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Abstract Demand response is a basic tool used to develop

modern power systems and electricity markets. Residential

and commercial segments account for 40%–50% of the

overall electricity demand. These segments need to over-

come major obstacles before they can be included in a

demand response portfolio. The objective of this paper is to

tackle some of the technical barriers and explain how the

potential of enabling technology (smart meters) can be

harnessed, to evaluate the potential of customers for

demand response (end-uses and their behaviors) and,

moreover, to validate customers’ effective response to

market prices or system events by means of non-intrusive

methods. A tool based on the Hilbert transform is improved

herein to identify and characterize the most suitable loads

for the aforesaid purpose, whereby important characteris-

tics such as cycling frequency, power level and pulse width

are identified. The proposed methodology allows the fil-

tering of aggregated load according to the amplitudes of

elemental loads, independently of the frequency of their

behaviors that could be altered by internal or external

inputs such as weather or demand response. In this way, the

assessment and verification of customer response can be

improved by solving the problem of load aggregation with

the help of integral transforms.

Keywords Demand response, Hilbert transform, Load

monitoring, Instantaneous frequency, Aggregation, Smart

meters

1 Introduction

Electricity markets around the world focus on demand

response (DR), energy efficiency and the integration of

renewable sources. There are several reasons for this:

technology, economics and environment. Regarding the

foreseeable success of European Union (EU) policies in

2020, some independent reports [1, 2] show that DR alone

could reach 25%–50% of the EU’s 2020 targets on energy

saving and CO2 emission reductions. This could also pre-

empt the need for up to 200 medium size power plants in

the EU. A recent survey data [3] indicates that smart meter

penetration rates continue to increase in the developed

countries or unions (USA, Canada, Australia or the EU). In

the USA, the penetration in residential sectors (37.8%) was

slightly greater than in commercial or industrial segments

(about 36.1% and 35.2% in 2013). For example, Edison

Foundation’s Institute for Electric Innovation gauges that

more than half of all USA households will have advanced

meters (estimation for 2015). According to European
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Commission (EC) estimates, its energy policy represents

the installation of about 195 million smart meters for

electricity by 2020 (ca. 72% of EU-28 consumers) and an

accumulated investment of €35 billion [4].

The problem is that the potential of smart metering may

not benefit consumers if they are not well informed about

the advantages and possibilities of these technologies.

Moreover, customers need to be interested in developing

the potential benefits that are possible thanks to the

deployment of these ‘‘enabling’’ tools in the current dec-

ade. Moreover, customers can be engaged in DR in

response to an economic signal (e.g. energy price or

incentives) or in response to the need for sustainability, but

to do so they need information about their possibilities and

potential (i.e. they need information about their load, costs

and their potential for response).

On the other hand, electricity companies and commer-

cializers in the EU have limited experience in selling

complex services to their smaller customers (e.g. DR

products) [5–7]. Moreover, household segments account

for 30% of the overall energy demand in 2010 in the EU,

with an increasing trend of 1.6% between 2008 and 2009

[8]. Therefore, more knowledge and experience need to be

acquired and new information made available through the

deployment of smart meters and ‘‘enabling’’ technologies

in the EU and USA [9]. Unfortunately, it is difficult to

evaluate the individual load behavior; especially in the case

of loads such as space heating, air conditioning and water

heating, which sometimes are the first candidates to be

used in DR, and especially for new products in new mar-

kets such as capacity and ancillary services, where inter-

esting benefits could arise for the demand-side.

This work explains and proposes a method to achieve the

disaggregation of a customer’s overall demand from the

information supplied by a meter, to ascertain the main

characteristics and behaviors of the elemental loads. One

difference of the proposed method is that the integral trans-

form (Hilbert) and the average frequency, filter the individ-

ual square/pulse components, according to their decreasing

amplitudes (i.e., it is not based on frequency octaves usually

applied in wavelets or Fourier transforms). The proposed

methodology could be very useful to boost smart meter

potential for demand aggregators and small customers [2].

There are several reasons why the aggregator needs to

determine the load composition and response: to choose the

most suitable DR policy for a customer load profile

depending on the season or the time of the day (critical peak

pricing or price-DR tariffs); to evaluate and verify (a system

operator concern in DR markets) the customer response to an

event; to determine billing and expenses that are shared-out

between the customer and its aggregator; and finally, cus-

tomer education and information on energy use, DR products

and possibilities.

This paper is structured as follows: Sect. 2 briefly presents

the need for the load disaggregation analysis; Sect. 3 deals

with the technology and environment being used for data

monitoring and validation purposes; Sect. 4 presents the

Hilbert transform (HT) as a tool to analyze non-stationary

signals, introduces the filtering process and discusses the

information that can be extracted from load measurements

and end-uses filtering (besides, some limitations of the pro-

posed method are discussed); Sect. 5 shows how concepts

explained in Sect. 4 are applied to real demand profiles and

customers. Finally, Sect. 6 presents the conclusion.

