DESARROLLO Y CARACTERIZACIÓN DE HELADOS SALADOS CON MICROALGAS

TRABAJO FIN DE GRADO EN CIENCIA Y TECNOLOGÍA DE LOS ALIMENTOS

CURSO ACADÉMICO: 2018-2019
AUTORA TFG: Dª. VANESSA GARCÍA GÓMEZ
TUTOR: Prof. Dª. PURIFICACIÓN GARCÍA SEGOVIA
COTUTOR: Dª. M.ª JESÚS PAGÁN MORENO
COTUTOR COLABORADOR: D. JAVIER MARTÍNEZ MONZÓ
VALENCIA, 25 marzo 2019
TITULO (Esp): Desarrollo y caracterización de helados salados con microalgas.

RESUMEN

El helado es un alimento tradicionalmente de sabor dulce, que se consume en estado congelado. Para este proyecto, se ha decidido romper los esquemas del mercado elaborando helados salados, con la particularidad de añadirles microalgas que son una fuente de vitaminas y minerales naturales y sabores vegetales.

Se caracterizó el producto mediante la determinación de una serie de parámetros de calidad, como el *overrun*, el tiempo de caída de la primera gota y el porcentaje de derretimiento. Además, se analizaron propiedades fisicoquímicas como el pH, densidad y el color, y parámetros texturales y sensoriales.

Se ensayaron con distintas formulaciones y combinaciones de proporciones de ingredientes hasta conseguir tres sabores distintos y seis prototipos finales, de los cuales tres incorporan Spirulina y tres Chlorella.

Los distintos prototipos de helados conseguidos en el presente proyecto contienen propiedades refrescantes al incorporar verduras y frutas con sabores muy actuales, en sintonía con el vigente estilo de vida. Una sociedad que cada vez incorpora más verduras y frutas en su alimentación habitual.

Los prototipos elaborados presentaron una textura suave en boca, con la cantidad justa de grasa para mantener su estructura el tiempo suficiente para ser consumido sin descongelar. Los colores de los distintos prototipos se ven influenciados por el tipo de microalga utilizada, siendo más verdosos-azules los elaborados con Spirulina y más verdes-amarillos los elaborados con Chlorella.

Finalmente, tras el análisis sensorial de los distintos prototipos se determinó una buena aceptación del producto, pero con una baja intencionalidad de compra, como suele ocurrir con muchos productos con innovaciones radicales.

Palabras clave:

Helado, microalgas, vegetales, overrun, color, pH, tiempo de caída de la primera gota, porcentaje de derretimiento

Autor del TFG: Dña. Vanessa García Gómez

Localidad y fecha: Valencia, 25 de marzo de 2019

Tutor Académico: Prof. Dña. Purificación García Segovia

Cotutora: Dña. Mª Jesús Pagán Moreno

Cotutor Colaborador: D. Javier Martínez Monzó
ABSTRACT

Ice cream is a traditionally sweet-tasting food, which is consumed in a frozen state. For this project, it has been decided to break the market schemes by making salty ice creams, with the particularity of adding microalgae that are a source of natural vitamins and minerals and vegetable flavors.

The product was characterized by the determination of a series of quality parameters, such as overrun, first dripping time and melting rate. In addition, physicochemical properties such as pH, density and color, and textural and sensory parameters were analyzed.

They were tested with different formulations and combinations of ingredient proportions until achieving three different flavors and six final prototypes, of which three incorporate Spirulina and three Chlorella.

The different ice cream prototypes obtained in this project contain refreshing properties by incorporating vegetables and fruits with very current flavors, in line with the prevailing lifestyle. A society that increasingly incorporates more vegetables and fruits into their usual diet.

The elaborated prototypes presented a smooth texture in the mouth, with just the right amount of fat to maintain its structure long enough to be consumed without thawing. The colors of the different prototypes are influenced by the type of microalga used, being greenish-blue those made with Spirulina and more green-yellow those made with Chlorella.

Finally, after the sensory analysis of the different prototypes, a good acceptance of the product was determined, but with a low intentionality of purchase, as often happens with many products with radical innovations.

Key Words:
Ice cream, microalgae, vegetables, overrun, color, pH, first dripping time, melting rate

Author of the FGW: Ms. Vanessa García Gómez
Location and date: Valencia, 25 March 2019
Academic tutor: Prof. Ms. Purificación García Segovia
Co-tutor: Ms. Mª Jesús Pagán Moreno
Collaborator Co-tutor: Mr. Javier Martínez Monzó
Agradecimientos

En estas líneas, me gustaría agradecer la ayuda y el tiempo que me han dedicado mis profesores Puri, Javi y Chus, su trabajo y dedicación nos hacen conseguir cosas maravillosas.

A mis compañeros de laboratorio por compartir mi camino, las horas de ensayos y pruebas y los consejos, gracias.

A mi familia, por su apoyo, por todo, sin ellos esto no sería posible, gracias.
Índice

1. INTRODUCCIÓN ... 1
 1.1. EL HELADO .. 1
 1.1.1. Historia del Helado ... 1
 1.1.2. Definición del Helado .. 2
 1.1.3. Ingredientes generales y composición nutricional .. 3
 1.1.4. Mercado actual del Helado ... 4
 1.2. MICROALGAS .. 5
 1.2.1. Introducción y Definición de las Microalgas .. 5
 1.2.2. Historia de las Microalgas ... 6
 1.2.3. Especies utilizadas ... 7
 1.2.4. Composición y beneficios .. 8
 1.3. FRUTA Y HORTALIZAS .. 9
 1.3.1. Definición de fruta y hortalizas .. 9
 1.3.2. Beneficios de las frutas y verduras utilizadas ... 10
 2. OBJETIVOS .. 12
 2.1. OBJETIVO GENERAL ... 12
 2.2. OBJETIVOS ESPECÍFICOS .. 12
 3. MATERIALES Y MÉTODOS ... 13
 3.1. PLAN DE TRABAJO ... 13
 3.2. MATERIAS PRIMAS E INGREDIENTES ... 13
 3.3. PROCESO DE ELABORACIÓN .. 14
 3.3.1. Desarrollo prototipos previos a la formulación final: 14
 3.4. ANÁLISIS PARÁMETROS DE CALIDAD DE LOS HELADOS 17
 3.4.1. Índice de aireación del helado (overrun) .. 17
 3.4.2. Tiempo de caída de la primera gota y porcentaje de derretimiento 18
 3.5. ANÁLISIS FISICOQUÍMICOS .. 18
 3.5.1. Color ... 18
 3.5.2. pH ... 19
 3.5.3. Textura ... 19
 3.6. ANÁLISIS SENSORIAL .. 19
 3.7. ANÁLISIS ESTADÍSTICO ... 20
 4. RESULTADOS Y DISCUSIÓN DE LOS RESULTADOS .. 20
 4.1. ANÁLISIS PARÁMETROS DE CALIDAD DE LOS HELADOS 20
 4.1.1. Índice de aireación de los helados (overrun) .. 20
 4.1.2. Tiempo de caída de la primera gota y porcentaje de derretimiento 21
 4.2. ANÁLISIS FISICOQUÍMICOS .. 22
 4.2.1. Color ... 22
 4.2.2. pH ... 25
 4.2.3. Textura ... 26
 4.3. ANÁLISIS SENSORIAL .. 26
 5. CONCLUSIONES .. 31
 6. BIBLIOGRAFÍA .. 32
 6.1. Libros: .. 32
 6.2. Trabajos: .. 32
 6.3. Páginas internet: ... 33
 7. ANEXOS: .. 34
 7.1. ANEXO I. Hoja de cata del análisis sensorial .. 34
 7.2. ANEXO II. Fichas técnicas microalgas utilizadas en el presente proyecto 35
Figuras

Figura 1. Pozo en el que se almacenaba hielo para los meses de verano. 1
Figura 2. Chlorella vulgaris .. 7
Figura 3. Arthrospira platensis (Spirulina) ... 7
Figura 4. Sabores para incorporar a la base de helado .. 16
Figura 5. Combinaciones sabores ... 16
Figura 6. Curva de derretimiento del helado 21
Figura 7. Luminosidad vs. Croma muestras helados ... 23
Figura 8. Color en base a la proporción de rojo/verde (a*) y amarillo/azul (b*) 24
Figura 9. H (tono) ... 24
Figura 10. ΔE (diferencia de color) ... 25
Figura 11. Impresiones Sabor muestra Pepino Sp ... 27
Figura 12. Impresiones Sabor muestra Zanahoria Sp .. 28
Figura 13. Impresiones Sabor muestra Aloe Sp .. 28
Figura 14. Impresiones Sabor muestra Pepino Cl ... 29
Figura 15. Impresiones Sabor muestra Zanahoria Cl .. 29
Figura 16. Impresiones Sabor muestra Aloe Cl .. 30

Tablas

Tabla 1. Materias primas e ingredientes empleados en la elaboración de los helados. 14
Tabla 2. Composición de las distintas elaboraciones con Spirulina .. 16
Tabla 3. Composición de las distintas elaboraciones con Chlorella ... 17
Tabla 4. Resultados obtenidos Overrun .. 20
Tabla 5. Resultados obtenidos tiempo de caída de la primera gota 21
Tabla 6. Resultados obtenidos porcentaje de derretimiento a tiempo 30 minutos 22
Tabla 7. Resultados obtenidos determinación color .. 22
Tabla 8. Resultados obtenidos medición pH ... 25
Tabla 9. Resultados obtenidos determinación textura ... 26
Tabla 10. Resultados obtenidos análisis sensorial ... 26

Ecuaciones

Ecuación 1. Porcentaje overrun ... 17
Ecuación 2. Grado de derretimiento ... 18
1. INTRODUCCIÓN

Hoy en día existe mucha variedad a la hora de comprar helados, los hay de cientos de sabores y en todas sus clases y formas. Pero aún hay muchos sabores por descubrir y comercializar.

En este proyecto se ha combinado la actual tendencia veggie/saludable con la incorporación como carácter diferenciador microalgas, en el diseño de una gama de helados que por sus características sensoriales puedan ser incorporados en el diseño de nuevas recetas para entrantes o primeros platos o bien consumirse como snack con un valor añadido.

1.1. EL HELADO

1.1.1. Historia del Helado

Desde el siglo XI AC. se ha estado hablando de helados, aunque con otras denominaciones y en otras formas a las que consumimos en la actualidad. China fue de las primeras naciones que registró mediante canciones este tipo de preparaciones. En ellas se cuenta que se almacenaba el hielo para los meses de verano en zonas acondicionadas para ello. Según el informe de Marco Polo en 1292 este hielo se consumía en los meses de verano junto con leche y jugos de frutas. (Timm, 1989)

Esta práctica, que empezó en China, poco a poco se fue propagando a Persia, de Persia a los árabes y de ahí a Italia, Europa y el resto del mundo (Esteire, Madrid, & Madrid, 2016). Ya en las escrituras de célebres personajes de la historia como Salomón (960-925 A.C.), Hipócrates (460-377 A.C.), Jenofonte (430-354 A.C.), y Ateneo (220 A.C.) entre otros muchos, hablan de la nieve y el hielo por su acción refrescante en épocas de calor, de sus propiedades para activar los humores corporales y el bienestar del cuerpo, de las preferencias de las tropas por nieve con miel y zumos de frutas, y de la forma en que Alejandro Magno hacía almacenar la nieve en pozos en el suelo (Figura) para luego tomarla junto con vino o leche y zumos de frutas con miel (Timm, 1989).

A lo largo de toda la historia, son médicos, gastrónomos, califas, emperadores romanos los que hablan en sus escritos de cómo la gente tomaba este tipo de preparados a base de hielo o nieve y zumos de frutas con azúcar o miel junto con vino o leche. También hablan de cómo se mandaba a los esclavos que trajeran la nieve y el hielo desde zonas muy alejadas para poder consumir esos manjares (Timm, 1989).

Es en la Edad Moderna cuando empiezan a aparecer los helados o congelados como se llamaban por aquel entonces, en Europa, aunque no se sabe exactamente la forma de entrada en el continente. Existen referencias sobre la entrada de helados a través de Sicilia por los árabes.

Figura 1. Pozo en el que se almacenaba hielo para los meses de verano.
y por Venecia por ser puerta del mercado con Oriente. Aunque su localización exacta no se sabe, Italia fue la principal promotora del helado en Europa, a partir de este punto hay muchas referencias hacia nuevos avances en el proceso de congelación. Zimarra y Blasius, médicos los dos, descubrieron mezclas de componentes con las que producir frío en la primera mitad del siglo XVI. En estas mezclas utilizaban agua o hielo y nitrato potásico que conseguían enfriar rápidamente el agua (Timm, 1989).

