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ABSTRACT 20 

Improved trap efficacy is crucial for implementing control methods for red palm weevil 21 

(Rhynchophorus ferrugineus Olivier) based on trapping systems, such as mass trapping, attract 22 

and infect or attract and sterilize techniques. Although new trap designs have been proposed and 23 

aggregation pheromone dispensers have been optimized, aspects such as the use of co-24 

attractants (molasses) and trap placement are still not well defined and standardized. The 25 

efficacy of three concentrations of molasses and different formulations to reduce water 26 

evaporation in traps was studied in different field trials to improve trapping systems and to 27 

prolong trap servicing periods. In addition, the performance of installing groups of traps or 28 

single traps was also evaluated with the aim of improving the attracted/captured weevils ratio. 29 

Our results showed that captures increased when molasses were added at 15% to the water 30 

contained in the trap and that a thin layer of oil, created by adding 2-3% of paraffinic oil to 31 

water, was able to effectively reduce evaporation and prolong trap servicing periods. Moreover, 32 

3.5-fold more weevils were captured when placing five traps instead of one at the same trapping 33 

point. Results obtained allow improved efficacy and may have an impact in the economic 34 

viability of trapping systems and, therefore, in integrated pest management programs.  35 

 36 
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1. Introduction 40 

Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae), is 41 

an important pest of coconut (Cocos nucifera L.) and date palms (Phoenix dactylifera L.) in 42 

south and southeast Asia from where it is native (Dembilio and Jacas, 2011). It was first 43 

detected in the United Arab Emirates in 1985 (Faleiro et al., 2010), and spread rapidly to all the 44 

countries of the Gulf region and Egypt. It was reported for the first time in Europe in 1994 in 45 

Spain (Barranco et al., 1996) although it is currently present in all European Mediterranean 46 

countries, North Africa, the Caribbean, continental USA and southern China (Giblin-Davis et 47 

al., 2013). In date palm growing areas, such as Saudi Arabia or Israel, this pest has a severe 48 

economic impact; annual loss owing to the eradication of severely infested palms in Saudi 49 

Arabia has been estimated to range from US$1.74 to 8.69 million at 1–5% infestation, 50 

respectively (El-Sabea et al., 2009). 51 

RPW females lay their eggs at the base of the fronds in separate holes made with their rostrum. 52 

Neonate larvae bore into the palm meristem and, on completion of development, move back to 53 

the base of the fronds to pupate. A new generation emerges, and these adults may remain within 54 

the same host or leave to another one. If the palm still contains fresh tissues many of the newly 55 

emerged remain and reproduce until the palm eventually dies. Subsequently, adults will move 56 

and look for a new palm host (Dembilio et al., 2010a). 57 

The control methods available for RPW include drench application of neonicotinoid 58 

insecticide to the crown of the palm (Llácer et al., 2012), entomopathogenic fungi (Dembilio et 59 

al., 2010b) or nematodes (Llácer et al., 2009), injections into the trunk of systemic insecticides 60 

(Dembilio et al., 2015) or mass trapping (Giblin-Davis et al., 2013; Faleiro et al., 2006; Soroker 61 

et al., 2005). With the currently available traps and lures, mass trapping is not able to protect 62 

palms against RPW by itself, but has been considered an essential tool for integrated pest 63 

management (IPM) programs. These programs have been implemented to suppress this pest in 64 

several date palm plantations of Saudi Arabia and other Middle East countries (Faleiro et al., 65 

2011; Oehlschlager, 2010; Abraham et al., 2000; Vidyasagar et al., 2000). The traditional traps 66 
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employed for mass trapping are bucket traps with lateral and upper holes baited with RPW 67 

aggregation pheromone, a 9:1 mixture of ferrugineol ((4S, 5S)-4-methyl-5-nonanol) and 68 

ferrugineone (4S-methyl-5-nonanone) (Hallett et al., 1993), and a co-attractant based on dates 69 

and/or sugar cane molasses and/or ethyl acetate (Soroker et al., 2005). However, it has been 70 

recently reported that pyramidal traps can achieve higher captures compared to bucket traps and 71 

that addition of ethyl acetate, with no other kairomone cue, does not significantly improve 72 

catches compared to traps baited only with ferrugineol (Vacas et al., 2013, 2014). However, trap 73 

catches increase when ethyl acetate is added to the traps that contain ferrugineol+molasses or 74 

plant tissues (palm stems or fruits). This indicates the importance of other kairomone 75 

compounds in addition to ethyl acetate (Vacas et al., 2014, 2017; Abdel-Azim et al., 2017). 76 

Improvements to both trap design and attractant are crucial for trapping systems to succeed, 77 

but trap position also determines the system’s efficacy in terms of protecting palm specimens. In 78 

general, currently used traps do not effectively capture all the attracted insects and the 79 

captured/attracted ratio does not usually exceed 50% (Rubio et al., 2011). Those weevils 80 

attracted but not caught could potentially infest palms neighboring pheromone-baited traps 81 