2 Load disaggregation

Energy planning of DR programs first involves the deter-

mination of the percentage of energy by end-uses for each

customer, time of use and the demand levels for each of these

uses. Second, their response capacity and the time in which the

load effectively changes from the ‘‘on’’ to ‘‘off’’ state are

required to build a model for the customer (i.e. which policies

are the most effective) and also to verify the DR when the

system operator sends regulation signals (for example in

ancillary services). Utilities and aggregators usually have

aggregated power measurements from customers. The easiest

way to identify final end-uses is to insert an intermediate

monitoring device between the plug and the appliance. This

method is known as ‘‘intrusive monitoring’’. It is still an

expensive method and it should be studied in detail (cost vs.

effectiveness) for large scale deployment [10]. For small

customer segments, it is very complex and costly to deploy

such a system (for example, it costs about $50–60 for plug

energy meters, $80–200 for the gateway and at least $100 for a

basic control and measurement software license). The idea of

the methodology proposed in this work, is to explore and

recover the investments already done in information and

communication technologies (ICTs) that have been deployed

on the demand side, i.e. smart meters. Other solutions, pro-

posed by some evaluation protocols for energy efficiency,

suggest (for instance, due to the seasonality of energy usage)

that some loggers may be placed on energy-efficiency appli-

ances in a random customer sample [11].

The evolution of technology and public authority sup-

port of smart metering infrastructure have added value to

the measurement in a single centralized point without

having to access to individual sockets. This is usually

called ‘‘non-intrusive load monitoring (NILM)’’, resulting

in lower implementation costs and less invasive and

bothersome solutions for the end-users. In the last decades,

new assessment tools have been proposed and tuned to

obtain load features [12] or the so-called ‘‘load signatures

(LS)’’ [10, 13] from power and waveform measurements at

the customer level.
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NILM methods can be classified in terms of data sam-

pling and the level of the method supervision. From the

point of view of data sampling, these methods are classified

into micro and macro-level signatures [13]. Any mea-

surement with a pacer triggering faster than 1 sample per

cycle (20 ms at 50 Hz) is considered to be at a micro level,

whereby an attempt is made to identify the characteristics

of the load waveform (for instance, its harmonics). A

measurement that is slower than 1 sample per cycle is

considered to be at a macro level. This last level is the one

studied by Hart in [14]. With regard to the level of

supervision of the method, they can be classified into

supervised and unsupervised methods [15]. Taking into

account that customers face educational barriers (the

understanding of energy and markets), the number of loads

needed to participate in markets (the minimum size of

energy bids), and the reasonable performance of most of

unsupervised methods, this work proposes a methodology

which requires limited supervision.

One objective of this paper is to find LS for the end-uses

with potential for DR purposes in small customer seg-

ments, according to the literature [12]. A DR waveform

with own and forced duty cycles embedded at the customer

metering point is shown in Fig. 1. It is not trivial to identify

this load working at the same time as other loads.

The first approaches at solving the problem were based

on the edge detection of power draw levels (real and

reactive) and subsequent clustering [14]. However, they

were not able to detect appliances consuming similar

power or variable-load appliances. Unlike the previous

methods, there have been techniques that relied only on

real power measurements (easier and cheaper technology).

A technique to disaggregate large loads is shown in [15];

the 15 min sampling requiring limits is due to former pacer

triggering capacity of monitoring devices (phased out by

ICT). In [16, 17] end-uses, very close to the ones treated in

this paper, were analyzed; however, appliance-specific

decision rules and excessive training need to be developed.

There are also other methods that do not require training

[18, 19], instead they create a frequency analysis of power

changes, and use an optimization algorithm to match the

‘‘on/off’’ events of a large set of appliances. As a draw-

back, the algorithm nature of the optimization may or may

not provide the best solution. A widely-used method for

extracting appliances demand is the hidden Markov model

(HMM) [20, 21]. HMM defines a number of states in which

the model can be moved, representing the operating ‘‘on’’

and ‘‘off’’ states of the load (see Fig. 1), and perhaps

possible intermediate states. It requires a previous statisti-

cal study of the individual loads in the household, which is

not suitable for the analysis of individual loads that change

their behavior due to DR policies. About micro level

analysis, there are examples of Fourier analysis [22] or

noise [23] in literature. They require a faster sampling and

do not provide some of the macro level features we require

for our analysis, such as pulse width or cycling frequency.

A more exhaustive review of the NILM analysis can be

checked in [12, 24]. Some example of data set for NILM

research can be found in [25]. Finally, a better performance

can be achieved by introducing a feature extraction stage:

i.e., the application of a transform operator (Fourier,

wavelet, S Transform, Hilbert) [24].

Thus, our objective is not only to disaggregate each end-

use, but also to analyze the loads under DR policies by

establishing the key variables such as: power level, cycling

frequency and change of ‘‘on’’ states which can fluctuate

due to DR orders.

A well-known mathematical tool, the HT has been used

in this study. In power systems, a refinement of HT, Hil-

bert-Huang Transform (HHT), has helped to solve other

problems [25, 26]. In [27], HT is used to extract the indi-

vidual demand for water heater and electric heater from

aggregated demand for energy efficiency and DR uses

through the use of the analytic signal s(t). Some problems

of this approach are that errors from 10% to 15% in power

are reported, and moreover, the fact that only the two loads

with highest amplitudes are extracted.

However, HHT methods use the so called empirical

mode decomposition (EMD) and masked empirical mode

decomposition (M-EMD), which are not effective with

pulse-square signals. Besides, EMD does not provide other

important information, such as the pulse width. This paper

will demonstrate how HT (without conventional HHT

tools) can be used for NILM purposes.

3 Datasets and monitoring system prototype

Every problem to be solved through NILM methods

requires the availability of data for algorithm parameteri-

zation and validation. In most cases, the datasets areFig. 1 Aggregated load for a residential customer
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recorded in the USA (for example, the REDD and BLUED

database [28]), with some examples for Canada and EU

countries, for example UK-DALE and Tracebase [20].

