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Abstract

In this study, an analysis of the possible causes of the failure in-service of a

section of a plastic modular belt was conducted. The study begins with a

reproduction of the service conditions in a traction gear. An analysis of the

fracture surfaces revealed the existence of defects in the interior of the parts.

With the aim of determining the origin of the imperfections and their influence

on the failure, an exhaustive mechanical and rheological characterization of the

material was carried out. The development of an FE Analysis established that

the reduction of the tensile strength of the part due to internal defects was

around 70%. Tests also showed that the most stressed area was the area where

the most defects appeared. A simulation of the injection process showed that

the defects are caused by the geometry of the part, leading to the conclusion

that its failure was caused by bad dimensioning of thicknesses.

Keywords: Plastic modular belt, belt link, Tensile test, Rheology, Injection

simulation, Defects, Shrink cavity, Air traps

1. Introduction

Plastic modular belts (Figure 1) are widely used in industry as a means of

transporting material during production processes. Their niche in the market

is located between metal and belt conveyors. The main advantages of this type

of system are its capacity to deal with curved trajectories, its lightness, its5
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mechanical and chemical strength and that it is ease to repair. Because of their

construction, they are especially suited to humid or saline conditions, and food

and chemical industries.
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Materiales banda Polipropileno / Acetal

Material ruedas Poliamida

Chasis Acero / Inox

Guías deslizamiento PE -1000

Velocidad Hasta 80 M / Min.

Max. carga 80 Kg / M

DATOS  TÉCNICOS BANDA

DATOS  TRANSPORTADOR

Polipropileno   +1ºC / +104ºC Acetal     -45ºC / +93ºC

TEMPERATURAS DE SERVICIO

Polipropileno

Acetal

COLORES ESTANDAR

R. Interior 600 800 1000

Ancho Banda (máx.) 600 400 200

RADIOS

ANCHOS BANDA SEG. RADIO

RUEDAS PRECISAS (según ancho de banda)

* Solicitado Diseño Comunitario
   (OAMI) 002219402-0001

Fichas técnicas
Bandas transportadoras modulares3

SERIE:  PCS- CURVA PLANA CERRADA

RECUERDE; 
LAS TEMPERATURAS
SON IMPORTANTES

PCS  Plastic Conveyor System26

Figure 1: Plastic modular belt.

These types of belts are made up of a number of links that are connected by

a series of pins to form the width of the belt. This width may vary from a few10

centimeters to several meters, and thus, in order to achieve the desired width

a number of links must be used adjacently. These links act simultaneously as

handling and traction elements [1].

This study shows a real case of a fracture in-service in which the fracture

occurs in one of the thickest parts of the belt while carrying a load considerably15
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lower than that recommended by the manufacturer. The belt links are made

of an acetal copolymer, a material that has not been analyzed before in belt

conveyors. There are several studies focused on other materials. Vaxman et al.

[2], for example, worked on the void formation in thermoplastic composites; as

well as Francis et al. [3], but they studied the failure analysis of a clamp hanger.20

Lewis [4] found that a premature fracture of a composite nylon radiator was

caused by a bad quality control during injection moulding, rather than being

a design fault. Other authors analyzed the failures of different parts made of

PVC [5], HDPE [6] and aluminum alloys [7]. All these studies follow a specific

methodology that is going to be used in the present work as well.25

The aim of the study is to determine the cause of the failure, if it was due

to an inappropriate use of the belt, the material used in its manufacture, the

manufacturing process used or the belt link design.