De este modo, se hace alusión en años posteriores, a preparadores de bebidas y manjares a base de hielo en los séquitos de reyes como el Delfín de Francia y Carlos I de Inglaterra. Los helados de vainilla y chocolate aparecen por primera vez en un banquete de Luis XIV, quien dio permiso a los vendedores de limonada para poder elaborar congelados, lo que sirvió para que se difundiera con rapidez el consumo de helados en París. Tal era la difusión que se formó el gremio de los fabricantes de helados allá por 1676, que contó con 250 miembros (Timm, 1989).

Ya en el año 1700, el helado traspasó el charco y llegó a América de la mano de un pastelero de Londres. Tanto fue la repercusión de éstos, que hasta el presidente de los Estados Unidos adquirió una máquina para hacer helados (Timm, 1989).

Durante el siglo XIX se confeccionaron muchas especialidades de helados que poco a poco han ido haciéndose mercado hasta el día de hoy, mejorando las primeras recetas e incluso aportando cosas nuevas como nuevos formatos, texturas, rellenos y moldes (Timm, 1989).

1.1.2. Definición del Helado
Según la Guía de Mejores Técnicas disponibles en España del sector lácteo publicada por el Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (MAPAMA) en 2015, los helados son productos obtenidos por la congelación de leche pasteurizada, nata y azúcar aromatizados con frutas, zumos de frutas, aromas u otros ingredientes (MAPAMA, 2015).

Los helados vienen definidos en 6 tipos diferentes según sus características, éstos son (MAPAMA, 2015):
- **Helado de crema**: producto que contiene en masa como mínimo un 8% de materia grasa exclusivamente de origen lácteo y como mínimo un 2,5% de proteínas exclusivamente de origen lácteo.
- **Helado de leche**: producto que contiene como mínimo un 2,5% de materia grasa exclusivamente de origen lácteo y como mínimo un 6% de extracto seco magro lácteo.
- **Helado de leche desnatada**: producto que contiene en masa como máximo un 0,30% de materia grasa de origen exclusivamente lácteo y como mínimo un 6% de extracto seco lácteo magro.
- **Helado**: producto que contiene en masa un 5% como mínimo de materia grasa alimentaria y proteínas de origen lácteo exclusivamente.
- **Helado de agua**: producto que contiene en masa como mínimo un 12% de extracto seco total.
- **Sorbete**: producto que contienen en masa como mínimo un 15% de frutas y un 20% de extracto seco total.

Atendiendo a los análisis de composición del producto elaborado en este proyecto y dado que se ha utilizado leche semidesnatada, la cantidad de grasas totales en el producto final es de un 0,95%. Este valor se encuentra entre las denominaciones de “Helado de leche” y “Helado de leche desnatada”, por lo que se podría decir que cuando nos referimos a esta elaboración hablamos de una nueva denominación “Helado de leche semidesnatada”.
1.1.3. Ingredientes generales y composición nutricional

El helado es un producto muy importante en la alimentación desde el punto de vista nutricional por la elevada riqueza de sus ingredientes. Por su contenido calórico y su composición es el complemento perfecto para la dieta, también contribuye a la hidratación y aporta proteínas (Martín, 1996).

El valor nutricional del helado varía dependiendo de los componentes de este. Si el helado es de leche, su valor nutricional será siempre superior al de la leche. De estos se dice, que el aporte proteico se puede comparar a una porción de queso (Martín, 1996).

Entre los ingredientes que conforman el helado tenemos (Martín, 1996):
- Agua potable (más utilizada en sorbetes, granizados y polos)
- Leche y derivados (leche en polvo utilizada en este producto, nata, mantequilla...)
- Azúcares (sacarosa, glucosa, fructosa, sorbitol, miel...) y edulcorantes artificiales (sacarina, aspartamo, sucralosa, estevia...)
- Grasas de origen vegetal (coco, palma, algodón...)
- frutas (fresa, limón, naranja...), verduras (pepino, apio...) y frutos secos (nueces, almendras, avellanas...)
- Huevos y derivados (huevo en polvo, clara en polvo...)
- Chocolate, café, cacao, cereales y derivados
- Aditivos autorizados (aromas, espesantes, colorantes, estabilizantes, conservantes...)

*Subrayados se encuentran algunos de los ingredientes utilizados en la elaboración del producto de este proyecto.

Con los ingredientes mencionados, en las proporciones adecuadas, se conforma la formulación del helado estándar. Éstos proporcionan un aporte de proteínas de alto valor biológico, azúcares, grasas, vitaminas y sales minerales adecuados para una dieta equilibrada (Martín, 1996).

Los helados se componen nutricionalmente de (Esteire, Madrid, & Madrid, 2016):
- Hidratos de carbono como la sacarosa (azúcar de mesa), lactosa (azúcar de la leche), fructosa (presente en las frutas), glucosa... Son la principal fuente de energía de los seres vivos y en helados se utilizan además para:
 o Bajar el punto de congelación de la mezcla, dado que aumentan el contenido en sólidos.
 o Dar sabor dulce a la mezcla.
 o Contribuir al metabolismo eficaz de las grasas.
 o Evitar la producción de ácidos grasos.
 o Alimentar a la flora bacteriana.
- Proteínas como la caseína, globulina, albúminas (presentes en la leche y derivados). Las proteínas están compuestas por aminoácidos que se clasifican en esenciales y no esenciales. Las funciones que desempeñan las proteínas en el helado son:
 o Estabilizante (mantienen la estructura del helado por hidratación).
 o Favorecen el desarrollo de las personas por su alto valor biológico.
 o Forman anticuerpos para luchar contra infecciones.
- Lípidos (grasas y/o aceites). Se utilizan por sus funciones:
 o Dar cuerpo y sabor a los helados.
 o Aportar energía y vitaminas (A, D, K y E, solubles en las grasas)
- Vitaminas (Vit A, Vit B, Vit C...) Se clasifican en hidrosolubles y liposolubles y cada una tiene una función diferente:
 o Liposolubles:
 ▪ Vitamina A: lucha contra infecciones y enfermedades de los ojos.
 Está presente en leche, huevos, helados, quesos...
- **Minerales** (Calcio, Fósforo, Hierro, Potasio...). Son necesarios para el organismo por:
 - Su función constituyente, forman parte de huesos y dientes.
 - Formar parte de tejidos blandos como el cerebro.
 - Formar parte de compuestos como enzimas, hormonas y vitaminas.
 - Mantener el equilibrio osmótico.

1.1.4. Mercado actual del Helado

1.1.4.1. Macroentorno

1.1.4.1.1. Económico

Según el Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente el gasto total en alimentación de los hogares españoles asciende a 67.095,5 millones de euros en el *Informe del consumo de alimentación en España* para el año 2016, esto supone un incremento del 0,1%. La población disminuye en 1% en los últimos seis años, aumentando la proporción de hogares de menor tamaño y sin hijos, lo que hace que el consumo dentro del hogar apenas no crezca (MAPAMA, 2016).

El Ministerio además hace un desglose por categorías en el que se destaca la importancia de los productos frescos en alimentación, suponiendo un 41% del volumen total consumido y un 44,1% del presupuesto total destinado a la alimentación. Productos como los platos preparados, patatas, bollería, pastelería, cereales, productos navideños y frutos secos se distinguen por el crecimiento de su consumo mientras que productos como aceite, leche líquida, derivados lácteos, carne, pescado, fruta fresca, hortaliza fresca, fruta y hortaliza transformada, pan, pasta y huevos descienden en su consumo durante el 2016 (MAPAMA, 2016).

Atendiendo ahora el sector de los derivados lácteos donde se encuentran los helados, se puede ver que el consumo doméstico decrece un 0,6% en valor y volumen con respecto al año anterior, aunque el precio medio no varía (3,32€/kg-L). Los hogares destinan un 8,59% de su presupuesto en alimentación en la compra de derivados lácteos siendo más o menos constante durante todo el año su consumo en volumen de ventas. El consumo per cápita se eleva a 39,60 kg-L por persona y año (MAPAMA, 2016).
Por tipos de productos, los derivados lácteos se dividen en leches fermentadas, queso, postres lácteos, batidos, helados y tartas ordenados de mayor a menor volumen de ventas, siendo el porcentaje de ventas de los helados y tartas, de un 8,5% sobre el total de derivados lácteos (MAPAMA, 2016).

1.1.4.1.2. Político/legal

Los helados vienen controlados por el Real Decreto 618/1998 de 17 de abril por el que se aprueba la Reglamentación Técnico-Sanitaria para la elaboración, circulación y comercio de helados y mezclas envasadas para congelar, que se modifica en última instancia por el Real Decreto 176/2013 de 8 de marzo. En el que se define qué se entiende por helados y por mezclas envasadas para congelar y precisa las normas sanitarias de elaboración, distribución, almacenamiento y venta de los helados y mezclas envasadas para congelar (MAPAMA, 2016).

1.1.4.1.3. Tendencias

La tendencia actual en este sector es apostar en la innovación con productos que aporten valor añadido ya que el consumidor demanda nuevos productos y de calidad. La demanda actual del consumidor del sector es la elaboración de helados que no solo proporcionen placer, sino que también sean saludables y por tanto aumenta la petición de helados vegetarianos, veganos, integrales, naturales, libres de aceites de palma y aditivos. Es por ello por lo que cada vez surgen más heladerías que se autoproclaman “artesanales”.

En este sentido, empresas como Grupo Kalise Menorquina apuesta para la campaña 2017 por helados saludables sin azúcares añadidos y con Stevia, Froneri apuesta por helados para todo tipo de consumidores con sus productos sin lactosa y La Ibense Bornay por helados con propiedades reconstituyentes para después del ejercicio físico prolongado apto para veganos. Por otra parte, La Jijonenca se renueva atendiendo a las necesidades de los clientes desarrollando nuevos sabores y combinando procesos industriales y artesanales a fin de obtener resultados perfectos. (M. P., 2017) (ALIMARKET 1., 2017) (ALIMARKET 2., 2017) (ALIMARKET 3., 2017)

1.2. MICROALGAS

1.2.1. Introducción y Definición de las Microalgas

El término microalga se refiere a aquellos microorganismos que contienen clorofila a y otros pigmentos fotosintéticos, capaces de realizar fotosíntesis oxigénica. Cianobacterias o algas verdes-azules, procariotas se consideran microalgas (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

El término microalgas no tiene sentido taxonómico ya que se incluyen organismos con dos tipos celulares distintos, cianobacterias con estructura celular procariota y las restantes con estructura celular eucariota (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

Las eucariotas se caracterizan por ser microorganismos unicelulares que poseen un núcleo con el material genético en cromosomas y todos los orgánulos propios de las células eucariotas: mitocondrias que contienen enzimas respiratorias del ciclo de Krebs, cloroplastos donde se encuentran los pigmentos fotosintéticos, ribosomas, aparato de Golgi, retículo endoplasmático, lisosomas y otros cuerpos con enzimas digestivas, vacuolas, gránulos de reserva, microtúbulos y microfibrillas, y cuerpos basales o centriolos. Tienen una enorme variedad de formas, organización y tamaños (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

Las cianobacterias son mucho más simples. Pueden aparecer como células individuales y con formas filamentosas. Su organización procariota es estructuralmente más compleja que la mayoría de las bacterias: contienen una región central donde se localiza el ácido nucleico (solo una molécula de DNA), una región periférica, que contiene las membranas tilacoidales y varias inclusiones o estructuras citoplasmáticas y una envoltura externa, compuesta de membrana...
citoplasmática y pared celular característica, rodeada frecuentemente de una capa de mucílago. La pared celular contiene peptidoglucano y la estructura y composición características de las bacterias Gramnegativas. En el citoplasma se encuentran las inclusiones, los carboxisomas o cuerpos poliédricos, donde está la RBP-carboxilasa, ribosomas y algunas vacuolas de gas (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

Pese a las grandes diferencias estructurales, fisiológicamente ambos tipos de microalgas son similares, con un metabolismo fotosintético similar al de las plantas superiores (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

La reproducción es generalmente por división binaria, con tiempos de duplicación de 1h o menos (procariotas) y de 8 a 24h (eucariotas). Las especies que se dividen durante el período de oscuridad sintetizan el material celular durante el período de luz, mientras que en la fase de oscuridad llevan a cabo diferentes reacciones relacionadas con la división celular (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

1.2.2. Historia de las Microalgas

En 1890 comienza el estudio científico de las microalgas de la mano del microbiólogo holandés Beijerinck que estableció cultivos puros de una microalga de agua dulce: *Chlorella vulgaris*. Veintinueve años más tarde, Otto Warburg consiguió cultivos densos en laboratorio de *Chlorella* y los utilizó como herramienta de trabajo en el estudio de la fotosíntesis. Fue en 1980 cuando Soeder descubrió que bajo condiciones de cultivo adecuadas y a intensidad de luz de saturación las microalgas eran mucho más productivas que las plantas superiores o las células fotoautotróficas, aisladas de las mismas (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