These database are of interest for NILM but in some cases,

some problems arise: the duration of tests (days or months)

and the availability of data while load is under DR policies.

The problem is that the appliance patterns or power levels

can change due to weather variations during the year or

season (solar radiation or temperature), internal loads (in-

habitants patterns, other appliances in service) or due to the

response to DR policies. In other database, the number of

houses (a single customer) or the appliance and aggregated

measurement resolution (1–15 min) which makes it diffi-

cult to achieve an ‘‘ideal’’ dataset. For these reasons, a

specific dataset has been developed for this project and will

be licensed in the near future for research purposes.

3.1 Monitoring system prototype

The future of smart metering will be bright, but from a

practical point of view it is quite possible that the customer

still does not have a smart meter, or does not have access to

detailed meter data, or if they exist, there may be an issue

of data confidentiality between the commercializer of

energy and the aggregator. In this way, the access to

demand data is a cornerstone in DR systems.

Taking these problems into account, the proposed

monitoring system has the following abilities: enables an

optical output reading. The sensor readings have been

carried out by a microcontroller board based on Arduino

Uno. This board can read other data of interest such as

temperature or humidity. The exchange of data from the

Arduino to the PC (customer or aggregator) was performed

using XBee modules (Digi International). In the event that

a customer has his own meter, the procedure is similar but

in these cases the system directly records the electric pulse

output of the meter (in our case, 500 impulse/(kWh)). If the

customer meter is not accessible for measuring the optical

output, or an electronic meter is not fitted in his home, the

easiest and cheapest option (around €150 for a three-phase

unit) is to install a meter with current clamps and signal

transmission capability. In our case, the power meter has an

emitter, which sends information to a PC through an USB

gateway (Z-stick) using Z-wave protocols (with a cost

about €50). Three households have been monitored for one

year using the three methods.

Another problem is the need for synchronized measures

from aggregated demand and individual appliances to

validate the proposed NILM methodology. For this pur-

pose, four customers have been monitored with an elec-

tronic meter and five Z-wave wall plug meter switches

(manufactured by Fibaro [29]) which send data to a PC

using a USB gateway.

The hardware is managed with the help of software

developed on the IP-Symcon platform [30] and allows

sampling from seconds to one minute. In our case, samples

of 5 s, 10 s and 1 min pacer trigger have been used.

3.2 Customers’ characteristics

Four typical residential customers in Spain have been

selected for test purposes (from 3.3 to 10 kW of rated

power, single and three phases, with an average energy

demand from 400 to 800 kWh/month).

Main end-uses are presented in Table 1 for customer

number 4 (customer with individual appliance monitoring)

and some representative end-uses for the other customers.

It is necessary to state that some end-uses exhibit a few

discrete states (on-off states) in demand while others have

multiple states or continuous (for instance HPAC) with a

wider range of values (see Table 1). Typical household

end-uses in the European Union EU-28 member states and

Table 1 Main end-uses and their rated power

End-uses Description Power ([min, max])(kW) Statea

HPAC Heat pump/Air conditioning (inverter) unit 3300 kcal/hour [0, 1] c

WH-1 Water heater, 100 liter capacity [0, 1.2] o

WH-2 Water heater, 100 liter capacity [0, 2] o

EH Convection electric heater [0, 1, 2] m

RF-1 Refrigerator/Freezer, energy label B [0, 0.1, 0.2] m

RF-2 Refrigerator/Freezer, energy label A? [0, 0.1] o

EA Electronic appliances: TV, DVD, PC, etc [0, 0.5] c

L Lighting: Incandescent and fluorescent [0, 0.3] m

OV Electric oven [0, 2.2] o

CM Coffee machine [0, 0.6] m

WM Washing machine [0.1, 0.45] m

a m Multi State, c Continuous/Variable range of On states, o On Off states
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the USA [31] are considered when selecting test customers,

in order to demonstrate that the validation scenario and the

residential customer are standard.

Figure 2 covers some typical end-uses. Accordingly, it

is clear that WH, EH, RF and WM have a cycling demand.

The frequency, amplitudes and ‘‘on/off’’ times are quite

different, but it is really difficult to extract end-uses, except

for certain time periods (late at night, early morning, etc).

One feature common to all is that their demand evolves

according to square/pulse waves.

4 Demodulation and filtering of pulse waveforms

4.1 HT principle

HT is a mathematical transform of interest in signal

processing which is valuable due to its ability to analyze

non-linear and non-stationary signals. For instance, it has

been used to study power and oscillatory transients

[25, 26]. For any real time series g(t), its transform H(g(t))

is defined as:

HðgðtÞÞ ¼ 1

p
PV

Z1

�1

gðuÞ
t � u

du ð1Þ

where PV is the Cauchy principal value of the integral.