(Faleiro, 2006). Although trap placement protocols based on distancing traps and palms could 82 

reduce this issue, it is not always possible, for example inside plantations. Thus, improving the 83 

captured/attracted ratio is crucial to avoid the side effects of these trapping systems. 84 

Mass trapping is being used in more than 4,000 ha as part of IPM programs in Saudi Arabi 85 

Al-Hassa Oasis (Al-Shawaf et al., 2012), which involves the placement of 8,000 bucket traps 86 

baited with 1-l water, 200-g of dates and ferrugineol. Presence of water in traps increases 87 

captures of R. ferrugineus (Vacas et al., 2013) and is, therefore, important to maintain water in 88 

traps, to avoid them from completely evaporating. In the Mediterranean region of Spain (Elche, 89 

Valencia), more than 3,200 ha have been treated with mass trapping at three different densities, 90 

one trap per ha, one trap each 2-ha and one trap each 4-ha, depending on the density of palms 91 

and weevil population pressure. Pyramidal Picusan® traps (Vacas et al., 2013) were employed 92 

in this region and were baited with a ferrugineol dispenser, 2-l water with 5% molasses and 93 
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pieces of Phoenix canariensis palm tissues (TRAGSA, personal communication). During the 94 

warmer season, these traps should be serviced monthly by replacing molasses/palm tissues and 95 

refilling water to avoid traps from drying. In warmer places, trap servicing is even more 96 

frequent; for example, traps are serviced weekly and water is replaced as needed in Saudi 97 

Arabia (Hoddle et al., 2013; Al-Shawaf et al., 2012) or every 1-2 weeks in Israel (Soroker et al., 98 

2005). Fermenting material, such as molasses, is renewed every 2 months in Israel or every 6 99 

weeks in Saudi Arabia (Faleiro et al., 2010; Soroker et al., 2005). In both cases, increasing the 100 

efficacy of traps and baits and prolonging the lifespan of the attractant are key points to ensure 101 

this method’s economic viability.  102 

The trials reported herein aimed to improve the different parameters involved in the efficacy 103 

of RPW trapping systems. One of them is the use of co-attractants. For this purpose, the 104 

trapping efficacy of three concentrations of molasses was studied, as was the effect of palm 105 

tissues added to traps when molasses were employed. Trap servicing is crucial for implementing 106 

mass trapping. Thus, different formulations to reduce water evaporation have also been 107 

proposed and tested to prolong servicing periods without reducing attractant power. The 108 

influence of sun exposure on the efficacy of trapping has also been evaluated. In addition, as 109 

recent studies have demonstrated that increasing the number of pheromone dispensers in the 110 

same trap does not increase the number of captures (Vacas et al., 2017), we studied the trapping 111 

efficacy of installing groups of traps or single traps to evaluate whether these groups were able 112 

to improve the attracted/captured weevils ratio.  113 

 114 

2. Materials and methods 115 

2.1 Traps and pheromone dispensers 116 

Black pyramidal trap Picusan® (Sansan Prodesing SL, Náquera, Valencia, Spain), as described 117 

in Vacas et al. (2013), was employed in all the field trials, the base of which can contain up to 3-118 

l water. The standard commercial aggregation pheromone dispenser employed in all cases was 119 

Pherosan RF, also supplied by Sansan Prodesing SL (Náquera, Valencia, Spain). This is a 120 
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plastic vial (18 mm diam. x 35 mm h.) loaded with 1 g of ferrugineol (98% purity, sum of 121 

enantiomers), with an approximate lifespan of 100 days. Release rate of the Pherosan RF 122 

dispensers was previously studied and ranged 4.2-12.6 mg of pheromone per day (Vacas et al. 123 

2017). 124 

 125 

2.2 Trial 1 - Molasses concentration 126 

The performance of three different concentrations of sugar beet molasses was tested in field. For 127 

this purpose, Picusan® traps were baited with Pherosan RF dispensers and filled with 2-l water 128 

solutions that contained 0%, 5% and 15% sugar beet molasses with 70-75% dry residue (~27% 129 

disaccharide, ~15.5% polysaccharide, 34.5% monosaccharide) (Dadmel 55 supplied by Dadelos 130 

SL, Valencia, Spain). A fourth thesis was tested which comprised a 5% molasses water solution, 131 

plus 8 g of regular baking powder (potassium bitartrate+ soda bicarbonate) to reinforce the 132 

release of CO2. Thus, four blocks of four traps were arranged following a randomized complete 133 

block design in the municipality of Elche (Alicante, Spain; coordinates: 38.246270º, -134 

0.693530º), in a 200-ha area with mixed palm (30%), pomegranate (25%) and olive (10%) 135 

orchards, as well as other herbaceous crops. Gardens and backyards represented less than 5% of 136 

the area, although most of them include isolated ornamental palm trees. Palm species cultivated 137 

in the area are P. dactylifera (70%), Washingtonia robusta H. Wendl. (15%), P. canariensis 138 