2. Material and methods

In order to establish the cause of failure, different tensile tests were carried30

out on the links of the modular belt. Following this, the tests results and the

fracture surfaces were analyzed. Finally, a mechanical and rheological character-

ization of the material was performed with the aim of establishing the influence

that the material properties and the processing techniques have on the tensile

strength of the belt links.35

2.1. Belt link tensile test

The first step in this study was to test the links’ tensile strength. For that

purpose, two clamps were designed in order set up the belt link in the same way

as in on duty conditions. The tests were carried out at a speed of 1.2 mm/s. The

Data Acquisition System was composed of an MGCPLUS® (Hottinger Baldwin40

Messtechnik GmbH, Darmstadt,Germany) as DAS hardware, a 100 kN U3 load

cell of the same brand, and a displacement transducer WS1.1-750-R1K-L10

(ASM GmbHb, Moosinning Germany). The time, force and movement data
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were acquired at a speed of 10 Hz. Figure 2 shows one test in the tensile test

machine.45

(a) (b)

Figure 2: Tensile test of the modular belt link: a) setup overview b) detail

2.2. Visual inspection

After the belt link tests, pictures of the fracture surfaces were obtained using

a OLYMPUS SZX7 stereo microscope with a OLYMPUS C-5060 Wide Zoom

Camera, lighted with a OLYMPUS KL 1500 HL halogen light.

2.3. Material tensile analysis50

In order to carry out a later Finite Element Analysis to quantify the loss

of tensile strength of the part due to imperfections, a characterization of the

material was done beforehand. The material used in the manufacture of the belt

link was YUNCON® M90 (YunNan YunTianHua CO., YunNan ShuiFu, China),

an Acetal (POM) Copolymer. Following the manufacturer’s instructions, pellets55

were first dried in a dehumidifier MDEU1/10 (Industrial y Comercial Marse

S.L., Barcelona Spain) at a temperature of 90 ◦C for four hours and the mold
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was tempered at a temperature of 70 ◦C. Finally, a series of specimens was

injected at 200/200/180/170 ◦C according to temperatures indicated by the

manufacturer.60

After the injection process, tensile tests were carried out on the specimens

using a universal ELIB 30 tensile test machine supplied by S.A.E. Ibertest®

(Madrid, Spain) following the guidelines of ISO 527, at a temperature of 25 ◦C,

with a relative humidity of 50% and with a 5 kN load cell.

2.4. The Finite Element Analysis65

Once the material was characterized, a static Finite Element Analysis was

performed on the belt link in order to establish the theoretical value of the

fracture load, in order to assess the influence of the imperfections associated to

manufacturing process.

The three-dimensional model of the belt link, provided by the manufac-70

turer, was generated using Solidworks®. The CAD model was imported into

Ansys® Workbench R18.2. and then meshed using tetrahedral elements (Tet10),

yielding a total of 29,893 nodes and 16,291 elements. The material properties

(Young’s modulus, Poisson ratio and yield stress) used in the FEA were obtained

from the material tensile analysis.75

Regarding to the load state, the lower holes were considered as fixed sup-

ports, while the remote displacement used in the FEA was considered as the

maximum displacement obtained in the belt link test.

2.5. Rheological characterization

In order to assess the material behavior during the injection process, it is80

important to carry out a rheological analysis. The rheometry tests were carried

out using a Thermo Haake Rheoflixer MT V, fulfilling ISO 11443. In order to

simulate the temperatures recommended by the manufacturer, those used in the

tests were 190 and 210 ◦C. For each temperature three different nozzles were

used, with shear rates ranging from 100 to 5.000 s−1.85
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Figure 3: Applied load state

As the viscosimeter used works by capillary action, shear stress values τ

and γ̇ cannot be directly obtained. This is because as the melted material

passes from a larger diameter to a smaller one, the pressure rises modifying the

values slightly. The rheometer provided apparent values for viscosity and shear

stress which were calculated using equations 1 and 2, where τap represents the90

apparent shear stress (Pa), γ̇ap is the apparent shear rate (s−1), p is the pressure

measured (Pa), and D and L are the diameter (mm) and the length (mm) of

the nozzle respectively.