After the HT is defined, its analytic signal based on real

time series with its transform can be defined:

sðtÞ ¼ gðtÞ þ jHðgðtÞÞ ¼ AðtÞejhðtÞ ð2Þ

where A(t) and h(t) are the instantaneous amplitude and

phase. The instantaneous frequency f(t) can be defined as:

f ðtÞ ¼ wðtÞ
2p

¼ 1

2p
dhðtÞ

dt
ð3Þ

A complete definition can be found in [32]. However, as

stated in [33], in order to obtain a meaningful frequency

f(t) by HT, g(t) must be ‘‘mono-component’’. This means it

can only have one frequency value at any given time,

otherwise the resulting instantaneous frequency would

have no significance. As noted by Huang [33], a mono-

component signal must be locally symmetric with respect

to the local zero mean to achieve a meaningful f(t). This

fact highlights the need to extract several components that

achieve this. The EMD algorithm extracts these mono-

component functions called intrinsic mode functions

(IMF). However, the EMD generally does not always

provide mono-component signals [26]. To solve this

problem, M-EMD has been proposed to force the

component extraction [34]. The main problem of the

masking process is that it is of heuristic nature and, in this

way its practical application is very limited.

The extraction of mono-component (frequency) func-

tions with EMD is not really relevant for our application.

The problem is that conventional EMD cannot decompose

pulse-square signals (with a physical sense) due to the

nature of its algorithm: based on envelopes of extreme

points. Thus, the decomposition spoils the square shape of

the signal, corrupting the result as it always tries to extract

sine-shape components. In a certain way, HHT tries to

work in a similar way to that used by Fourier: mathemat-

ically expressing a signal as an addition of pseudo-sinu-

soidal components. This is a problem for pulse-square

waves, because it merges signal components of diverse

end-uses and makes disaggregation harder. Therefore, to

extract the information contained in an aggregated signal, a

different and direct approach had to be developed. The

proposed method is based on the approach presented in

[27] but performs a modified and improved decomposition

and filtering method. The advantages and characteristics of

the proposed method are as follows.

1) It is based on the properties of HT and not only in the

values of s(t): this allows a better performance of

Fig. 2 Some examples of end-uses demand
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signal extraction and filtering (the behavior of HT is

better than the one of s(t) for pulse signals).

2) The amplitude of each signal is evaluated through

reconstruction and filtering through inverse transform.

This allows to bound the errors in amplitude (from

10%–15% in [27] to 5% in the proposed method).

3) The filtering of HT permits the extraction of several

components (not only the components with the highest

amplitudes) including filtering of loads with a contin-

uous demand, especially when they are engaged in DR

response.

For applying HT, the signal must comply with the IMF

conditions. Although this is often true, reference [27]

demonstrates that the signal does not have to be an IMF.

4.2 Single square signal

First, a square signal g(t) is considered (note that this

upholds the IMF conditions [33]):

gðtÞ ¼
A; 0� t\aþ kT1

� A; aþ kT1\t�ðk þ 1ÞT1

(
k ¼ 0; 1; . . .; n

ð4Þ

where T1 is the period; kT1 and a ? kT1 are the trailing and

leading edges of the pulse; A is the pulse amplitude.

Mathematically, g(t) can be developed as the sum of a

set of n characteristic functions X[a, b](t) (a pulse with

trailing and leading-edges a & b):

X½a;b�ðtÞ ¼
1; a� t� b

0; t 62 ½a; b�

�
ð5Þ

With pulse amplitude A:

gðtÞ ¼
Xn
k¼0

ðAX½kT1; kT1þa�ðtÞ � AX½aþkT1; T1þkT1�ðtÞÞ ð6Þ

The transform of X[a, b](t) (see [32]) can be substituted in

(6), and then applying linearity properties of HT:

HðgðtÞÞ ¼ 1

p
A
Xn
k¼0

ln
t � kT1

t � ðaþ kT 1Þ

����
����� ln

t � ðaþ kT1Þ
t � ðT1 þ kT1Þ

����
����

� �

ð7Þ

The corresponding analytical signal s(t) in [0, T1] is:

sðtÞ ¼

Aþ j
1

p
A
Xn
k¼0

ln
t� kT1

t�ðaþ kT1Þ

����
����� ln

t�ðaþ kT1Þ
t�ðT1 þ kT1Þ

����
����

� �
; 0\t\a

�Aþ j
1

p
A
Xn
k¼0

ln
t� kT1

t�ðaþ kT1Þ

����
����� ln

t�ðaþ kT1Þ
t�ðT1 þ kT1Þ

����
����

� �
; a\t\T1

8>>>><
>>>>:

ð8Þ

for k = 1, and its instantaneous phase h(t) is given by:

hðtÞ¼

arc tan
Pn
k¼0

ln
t�kT1

t�ðaþ kT1Þ

����
����� ln

t�ðaþ kT1Þ
t�ðT1 þ kT1Þ

����
����

� �� �
; 0\t\a

arc tan
Pn
k¼0

� ln
t� kT1

t�ðaþkT1Þ

����
����þ ln

t�ðaþkT1Þ
t�ðT1 þkT1Þ

����
����

� �� �
; a\t\T1

8>>><
>>>:

ð9Þ

The use of the analytic signal changes HT values when

g(t)\ 0. This property is important to determine the duty

cycle of the signal. Figure 3 shows the tangent of h(t) for a

pulse waveform.

From Figure 3, it can be seen that changes in the pulse

waveform show discontinuities in its HT. The duty cycle

can be obtained through positive to negative transitions of

phase (corresponding to trailing and leading edges of g(t)).

4.3 Instantaneous frequency f(t)

The instantaneous frequency f(t) is defined in related

literature as the first derivative of h(t) (see equation (3)).

The f(t) has physical sense if and only if g(t) is mono-

component and sinusoidal. If g(t) is multi-component or a

pulse signal f(t) does not give the frequency of the wave-

form (see Fig. 4).