(10%) and others (5%). Palm tree orchards are usually treated once (in spring) or twice (spring 139 

and autumn) per year with chlorpirifos (48%) and/or imidacloprid (20%). Blocks were always 140 

installed in palm tree orchards. Traps within each block were separated by 30 m. This distance 141 

was considered enough to avoid direct competition between traps meanwhile avoiding great 142 

population differences due to the natural clumped distribution of RPW. The distance between 143 

blocks was at least 200 m. They were installed on 19 April 2013 and weevil catches were 144 

recorded every 14 days for 6 months until 23 September (12 records). Males and females were 145 

distinguished. Traps were emptied and refilled with a new solution and rotated clockwise within 146 
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each block after counting the number of captured weevils. In this way each tested solution was 147 

placed in the same position 3 times during the trial.  148 

 149 

2.3 Trial 2 – Water evaporation 150 

Prior to testing field trapping performance, different formulations were studied to check their 151 

potential to reduce trap water evaporation under summer conditions between 30 June and 27 152 

August 2013 (average temperature in July and August of 25ºC and 25.5ºC, respectively). The 153 

formulations tested in this preliminary trial included water solutions with: (a) 50% propylene 154 

glycol (PG); (b) 1% paraffinic oil (83%, Araoil® supplied by Agrofit, Valencia, Spain); (c) 3% 155 

paraffinic oil; (d) 6% paraffinic oil; (e) 20% glycerin. Traps were filled with 2-l of each 156 

formulation and weighed at the beginning and then periodically for 2 months to evaluate weight 157 

loss. Weight differences between periods indicate the amount of water loss. The study was 158 

performed in triplicate and traps were placed in the Universitat Politècnica de València campus 159 

(Valencia, Spain) to be exposed to environmental conditions.  160 

The best formulations obtained by the preliminary study were tested in the field for trapping 161 

performance purposes in the municipality of Elche (Alicante, Spain) described in section 2.2. 162 

Thirty one blocks of four traps were deployed in field to test four formulations: (1) water+2% 163 

paraffinic oil, (2) water+2% paraffinic oil +15% molasses, (3) water+2% paraffinic oil +15% 164 

molasses + 3 pieces of palm stem tissues (PST) (15x15x15 cm), (4) water+3% PG+15% 165 

molasses+3 pieces of PST (15x15x15 cm). Preliminary test indicated that when an oil layer 166 

totally covers the surface of the water container, evaporation was dramatically reduced. Thus, 167 

2% of paraffinic oil was enough to reduce water evaporation in this trap design. The formulation 168 

that contained 3% PG was included in the trial as it is a common practice in Spain to reduce trap 169 

water evaporation. The traps in each block were separated by at least 30 m and the distance 170 

between blocks was at least 200 m. Traps were deployed on 29 July 2014 and visited after 8 171 

weeks to count the number of captured males and females and to review trap status, by checking 172 

if some liquid remained inside the trap. Each trap’s sun exposure was also recorded and traps 173 
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were classified accordingly as: high insolation (when exposed to midday sun, traps totally 174 

unprotected), medium insolation (traps under a tree, protected from midday sun but exposed to 175 

the sun during morning or evening) and low insolation (when trap remained in the shade, 176 

protected from the sun all day long under several trees or a roof).  177 

 178 

2.4 Trial 3- Sun exposure 179 

As sun exposure influences temperature inside the trap, and consequently water evaporation and 180 

performance, we studied this effect during two different periods: a warmer period from July to 181 

mid-September (daily average temperature between 20.5 and 31.1 ºC) and a period with mild 182 

temperatures from the last week of September to the last week of November (daily average 183 

temperature between 10.9 and 25.4 ºC). For this trial, 124 Picusan® traps were installed during 184 

each period in a 124-ha area in Elche (Alicante, Spain), by placing traps in a grid separated by 185 

100 m. Each trap was classified according to the sun exposure grades defined above: 88 traps 186 

remained in the shade for most of the day (low), 44 traps were directly insolated at midday 187 

(high) and 116 traps were exposed to sun only during morning or evening (medium). Traps 188 

were baited with a Pherosan RF dispenser and were filled with water, 15% sugar beet molasses 189 

Dadmel 55 (Dadelos SL, Valencia, Spain) and 2% paraffinic oil. Traps were checked only once, 190 

2 months after being installed. All the captured RPW were counted distinguishing by sex. In 191 

order to study trap’s internal temperature, one Microlite USB data logger (resolution 0.1 ºC, 192 

accuracy 0.3 ºC; Fourtec, USA) was placed inside a highly-insolated trap and another one inside 193 

a shaded trap. Location of these traps was distanced only 100 meters to avoid microclimate 194 

differences. 195 

 196 

2.5 Trial 4 - Number of traps per trapping point 197 

In order to improve the captured/attracted RPW ratio, we compared the captures obtained when 198 

1, 3 or 5 traps were placed at the same point. The trial was placed in the same area in Elche 199 