Durante la II Guerra Mundial se llevó a cabo por primera vez la producción masiva de microalgas dirigida a la producción de lípidos con *Chlorella pyrenoidosa* y *Nitzschia palea*. Después de esto la biomasa microalgal empezó a considerarse como un suplemento importante capaz de reemplazar a las proteínas animales o vegetales convencionales para consumo directo del ganado o del hombre, acortando la ineficiente cadena alimenticia proteica (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

Posteriormente se realizaron publicaciones sobre los fundamentos científicos del cultivo masivo de microalgas para la producción a gran escala de alimento, en los que se mostraron que la composición de *Chlorella* en grasa y proteína, podía ser manipulada variando las condiciones del medio (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

La deficiencia proteica global se podría mejorar con la utilización de la proteína microalgal según sugieren Spoehr y Milner ya que tienen un contenido en proteína bruta de aproximadamente el 50% y una productividad del orden de 25Tm/Ha/año. Se propusieron distintas microalgas de agua dulce como fuente de proteína entre ellas las utilizadas en este proyecto *Chlorella y Spirulina* (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

Durante siglos, en algunas partes del mundo se ha utilizado como alimento humano microalgas producidas con una tecnología primitiva, y se han establecido apropiadas tecnologías para la producción a gran escala tanto de microalgas verdes como cianobacterias. La *Spirulina*, por ejemplo, era empleada por los aztecas en la alimentación, en forma de bizcochos. Como ésta, la lista de microalgas que se han consumido a lo largo de la historia es larga, en este sentido en lo que se ha innovado, es en su producción a escala técnica (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995):

- Años 50: se establecen los fundamentos del cultivo microalgal en varios países, se plantea la utilización del CO₂ producido y el tratamiento de aguas residuales y producción de proteína simultáneamente, a partir de microalgas.
- Años 60: se producen trabajos sobre la producción masiva de microalgas, se desarrollan sistemas de cultivo cerrados, se produce comercialmente Spirulina, se hacen las primeras pruebas utilizando Chlorella en la dieta humana.
- Años 70: se plantea la aplicación biológica de la energía solar a través de las microalgas y la transformación de los residuos y aguas residuales en biomasa y agua tratada que puede utilizarse para riego.
- Años 80: se establecen numerosas industrias para la producción de microalgas.

Su utilización como fuente de proteínas es actualmente controvertida pero numerosas investigaciones sobre los distintos aspectos de las microalgas demuestran que la biomasa microalgal puede utilizarse para otras aplicaciones, como biofertilizantes, en la purificación de aguas residuales, como acondicionamiento de suelo, como alimento en acuicultura y más. Además, se ha puesto de manifiesto el potencial de las microalgas para la producción de gran variedad de sustancias, algunas de ellas de elevado precio, como ácidos grasos, pigmentos, vitaminas, antibióticos, productos farmacéuticos y otros productos químicos de interés, así como hidrógeno, hidrocarburos y otros combustibles biológicos (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

En los últimos años se ha establecido la idoneidad de la utilización de cultivos de microalgas para ensayos biológicos y fisiológicos y se ha demostrado que son un medio adecuado para ensayar los efectos de distintos agentes químicos sobre organismos vivos (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

En función de estas aplicaciones, se reconoce la importancia comercial de distintas especies de microalgas, sin embargo, el desarrollo industrial en biotecnología microalgal es escaso debido a los elevados costes de producción (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

1.2.3. Especies utilizadas
En este proyecto se han utilizado dos tipos de microalga Chlorella y Spirulina.

Chlorella.
La producción a escala comercial de Chlorella está relativamente extendida en el sureste asiático, mientras que en otras zonas son más frecuentes otras especies. En Asia, la producción comercial de Chlorella comienza en Taiwan en 1966. Las especies más utilizadas son C. pyrenoidosa y C. ellipsoidea. La biomasa de Chlorella se produce tanto autotróficamente como heterotróficamente. El producto de Chlorella se distribuye como polvo o coma píldoras en el mercado alimenticio. De esta especie se extrae un producto denominado Factor de Crecimiento de Chlorella que mejora el crecimiento de las bacterias lácticas. También se ha propuesto como productora de almidón a nivel comercial y algunas cepas termofílicas obtenidas por procesos mutagénicos presentan una elevada producción de luteína, pigmento utilizado en la industria alimenticia (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

Spirulina.
La producción comercial de Spirulina se lleva a cabo en México, Taiwán, Tailandia, California, Japón e Israel, así como en la India dentro de sistemas agrícolas de explotación integral. En el lago Texcoco se cultiva S. máxima, su biomasa se utiliza como complemento alimenticio de la dieta humana desde muy antiguo, por su alto contenido en proteínas y bajo en ácidos
nucleicos, la pared celular de mucoproteínas es más fácil de digerir que en otras especies utilizadas y además presenta un elevado contenido en algunas vitaminas y minerales. También se utiliza como alimento de peces ornamentales, con el fin de potenciar su color. Otros productos que contiene estas especies son β-carotenos, si bien no suele aislar de esta cianobacteria para su comercialización, y ácidos grasos insaturados esenciales. Entre las aplicaciones clínicas de esta especie se citan (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995):

- Su utilización como alimento terapéutico en niños y adultos
- Como tratamiento de cicatrización de heridas
- Estimulación tiroidea
- Tratamiento del cáncer con ficocianina, si bien este pigmento estimula el sistema inmune proporcionando protección para una amplia variedad de enfermedades
- Protección contra el cáncer por su contenido en β-carotenos
- Estimulación de las prostaglandinas (PGE1) por su contenido en ácido y-linoleico (GLA)
- Reactivador de enzimas humanos.

1.2.4. Composición y beneficios

El valor de una especie microalgal es función de su composición bioquímica. Un mejor conocimiento de la composición química de las microalgas permite una utilización más adecuada y rentable (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

Como en cualquier planta superior, la composición química de las microalgas no es un factor íntimamente constante, sino que varía en un amplio rango. No solo la composición química bruta, sino también la composición y concentración de aminoácidos, la composición de los lípidos, el grado de insaturación de los ácidos grasos o el contenido en vitaminas, depende de las condiciones de cultivo y del momento del ciclo de crecimiento en que se cosecha la biomasa (Abalde, Cid, Fidalgo, Torres, & Herrero, 1995).

- **Composición bruta:** las microalgas presentan un alto contenido en proteínas, lípidos ricos en ácidos grasos insaturados y carbohidratos, además de ácidos nucleicos, también presentan vitaminas hidro- y liposolubles y otras moléculas como carotenoides, clorofilas, enzimas, aceites esenciales, hidrocarburos, glicerol, aminas... Aproximadamente el 90% del peso seco de una célula algal está constituido por proteínas, lípidos y carbohidratos. El componente principal es la proteína (50% p.s.).

- **Proteína:** el elevado contenido proteico de distintas especies de microalgas fue una de las principales razones para considerar estos organismos como fuente no convencional de proteína. La mayoría de los datos sobre proteínas de microalgas se basan en la estimación del N total por el método Kjeldahl y la multiplicación de este valor por el factor 6,25. Entre los compuestos de nitrógeno no proteicos se encuentran los ácidos nucleicos, péptidos, aminoácidos libres y pigmentos. La cantidad de proteína disminuye si desciende el nitrógeno en el medio. Para conseguir que el contenido en proteína de las microalgas sea alto debe tenerse cuidado de que haya siempre nitrógeno disponible en el medio en cantidad suficiente. Una deficiencia en carbono disminuye también el contenido en proteína y aumenta las cenizas.

- **Aminoácidos:** de los totales de las algas el 90-98% están en las proteínas. Las microalgas incluyen todos los aminoácidos esenciales. Pueden existir deficiencias en los aminoácidos de azufre, metionina y cisteína, lo que es muy común en muchas proteínas de plantas. Pero son ricas en lisina, aminoácido limitante en muchos cereales.

- **Carbohidratos:** no forman parte principal de los constituyentes primarios, pero juegan un papel importante, suelen formar parte del material de reserva o componentes de la pared celular. Los perfiles de carbohidratos de las especies microalgales varían ampliamente. Los principales azúcares son glucosa, galactosa, manosa y ribosa.
- **Lípidos**: pueden variar desde menos de 1% hasta más del 40% del peso seco. Los factores ambientales pueden afectar tanto a las proporciones relativas como a la cantidad total de lípidos. El mayor aumento de la fracción lipídica se produce cuando el nitrógeno es limitante, otros factores que pueden influir son luz, temperatura y ciclo luz-oscuridad. Los lípidos y ácidos grasos funcionan como componentes de membrana, como productos de reserva, como metabolitos y como fuentes de energía. La fracción lipídica se divide en lípidos polares y lípidos neutros.

- **Ácidos Grasos**: constituyen la mayor fracción de lípidos microalgaes, suponiendo del 20 al 40% de los lípidos totales. Se encuentran formando ésteres de glicerol como los tri- y diglicerídos, fosfolípidos y glicolípidos.

- **Glicerol**: componente orgánico mayoritario que permite sobrevivir a la microalga en ambientes extremos de osmorregulación.

- **Pigmentos fotosintéticos**: forman parte de la fracción lipídica polar. Las microalgas contienen 3 pigmentos principalmente: clorofilas, carotenos y ficobilinas
 - **Clorofila**: pigmento fotosintético primario. La acumulación de clorofila está íntimamente coordinada con el desarrollo de los tilacoides y la actividad fotosintética. La síntesis de clorofila ocurre en los plastos y el núcleo. Deficiencias en hierro, nitrógeno y magnesio inhiben la síntesis y la acumulación de clorofila, igual que la abundancia de carbono orgánico en el medio y la alta intensidad lumínosa.
 - **Carotenoides**: moléculas polisoprenoides que poseen dobles enlaces conjugados y un anillo de ciclohexano en cada extremo de la molécula. Funcionan como fotoprotectores y pigmentos captadores de luz. Cada especie de alga puede contener entre 5 y 10 carotenoides distintos de entre los 60 que se conocen. El β-caroteno es un carotenoide típico que se encuentra en todas las algas y plantas superiores. Las mayores concentraciones de β-caroteno se obtienen en condiciones de salinidad e iluminación elevadas.
 - **Ficobilinas**: pigmentos solubles en agua que se encuentran en abundancia solo en cianobacterias y algas rojas. La presencia de estos pigmentos es muy importante para la capacidad de captación de luz de estas bacterias y algas. Las ficobilinas captan mucha de la energía dejada por las clorofilas y carotenoides, haciendo que las cianobacterias y las algas utilicen más eficientemente la radiación solar en la fotosíntesis

- **Ácidos nucleicos**: la cantidad puede variar del 1 al 10% siendo la relación entre RNA:ADN de 3:1.

- **Minerales**: existen pocos análisis detallados para microalgas, pero en ellos se ha encontrado proporciones del 6-15% del peso seco en Spirulina y del 6-39% en otras. Los elementos más abundantes son: P, K, Ca, Mg, Fe...

- **Vitaminas**: hay poca información acerca de este componente debido a que la determinación de vitaminas es bastante difícil y los resultados están sujetos a muchas interferencias. Aun así, se encuentran en las microalgas las siguientes vitaminas: VitA, tiamina (VitB1), riboflavina (VitB2), piridoxina (VitB6), cobalamina (VitB12), VitC, VitE, ácido nicotínico, biotina, ácido fólico, ácido pantoténico.

En el anexo ANEXO II. Fichas técnicas microalgas utilizadas en el presente proyecto se aportan las fichas técnicas de las microalgas empleadas.

1.3. FRUTA Y HORTALIZAS

1.3.1. Definición de fruta y hortalizas

Según el Código Alimentario Español que se aprueba en el Decreto 2484/1967, de 21 de septiembre, se denomina *fruta* al fruto, infrutescencia, semilla o partes carnosas de órganos florales, que hayan alcanzado un grado adecuado de madurez y sean propias
para el consumo humano. En el mismo documento se encuentra la definición de *hortalizas y verduras*, con este nombre se designa a cualquier planta herbácea hortícola en sazón que se puede utilizar como alimento, ya sea en crudo o cocinado. (BOE, 1967)

1.3.2. Beneficios de las frutas y verduras utilizadas.

En el presente proyecto se han utilizado frutas como la manzana, el limón y la naranja, y verduras como zanahoria, apio, pepino y espinacas. Además, se ha contado con la incorporación de Aloe vera, que en sí no es un producto de uso habitual en la cocina, pero que contiene unas propiedades únicas y diferenciadoras de los productos actuales. En este caso, se utilizará extracto líquido de Aloe vera para las distintas mezclas a realizar.

