 19.20 17.57 0.14

ECC-33 14.05 318.51 17.85 13.84 0.15

Egli 36.01 1,628.11 40.35 18.42 0.14

ANN 4.74 39.38 6.27 6.27 0.86
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for the MAE, MSE, RMSE, standard deviation, and R performance metrics, respectively. On the other 
hand, for the testing data, it was observed that the ANN model achieved mean values of 4.74 dB, 
39.38 dB, 6.27 dB, 6.27 dB and 0.86, for the MAE, MSE, RMSE, standard deviation, and R performance 
metrics, respectively. The prediction errors were relatively high for the testing data because it con-
tained data instances that were not previously included in the training process. Nevertheless, these 
values represent a dramatic difference compared to the results shown in Tables 4 and 5 for empirical 
models, highlighting that a satisfactory prediction accuracy and good generalization ability is now 
achieved using the FFNN approach.

4. Conclusion
To achieve the vision of a ubiquitous Internet, full mobile network coverage stands as a basic re-
quirement. However, many locations worldwide still do not benefit from adequate cellular network 
coverage, meaning that more efforts are required to improve cellular network planning in order to 
achieve a successful network deployment.

Having the strategic goal of achieving digital inclusion in mind, the contribution of this paper fo-
cused on developing an optimal model for path loss during radio network planning and optimization 
based on a FFNN technique. Drive test measurements were carried out in Canaanland Ota, Ogun 
State, Nigeria and Ilorin, Kwara State, Nigeria, to obtain path loss data at varying distances from 
eleven different 1,800 MHz base station transmitters. The effectiveness of traditional empirical mod-
els (Hata, COST-231, ECC-33, and Egli) for path loss predictions in these Nigerian propagation envi-
ronments was evaluated. Experimental data showed that these models failed to correctly predict 
path loss values at different distances, especially at low distances, where they tend to be overly 
optimistic. To solve the aforementioned challenge, Single-layered FFNNs were trained with normal-
ized terrain profile data (longitude, latitude, elevation, altitude, clutter height) and normalized dis-
tances to produce the corresponding path loss values based on the Levenberg–Marquardt algorithm. 
The number of neurons in the hidden layer was varied (1–50) to determine the Artificial Neural 
Network (ANN) model with the best prediction accuracy.

The performances of the ANN models were evaluated based on the Mean Absolute error (MAE), 
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), standard deviation, and regression coef-
ficient (R) metrics. Results of the machine learning processes showed that the FNN architecture that 
employs a tangent activation function and 48 hidden neurons produced the least prediction error. 
For the training data-set, experimental results showed that performance metrics experienced a sub-
stantial improvement: MAE decreased from 36.38 dB to 4.21 dB; MSE decreased from 1,642.57 to 
30.99 dB; RMSE decreased from 40.53 to 5.56 dB; standard deviation decreased from 18.11 to 
5.56 dB; and R increased from 0.16 to 0.89. Concerning the generalization ability, the evaluation of 
the predictions produced by the optimal ANN model also showed significant improvements: MAE 
decreased from 36.01 to 4.74 dB; MSE decreased from 1,628.1 to 39.38 dB; RMSE decreased from 
40.35 to 6.27 dB; standard deviation decreased from 18.42 to 6.27 dB; and R increased from 0.14 to 
0.86, when tested with new data not previously included in the training process.

In summary, the performance of the developed ANN model proved to be optimal in terms of predic-
tion accuracy and generalization ability when compared to those of widely used empirical models (Hata, 
COST 231, ECC-33, and Egli). As future work, we plan to collect more data from other propagation envi-
ronments and across other frequency bands for a robust path loss prediction model development. Also, 
other machine learning approaches shall be exploited to further improve the prediction accuracy and 
generalization ability of path loss models for efficient radio network planning and optimization in Nigeria.
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