ηap =
τap
γ̇ap

(1)

τap =
p

4 · (L/D)
(2)

2.5.1. Bagley’s correction95

The flow of a material from a greater to a lesser diameter causes overpres-

sure which slightly alters the results obtained from the capillary rheometer.

This variation can be adjusted using Bagley’s correction [8], which is shown in

equation 3, where (L/D)c is the L/D ratio at zero pressure.

τ =
p

4 ((L/D) + (L/D)c)
(3)

The application of Bagley’s correction requires that a range of tests be carried100

out using different nozzles and shear rates in order to obtain a fit line between
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the pressure and the L/D ratio, whose intersection with the L/D axis gives us

the (L/D)c value necessary for the correction. With this in mind, three different

nozzles were used with a diameter of 1 mm and with L/D ratios of 10, 20 and

30, at shear rates of 100, 200, 500, 1000, 2000 and 5000 (s−1) at temperatures105

of 190 and 210 ◦C.

2.5.2. Rabinowitsch’s correction

Melted polymers are non-Newtonian fluids and thus the equations used for

Newtonian fluids to calculate viscosity must also be adjusted. One of the most

commonly used corrections is the Rabinowitsch [9] one, which makes it possible110

to calculate the real shear rate in the capillary wall using the Equation 4, where

d log γ̇ap/d log τ is the slope of the curve that relates the natural logarithm of

γ̇ap with τ , calculated according to Equation 3.

γ̇ =
˙γap
4

(
3 +

d log γ̇ap
d log τ

)
(4)

2.5.3. Determination of the material viscosity

Once the real shear stress and shear rates were calculated, the viscosity115

values were obtained using equation 5. This was done for each temperature.

η =
τ

γ̇
(5)

With the aim of carrying out a later simulation of the injection process, the

Cross model [10], which correlates the viscosity with the temperature, was used

through equation 6 where η0 (Pas) is the material viscosity under zero-shear-

rate conditions, τ∗ (Pa) represents the shear rate after which the pseudo-plastic120

behavior begins and 1−n represents the slope of the section with pseudo-plastic

behavior. This slope can be calculated using the corrected measurements from

the rheometer.

η =
η0

1 +
(
η0
τ∗ · γ̇

)1−n (6)
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The value of η0 depends on the temperature, and it is therefore necessary to

obtain this correlation before introducing this value in the Cross model. In125

order to do this, the Williams-Landel-Ferry[11] method was used, as can be

seen in Equation 7, where D1 (Pas) is the material viscosity at a null shear

rate, at the vitreous transition temperature and an atmospheric pressure. T is

the temperature at which viscosity was planned to be attained, Tg = 223.15

K is the vitreous transition temperature of the material, which was obtained130

using a power-compensation Differential Scanning Calorimeter (DSC) supplied

by Mettler Toledo, S.A.E., model 821e, according to ISOs 11357-1 and 11357-4.

A1 (-) is a constant that depends on the material and A2 = 51.6 K is a constant

which usually has a fixed value for all polymers [11].

η0 = D1 · e
−A1(T−Tg)
A2+(T−Tg) (7)

The combination of the Cross and Williams-Landel-Ferry models gives a math-135

ematical model that is able to correlate viscosity with shear rate and tempera-

ture. In order to fit this model to the experimental results, the four constants

of the model must be calculated: n, τ∗, D1 and A1. These constants can be

determined using an error function (Equation 8), in order to minimize them.

ξi =

n∑
j=1

Tn∑
T=Ta

[ηj − η(γj , T,D1i , A1i , τ
∗
i , ni)]

2

ηj
+

[η0i − η(0, T,D1i , A1i , τ
∗
i , ni)]

2

η0i

(8)

where ξi is the error in the i iteration; D1i , A1i , τ
∗
i , ni are the dependent param-140

eters in the iteration i, ηj and γ̇j are the viscosity and shear speed of each of

the points calculated previously from the readings from the rheometer, and T

represents each of the test temperatures. Finally, η0i is the viscosity at a zero

shear speed where the i iteration is calculated from the dependent parameters.