Como es bien sabido, el consumo de frutas y verduras ayuda a completar una dieta saludable. Algunas de las ventajas del consumo de frutas y verduras son (Junta de Andalucía, s.f.):

- Una adecuada alimentación, con la ingesta de verduras, hortalizas y frutas, puede ayudar a prevenir algunos tipos de cáncer como el de boca, faringe, laringe, pulmón, esófago, estómago, colon, mama y vejiga.
- Aumentar el consumo de frutas, hortalizas y verduras ayuda en la prevención de enfermedades crónicas como cardiovasculares, obesidad, freno de deterioro por la edad, estimulación del sistema inmune.
- Contienen micronutrientes como las vitaminas C y E, carotenoides y flavonoides que son beneficiosos para la salud.

La composición general de las hortalizas se embarca entre los siguientes valores medios (Infoalimentación, s.f.):

- Agua: 85-95% componente mayoritario.
- Glúcidos: 1-10%, la proporción es variable según el tipo de hortaliza, siendo en su mayoría de absorción lenta.
- Fibra: 1-5%, mayoritariamente es pectina y celulosa, menos digerible que en la fruta, siendo precisa la cocción de las hortalizas para su consumo.
- Proteínas y lípidos: 1%
- Vitaminas: β-carotenos (provitamina A), vitamina C y vitaminas del grupo B.
- Sales minerales: magnesio (Mg), potasio (K), sodio (Na), hierro (Fe) y calcio (Ca).

En la realización de este trabajo se seleccionaron las siguientes hortalizas: espinacas, apio, pepino y zanahorias. Las espinacas destacan por su alto contenido en hierro y magnesio, aportando también calcio y ácido fólico; el apio es una fuente de vitaminas del grupo B, C y A; el pepino, contiene vitaminas A y C, calcio, hierro, magnesio, fósforo y potasio; por último, las zanahorias son muy ricas en vitamina A (Infoalimentación, s.f.).

La composición general de las frutas, por su parte, se mueve entre los siguientes valores medios (Infoalimentación, s.f.):

- Agua: 80-90% componente mayoritario, oscila entre un 82% en las uvas, un 90% en fresas y hasta un 93% en tomates. Debido a este alto porcentaje de agua y a sus aromas, la fruta resulta muy refrescante.
- Glúcidos: 5-18%, son generalmente azúcares simples tales como la fructosa, la sacarosa y la glucosa, azúcares de fácil digestión y rápida absorción. También, se encuentran polisacáridos como el almidón, la celulosa, hemicelulosa y sustancias pépticas y pequeñas cantidades de xilosa, arabinoza, manosa, galactosa y maltosa.
- Fibra dietética: 2%, generalmente sustancias estructurales de las células vegetales que resisten el ataque de las enzimas digestivas.
- **Proteínas y lípidos:** 0,6%. Las proteínas suelen representar menos del 1% del peso fresco de las frutas, se componen de aminoácidos como la asparagina, glutamina, ácidos aspárticos y glutámico. Los lípidos suelen situarse por debajo del 1% y varía dependiendo de producto.

- **Vitaminas:** β-carotenos (provitamina A), vitamina C y vitaminas del grupo B.

- **Sales minerales:** magnesio (Mg), potasio (K), sodio (Na), hierro (Fe) y calcio (Ca).

En especial, las frutas utilizadas para la elaboración del producto objeto de desarrollo del presente proyecto fueron manzanas, limón y naranjas. Las manzanas ofrecen numerosos beneficios terapéuticos gracias a sus azúcares naturales, aminoácidos, vitaminas A, B y C, minerales como calcio, magnesio, fósforo y potasio y un alto contenido de pectina; el limón es rico en vitamina C y también contiene vitaminas B1, B2, B3, B5, B6, B8, K y P, además es rico en minerales como el calcio, cobre, hierro, magnesio, fósforo, sodio y azufre; por último, las naranjas son ricas en betacarotenos y vitamina C, y poseen pequeñas cantidades de vitaminas del grupo B y E, además, contienen calcio, magnesio, fósforo y potasio (Infoalimentación, s.f.).
2. OBJETIVOS

2.1. OBJETIVO GENERAL

El objetivo general de este proyecto es el desarrollo de helados salados. Para ello se elaborarán tres sabores distintos de bases de helados a las que se les adicionará dos especies diferentes de microalgas.

Se pretende diseñar un tipo de helado que no sea el concepto tradicional de helado dulce sino salado. Modificar la forma y lugar en la que se come de manera habitual el helado, en lugar de tomarlo como postre, servirlo como entrantes o como guarnición en primeros y segundos platos; en lugar de tomarlo por la calle, en el parque o en el sofá de tu casa, comerlo en la mesa de un restaurante donde sirvan muy elaborados o en casa para sorprender a los invitados con guarniciones diferentes. Este producto está pensado como producto gourmet o para restaurantes de alta cocina, por ser un helado enriquecido con las características beneficiosas que le aportan las microalgas y las frutas y verduras.

2.2. OBJETIVOS ESPECÍFICOS

- Caracterización de las propiedades fisicoquímicas del helado con las dos especies de microalgas.
- Caracterización de los parámetros de calidad de los helados
- Observación de la reacción del consumidor ante el cambio de concepto de helado.
3. MATERIALES Y MÉTODOS

3.1. PLAN DE TRABAJO

Para la realización del proyecto y consecución de los objetivos planteados se ha seguido el plan de trabajo que se menciona, a continuación:

1- Búsqueda y revisión de información en bibliografía sobre temas como la elaboración de los helados, técnicas de análisis de las distintas propiedades organolépticas y características de los helados y propiedades de los distintos ingredientes a utilizar en el presente proyecto.

2- Definición de los objetivos del presente proyecto para la consecución de un nuevo desarrollo de helado salado con la incorporación de las microalgas.

3- Definición de recetas base para la elaboración el nuevo helado.

4- Selección de las determinaciones analíticas a realizar para caracterizar las propiedades tecnológicas de los nuevos desarrollos.

5- Puesta a punto de la receta base. Realización de pruebas con diferentes formulaciones sin sabores ni microalgas en aras de ajustar:
 a. la textura en boca, para que quede suave;
 b. la cantidad de grasa del producto, de manera que no quede empalagoso;
 c. y el dulzor, puesto que la base debe ser casi neutra para poder añadir el sabor salado.

6- Preparación de los distintos sabores, con la incorporación de los dos tipos de microalgas en cada uno de ellos. En total seis combinaciones.

7- Elaboración de las seis formulaciones finales y estudio de las diferentes características del producto (pH, densidad, color, textura, perfil sensorial) en la aceptación del producto final.

8- Estudio de los parámetros de calidad características de los helados: overrun, tiempo de caída de la primera gota y porcentaje de derretimiento.

3.2. MATERIAS PRIMAS E INGREDIENTES

Para la realización de los helados se emplearon: microalgas Chlorella (Chlorella vulgaris) y Spirulina (Arthrospira platensis), proporcionadas en forma liofilizada por Algaenergy (Algaefood, Madrid, España).

Como productos lácteos que forman la base de este tipo de helados, se empleó, Leche entera (Consum Cooperativa, Silla, España), leche en polvo desnatada (Central Lechera Asturiana, Siero, España), y nata 35% materia grasa (Consum Cooperativa, Silla, España). Como estabilizante del helado se empleó Helba F5 Arcrem neutro (Martin Braun S.A, Molina de Segura, España), una mezcla de estabilizantes. Esta base también contiene dextrosa y sacarosa (Roquette Laisa España S.A, Benifaió, España) y sal (Consum Cooperativa, Silla, España), que son los componentes que actúan como modificadores del proceso de congelación, haciendo que éste sea más lento y que por tanto se formen cristales pequeños de hielo que ayuden a formar el cuerpo del helado y su textura cremosa.

Después de hacer varias pruebas, la leche entera y la nata para montar se intercambiaron por solo leche semidesnatada (Consum Cooperativa, Silla, España) para reducir la cantidad de grasa en el producto final. También se intercambiaron la sacarosa por otros azúcares con menor poder edulcorante, para reducir el sabor dulce, en este caso se utilizaron tagatosa (Damhert Nutrition, Heusden-Zolder, Bélgica) e isomaltulosa (Roquette Laisa España S.A.).

Para la elaboración de las diferentes formulaciones de los helados, se utilizaron las siguientes materias primas e ingredientes. Partimos de una receta de Ángelo Corvitto para una crema marina (salada), de uso más habitual en la alta gastronomía.
Partiendo de la formulación base, se utilizaron diferentes tipos de frutas y verduras para conseguir sabores frescos y reconocibles. Para ello, se utilizaron zanahorias, manzanas, apio, naranjas, pepinos, espinacas, limones y Aloe vera. Todos estos ingredientes forman parte de la nueva moda por los batidos verdes o détox y se eligieron, con el fin de que el nuevo producto simpatice con los hábitos de consumo actuales cada vez más saludables y en búsqueda de lo natural. En la Tabla 1 se detallan los productos utilizados en el presente proyecto:

<table>
<thead>
<tr>
<th>Producto</th>
<th>Marca</th>
<th>Empresa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microalgas (Chlorella y Spirulina)</td>
<td>AlgaEnergy</td>
<td>AlgaEnergy S.A., Alcobendas, España</td>
</tr>
<tr>
<td>Helba F5 (arcrem neutro)</td>
<td>Arconsa</td>
<td>Martin Braun S.A., Molina de Segura, España</td>
</tr>
<tr>
<td>Leche en polvo desnata 1% m.g.</td>
<td>Central Lechera</td>
<td>Central Lechera Asturiana, S.A.T., Siero, España</td>
</tr>
<tr>
<td>Leche entera</td>
<td>Consum</td>
<td>Consum Cooperativa, Silla, España</td>
</tr>
<tr>
<td>Leche UHT Semidesnatada</td>
<td>Consum</td>
<td>Consum Cooperativa, Silla, España</td>
</tr>
<tr>
<td>Nata 35% materia grasa</td>
<td>Consum</td>
<td>Consum Cooperativa, Silla, España</td>
</tr>
<tr>
<td>Sal de mesa</td>
<td>Consum</td>
<td>Consum Cooperativa, Silla, España</td>
</tr>
<tr>
<td>Tagatesse</td>
<td>Damhert nutrition</td>
<td>Damhert Nutrition, Heusden-Zolder, Bélgica</td>
</tr>
<tr>
<td>Sacarosa, Dextrosa, Isomaltulosa</td>
<td>Roquette</td>
<td>Roquette Laisa España S.A., Benifaió, España</td>
</tr>
<tr>
<td>Zumo de Aloe Vera 99,7%</td>
<td>Royal Aloe Vera</td>
<td>Royal Living Products GmbH & Co. KG, Alemania</td>
</tr>
<tr>
<td>frutas: manzana, naranja, limón</td>
<td></td>
<td>En mercado local</td>
</tr>
<tr>
<td>Hortalizas: pepino, zanahoria, apio, espinacas</td>
<td></td>
<td>En mercado local</td>
</tr>
</tbody>
</table>

3.3. PROCESO DE ELABORACIÓN

Durante este proyecto se han utilizado varios equipos y programas para los distintos análisis y materiales e instrumental para la elaboración. En las siguientes líneas se especifican cuáles son y para qué se han utilizado.

Se prepara la mezcla para poder helarla, pesando en una balanza OHAUS Adventurer Pro (OHAUS Europe GmbH, Greifensee, Suiza) de tres decimales. El zumo de frutas y hortalizas, ingrediente de las formulaciones se prepara con una licuadora Moulinex Vitafruit (Groupe SEB Ibérica, Barcelona, España).

Una vez pesados todos los ingredientes de la mezcla, esta se homogeniza con una batidora BRAUN 600 Watt Turbo (Procter & Gamble España, S.A., Madrid, España) hasta que se eliminan todos los grumos y el color es homogéneo.

Una vez obtenida la mezcla homogénea, se elabora el helado con una heladera con compresor NEMOX Professional Class Gelato Gelatissimo (Nemox International S.R.L., Pontevico, Italia), hasta obtener una mezcla cremosa y dura, aproximadamente 20-30 minutos.

3.3.1. Desarrollo prototipos previos a la formulación final:

Con el fin último de conseguir un helado salado, se partió de la realización de prototipos de bases heladeras sin sabor, sobre las que se realizaron acciones para corregir distintas características hasta obtener una base con textura, grasa, sabor y dulzor adecuado sobre la que añadir el resto de los ingredientes.
Corrección de la textura:

La primera mezcla a base de leche entera, nata, leche en polvo, dextrosa, sacarosa, neutro de helado y sal; quedó con una textura muy gomosa similar al chicle. Por ello, se realizó una siguiente prueba con la misma formulación, reduciendo el neutro de helado compuesto por una mezcla de emulsionantes. Esta vez, quedó con una textura menos gomosa pero todavía similar al queso fundido de la pizza, textura que para nada representa los helados tradicionales de suave textura. Así, se realizó nuevamente otra prueba, en la que se redujo a la mitad, con lo que se obtuvo una textura suave al paladar.