Nevertheless, it is possible to show that the average of

instantaneous frequency (fme) provides information about

any waveform [27], in this case, for g(t):

fme ¼
1

T1

ZT1

0

f ðtÞdt ¼ 1

2pT1

ZT1

0

dhðtÞ ¼ 1

T1

ð10Þ

Therefore, fme(t) equals the frequency of g(t) in certain

periods of time. To obtain its fme, the restrictions of the

signal s(t) can be reduced: its maximum values are above

zero and its minimum values are below zero.

Fig. 3 Square waveform and its transform
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4.4 Analysis of multi-component signals

In real cases, the power waveform at the meter point (or

aggregated measurement) is not a single square-pulse sig-

nal; it is more complex (see Fig. 2) and involves continu-

ous, multi-state and ‘‘on/off’’ loads (see Table 1). If the

customer owns electrical heating, water heating, heat pump

(air conditioning), and fridge loads, which are working in

the same period, it is foreseeable that two or more square-

pulse waveforms could be present in the aggregated load

curve.

The average value of f(t), i.e. fme, is seen to provide the

cycling frequency of a square signal. How this still applies

to multi-component signals is to be demonstrated.

Although the proposed method is still appropriate for more

than two components, it is sensitive to the amplitude value

of the pulse components; so, it extracts the frequency value

of the highest power level. Let us consider a signal g(t)

with two components: a base (load) level B (DC level), and

N-square signals gm(t) defined by decreasing amplitudes

and with frequencies 1/Tm.

gðtÞ ¼ g0ðtÞ þ
XN
m¼1

gmðtÞ ð11Þ

g0ðtÞ ¼ B

gmðtÞ ¼
Am; am � t\bm

�Am; bm\t� am þ Tm

0; t ¼ bm

8><
>:

8>>>><
>>>>:

ð12Þ

where Am is the amplitude; Tm is the period; am and bm are

the trailing and leading edges of the pulse.

Mathematically, g(t) can be developed as the sum of a

set of k-characteristic functions X½am;bm�ðtÞ for each square/

pulse wave just like in (6):

gðtÞ ¼ g0ðtÞ þ
XN
m¼1

gmðtÞ ¼ B

þ
XN
m¼1

Xn
k¼0

Ak X½akþkTk ; kTkþbk �ðtÞ � X½bkþkTk ; TkþkTk �ðtÞ
� 	 !

ð13Þ

The procedure presented at the beginning of the Sect.

4.3 will not be repeated. First, the HT of g(t) should be

assessed, then the analytic signal s(t) should be composed,

and finally, its phase should be extracted. Afterwards, the

tangent of the phase h(t) for the multi-component signal

(i.e. H(g(t)) over g(t) is obtained). The HT of the baseload

(DC) signal is zero. This is shown in Fig. 5.

Note that the values of the HT of g(t) have changed in

each side of the points (a1, b1 and T1) of singularity of

H(g1(t)) (for instance, they remain positive in a1-e and

change to negative in a1?e, e ? 0) when s(t) is defined

(the waveform with the highest amplitude). Specifically,

Hðg1ðtÞÞ ¼
�1; t ! a1 þ kT1

þ1; t ! b1 þ kT1

�
ð14Þ

tanðhðtÞÞ ¼

�p
2

; t ! b1 þ kT1 þ e

þp
2

; t ! b1 þ kT1 � e

þp
2

; t ! a1 þ kT1 þ e

�p
2

; t ! a1 þ kT1 � e

8>>>>>>>>><
>>>>>>>>>:

ð15Þ

Whereas the values of singularities of H(gm(t)) (am, bm
and Tm) remain the same on both sides (positive or

negative), i.e.,

Fig. 4 Instantaneous frequency of a sinusoidal (mono-component)

wave and the frequency of a bi-component wave

Fig. 5 Signal with two pulse components and a base (load)

component
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HðgmðtÞÞ ¼
�1;
þ1;

�
t ! am þ kTm � e
t ! bm þ kTm � e

k ¼ 0; 1; 2; . . .

ð16Þ

tanðhðtÞÞ ¼
�p
2

; t ! am þ kTm � e
þp
2

; t ! bm þ kTm � e

8<
: ð17Þ

Note that this result can be applied with several pulse

components, if and only if
Pn

m¼2 Am\A1, the evaluation of

fme is easy because a lot of terms disappear (i.e. the

discontinuities of gm(t)). For simplicity, to improve the

physical meaning and the understanding of (13), the

number of square signals in (12) and (13) is reduced to

N = 2 (g1(t) and g2(t), see Fig. 5):

fme ¼
1

2pT1

lim
e!0

Za2�e

0þe

dh
dt

dtþ
Za1�e

a2þe

dh
dt

dtþ
Zb2�e

a1þe

dh
dt

dt

0
@

þ
Za2þT2�e

b2þe

dh
dt

dt

ZT1�e

a2þT2þe

dh
dt

dt

1
CA ¼ 1

2pT1

lim
e!0

�hð0 þ eÞ½ �½

þ hða1 � eÞ½ � þ �hða1 þ eÞ½ � þ ½hðT1 � eÞ��

¼ 1

2pT1

2p ¼ 1

T1

ð18Þ

This means that the average value of f(t) (i.e. fme) still

provides important information about the signal and the

frequency of the component of the highest amplitude while

masking other components with lower amplitude, i.e.

gm(t) (m = 1). Figure 6 shows H(g(t)) and tan(h(t))

extracted from a non-symmetrical square wave with a

continuous component of 5 and two pulse signals:

g1(t) (15.9 Hz), and g2(t) (39.8 Hz) of amplitudes 30 and

20. Only times with singularities of H(g1(t)) give a change

from positive to negative values in tan(h(t)), but H(g1(t))

shows a higher value in these singularities than in times

where g2(t) changes (and H(g2(t)) exhibits a singularities).