(Alicante, Spain) and the three different blocks of traps were separated 2 km In each block we 200 
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deployed a single trap (1 trap per point), one set of three traps separated 1 m in a triangle 201 

arrangement (3 traps per point) and one set of five traps in a 1-m square arrangement with a trap 202 

in the center (5 traps per point), each set separated 100 m. Traps were serviced fortnightly 203 

during one year , from March 2014 to February 2015 (24 records). Catches were counted by 204 

distinguishing between males and females and sets of traps were rotated clockwise (each set of 205 

traps was in the same position 8 times). All the traps contained a Pherosan RF dispenser and 206 

were baited with 2-l 15% molasses water solution.  207 

An additional trial was carried out during 32 weeks in 2016 in the same trial field to compare 208 

captures in sets of 1, 3 or 5 traps baited with 1 pheromone dispenser regard a set of 1 trap baited 209 

with four dispensers. This trial was conducted in order to study the effect of higher pheromone 210 

emission in trap catches.  211 

 212 

2.6 Statistical analysis 213 

For all the trials, the number of total weevils captured in each trap recorded during each 214 

trapping period was divided by the number of days between the dates to calculate the value of 215 

weevils per trap and day (WTD). Although more females were caught than males in all trials 216 

(68% versus 32%), no remarkable difference was found in responses by either sex. 217 

Consequently, results of the statistical analysis performed with the total number of captured 218 

weevils are presented herein.  219 

Data according to the factors considered in each trial were analyzed by means of analysis of 220 

variance (ANOVA) to compare the mean number of WTD captured in each trap. Data were 221 

log(x+1)-transformed to homogenize variance prior to applying the ANOVA, except in trial 4 222 

when data were sqrt(x)-transformed. When significant effects were found, a least significant 223 

difference (LSD) test at P < 0.05 was employed for multiple range comparisons. The 224 

Statgraphics Centurion XVI package was used to perform all the statistical analysis (Statpoint 225 

Technologies Inc., Warrenton, VA, USA). 226 

 227 
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3. Results 228 

3.1 Trial 1- Molasses concentration 229 

The concentration of molasses employed in the traps had a significant effect on RPW captures 230 

(Fig. 1) (F3,143 = 29.25; P < 0.001). The factor sampling date was also considered and was 231 

significant due to natural RPW population dynamics (F11,143 = 6.27; P < 0.001), whereas the 232 

interaction [concentration of molasses × sampling date] was not significant (F33,143 = 1.41; P = 233 

0.09). Total weevil captures were significantly higher when molasses were employed at 15% 234 

(2.94 ± 0.51 RPW per trap and day) compared to the 5% concentration (1.74 ± 0.24 RPW per 235 

trap and day) or water without molasses (0.69 ± 0.15 RPW per trap and day). Adding baking 236 

powder to a 5% molasses water solution increased average captures compared to using only 5% 237 

molasses, but not significantly (Fig. 1).  238 

 239 

3.2 Trial 2 - Water evaporation 240 

The preliminary study showed that all the traps that did not contain paraffinic oil were dry 23 241 

days after exposure to environmental conditions (Fig. 2A). Although 50% PG and 20% glycerin 242 

lowered the evaporation rate (Fig. 2B), the quantity of water that remained in the trap after 1 243 

month was below 15% of the initial quantity of water in both formulations. Only 2% water-loss 244 

occurred after 2 months when 3% or 6% paraffinic oil was added to the water in the traps. 245 

However, 1% oil was not enough to reduce water evaporation and 75% of water was lost after 2 246 

months of field exposure (Fig. 2A).  247 

The results of the field trapping trial testing formulations to reduce water evaporation in 248 

traps with different sun exposures (Table 1) revealed that the formulation had a significant 249 

effect (F4,140 = 10.18; P < 0.001) and that the sun exposure was only marginally significant 250 

(F2,140 = 2.62; P = 0.056), but their interaction was not significant (F 8,140 = 0.58; P = 0.79). 251 

Therefore, high insolated traps captured significantly fewer weevils than the traps placed in the 252 

shade, regardless of the formulation type contained in the trap, 0.48 versus 0.68 RPW per trap 253 
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and day, respectively (in the multiple range test with LSD intervals at the 95% confidence 254 

level).  255 

Regarding liquid composition, the traps baited with the mixture #2 [water+2% oil +15% 256 

molasses] obtained significantly more catches than the rest of mixtures, and all the formulations 257 

that contained co-attractant (#2-5) were significantly more attractive than those without 258 

molasses in the LSD test (Table 1). Specifically, the traps with a dispenser of synthetic 259 

kairomone (#5) captured significantly more weevils than those with no co-attractant (#1), but do 260 

not reach the level of catches obtained with 15% molasses (#2; Table 1). 261 

After 53 days of field exposure, water had almost completely dried in the traps without oil 262 

(#3), while the formulations that contained paraffinic oil were able to retain water. The effect of 263 

oil became even more evident when only the sun-exposed traps were considered (Table 1). The 264 

trap that contained PG instead of oil captured almost half of the weevils obtained in the traps 265 

with 2% oil, both with PST (#3 and 4), when exposed to high insolation (F1,17 = 5.07; P = 266 