Corrección de cantidad de grasa:

Aun con buena textura, la base del helado provocaba que en boca se denotara una gran cantidad de grasa, que incluso llegaba a ser molesta. Esto condujo a la elaboración de una nueva formulación en la que se eliminó la leche entera y la nata, y se intercambiaron por leche semidesnatada en las mismas proporciones. Así quedó un helado menos empalagoso en boca, reduciendo considerablemente la proporción de grasa del helado.

Corrección del dulzor:

La reducción de grasa del helado hizo realzar el dulzor que ocultaba el sabor de la grasa. Puesto que el helado que se desarrolla en este proyecto es salado, se ajustó el sabor dulce. La primera acción para ello fue cambiar el tipo de endulzante a utilizar. En este caso se sustituyó la sacarosa por isomaltulosa que le confiere al helado la textura que le confiere la sacarosa, pero con mucho menos dulzor. En este caso, la acción más rápida podría ser eliminar el azúcar por completo de la formulación, pero como bien se ha comentado, el azúcar le confiere al helado su textura característica.

Sustituir la sacarosa por isomaltulosa, no redujo lo suficiente el dulzor del helado. Por ello, se realizó una nueva formulación en la que se combinó isomaltulosa con tagatosa con un poder endulzante inferior con unas proporciones ¾ y ¼, respectivamente. Esta acción no confió ningún cambio significativo en el dulzor de las muestras por lo que se utilizó nuevamente la formulación, pero esta vez con unas proporciones de isomaltulosa y tagatosa de 5/6 y 1/6, respectivamente.

Corrección del sabor:

Conseguida la base de helado sin sabor, continuaron las acciones en sentido a obtener los sabores de helado que casen con el concepto salado. Para ello se eligieron una serie de frutas y verduras de las cuales se extrajo el zumo y se mezclaron obteniendo tres sabores distintos (Figura).

- Pepino: contiene una mezcla de naranja, manzana verde, pepino, apio y espinacas.
- Zanahoria: contiene zanahorias, manzanas verdes, naranja y apio.
- Aloe: contiene manzanas verdes, espinacas, naranja, limón y Aloe vera.
Figura 4. Sabores para incorporar a la base de helado.

A partir de estas bases de sabores, se elaboraron las distintas muestras de helado salado. Para ello, se realizaron combinaciones de los distintos sabores con cada una de las microalgas (Figura 5).

Figura 5. Combinaciones sabores.

Se consiguieron, por tanto, seis prototipos de helado salado diferentes, tres con Spirulina y tres con Chlorella. Las composiciones finales se muestran en las siguientes tablas (Tabla 2 y Tabla 3). En ellas se indican los códigos y números de muestras que se utilizarán en los distintos ensayos de determinación sus propiedades y características.

<table>
<thead>
<tr>
<th>Tabla 2. Composición de las distintas elaboraciones con Spirulina.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
</tr>
<tr>
<td>Código muestra</td>
</tr>
<tr>
<td>Número muestra</td>
</tr>
<tr>
<td>Composición</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Tabla 3. Composición de las distintas elaboraciones con Chlorella.

<table>
<thead>
<tr>
<th>Código muestra</th>
<th>Muestra</th>
<th>Número muestra</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pcl</td>
<td>Pepino cl</td>
<td>874</td>
<td>55,48</td>
</tr>
<tr>
<td>Zcl</td>
<td>Zanahoria cl</td>
<td>361</td>
<td>18,38</td>
</tr>
<tr>
<td>Acl</td>
<td>Aloe cl</td>
<td>725</td>
<td>5,86</td>
</tr>
<tr>
<td>Leche semi</td>
<td>Leche en polvo</td>
<td>61</td>
<td>1,74</td>
</tr>
<tr>
<td>Dextrosa</td>
<td>Dextrosa</td>
<td>59</td>
<td>0,64</td>
</tr>
<tr>
<td>Leche en polvo</td>
<td>Leche en polvo</td>
<td>84</td>
<td>0,35</td>
</tr>
<tr>
<td>Isomaltulosa</td>
<td>Isomaltulosa</td>
<td>25</td>
<td>0,13</td>
</tr>
<tr>
<td>Sal</td>
<td>Sal</td>
<td>8</td>
<td>0,11</td>
</tr>
<tr>
<td>Tagatosa</td>
<td>Tagatosa</td>
<td>10</td>
<td>17,31</td>
</tr>
<tr>
<td>Neutro</td>
<td>Neutro</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chlorella</td>
<td>Chlorella</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Zumo:</td>
<td>Zumo:</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>PEPINO, manzana,</td>
<td>ZANAHORIA,</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>apio, Naranja,</td>
<td>manzana, apio,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>espinacas</td>
<td>Naranja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zumo: ALOE</td>
<td>ALOE VERA, manzana,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VERA, manzana,</td>
<td>Limón, Naranja,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>espinacas</td>
<td>espinacas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4. ANÁLISIS PARÁMETROS DE CALIDAD DE LOS HELADOS

3.4.1. Índice de aireación del helado (overrun)

Durante la congelación se incorpora aire para conseguir el cuerpo y textura deseadas. El aire mezclado también influye al coste, cuanto más aire, más barato. Por ello algunas legislaciones ponen el límite a esta cantidad en un 50-55% de la incorporación de aire. Pero lo más importante de la aireación del helado es que sirve para medir su calidad ya que un aireado excesivo dará helados de baja calidad y sin cuerpo, haciendo que se deshagan en la boca dejando una sensación leve. Con poca aireación la sensación será más pesada, si la aireación del helado fuera muy baja, la sensación no sería deseable (Esteire, Madrid, & Madrid, 2016).

Para definir el índice de aireación del helado, se debe tener en cuenta la relación entre los sólidos totales de la mezcla y la cantidad de aire a incorporar. A mayor cantidad de sólidos, más aire se puede incorporar. La relación que más se utiliza es: Aireación (%) = 2.5 x % de sólidos de la mezcla (Esteire, Madrid, & Madrid, 2016).

Igual que la cantidad de sólidos define la cantidad de aire a incorporar, la grasa también afecta a esta relación. A mayor contenido graso más difícil es la incorporación de aire. Además, la homogenización de la mezcla facilita la incorporación de aire y el batido, esto es debido a que los glóbulos grasos son divididos haciendo que aumenten su superficie y se ocupen los espacios interglobulares por aire (Esteire, Madrid, & Madrid, 2016).

El término overrun define el índice de aireación que es la cantidad de aire incorporado a la mezcla en tanto por ciento sobre el volumen de la muestra. Se puede calcular mediante la siguiente fórmula (Ecuación 1) (Ramirez, Rengifo, & Rubiano, 2015):

\[\text{overrun} \% = \frac{\text{Volumen de helado} - \text{Volumen de la mezcla}}{\text{Volumen de la mezcla}} \times 100 \]

Un overrun del 100% indica que el helado está formado por un 50% de mezcla y un 50% de aire. Según el tipo de helado y su composición varía la aireación, los helados de crema tienen un overrun más elevado (75-90%) que los sorbetes (30-50%) o granizados (5-15%) (Esteire, Madrid, & Madrid, 2016).
Para este ensayo se utiliza como referencia un recipiente de volumen conocido, en este caso de 46mL, en el cual se introduce el helado en estado congelado, se deja descongelar y se mide nuevamente el volumen ocupado por el líquido obtenido.

3.4.2. Tiempo de caída de la primera gota y porcentaje de derretimiento

Para esta determinación se utiliza un colador de malla pequeña de unos 56 orificios por cm² sobre una balanza analítica, en la que se pesan 70 gramos de muestra congelada previamente almacenadas a -18ºC durante al menos 24h. La masa derretida es recogida en un recipiente y se pesa cada un periodo de tiempo determinado (Ramirez, Rengifo, & Rubiano, 2015). En este caso se han recogido los datos cada medio minuto hasta los 20 minutos y a partir de este punto cada dos minutos.

La masa congelada se deja derretir encima de la malla hasta que no quede muestra en el colador. Se toman las medidas del peso al inicio, para saber la cantidad de muestra de la que se dispone, y a los tiempos indicados para saber la cantidad de muestra que se está derritiendo en función del tiempo que transcurre (Ramirez, Rengifo, & Rubiano, 2015).

Este método permite medir el tiempo transcurrido hasta que cae la primera gota, momento en el cual se empieza a derretir el helado. Con esta medida se puede determinar el tiempo que puede pasar desde el comercio donde se vende el producto hasta la casa del consumidor o el tiempo que se puede tardar en comer el helado sin que se haya derretido (Ramirez, Rengifo, & Rubiano, 2015).

A partir de los datos recogidos y de la siguiente fórmula (Ecuación 2) se puede determinar el grado de derretimiento del producto a un determinado tiempo (Ramirez, Rengifo, & Rubiano, 2015).

Ecuación 2. Grado de derretimiento.

\[
% Derretimiento = \frac{\text{masa del helado derretida}}{\text{masa inicial de la muestra}} \times 100
\]

3.5. ANÁLISIS FISICOQUÍMICOS

3.5.1. Color

Una vez congeladas las muestras, el color se midió utilizando un colorímetro Konica Minolta CM-70cd (Minolta Co., Tokyo, Japan) y el programa informático SpectraMagic NX (Minolta Co., Tokyo, Japan), obteniendo las coordenadas CIE-L*a*b* con el iluminante estándar D65 y el observador estándar de 10º. Las coordenadas se definen de la siguiente forma:

- L*: caracteriza el color en base a la luminosidad de este, varía entre los valores 0 para el negro y 100 para el blanco. (Talens, 2017).
- a*: define el color en base a la proporción de rojo (a* = +) o verde (a* = -) que contenga la muestra. (Talens, 2017).
- b*: caracteriza el color en base a la proporción de amarillo (b* = +), o azul (b* = -) que contenga la muestra. (Talens, 2017).

A partir de las coordenadas, se puede obtener el color percibido y sus atributos que se definen del sucesivo modo (Talens, 2017):

- h* o tono: es el ángulo que mide la tonalidad, indicando la orientación relativa del color respecto al origen 0º. Se calcula mediante la ecuación: \(h* = \arctg \frac{a*}{b*} \) (Talens, 2017)
- C* o pureza: mide la saturación de color o croma que es la cantidad de color que tiene la muestra. En el punto central donde a* y b* son igual a 0, no existe orientación hacia ningún color (acromático), y en línea recta hacia fuera de dicho punto donde el valor es
máximo, el color estará altamente saturado. La ecuación para la pureza es:
\[C^* = \sqrt{(a^*)^2 + (b^*)^2} \] (Talens, 2017).

- \(\Delta E^* \) o diferencia global de color: es la diferencia existente entre los valores de las muestras y los valores tomados como referencia. Se calcula mediante la ecuación:
\[\Delta E^* = \sqrt{(\Delta a^*)^2 + (\Delta b^*)^2 + (L^*)^2} \] (Talens, 2017)

Para determinar si las diferencias de color son perceptibles por el ojo humano se utilizan los siguientes valores (Talens, 2017):

- \(\Delta E^* < 1 \): las diferencias de color no se aprecian
- \(1 < \Delta E^* < 3 \): las diferencias de color no son significativas
- \(\Delta E^* > 3 \): las diferencias de color son significativas

3.5.2. pH
El pH de un alimento determinará el tipo de microorganismo que es capaz de crecer en él. La mayor parte de los microrganismos son capaces de sobrevivir y crecer en ambientes de pH entre 4,6 y 9. (Ramírez, Rengifo, & Rubiano, 2015)

El valor más importante de pH en lo que respecta a la seguridad alimentaria es 4,6. La razón es porque es el valor de pH a partir del cual se inhibe el crecimiento del Clostridium botulinum que es el responsable del botulismo. (Ramírez, Rengifo, & Rubiano, 2015)

El valor del pH se determinó por triplicado sobre las mezclas preparadas antes de iniciar el proceso de congelación mediante un pHmetro Multimeter modelo MM41 (Crison Instruments, S.A., Alella (Barcelona), España)

3.5.3. Textura
La ISO, Organización Internacional para la Estandarización, define la textura como el “conjunto de propiedades reológicas y de estructura (geométricas y de superficie) de un producto, perceptibles por los receptores mecánicos, táctiles y en ciertos casos por los visuales y los auditivos” [ISO-5492, 2008]. Las propiedades de textura están relacionadas con la deformación, el flujo y desintegración del producto y pueden ser evaluadas sensorial e instrumentalmente (Ramírez, Rengifo, & Rubiano, 2015).