The error minimization process is carried out using the fmincon function145

of Matlab® R2016, which allows restricted multi-variable minimizations to be

solved, as the dependent variables cannot take any value. The “interior-point”

algorithm was selected from different optimization algorithms available.
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2.6. The mold injection analysis

In order to look for imperfections during the part manufacturing, the in-150

jection process was simulated. The injection mold was created in Solidworks®

and provided by the manufacturer. The mold was then imported into Autodesk

MoldFlow Insight® 2016 software. Figure 4 shows the injection points used

during simulation. The viscosity model was Cross-WLF, and the rheological

properties were taken from test data (Table 3). The injection time (10 s), com-155

paction time (30 s), and cooling temperature (60 ◦C) were the same as used

during the belt link manufacturing process.

Figure 4: Mold injection model

3. Results and discussion

In order to determine the theoretical resistance of the belt link, a Finite Ele-

ment Analysis was done. This established the maximum fracture load. Finally,160

an injection process simulation was carried out in order to determine whether

the failure was due to the injection process used or the belt link design.

3.1. Material tensile analysis

After the injection of the specimens using the virgin POM provided by the

belt link manufacturer, a series of five specimens were tested. Figure 5 and165

Table 1 show the results obtained with this analysis. As can be seen, the results

are slightly different from those provided by the POM manufacturer.
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Figure 5: Tensile test of YUNKON® M90

Table 1: Tensile test data

Data S̄y
1 Syσ̂

2 εy
3 ε̄4 εσ̂

5

(MPa) (MPa) (%) (%) (%)

Manufacturer 61 - 9.4 35 -

Tests 58.55 0.33 9.0 27.12 8.31

1 Yield strength. Average.

2 Yield strength. Standard deviation.

3 Yield strain.

4 Break strain. Average.

5 Break strain. Standard deviation.

3.2. Belt link tensile test

The tensile specimens results were obtained from ten tests, and one of them

was discarded because of the pin premature breakage due to a inner defect.170

While the other specimens were being tested, the pins did not break prior to

the belt links. Figure 6 and Table 2 show the results obtained in the tensile
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tests on the modular belt links. As can be seen, the values obtained are fairly

dispersed for tensile strength and the associated displacement. The data also

showed that the break began to occur under considerably lighter loads, reaching175

values as low as 700 N. Finally, the majority of the breaks appeared in the lower

part of the pin holes, as previously observed during in-service breakage.

These results show, without any doubt, that there are deficiencies associated

with the design of the part, the material used, the manufacturing process, or

even a combination of all these factors. Subsequently, a series of tests was180

developed to establish the source of the problem.
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Figure 6: Belt link tensile tests results

Table 2: Tensile tests results

Mean Std. dev. Max Min

Force (N) 21,982 2,855 25,787 17,627

Displacement (mm) 2.835 0.74 4.426 1.958
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3.3. Visual Inspection

After carrying out the tensile tests on the modular belt, the breakages were

analyzed. A simple visual inspection showed the divergence of the fracture shape

(Figure 7), as well as the presence of internal imperfections (Figure 8). Figure 9185

shows a more detailed analysis obtained under magnification. In all cases, there

were imperfections in the fracture surface.

These types of imperfections have been reported previously by other authors

[2–6], generally related to the manufacturing process and the study of stress

concentration points that cause a later fracture [7, 12, 13].190

Figure 7: Comparative of different types of fracture.

Figure 8: Part with internal imperfections.
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Figure 9: Detail of the internal imperfections at the frature zones.