4.5 Filtering of pulse components

The disaggregation and identification of elemental load

components are based on results presented in paragraphs

4.2 to 4.4. In [28], the instantaneous frequency f(t) and its

singularities (Fig. 6) were applied to obtain main charac-

teristics of the appliance with the highest amplitude. In the

present case, the information within HT will be considered

to filter not only one, but several pulse components, in the

aggregated demand curve. To clarify this procedure, an

example with a synthetic waveform g(t) with four com-

ponents has been used (sampling rate 40 kHz). The com-

plex waveform is shown in Table 2.

The software, specifically developed for filtering, con-

siders first the calculation of HT from g(t). This transform

is shown in Fig. 7. Theoretically, the local maxima of

H(g(t)) are due to H(g1(t)) (the highest amplitude compo-

nent). The program computes these maxima, splitting the

time-period into subintervals defined considering f(t) be-

havior and the autocorrelation function (ACF) of H(g(t)),

see Fig. 8. With the help of h(t) (Fig. 6), the condition of

maximum amplitude is verified.

With the maximum and minimum values in each

subinterval, the time values a and b in equation (7) have

been calculated to obtain the characteristic function

X[a, b](t) (amplitude is equal to 1). The linear properties of

Table 2 Characteristics of waveform g(t)

Component Duty cycle (%) Amplitude Pulsation (rad/s)

g1(t) 50 100 250

g2(t) 20 70 400

g3(t) 30 20 700

g4(t) Sinusoidal 70 40

Fig. 7 Pulse waveform and maxima and minima of its transform

Fig. 6 Pulse waveform components
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the transform can help the user to get the amplitude of each

function gm(t) in (12):

A ¼ HðgðaÞÞ � HðgðbÞÞ
HðX½a; b�ðaÞÞ � HðX½a; b�ðbÞÞ

ð19Þ

According to (18), the inverse transform of H(g1(t))

component gives the filtered component (g1
F(t)) with

average frequency fme, irrespective of the values of the

other components. Afterwards, this transform is subtracted

from HT:

gðtÞ ¼ g0ðtÞ þ g1ðtÞ þ
XN
m¼2

gmðtÞ

gF
1ðtÞ ¼ H�1ðHðgF

1ðtÞÞÞ

H g0ðtÞ þ
XN
m¼2

gmðtÞ
 !

¼ HðgðtÞÞ � HðgF
1ðtÞÞ

8>>>>>>><
>>>>>>>:

ð20Þ

The component g2(t) is now the maximum amplitude

component of the residual function and inherits the

properties of g1(t) in the new waveform (average

frequency, maxima, minima of HT), see Fig. 9.

The maxima of H(g(t)) due to g1(t) are shown in Fig. 9

(note that these maxima disappear after the filtering), and

the maxima of this transform are due to g2(t) which drives

mean frequency. This process is repeated until the last

square-pulse component is extracted (in this case, g3(t))

(see Fig. 10). Some peaks appear in the extraction process

due to errors in the evaluation of time positions (t = a,

t = b, see equation (17)), where HT presents singularities.

Keep in mind that the sinusoidal component (for example,

this case of constant loads in aggregated demand) does not

affect the results because HT of continuous and derivable

functions do not usually have any singularities (see Fig. 6).

4.6 Limitations of the proposed methodology

Obviously, the proposed methodology has some limi-

tations to overcome in the future: firstly, the sampling rate

provided by the meter device (from 1 sample/min to 12

sample/min in the proposed dataset) is necessary to capture

the behavior of some loads (for example WH-2 in Fig. 2).

For this load, 1 sample/min will produce a triangular

waveform which transform is more difficult to filter than

pulse transforms (this is due to the transform of a pulse

signal presents a singularity at leading and trailing edges of

square pulses, see Fig. 3, whereas there is not any singu-

larity for a triangular waveform). The second factor to be

considered is that the method is not 100% unsupervised at

this moment, and a basic but necessary knowledge and

expertise of the loads and their dynamics inside the

household is needed (the aggregator should develop this

expertise). Perhaps the main limitation is the potential

presence of several appliances with the same end-uses (for

example, some electric heaters to heat several rooms in the

house). To explain this problem, three elemental signals

with the same frequency (20 Hz) and amplitudes ranging

from 10.5 to 10.3 have been considered in Fig. 11 (i.e the

square pulse component being analyzed do not fulfilPn
m¼2 Am\A1). Here, the problem is that the sum of

Fig. 8 Autocorrelation function for the transform of pulse waveform

(maximum at lag = 1000 defines period of the first component)

Fig. 10 Maxima and minima of transform of pulse waveform without

the first and the second component, and the filtered component and

measured value (Maxima of HT due to g2(t) disappear after filtering)

Fig. 9 Maxima and minima of transform of pulse waveform without

the first component
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signals is a new signal (g(t)) with three times the amplitude

of the individual components, the same frequency, but with

a reduced duty cycle. In this case HT detects the singu-

larities of the ‘‘apparent’’ higher amplitude (gmax(t) ‘‘sig-

nal’’ in Fig. 7) in g(t) (see the arrows shown in Fig. 11).