Para la recogida de los datos de las determinaciones de textura y su procesamiento se utilizó el texturómetro TA-XTPlus (Stable Micro Systems, Surrey, UK) y el programa Texture Exponent 32 v 1.0 (Stable Micro Systems, Surrey, UK), una vez congeladas las muestras y mantenidas a -20ºC durante 24h.

Para la determinación de los parámetros texturales se utilizaron las técnicas instrumentales de flexión en un punto y punción. Las compresiones se efectuaron bajo las siguientes condiciones operativas: velocidad de preensayo 1 mm s⁻¹, velocidad de ensayo 0,50 mm s⁻¹, velocidad de postensado 10 mm s⁻¹, fuerza 0,05 N, distancia 20 mm y tiempo de recuperación de 5 segundos.

Este ensayo mide la fuerza necesaria para hacer penetrar un punzón en las muestras desarrolladas de helado hasta que alcance el umbral de fluencia, es decir, hasta alcanzar la tensión que corresponde al inicio de la deformación. Se utilizó una sonda P/2.

3.6. ANÁLISIS SENSORIAL
Para el presente proyecto, se elaboró una hoja de cata siguiendo las indicaciones de Carpenter et al (2002) la cual se presentó para cada una de las muestras a los componentes del panel catador. Esta hoja de cata contiene las instrucciones para realizar la cata de los distintos prototipos presentados y la información que se requiere de ellos. La hoja de cata se adjunta en el Anexo 1 (ANEXO I. Hoja de cata del análisis sensorial).
Para el desarrollo del análisis sensorial se prepararon muestras de reducido tamaño (una cucharada) de los distintos prototipos de sabores, tres con *Chlorella* y tres con *Spirulina*, días antes al ensayo. Las muestras permanecieron en estado de congelación hasta la cata, donde se presentaron monádicamente a cada catador.

3.7. ANÁLISIS ESTADÍSTICO

Para el estudio de los resultados se realizó un análisis estadístico mediante ANOVA para evaluar lo significativo de los diferentes factores en estudio, utilizando el paquete estadístico Statgraphics Centurión XV (Statistical Graphics Corp, Orkville, USA).

Se utilizó el nivel de significación del 95% y cuando los factores resultaron significativos se analizaron las diferencias entre los distintos niveles mediante el análisis de contraste múltiple de rango (LSD).

4. RESULTADOS Y DISCUSIÓN DE LOS RESULTADOS

4.1. ANÁLISIS PARÁMETROS DE CALIDAD DE LOS HELADOS

4.1.1. Índice de aireación de los helados (*overrun*)

Los valores de *Overrun* obtenidos para los seis prototipos elaborados, se muestran en la siguiente tabla (Tabla 4).

<table>
<thead>
<tr>
<th></th>
<th>Overrun (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psp</td>
<td>40 ± 4<sup>a</sup></td>
</tr>
<tr>
<td>Zsp</td>
<td>32 ± 2<sup>b</sup></td>
</tr>
<tr>
<td>Asp</td>
<td>32,07 ± 1,09<sup>bc</sup></td>
</tr>
<tr>
<td>Pcl</td>
<td>31 ± 2<sup>bc</sup></td>
</tr>
<tr>
<td>Zcl</td>
<td>24 ± 0<sup>d</sup></td>
</tr>
<tr>
<td>Acl</td>
<td>28 ± 3<sup>c</sup></td>
</tr>
</tbody>
</table>

La misma letra indica grupos homogéneos establecidos por el test LSD (p<0,05)

Los helados son clasificados por la industria como súper premium, premium, regular o de marca comercial, y económicos. El overrun de helados súper premium puede ser tan bajo como 25%, mientras que el de helados económicos puede ser tan alto como 110% o más, dependiendo de la legislación de cada país (Abrate Deco, 2017). En España la legislación marca un 50-55% máximo de overrun según Esteire et al. (2016).

Por tanto, los resultados obtenidos, muestran porcentajes de aire incorporado (24-40%) cercanos a los porcentajes de *overrun* encontrados en helados súper premium y premium, cumpliendo con la legislación española. En el caso de los prototipos elaborados con Chlorella, este porcentaje fue más reducido, obteniendo calidades más elevadas, de la categoría súper premium. Por el contrario, los helados elaborados con Spirulina, incorporaron porcentajes de aire más elevados sin superar los límites de calidad establecidos, haciendo que la calidad de estos sea un poco más baja y entren en la categoría premium.

Se puede decir, que las formulaciones obtuvieron unos buenos resultados. La incorporación de aire en la mezcla en todos los casos permitió alcanzar la textura óptima, dejando una sensación en boca suave, pero con consistencia.

Observando con detalle las medias de los resultados obtenidos, se puede ver claramente que los helados elaborados con *Chlorella* obtuvieron overrun más bajos ofreciendo una textura más firme que los elaborados con *Spirulina*. Por otra parte, atendiendo al análisis de las medias por LSD, se observan dos claros grupos de datos, que incluyen las muestras, por una parte, de Aloe Spirulina y pepino y Aloe Chlorella, y, por otra parte, pepino Chlorella y zanahoria y Aloe.
Spirulina, que no denotan diferencias significativas entre sus valores. Los valores de las muestras pepino Spirulina y zanahoria Chlorella, son las que demuestran unas diferencias significativas superiores.

4.1.2. Tiempo de caída de la primera gota y porcentaje de derretimiento

Para este ensayo se utilizaron dos muestras de cada una de las elaboraciones. En este ensayo se determinó el tiempo transcurrido desde que se separa el helado de la fuente de frío hasta que cae la primera gota debida a la descongelación de éste y el tiempo transcurrido hasta su total descongelación.

A continuación, se presentan los tiempos de caída de la primera gota obtenidos para cada uno de los seis prototipos.

Tabla 5. Resultados obtenidos tiempo de caída de la primera gota.

<table>
<thead>
<tr>
<th></th>
<th>Psp</th>
<th>Zsp</th>
<th>Asp</th>
<th>Pcl</th>
<th>Zcl</th>
<th>Acl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo (s)</td>
<td>4 ± 0</td>
<td>7,3 ± 0,4</td>
<td>11 ± 0</td>
<td>7 ± 2</td>
<td>11 ± 5</td>
<td>13 ± 3</td>
</tr>
</tbody>
</table>

Los resultados demuestran que los helados elaborados con Chlorella por lo general tardan más en empezar a descongelarse que los de Spirulina. Además, ambas modalidades de helado siguen un mismo patrón, los que más fácil empiezan a descongelarse son los desarrollados con la formulación de pepino seguidos de los de zanahoria, y son, por el contrario, los elaborados con la formulación de Aloe los que más tardan en empezar a descongelarse.

A continuación, se presentan los resultados obtenidos para el análisis de porcentaje de derretimiento. Este consistió en dejar derretir el helado mientras se determina a cada momento el porcentaje derretido frente al que se conserva congelado. Obteniendo la siguiente curva de descongelación (Figura 6).

Figura 6. Curva de derretimiento del helado.

Esta gráfica representa la evolución del helado desde que se separa de la fuente de frío hasta que queda por completo derretido. En este caso, muestra la cantidad de helado que ha
sido derretido a cada momento partiendo de una muestra de 70g. Para este ensayo todos los helados fueron testados hasta los 70 minutos para obtener la curva de derretimiento completa.

En comparación con el tiempo de caída de la primera gota, en este caso se puede apreciar que las formulaciones elaboradas con zanahoria son las que se derriten con mayor facilidad (colores naranja y azul claro en gráfico Figura), por el contrario, se mantiene que el helado que más tarda a descongelarse es el elaborado con la formulación de Aloe con Chlorella.

A continuación, se testó si los distintos helados desarrollados se mantenían el tiempo justo para ser consumidos. Es decir, si el helado aguantaba lo suficiente para ser consumido sin que se descongelara por completo. Para ello, se calculó el porcentaje de derretimiento del helado para un tiempo determinado a partir de los datos recogidos para la elaboración de la curva de derretimiento.

En este caso se eligió el tiempo 30 minutos ya que según Ramírez et al. (2015) es el tiempo promedio en el que una persona consume un helado. Así pues, estos fueron los resultados obtenidos.

Tabla 6. Resultados obtenidos porcentaje de derretimiento a tiempo 30 minutos.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Psp</th>
<th>Zsp</th>
<th>Asp</th>
<th>Pcl</th>
<th>Zcl</th>
<th>Acl</th>
</tr>
</thead>
<tbody>
<tr>
<td>masa inicial (g)</td>
<td>70,06 ± 0,13</td>
<td>70,6 ± 0,2</td>
<td>70,389 ± 0,109</td>
<td>70,160 ± 0,006</td>
<td>70,3 ± 0,2</td>
<td>70,2 ± 0,3</td>
</tr>
<tr>
<td>masa derretida (g)</td>
<td>20 ± 4</td>
<td>25 ± 2</td>
<td>18 ± 5</td>
<td>19 ± 3</td>
<td>21 ± 9</td>
<td>13 ± 5</td>
</tr>
<tr>
<td>derretimiento (%)</td>
<td>29 ± 8</td>
<td>35 ± 4</td>
<td>25 ± 11</td>
<td>27 ± 6</td>
<td>30 ± 18</td>
<td>19 ± 9</td>
</tr>
</tbody>
</table>

Como se ha visto en la curva de derretimiento, se invierten las posiciones los helados elaborados con las formulaciones de pepino y zanahoria. En este caso, son los helados de zanahoria los que obtienen porcentajes de derretimiento mayores que los de pepino, y son los de Aloe, los que más resisten al derretimiento.

Las muestras presentaron un derretimiento a los 30 minutos de 19-35% por debajo de lo esperado. Se esperaba que el porcentaje de derretimiento no superase un 35%, considerando este rango aceptable en helados. (Posada, Sepulveda, & Restrepo, 2012)

4.2. ANÁLISIS FISICOQUÍMICOS

4.2.1. Color

El color es una de las características más importantes en los alimentos ya que el ser humano se guía de su primer instinto y es, el color, la primera característica que se aprecia en un alimento.

En la siguiente tabla se presentan los resultados obtenidos de las determinaciones de color de todas las muestras elaboradas (Tabla 7), en él se aprecian los resultados obtenidos tras el análisis con ANOVA y test LSD.

Tabla 7. Resultados obtenidos determinación color.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>L*(D65)</th>
<th>a*(D65)</th>
<th>b*(D65)</th>
<th>h (tono)</th>
<th>C (croma)</th>
<th>ΔE (Δ color)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psp</td>
<td>64 ± 3a</td>
<td>-9,8 ± 0,5a</td>
<td>11,6 ± 0,2a</td>
<td>130 ± 1d</td>
<td>15,2 ± 0,5b</td>
<td>2,7 ± 0,9a</td>
</tr>
<tr>
<td>Zsp</td>
<td>66,4 ± 0,8ab</td>
<td>-6,2 ± 0,2b</td>
<td>10,5 ± 0,4a</td>
<td>120,8 ± 0,2c</td>
<td>12,2 ± 0,4a</td>
<td>0,7 ± 0,3b</td>
</tr>
<tr>
<td>Asp</td>
<td>67,2 ± 1,3ab</td>
<td>-9,4 ± 0,2a</td>
<td>10,09 ± 0,14a</td>
<td>132,9 ± 0,8e</td>
<td>13,8 ± 0,2ab</td>
<td>1,07 ± 0,47b</td>
</tr>
<tr>
<td>Pcl</td>
<td>69,2 ± 0,6a</td>
<td>-4,5 ± 0,7c</td>
<td>18 ± 3d</td>
<td>103,9 ± 0,5b</td>
<td>19 ± 3c</td>
<td>2,6 ± 0,9a</td>
</tr>
<tr>
<td>Zcl</td>
<td>68,2 ± 0,5b</td>
<td>-1,9 ± 0,2d</td>
<td>14,9 ± 0,5b</td>
<td>97,2 ± 0,7e</td>
<td>15,04 ± 0,4b</td>
<td>1,0 ± 0,5b</td>
</tr>
<tr>
<td>Acl</td>
<td>67 ± 2ab</td>
<td>-4,6 ± 0,2c</td>
<td>19,4 ± 0,4a</td>
<td>103,41 ± 0,13b</td>
<td>19,9 ± 0,4c</td>
<td>1,6 ± 0,8b</td>
</tr>
</tbody>
</table>

La misma letra indica grupos homogéneos establecidos por el test LSD (p<0,05)
Con el fin de observar los resultados con claridad, se presentan a continuación dos diagramas en los cuales se representan, por una parte, Luminosidad frente a Croma (Figura 7) y, por otra, el color en base a la proporción de rojo/verde (a*) y amarillo/azul (b*) (Figura 7). Además de dos gráficos de barras con los que poder comparar visualmente los atributos de color h (tono, Figura 7) y ΔE (diferencia de color, Figura 7).