0.038). However, no significant differences were obtained between these baits when traps were 267 

placed in the shade (F1,10 = 0.43; P = 0.526) or under medium insolation (F1,29 = 0.34; P = 268 

0.214). It must be highlighted that the addition of PST to the traps with the formulation [water + 269 

2% oil + 15% molasses] promoted water evaporation (77% vs. 34% water loss, with and without 270 

PST, #4 and #2 respectively) and, consequently, yielding significantly reduced global RPW 271 

catches (0.65 vs. 0.83 weevils per trap per day, with and without PST, #4 and #2 respectively). 272 

Given that traps were visited for weevil counting 8 weeks after their deployment, the higher 273 

water evaporation in traps with PST probably produced a premature loss of trapping efficacy, 274 

whereas traps without PST maintained efficacy even after this period. 275 

 276 

3.3 Trial 3 - Sun exposure 277 

Sun exposure grades had a significant effect on weevil captures (Table 2). The traps totally 278 

exposed to the sun (high insolation) captured significantly fewer weevils than those under low 279 

insolation when summer and autumn captures (global) were analyzed together (F2,241 = 5.32; P 280 
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= 0.005). The factor season was also considered in the ANOVA and had a significant effect 281 

(F1,241 = 42.60; P < 0.001) and we decided to analyze data separately for each season. The 282 

interaction [sun exposure × season] was also considered but was not significant (F2,241 = 0.32; P 283 

= 0.72). 284 

When analyzing data separately, the effect of sun exposure on captures was similar during 285 

the two study periods (Table 2). In summer, although marginally significant (factor sun 286 

exposure: F2,112 = 2.01; P = 0.14), the traps at low insolation captured significantly more 287 

weevils than those at high insolation, with non-significant differences noted when traps were 288 

submitted to intermediate sun exposure (Table 2). The factor block was significant (F3,112 = 289 

4.52; P = 0.005), probably due to natural RPW population dynamics and clumped distributions, 290 

whereas the interaction [sun exposure × block] was not significant (F6,112 = 0.80; P = 0.57). In 291 

autumn, significant differences were once again observed with lowest captures in the most 292 

exposed traps compared to shaded and intermediate insolation (factor sun exposure :F2,111 = 293 

3.72; P = 0.027; factor block: F3,111 = 1.25; P = 0.30; interaction: F6,111 = 0.66; P = 0.68). On the 294 

whole, the traps located in the shade throughout the trial (from July to end of November) 295 

captured 50% more weevils than those placed in the most exposed positions. The high 296 

temperatures inside sunny traps might explain this effect, so the temperature inside the trap was 297 

measured (Table 3). The most evident effect of insolation was observed on the maximum 298 

temperature in summer in sunny traps, which peaked at 60.8 ºC for 1 h, 17 ºC more than traps in 299 

the shade.  300 

 301 

3.4 Trial 4 - Number of traps 302 

The total weevils captured per set of traps and day increased with the number of traps located in 303 

a same trapping point (trap set factor: F2,188 = 43.44; P < 0.001; date factor: F23,188 = 7.28; P < 304 

0.001; block factor: F2,188 = 48.69; P < 0.001) (Table 4). This suggested that not all the weevils 305 

attracted to a location were effectively captured in a single trap. When took into account the 306 

number of traps per point, the ratio captures per day and per trap was significantly different 307 
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from placing sets of one or set of three or five traps (trap set factor: F2,188 = 21.14; P < 0.001; 308 

date factor: F23,188 = 10.21; P <0.001). The interaction [trap set × date] was significant (F46,92= 309 

1.67; P = 0.019), which indicates that the trapping efficacy of the different trap sets was affected 310 

by the natural population dynamics. Interaction plot showed that captures in sets of 1, 3 or 5 311 

traps were not significantly different when weevil population was very low (January-February) 312 

(F2,28= 1.21; P = 0.167), however significant differences were found in the rest of the trial 313 

period and this could explain the interaction significance. 314 

Moreover, captures did not significantly increased in traps baited with four dispensers (0.65 ± 315 

0.17) regard traps baited with only one dispenser (0.54 ± 0.12) in ANOVA test (F3,60= 1.69; P = 316 

0.179), , which clearly indicates that the higher captures in the set of three or five traps was not 317 

due to the larger number of attractants at the same point. 318 

 319 

4. Discussion 320 

Improved trap efficacy is crucial for implementing mass trapping, attract and infect or attract 321 

and sterilize techniques. Although aggregation pheromone dispensers have been optimized and 322 

the optimum release rate has been recently reported (Vacas et al., 2017), the use of co-323 

attractants is essential for increasing captures (Giblin-Davis et al., 1996a). Considerable efforts 324 

have been made to find synthetic kairomones (Vacas et al., 2014; Guarino et al., 2011) and 325 