Thus, the proposed method does not filter the signal with

the highest amplitude (g1(t) in this example) and an error

may arise in the disaggregation. An artificial neural net-

work could be used in the future to detect this problem and,

in this way, reach a more unsupervised procedure to avoid

the aggregator needing a minimum level of experience with

modelling and some knowledge of the integral transform

tools to evaluate the inconsistency of the results.

5 Demand response

5.1 Evaluation of residential end-uses

For the evaluation of end-uses, some measurements

(aggregated and individual) from customer 4 were con-

sidered. Figure 2 covers some typical end-uses during the

winter season for this customer. Accordingly, it is clear that

WH, EH, FR, OV and WM have a cycling demand (with

two or multiple states). The frequency, amplitudes and

‘‘on/off’’ times are quite different, but it is really difficult to

extract end-uses, except in certain time-periods (late at

night, early morning, see Figs. 1 and 2). One feature

common to these appliances, is that their demand evolves

according to square/pulse waves. These patterns of main

loads allow advantage to be taken of the results presented

in Sect. 4. Moreover, other load patterns (quasi-continuous

patterns) arise from filtering (for example HPAC with

inverters).

Small customers are becoming increasingly more

important for aggregators and system operators, although

some feedback is required from the load when DR is

deployed or expected to be used, especially in DR for

energy and ancillary services to test and probe their

performance face to power system events. To explore the

possibilities of DR evaluation through information on

smart meters and Hilbert tools, some DR policies have

been applied to the customers under study. It seems that

DR would benefit WH, EH and HPAC the most, because

they have high rated power and are often used when a

power system is not reliable or the energy price is quite

high to persuade customers to become engaged in DR.

For this research, two different days in the winter season

have been analyzed: day 0 (a day without DR control at 12

sample/min); and day 1 (where a simple DR policy was

applied to HPAC).

The first step is to center the waveform with respect to

its maximum and minimum values, or with respect to its

Fig. 11 Analysis of a multi-component square wave with a three

rectangular signals with different duty cycles and amplitudes

Fig. 12 Aggregated load (‘‘day 0’’, centered)

Fig. 13 Extraction process of the highest amplitude component into

the aggregated load
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‘‘DC value’’. This last option can be done numerically or

through the use of HT because the transform of a constant

(our DC value) is zero. The results (the daily load was

previously presented in Fig. 1) can be seen in Fig. 12.

Afterwards, H(g(t)) and ACF are computed. Results are

presented in Fig. 13a, b. The ACF reports to the user

(aggregator), that a periodic signal is detected with

lag = 60 (note that at 12 sample/min this should be a

waveform with a period of 5 min). Then, the instantaneous

frequency f(t) and average frequency fme(t) (computed each

5 min or 60 samples) have been computed (see Fig. 13c,

d). The frequency f(t) detects that the first component

appears first at t = 11 hour and vanishes at t = 15 hour; it

appears again at t = 20.5 hour to finish at t = 21.5 hour.

Average frequency confirms this statement and shows a

different frequency pattern in each period.

With this information, H(g1(t)) component is filtered and

its inverse transform g1(t) is determined. Some details of

results are shown in Fig. 14a, b. Especially in Fig. 14b, the

extraction of H(g1(t)) from the aggregated waveform is

quite certain.

Once the first component has been filtered, the process

flows, according to the procedure presented in Sect. 4.5.

The autocorrelation function ‘‘ACF’’ of the residual func-

tion (H(g(t) - g1(t)) is processed. In this case, the lag is

around 250 (i.e. about 20 min. Note that this pattern also

appears in Fig. 15b). After that, the average frequency is

calculated. The results are presented in Fig. 15.

It is important to pay attention to the patterns present in

HT and in its instantaneous frequency f(t), see Fig. 16.

From 7 to 12 hour, f(t) positive values are mainly dis-

played, whereas from 17 to 20 hour, f(t) high negative and

positive values appear, see Fig. 16b (negative values in

f(t) are responsible for negative values in fme, and this has

not any physical sense, this means that the signal has

changed or is not centered, see Fig. 12, and this problem is

attributable to a change in the amplitude). This gives the

user a flag about a change in load pattern, i.e. another load

is extracted in the process or the process should be revisited

to split the daily demand in two periods to perform the best

evaluation of HT and ACF.

Day 0 involves a 8/12 natural duty-cycle for EH load

from 7 to 14 hour (approximately 8 min ON, 12 min OFF,

changing according to outdoor temperature). Figure 17

shows the individual load (recorded with an energy plug)

and the load disaggregated with the filtering of components

through HT.

Finally, previous works in NILM have used different

metrics to evaluate performance. For example, the proposal

in [13] has been widely used; it considers the ‘‘detection

accuracy (DA)’’ as the ratio of the correctly classified

Fig. 14 Disaggregated load processing: the inverse transform of the

component (which corresponds to WH in the morning and OV in the

afternoon) and HT residue after the extraction of that component

Fig. 15 Disaggregation process for the second component

Fig. 16 Disaggregation of the second component with the help of the

instantaneous frequency

Fig. 17 Comparison between the second component (extracted

through HT) and the real demand of EH (recorded through plug

meter)
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events to the total detected events (excluding missing

detection). In [12, 28] the ‘‘percentage of energy correctly

classified (ACC)’’, considered for evaluation of HMM

methodology, defined formally as:

ACC ¼ 1 �

PT
t¼1

Pn
k¼1

�ekðtÞ � ekðtÞj j

2
Pn
k¼1

ekðtÞj j
ð21Þ

where ēk(t) and ek(t) are the algorithm’s prediction and

measurement for the kth load at the tth time step

respectively. An important parameter for practical use is

the energy consumed by each load k (for example for DR

verification). In [21], the performance of individual loads is

measured through the ‘‘normalized disaggregation error

(NDE)’’:

NDEk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

�ekðtÞ � ekðtÞj j2

Pn
k¼1

ekðtÞj j

vuuuuut ð22Þ

Table 3 shows a comparison of performance ranges of the

proposed methodology with respect to HMM.