El análisis estadístico muestra un Valor-P mayor que 0,05 lo que significa que no existe una diferencia estadísticamente significativa entre la media de L*(D65) entre unas muestras y otras al 95% de confianza. Mediante el método de diferencia mínima significativa (LSD) de Fisher se observan dos grupos homogéneos entre los cuales no se encuentran diferencias significativas, entre ellos destacan dos parejas de muestras que presentan diferencias significativas entre ellas pepino Spirulina – zanahoria Chlorella, y pepino Spirulina – pepino Chlorella.

En cuanto al análisis estadístico de la característica C*(croma), dado que el Valor-P es inferior a 0,05 si existen diferencias significativas entre la media de C* y cada una de las muestras analizadas con un nivel de confianza del 95%. Analizando cuales medias son significativamente diferentes a otras, se observan tres grupos homogéneos, el primero formado por las muestras elaboradas por las formulaciones de zanahoria y Aloe Spirulina, el segundo formado por las muestras de Aloe y pepino Spirulina y zanahoria Chlorella, y el tercero formado por las muestras elaboradas con las formulaciones de pepino y Aloe Chlorella.

En el gráfico (Figura 7) se puede observar como las muestras de pepino y Aloe Chlorella tienden hacia colores más apagados, luminosos y saturados mientras que las restantes muestras a colores más grisáceos.

Según los análisis estadísticos realizados a los datos obtenidos de las distintas muestras existen diferencias estadísticamente significativas entre las medias y las muestras analizadas con un nivel de confianza del 95%. En total existen cuatro grupos homogéneos, pepino-Aloe Spirulina, zanahoria Spirulina, pepino-Aloe Chlorella y zanahoria Chlorella, en cuanto a la característica a* (proporción rojo/verde).

Para el atributo b* (proporción amarillo/azul) existen diferencias significativas entre las medias y las muestras determinadas al 95% de confianza. Estas se dividen en tres grupos homogéneos, el primero formado por las muestras elaboradas con Spirulina, el segundo formado por la muestra elaborado con la formulación de zanahoria Chlorella y el tercero formado por las muestras elaboradas con pepino y Aloe Chlorella.

Realizando los análisis por tipo de microalga se observan diferencias entre las muestras de Spirulina, destacando la muestra de pepino frente a las de Aloe y zanahoria. En cambio, en el caso de las muestras de Chlorella, la muestra de pepino presenta similitudes frente a las muestras de Aloe y zanahoria, pero estas no entre ellas.

Figura 7. Luminosidad vs. Croma muestras helados
Figura 8. Color en base a la proporción de rojo/verde (a*) y amarillo/azul (b*).

En el diagrama mostrado en la Figura 8, presenta diferenciados dos grupos, que, si se observa la leyenda de éste, concuerdan con la distinción entre los dos tipos de microalga. Las muestras elaboradas con Chlorella muestran colores que se acercan más a los amarillos y rojos, frente a las muestras elaboradas con Spirulina que muestran colores más cercanos a los azules y verdes.

En cuanto al tono, se observan diferencias estadísticamente significativas distinguiéndose cinco grupos homogéneos puesto que según el análisis estadístico de los datos solamente entre dos muestras, pepino y Aloe Chlorella, no existen diferencias significativas entre ellas. Todas las demás se presentan distintas entre ellas.
Para la ΔE el análisis estadístico estableció dos grupos que presentan diferencias estadísticamente significativa entre ellos. Por un lado, forman un grupo con similitudes las muestras elaboradas con la formulación de pepino, en ambos casos con Spirulina y con Chlorella. El otro grupo es formado por las muestras elaboradas con las formulaciones de zanahoria y Aloe, con Spirulina y Chlorella.

En el análisis individual por tipo de microalga, se puede observar las mismas diferencias en las formulaciones de Spirulina, pero en cambio, en las formulaciones de Chlorella la muestra de Aloe se ve envuelta entre los dos grupos.

4.2.2. pH

Los valores de pH obtenidos para los seis prototipos elaborados se muestran en la siguiente tabla (Tabla 8). En ella también se muestran los resultados del análisis de las medias por ANOVA y test LSD.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>media pH</th>
<th>media Tª (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psp</td>
<td>5,91 ± 0,02</td>
<td>29,27 ± 0,06</td>
</tr>
<tr>
<td>Zsp</td>
<td>5,977 ± 0,012</td>
<td>28,7 ± 0,8</td>
</tr>
<tr>
<td>Asp</td>
<td>5,733 ± 0,006</td>
<td>28,7 ± 0,4</td>
</tr>
<tr>
<td>Pcl</td>
<td>5,903 ± 0,006</td>
<td>28 ± 1</td>
</tr>
<tr>
<td>Zcl</td>
<td>5,960 ± 0,006</td>
<td>28,0 ± 0,3</td>
</tr>
<tr>
<td>Acl</td>
<td>5,737 ± 0,012</td>
<td>28,4 ± 0,2</td>
</tr>
</tbody>
</table>

La misma letra indica grupos homogéneos establecidos por el test LSD (p<0,05)

El análisis de medias ANOVA muestra un Valor-P menor que 0,05 por ello decimos que existe una diferencia significativa entre la media de pH y los valores de las muestras entre sí con un nivel de confianza del 95%. El procedimiento de diferencia mínima significativa (LSD) de Fisher muestra tres grupos homogéneos de muestras que coinciden con los tres sabores ensayados, las formulaciones de pepino, las formulaciones de zanahoria y las formulaciones de Aloe. Así pues, se observan más ácidas las muestras de Aloe y más neutras las de zanahoria.

Madrid (1995) afirma que el pH del helado fluctúa entre 6 y 7. Eras López (2013) en su estudio sobre la determinación de parámetros técnicos para la elaboración de helados con frutas nativas del cantón Loja, arrojaron valores de pH de 6,7 - 6,8, por tanto, los helados elaborados en el presente proyecto obtienen más acidez que los helados convencionales.
4.2.3. Textura

Se presentan, a continuación, en la Tabla 9 los valores de Textura obtenidos para los seis prototipos elaborados y los resultados del análisis de las medias por ANOVA y test LSD. No se encuentra el origen de la referencia.

Tabla 9. Resultados obtenidos determinación textura.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>FUERZA MÁXIMA. Firmeza (N)</th>
<th>FIRMEZA. Area F-T 1:2 (N.seg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psp</td>
<td>125 ± 28<sup>cd</sup></td>
<td>732 ± 214<sup>cd</sup></td>
</tr>
<tr>
<td>Zsp</td>
<td>130 ± 33<sup>d</sup></td>
<td>875 ± 238</td>
</tr>
<tr>
<td>Asp</td>
<td>101 ± 18<sup>c</sup></td>
<td>637 ± 195<sup>c</sup></td>
</tr>
<tr>
<td>Pcl</td>
<td>8 ± 3<sup>a</sup></td>
<td>46 ± 16<sup>a</sup></td>
</tr>
<tr>
<td>Zcl</td>
<td>20 ± 4<sup>a</sup></td>
<td>114 ± 19<sup>ab</sup></td>
</tr>
<tr>
<td>Acl</td>
<td>53 ± 18<sup>b</sup></td>
<td>320 ± 109<sup>b</sup></td>
</tr>
</tbody>
</table>

La misma letra indica grupos homogéneos establecidos por el test LSD (p<0,05)

En cuanto a la Fuerza Máxima (N), las determinaciones estadísticas muestran un Valor-P menor que 0,05 y por tanto una diferencia estadísticamente significativa entre la media de la Firmeza (N) y los resultados de las muestras con un nivel de confianza del 95%. Los resultados se presentan divididos en cuatro grupos homogéneos, pepino-zanahoria Chlorella, Aloe Chlorella, pepino-Aloe Spirulina, pepino-zanahoria Spirulina.

Atendiendo a los valores de Firmeza Área (N.seg), existen diferencias estadísticamente significativas como en el caso anterior. En este caso se obtienen cuatro grupos homogéneos que coinciden con los obtenidos en Firmeza (N) añadiendo la relación significativa entre las muestras de zanahoria y Aloe Chlorella.

4.3. ANÁLISIS SENSORIAL

Para el análisis sensorial se presentan, a continuación, los resultados obtenidos tras las catas realizadas por el panel catador de los seis prototipos elaborados en la Tabla 10 y los resultados del análisis de las medias por ANOVA y test LSD.

Tabla 10. Resultados obtenidos análisis sensorial.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Sabor</th>
<th>Intensidad de sabor</th>
<th>Color</th>
<th>Textura</th>
<th>Sabor salado</th>
<th>Aceptabilidad</th>
<th>Intención de compra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psp</td>
<td>6 ± 2<sup>a</sup></td>
<td>7,1 ± 1,3<sup>b</sup></td>
<td>6 ± 2<sup>ab</sup></td>
<td>6 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>ab</sup></td>
<td>5 ± 2<sup>a</sup></td>
<td>28%</td>
</tr>
<tr>
<td>Zsp</td>
<td>5 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>ab</sup></td>
<td>5 ± 2<sup>a</sup></td>
<td>29%</td>
</tr>
<tr>
<td>Asp</td>
<td>4 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>b</sup></td>
<td>6 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>a</sup></td>
<td>5 ± 2<sup>a</sup></td>
<td>27%</td>
</tr>
<tr>
<td>Pcl</td>
<td>6 ± 3<sup>b</sup></td>
<td>7,0 ± 1,3<sup>b</sup></td>
<td>6 ± 2<sup>ab</sup></td>
<td>6 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>b</sup></td>
<td>5 ± 2<sup>a</sup></td>
<td>32%</td>
</tr>
<tr>
<td>Zcl</td>
<td>4 ± 2<sup>a</sup></td>
<td>7 ± 2<sup>ab</sup></td>
<td>5 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>ab</sup></td>
<td>5 ± 2<sup>a</sup></td>
<td>22%</td>
</tr>
<tr>
<td>Acl</td>
<td>4 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>b</sup></td>
<td>6 ± 2<sup>a</sup></td>
<td>6 ± 2<sup>ab</sup></td>
<td>5 ± 2<sup>a</sup></td>
<td>29%</td>
</tr>
</tbody>
</table>

La misma letra indica grupos homogéneos establecidos por el test LSD (p<0,05)

Sabor:

Se observan dos grandes grupos homogéneos en los que por un lado se encuentran las muestras de pepino tanto de Spirulina como de Chlorella, que obtienen los mejores resultados, una media de 6/9. Por otro lado, se encuentran las muestras de zanahoria y Aloe, tanto de Spirulina como de Chlorella que obtienen valoraciones más bajas, de media 4/9.

Intensidad sabor:

Para este atributo se obtuvieron dos grupos homogéneos en el que la muestra zanahoria Chlorella presenta similitud entre ellos. Las muestras elaboradas con pepino presentan una media de 7/9 superior a las demás que consiguen una media de 6/9.
Color:

Los análisis estadísticos presentan un Valor-P mayor a 0,05 con lo que no existe una diferencia significativa. En este sentido se muestran dos grupos homogéneos en los que coinciden las muestras de zanahoria y pepino, por un lado, y las muestras de pepino y Aloe por el otro.

Textura:

En cuanto a la textura, los análisis estadísticos muestran que no existe una diferencia significativa ya que presentan un Valor-P mayor a 0,05. En este caso se presenta solo un grupo homogéneo con una media de 6/9.

Sabor salado:

Para la determinación de la presencia del sabor salado en el producto se obtiene un Valor-P mayor a 0,05 por lo que no existen diferencias significativas entre la media de los datos y los resultados obtenidos por las muestras. Las únicas muestras que presentaron diferencias significativas fueron las formulaciones elaboradas con Aloe y pepino Chlorella. Las medias de los resultados fueron de 6/9.

Aceptabilidad:

Todas las muestras presentaron los mismos resultados para la aceptabilidad del producto. En este caso presentaron una media de 5/9, no existiendo diferencias significativas entre ellos.

Intención de compra:

Por lo general las muestras presentan una intención de compra baja predominando la formulación de pepino Chlorella que recoge los mejores resultados.

Sabor Identificado:

En este análisis sensorial también se preguntó por las primeras impresiones del helado y la impresión una vez consumido con la finalidad de determinar el sabor identificado. A continuación, se muestran los resultados que obtuvieron las distintas muestras.