Vacas et al. (2017) suggested that a standardized mixture of ethanol and ethyl acetate can 326 

replace the use of 5% molasses added to water as co-attractant, which was the common practice 327 

in Spain, following experiences carried out in Saudi Arabia (Tragsa SA, personal 328 

communication). The results reported herein suggest that adding 5% molasses to water, in 329 

Picusan® traps baited with ferrugineol, increased the number of weevils captured regard traps 330 

without molasses by 2.5-fold. However, captures increased even more when molasses were 331 

added at 15%, obtaining 69% more captures than by using the 5% concentration. Later on, traps 332 

baited with pheromone + water + 2% oil + 15% molasses captured significantly more weevils 333 

than those including the synthetic kairomone (K) instead of molasses (0.83 vs. 0.57 weevils per 334 
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trap per day). Thus, the synthetic kairomone previously reported (Vacas et al. 2016) still needs 335 

improvement. The effect of molasses concentration can be associated with the volatiles 336 

produced during sugar fermentation, which takes place inside traps. Short-chain alcohols and 337 

esters have been described as kairomones for RPW (Vacas et al., 2014; Guarino et al., 2011; 338 

Zada et al., 2002). Some of these compounds are produced during sugar fermentation and it is 339 

intuitively obvious that their release increase with the quantity of sugars provided. However, it 340 

must be taken into account that sugar concentrations over 15-20% can reduce yeast growth 341 

(Gray, 1945). Therefore, we cannot expect a higher production of fermentation products with 342 

concentrations of molasses over this level. Our results demonstrated that adding molasses to the 343 

water in pheromone-baited traps significantly increased captures and this increment was even 344 

higher if ethyl acetate was also provided. Thus, while improving synthetic kairomones, the use 345 

of molasses still appears as an effective co-attractant for R. ferrugineus, which can be 346 

standardized based on composition parameters, such as dry residue or saccharide content.  347 

Another product released during fermentation is CO2, which is known to play a role in the 348 

foraging and oviposition behavior of hematophagous and phytophagous insects (Guerenstein 349 

and Hildebrand, 2008). In our trial, we tested the effect on trap captures of adding sodium 350 

bicarbonate (baking powder) to increase the release of this gas. Although the emission rate was 351 

not controlled, given that pKa of sodium bicarbonate is 8.2 and, in this case, the pH of water 352 

was 7.9, we expected a slow decomposition in CO2 and a sodium salt. However, results were 353 

not conclusive, captures increased regarding using 5% molasses alone but not significantly. 354 

Probably. CO2 emission rate and its effect was shorter than expected. Thus, further studies are 355 

needed to evaluate more precisely the effect of promoting CO2 emission on RPW trap captures.  356 

The most serious drawback for trapping systems is that frequent trap servicing is necessary 357 

to maintain attractant power. Indeed, it is the highest cost of mass trapping in the region of 358 

Valencia (Spain), and even represents over 50% of the total cost of the technique, including 359 

traps and attractants. For this reason, it is extremely important to reduce servicing costs and to 360 

prolong the lifespan of attractants. It has been demonstrated that using water is essential for 361 
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increasing trap efficacy (Vacas et al., 2013) and, therefore, controlling water evaporation is 362 

necessary to reduce trap servicing. For this purpose, we proposed several formulations that 363 

included addition of paraffinic oil, propylene glycol or glycerin, but only a thin layer of oil, 364 

created by adding 2-3% of oil to water, was able to effectively reduce water evaporation. The 365 

main problem of reducing evaporation is to reduce the level of weevil attraction or its efficacy 366 

in retaining them. When using molasses, the addition of substances to reduce water evaporation 367 

might be also affecting their fermentation process. Furthermore, water loss means increasing 368 

concentration of the substance employed to reduce evaporation, which might also affect trap 369 

attractiveness. This phenomenon has not been precisely evaluated in the present work but, in the 370 

case of adding 2% oil to [water + 15% molasses], those traps yielded the highest trapping 371 

efficacy, suggesting that fermentation process is not significantly affected during the studied 372 

period (8 weeks), although this would need to be checked in comparison with traps baited with 373 

[water + 15% molasses] without oil. In the reported conditions, evaporation rate was reduced 374 

with this formulation to values that allow trap servicing every 3 months under Mediterranean 375 

climate. Therefore, these results indicated that only slight evaporation is needed to attract and 376 

capture weevils, and that the water consumed can be reduced, which implies good savings in 377 

trap servicing costs. 378 

Also related to water evaporation and trap servicing, a study on the best location of traps was 379 

included in the present work. It was found that, generally, traps exposed to sun radiation at 380 

midday caught significantly fewer weevils than shaded traps. RPW preferably flies when 381 

temperatures are moderate and relative humidity is at its highest (Faleiro, 2006). This preference 382 

for mild temperatures could explain why weevils were caught in the traps with lower inner 383 

mean temperatures. It has been described that temperature inside traps covered with aluminum 384 

foil is at least 6 ºC lower than in insolated traps (Nakamura et al., 1999). By directly measuring 385 