The comparison is difficult because WH, EH or HPAC

are not considered in [12, 20, 28]. For example [35] states

that a lot of methods decrease performance with air con-

ditioning loads (up to 25%–30%). This is not the case of

the proposed approach as demonstrates next paragraph.

5.2 Evaluation of DR: Ancillary services

The proposed methodology can be used to evaluate the

compliance of a possible response of loads to regulation or

reserve services. For example, in this study (load curve on

day 1), the HPAC load is tuned automatically by the

aggregator (through the remote change of the thermostat

set point at 12 hour) to reduce load and help a non-spinning

reserve call commissioned by independent system operator

(ISO) in the short term (minutes). To verify and test if this

load response was on, EH and WH have to be filtered from

the overall load of the customer (the same procedure used

in Sect. 5.1). Note that ISO impose high monitoring

requirements [36] for ancillary services, and consequently,

a statistical solution could be necessary to avoid the use of

high performance meters in the entire customer group (i.e.

to achieve cost-effectiveness for these customers) [37].

This is a new problem for aggregators in the near future,

but it can be solved by a rough iterative calculation of HT

for EH and WH loads based on average frequency,

instantaneous frequency and filtering. The overall HT is

filtered by the subtraction of elemental pulse HT trans-

forms (EH and WH load transforms). The results are shown

in Fig. 18.

The inverse transform (H-1) is necessary to reconstruct

any waveform. In the Hilbert domain H-1 is:

gðtÞ ¼ H�1ðtÞ ¼ Hð�HðgðtÞÞ ð23Þ

This equation is applied to the ‘‘HT filtered’’ signal in

Fig. 18. This means that the ‘‘residual’’ load profile shown

in Fig. 18b can appear by a new iteration of the

methodology proposed in paragraph 4.2 to paragraph 4.5.

For comparison purposes, the HPAC and residual end-uses

are also drawn in Fig. 19a (note that, without a more

detailed calculation, the response to the new thermostat set

point appears from 12 to 14 hour and from 14 to 18 hour).

It can be seen that HPAC load appears (Fig. 19a) together

Table 3 Performance ranges of HT and HMM [20, 21]

Load Method DA (%) ACC (%) NDE (%)

Aggregated HMM 64.5; 47.7

Furnace HMM 91.7; 70.8

Electronics HMM 41.6; 0.8

Oven HHM 100; 41.7

Aggregated HT 67.4

Water heater HT 98.8; 93.6 98.8; 83.8

Electric heater HT 93.6; 79.7 91.1; 75.8

Fridge HT 51.2 43.6; 36.6 Fig. 18 Aggregated load on day 1 and HT for individual pulse loads

(EH, WH) and residual component on day 1

Fig. 19 Inverse transform of residual component (after filtering) and

AC inverter load (HPAC) behavior
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with other end-uses, for instance FR and WM with multiple

states of power, but the change of load demand due to DR

can be verified. Moreover, those small (residual) demands

could be also filtered with a similar procedure. It can be

seen that the changes of HPAC load are due to the response

to thermostat control.

6 Conclusion

This paper presents an alternative method to disaggre-

gate end-uses with cycling ‘‘on/off’’ demand from the data

supplied by smart meters. Moreover, the load behavior can

be obtained after, during and before a DR policy is imple-

mented to verify if the control related to the suitable cycling

load is being applied correctly. Here, HT is shown to pro-

vide relevant information through frequency analysis,

which can even be used in multi-component signals, to

determine pulse-square components. This is done without

the traditional use of EMD and IMFs which does not work

well with square-pulse signals. It also combines HT prop-

erties with auto-correlation analysis to determine other

important properties and perform an iterative filtering of

pulse components according to decreasing amplitudes. The

use of different metrics for the analytical evaluation of

results shows that the method has a remarkable performance

in comparison with other methodologies, and achieves the

disaggregation of important loads for DR, while the accu-

racy of results remain in similar levels in spite of the

presence of quasi-continuous state loads (inverter HPAC).

Hence, the information obtained by the proposed method-

ology from smart meters (aggregated demand) allows the

aggregator to verify and evaluate the end-use composition

on the customer and the response of selected (representa-

tive) customers in each demand segment and in this way, to

obtain the maximum available potential from DR.
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the Universidad Politécnica de Cartagena, Spain. He has been leader

of several research projects on demand response in Spain. His

research activities include electricity markets, demand response and

energy efficiency, demand modeling, electric haulage in railways and

the application of integral transforms to power systems (NILM, power

transients, etc).

Roque MOLINA received the Mathematicals degree in 1987, and the

Ph.D. degree from the Universidad de Murcia, Spain, in 1997.

Currently he is an Associate Professor at the Universidad Politécnica
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