Pepino Sp:

![Figura 11. Impresiones Sabor muestra Pepino Sp.](image)

La primera impresión que dio la muestra elaborada con la formulación a base de pepino y Spirulina fue en la mayoría de los casos que estaba elaborada con pepino (30%), menta (24%) o verduras (16%) debido a su color y fragancia. Una vez probadas las muestras, el 46% de los encuestados determinaron el sabor pepino como predominante en el prototipo, frente al 19% que no supo identificarlo. Además, se identificaron sabores a algas y espinacas, presentes en las
muestras, pero también sabor salado, acelgas, alcachofa, caqui, hierba, melón, nata y queso, no presentes en las muestras.

Zanahoria Sp:

Las muestras de zanahoria Spirulina se presentaron como elaboradas con menta (39%), verduras (16%), melón (8%), pepino (8%) o pistachos (5%). Una vez probadas, el 32% no detectó ningún sabor específico, un 11% el sabor del pepino, que no se encontraba presente en las muestras. Además, se identificaron sabores como algas, apio, fruta y manzana, presentes en las muestras, pero también sabores no presentes en las muestras como calabacín, melón, Aloe, altramuz, hierba, hierbabuena, judías verdes, kiwi, menta o queso.

Aloe Sp:

Las muestras de la formulación Aloe Spirulina presentaron como primera impresión, sabores a menta (39%), verduras (17%), pepino (8%) o pistachos (8%), aunque una vez probadas el 42% de los encuestados no identificaron su sabor. El 17% apuntó que estaban formulados con pepino (no presente en las muestras) y el 14% con algas. Además, identificaron sabores como las espinacas, presentes en las muestras, y sabores no presentes en las muestras como caqui, fruta escarchada, lechuga, menta o queso.
Pepino Cl:

Para las muestras de pepino Chlorella se puntualizaron sabores, como primera impresión, a pepino (24%), menta (16%), verduras (11%) o pistacho (8%). En cambio, una vez probadas las muestras, el 41% de los encuestados detectaron el sabor a pepino, uno 22% no identificó los sabores y un 8% detectó el sabor a algas. Además, identificaron el sabor de las espinacas presentes en las formulaciones, pero también otros sabores como hierba, caqui, melón o queso, no presentes.

Zanahoria Cl:

Como primera impresión de las muestras de zanahoria Chlorella, los encuestados sugirieron que estaban formuladas con pistacho (45%), kiwi (11%), verduras (11%) o aguacate (8%). Una vez probadas las muestras, un 21% de los encuestados no identificó un sabor concreto, y en general se multiplicó el número de respuestas diferentes. Así pues, un 11% de los encuestados optó por el sabor de las verduras, otro 11% de algas. Además, detectaron sabores como melón, pepino, queso, aguacate, calabaza, caqui, espinacas, feijoa, kiwi o Té verde, que no se encuentran presentes en las formulaciones. Por lo general, no se detectaron los sabores presentes en la formulación.
Aloe Cl:

Figura 16. Impresiones Sabor muestra Aloe Cl.

Los encuestados observaron que las muestras podrían estar formadas de pistacho (24%), verduras (18%) o menta (12%), mientras que al probar las muestras el 35% de ellos no identificó ningún sabor, un 18% identificó el sabor del pepino no presente en las muestras. Además, identificaron el sabor de manzana y algas presentes en las formulaciones y otros sabores como calabacín, aguacate, caqui, hierba, hummus, kiwi, melón y queso, no presentes en las muestras.
5. CONCLUSIONES

- En cuanto al porcentaje de aire incorporado a la mezcla u *overrun*, se puede decir que se obtuvo unos prototipos con un *overrun* similar a los helados premium y super premium, presentando valores dentro de los límites de la legislación española para helados (límite máximo 50-55%).

- En cuanto al tiempo de caída de la primera gota, por lo general las muestras elaboradas con Chlorella permanecieron más tiempo que las elaboradas con Spirulina sin derretirse. Observando por sabor de las muestras, los helados elaborados con la formulación de Aloe tardaron más a gotear, seguidas de las de zanahoria y pepino, en ese orden.

- En cuanto a los parámetros relacionados con el derretimiento, los helados con las formulaciones de Aloe presentaban un menor índice de derretimiento a tiempo 30 min, seguidas de las muestras de pepino. En cambio, las muestras de zanahoria presentaron un derretimiento superior, aunque en el análisis de tiempo de caída de la primera gota ocupara una posición distinta. Aun así, las muestras no superaron el 35% de derretimiento, límite aceptable en helados.

- Por lo que respecta al color, las muestras de Spirulina presentan colores más cercanos a los azules y verdes, mientras que las elaboradas con Chlorella más verdes-amarillos. Además, la diferencia de color (ΔE) se presentó similar en las muestras de pepino frente a las muestras de zanahoria y Aloe que formaron el siguiente grupo homogéneo.

- En cuanto al pH, este fue inferior al de los helados convencionales debido a que las muestras se formularon en todos los casos ingredientes como cítricos que elevaron la acidez de las mezclas. Por lo general, las muestras de zanahoria quedaron menos ácidas frente a las de Aloe que fueron las que más, debido a que incorporaron más porcentaje de cítricos en sus formulaciones.

- Por lo general, los resultados de textura se presentaron una gran variabilidad, debido a que las muestras de helado elaboradas fueron muy susceptibles a la temperatura.

- En cuanto al análisis sensorial desarrollado, los resultados fueron en general bajos puesto que la obtuvieron una media de 5,7/9. La intención de compra fue inferior a la esperada. Esto puede ser debido a que, por lo general, la expectativa que tuvo el encuestado al probar el helado fue bastante alejada de la realidad y al probar las muestras, no se identificó el sabor correcto de las muestras debido a que, al congelarse, las muestras perdieron parte del sabor.
6. BIBLIOGRAFÍA

6.1. Libros:
- ALGAFOOD. (s.f.) Ficha técnica Chlorella y Spirulina.

6.2. Trabajos:
https://riunet.upv.es/handle/10251/83392

6.3. Páginas internet:

Infoalimentación. (s.f.). Infoalimentación. Recuperado el 15 de 02 de 2019, de http://www.infoalimentacion.com/frutas_hortalizas/propiedades_nutricionales_frutas_hortalizas.htm

Junta de Andalucía, 1. (s.f.). Propiedades saludables de frutas y verduras. Recuperado el 05 de 02 de 2019, de http://www.juntadeandalucia.es/salud/ZHD/comercioles/propiedades.html

Junta de Andalucía. (s.f.). Ventajas del consumo de frutas y verduras. Recuperado el 05 de 02 de 2019, de http://www.juntadeandalucia.es/salud/ZHD/comercioles/ventajas.html

7. ANEXOS:
7.1. ANEXO I. Hoja de cata del análisis sensorial

Hoy vas a probar 6 tipos de helados. Sigue las instrucciones de este cuestionario.

1°. Observa la muestra y por su aspecto visual y olfativo contesta la siguiente pregunta. ¿De qué sabor crees que es este helado?

2°. Ahora pruébalo siguiendo las instrucciones que te han dado. ¿Qué sabor identificas?

3°. Este sabor le resulta:

<table>
<thead>
<tr>
<th>Totalmente desconocido</th>
<th>5</th>
<th>Totalmente conocido</th>
</tr>
</thead>
</table>

4°. Con respecto a la intensidad de sabor valora como:

<table>
<thead>
<tr>
<th>Muy poco intenso</th>
<th>5</th>
<th>Muy intenso</th>
</tr>
</thead>
</table>

5°. El color le resulta

<table>
<thead>
<tr>
<th>Nada apetecible</th>
<th>5</th>
<th>Muy apetecible</th>
</tr>
</thead>
</table>

6°. Con respecto a la textura del helado en boca, éste le resulta:

<table>
<thead>
<tr>
<th>Desagradable</th>
<th>5</th>
<th>Muy Agradable</th>
</tr>
</thead>
</table>

7°. Encuentra el sabor salado presente en el producto:

<table>
<thead>
<tr>
<th>Nada presente</th>
<th>5</th>
<th>Muy presente</th>
</tr>
</thead>
</table>

8°. En vista de todas las características del helado, valora la aceptabilidad global como:

<table>
<thead>
<tr>
<th>Totalmente rechazable</th>
<th>5</th>
<th>Totalmente aceptable</th>
</tr>
</thead>
</table>

9°. ¿Compraría el producto?
Si No
7.2. ANEXO II. Fichas técnicas microalgas utilizadas en el presente proyecto

Chlorella vulgaris de elevada calidad, cultivada en fotobioreactores tubulares cerrados, libre de conservantes, aditivos o colorantes.

<table>
<thead>
<tr>
<th>Aminoácidos (por 1000 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metionina</td>
</tr>
<tr>
<td>Prolina</td>
</tr>
<tr>
<td>Lisina</td>
</tr>
<tr>
<td>Tirosina</td>
</tr>
<tr>
<td>Fenilalanina</td>
</tr>
<tr>
<td>Serina</td>
</tr>
<tr>
<td>Histidina</td>
</tr>
<tr>
<td>Glicina</td>
</tr>
<tr>
<td>5 - 9 g</td>
</tr>
<tr>
<td>15 - 30 g</td>
</tr>
<tr>
<td>25 - 35 g</td>
</tr>
<tr>
<td>13 - 18 g</td>
</tr>
<tr>
<td>22 - 25 g</td>
</tr>
<tr>
<td>14 - 20 g</td>
</tr>
<tr>
<td>8 - 9 g</td>
</tr>
<tr>
<td>25 - 40 g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ácidos Grasos (por 100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ácido mirístico</td>
</tr>
<tr>
<td>Ácido palmitico</td>
</tr>
<tr>
<td>Ácido esteárico</td>
</tr>
<tr>
<td>Ácido oleico</td>
</tr>
<tr>
<td>Ácido linoleico</td>
</tr>
<tr>
<td>Ácido linolénico</td>
</tr>
<tr>
<td>30 - 80 mg</td>
</tr>
<tr>
<td>1300 - 1900 mg</td>
</tr>
<tr>
<td>90 - 170 mg</td>
</tr>
<tr>
<td>350 - 650 mg</td>
</tr>
<tr>
<td>1100 - 2300 mg</td>
</tr>
<tr>
<td>1550 - 3200 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor Nutricional (por 100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteína</td>
</tr>
<tr>
<td>Ácidos grasos</td>
</tr>
<tr>
<td>Carbohidratos</td>
</tr>
<tr>
<td>Minerales</td>
</tr>
<tr>
<td>Fibra</td>
</tr>
<tr>
<td>45 - 55 g</td>
</tr>
<tr>
<td>8 - 13 g</td>
</tr>
<tr>
<td>30 - 35 g</td>
</tr>
<tr>
<td>6 - 9 g</td>
</tr>
<tr>
<td>15 - 26 g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vitaminas (por 100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Caroteno</td>
</tr>
<tr>
<td>Vitamina B1</td>
</tr>
<tr>
<td>Vitamina B2</td>
</tr>
<tr>
<td>Vitamina B6</td>
</tr>
<tr>
<td>Vitamina B12</td>
</tr>
<tr>
<td>Vitamina C</td>
</tr>
<tr>
<td>Vitamina E</td>
</tr>
<tr>
<td>Ácido Nicotínico</td>
</tr>
<tr>
<td>Ácido Fólico</td>
</tr>
<tr>
<td>Ácido Pantoténico</td>
</tr>
<tr>
<td>100 – 200 mg</td>
</tr>
<tr>
<td>100 – 300 μg</td>
</tr>
<tr>
<td>3 – 10 mg</td>
</tr>
<tr>
<td>100 – 300 μg</td>
</tr>
<tr>
<td>3 – 10 μg</td>
</tr>
<tr>
<td>10 – 80 mg</td>
</tr>
<tr>
<td>2 – 10 mg</td>
</tr>
<tr>
<td>4 – 30 mg</td>
</tr>
<tr>
<td>50 – 100 μg</td>
</tr>
<tr>
<td>0,5 – 1,5 mg</td>
</tr>
</tbody>
</table>

Spirulina platensis de elevada calidad, cultivada bajo condiciones controladas, libre de conservantes, aditivos o colorantes.

<table>
<thead>
<tr>
<th>Pigmentos Naturales (por 100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesio</td>
</tr>
<tr>
<td>Calcio</td>
</tr>
<tr>
<td>Hierro</td>
</tr>
<tr>
<td>Zinc</td>
</tr>
<tr>
<td>Selenio</td>
</tr>
<tr>
<td>Germanio</td>
</tr>
<tr>
<td>200 – 600 mg</td>
</tr>
<tr>
<td>25 - 200 mg</td>
</tr>
<tr>
<td>15 - 200 mg</td>
</tr>
<tr>
<td>3 – 10 mg</td>
</tr>
<tr>
<td>5 – 20 μg</td>
</tr>
<tr>
<td>2 – 4 μg</td>
</tr>
</tbody>
</table>

| Clorofila |
| Carotenoides |
| 800 – 1.200 mg |
| 350 - 600 mg |