the temperatures inside traps, we observed differences ranging from 4 to 6 ºC in daily average 386 

temperatures, but these differences can increase up to 17 ºC in the maximum insolation hours 387 

between sunny and shaded traps, with a temperature peak of over 60 ºC inside traps. This high 388 
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summer temperature might explain the fewer captures in the sunny traps. In autumn, when 389 

temperatures in the shaded traps were only 5 ºC below those in the sunny ones, the same 390 

reduction in captures was observed. Consequently, whenever possible, avoiding installing traps 391 

in the most sun-exposed positions is recommended for better trap efficacy and to prolong 392 

servicing periods. 393 

It is well known that most trap designs are not able to capture all the insects attracted to their 394 

vicinity because some of them are able to escape and others just finally do not go into the trap. 395 

This phenomenon has been widely demonstrated for fruit flies. In studies reported by Aluja et 396 

al. (1989), only 31% of the Anastrepha individuals that landed on the exterior of the trap were 397 

finally caught, whereas Perea-Castellanos et al. (2015) reported that 2–30% of Mexican fruit 398 

flies (A. ludens (Loew)) that entered the trap managed to escape. Likewise, escape ratios 399 

ranging 2-43% were also observed for coleopterans, such as sweetpotato weevil, Cylas 400 

formicarius (Fabricius), when comparing different trap designs (Jansson et al. 1992) or different 401 

trap efficacies regarding their area for landing and crawling to capture West Indian sugarcane 402 

weevil, Metamasius hemipterus sericeus (Olivier) (Giblin-Davis et al. 1996b). The same effects 403 

were observed for Picusan® traps by Rubio et al. (2011), reporting weevil trapped/attracted 404 

ratios even below 50% in this kind of traps. In this regarding, placing a single trap near a palm 405 

tree to prevent isolated plants to be attacked by RPW is not generally recommended because 406 

those weevils attracted, but not effectively captured in the trap, will probably infest the palm 407 

tree. Increased infestations in palms near weevil traps has been observed and reviewed by 408 

several authors (Faleiro 2006; Hunsberger et al. 2000; Abdel-Azim et al. 2017). The presence of 409 

isolated palm trees, as ornamental plants, is very common in Spain and, thus, using traps to 410 

protect these palms is highly controversial. However, this strategy could be applied if we could 411 

effectively catch all the RPW attracted to traps. For this reason, we tested if one trap with four 412 

pheromone dispensers or more than one trap at the same trapping point was able to attract and 413 

capture more RPW than single traps. The results showed that the traps baited with multiple 414 

ferrugineol dispensers did not capture more weevils than those with only one dispenser. 415 
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However, 3.5-fold more weevils were captured when placing five traps instead of one at the 416 

same trapping point. Therefore, our results suggested that isolated single traps caught 30% of 417 

attracted insects at the most and by installing several traps in a same trapping point we are 418 

increasing the probability of capturing the attracted insects. In commercial date palm 419 

plantations, for example, this effect could be milder given that many traps can be evenly 420 

distributed over a large area. In ornamental isolated palms, however, we could consider 421 

installing several traps per point to improve the captured weevils ratio and to help reduce palm 422 

infestations. In line with this, it is important to calculate the cost of installing and serving traps 423 

together or separately. A density of 2 traps per ha increase total RPW captures by 3 to 4-fold 424 

compared to a density of 0.5 traps per ha (Vydyasagar et al., 2016), when traps are distributed 425 

homogenously in the plot. However, our experiment indicated that almost the same increase of 426 

captures was obtained when several traps were placed together. Although the cost of the traps 427 

and lures is the same whether they are installed homogenously distributed or clumped, the 428 

maintenance cost is totally different. Servicing four or five traps together could lead to major 429 

savings in labor costs and transportation. In this regarding, the daily cost for a person and 430 

transportation is 203.53 €/day. We have observed that a single person can service 38 traps per 431 

day if they are deployed in a 100-m grid. However, when deployed in a 173-m grid (3 traps per 432 

point), a single person has served 74.12 traps per day. In a grid of 223 m (5 traps per point), a 433 

single person has served 87.5 traps per day. Therefore, the cost of servicing can be reduced 49% 434 

when traps are placed in groups of 3 traps, and 57% when placed in groups of five traps. On the 435 

other hand, considering that the number of captured weevils per trap is higher when using single 436 

traps, we have calculated the cost of capturing one weevil with the 3 deployment strategies. 437 

When considering this calculation, placing 3 or 5 traps per point means a saving of 9% and 12% 438 

respectively.  439 

In the case of using paraffinic oil to prolong servicing periods (mainly for water supply), we 440 

have demonstrated that traps can be served every 3 months and not 1.5 months in the warmer 441 

season, which means a reduction from 4 to 2 visits for servicing in summer, and doing the same 442 
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number of servicings during winter. Then, total servicings per year can be reduced from 6 to 4, a 443 

33% saving, from 42.85 to 28.57 € per trap and year. Meanwhile, the cost of paraffinic oil is 444 

limited to 1.71 € per liter (only 0.07 € per trap) and the cost of molasses is 0.53 cts per liter. 445 

Therefore, the cost of increasing from 5% to 15% molasses concentration only differ from 2.6 to 446 

7.9 cts/trap. 447 

As a concluding remark, the efficacy of mass trapping or monitoring techniques improve by 448 

using the suitable composition of attractants and avoiding traps from high sun exposure, and 449 

using more than one trap at the same point when protecting single palms. Savings in servicing 450 

costs obtained by reducing evaporation may result in the economic viability of mass trapping 451 

when the main cost for implementation is manual labor. 452 
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Figure captions 577 

Fig. 1. Mean (± SE) weevils captured per trap and day in traps baited with aggregation 578 

pheromone and different concentrations of sugar beet molasses. Bars labeled with different 579 

letters are significantly different (multiple range test, LSD intervals at P < 0.05). 580 

 581 

Fig. 2. (A) Evolution of water content (g) in traps exposed to environmental conditions using 582 

different formulations to reduce evaporation: 50% propylen glycol (PG), 20% glycerin, 1%, 3% 583 

and 6% paraffinic oil as additives. (B) Water evaporation profile in traps exposed to 584 

environmental conditions using different formulations to reduce evaporation: 50% propylen 585 

glycol (PG), 20% glycerin, 1%, 3% and 6% paraffinic oil as additives. 586 

 587 
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Table 1 Total RPW captures (±SE) recorded in traps baited with different formulations to 589 
reduce water evaporation in field trapping conditions 590 

# Liquid compositionb N 
Weevils/trap/day (mean±SE)a water 

lossc global high medium low 

1 water + 2% oil 31 0.20 ± 0.03 a 0.14 ± 0.06 a 0.21 ± 0.03 a 0.36 ± 0.16 a 31% 

2 water + 2% oil + 15% 
molasses 31 0.83 ± 0.08 c 0.82 ± 0.07 c 0.78 ± 0.08 b 0.95 ± 0.15 b 34% 

3 water + 3% PG + 
15% molasses + PST 31 0.49 ± 0.06 b 0.30 ± 0.08 a 0.50 ± 0.06 ab 0.75 ± 0.14 ab 96% 

4 water + 2% oil + 15 
% molasses + PST 31 0.65 ± 0.09 b 0.57 ± 0.08 b 0.71 ± 0.09 b 0.60 ± 0.16 ab 77% 

5 water + 2% oil + K 31 0.57 ± 0.06 b 0.55 ± 0.07 b 0.56 ± 0.06 b 0.69 ± 0.18 ab 36% 
 591 
a Mean (±SE) number of weevils captured per trap and day in all the traps (global) and in traps 592 
with high, medium and low insolation separately. For each sun exposure level and global data, 593 
means with different letter were significantly different in ANOVA-LSD test at P < 0.05.  594 

b oil: paraffinic oil; molasses: Dadmel 55 sugar beet molasses; PG: Propylene glycol; PST: Palm 595 
stem tissue (Phoenix canariensis); K: dispenser with 40 ml of the synthetic co-attractant 596 
composed by 1:3 ethyl acetate/ethanol.19 597 

c mean percentage of water loss at the end of the trial (8 weeks) 598 

 599 

 600 

Table 2 Mean (±SE) weevils captured per trap and day depending on sun exposure of the trap 601 

 Seasonb 
sun exposurea summer autumn global 

high 0.48 ± 0.05 a 0.27 ± 0.04a 0.42 ± 0.04a 
medium 0.56 ± 0.04 ab 0.39 ± 0.03b 0.52 ± 0.03ab 

low 0.68 ± 0.07 b 0.46 ± 0.05b 0.61 ± 0.05b 
a Sun exposure levels 602 
b Results considering data from summer season (July – mid-September), autumn season (end-603 
September – end-November) or global data. For each season and global data, values labeled 604 
with different letters are significantly different in ANOVA-LSD test at P < 0.05. 605 
 606 

  607 



25 
 

 

Table 3 Temperatures recorded inside traps with different sun exposure levels during summer 608 

and autumn 609 

  temperature (ºC) 
season position min max average 

summer sunny 17.7 60.8 33.0 
shaded 18.4 43.6 29.9 

autumn sunny 1.0 45.8 21.0 
shaded 1.8 40.7 20.1 

 610 

 611 

 612 

 613 

Table 4 Mean RPW captures (±SE) recorded when different numbers of traps are employed at 614 

the same trapping point 615 

# traps 
per point 

Weevils/point/day Weevils/trap/day 

1 0.96 ± 0.09 a 0.96 ± 0.09 a 
3 1.70 ± 0.18 b 0.57 ± 0.06 b 
5 2.49 ± 0.27 c 0.50 ± 0.05 b 

Means with different letter in the same column were significantly different in ANOVA-LSD test 616 
at P < 0.05. Untransformed data are presented  617 

 618 