3.4. The Finite Element Analysis

Finite element analysis (FEA) was performed on the belt link until the belt

link elongation generated a strain beyond the strain at break measured in ma-

terial tensile analysis. From the material tensile analysis (Table 1), the elastic

deformation zone was idealized with a linear isotropic behavior with a Young195

modulus of 1,178 MPa and a Poisson ratio of 0.4, while the plastic zone was

modeled with isotropic plasticity with a yield stress of 58.55 MPa and null tan-

gent modulus (ideal plastic). Regarding to the load state, the lower holes were

considered as fixed supports, while a remote displacement up to 4.5 mm (max-

imum displacement obtained in belt link tests, Table 2) was applied (Figure200

3).

Figures 10 and 11 show the stress and strain distribution at fracture initia-

tion (σ = 58.55 MPa and ε = 0.271). The final fracture of the part is difficult to

predict as, from the crack initiation the fracture mechanism follows a different

behavior from the one predicted by the conventional elasticity theory. Thermo-205

plastic polymers have a high strain at break point, so it is necessary to apply the

Elastoplastic Fracture Mechanics theory (EPFM). This theory requires a more
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complex mathematical model, as well as more accurate test methods, such as

the Essential Work of Fracture (EWF) method, in order to obtain parameters

for the ductile fracture toughness process [14]. The complexity of this analysis210

does not justify its use in this current study, so it was assumed that the theo-

retical fracture begins at the break strain, knowing that the theoretical tensile

strength will be a little lower.

As can be seen in Figures 10 and 11, the most stressed and deformed region

corresponds to the area where the tested belt links were broken, and where the215

majority of the internal imperfections were found. It is evident that the imper-

fections generated during the manufacturing process had a significant influence

on the tensile strength of the part.

Figure 10: Von Mises stress distribution

Figure 11: Strain distribution
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In order to evaluate strength loss associated with these internal defects, the

real force and elongation on the belt link tests were compared with the results220

obtained from the simulation.
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Figure 12: Force vs displacement

Figure 12 shows the relationship between force and displacement obtained

from the FEA, as well as from the belt link tests (Figure 6). As can be seen, the

loss of stiffness is significant, reduced up to half the theoretical value. As the

belt link actually works mainly under tensile efforts, this loss of stiffness means a225

useful section reduction of around 50%, according to the results obtained using

Equation 9.

K =
F

x
=
A · E
L

(9)

As can be seen in Figure 13, the force required to reach the fracture strain,

according to the specimen tests (from 13.4% to 34.8%), oscillates between 58

and 78 kN. In terms of percentage, the dispersion of the fracture strain means230

a reduction of around 25% in the tensile strength of the belt link.
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Figure 13: Force vs strain

On the other hand, if the theoretical average fracture force of the belt link

(74 kN) obtained for the average strain of the material (27.12%) is compared

with the average fracture force obtained in the belt link tests (21,982 N), there is

a reduction of 70% in the belt link strength. This shows that, in addition to the235

dispersion introduced by the material itself, there must also exist an influence

associated with the internal imperfections generated during the manufacturing

process.

3.5. Rheological characterization

Table 3 and Figure 14 show the parameters and the behavior curve of the240

developed Cross-WLF model. Table 4 shows a summary of the rheological

parameters from other POM manufacturers with a similar MFR. As can be

seen, the obtained parameters are similar to those reported.
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Table 3: Cross-WLF model parameters for the YUNCON® M90 material

T n τ∗ D1 A1 η0 MFR

(◦C) (-) (Pa) (Pas) (-) (Pas) (gr/10 min)

190 0.1923 305,696 7.0 · 1014 33.29 886.6 9.0

210 0.1923 305,696 7.0 · 1014 33.29 607.3 9.0

Table 4: Cross-WLF model parameters of other manufacturers. These values have been

obtained from the Autodesk MoldFlow® database

Reference n τ∗ D1 A1 MFR

(-) (Pa) (Pas) (-) (gr/10 min)

Ultraform® N2320 003 0.1507 326,633 7.34 · 1014 32.809 8.7

Hostaform® C9021 M 0.2741 305,000 9.62 · 1013 30.367 8.5

Celcon® MC90 0.2534 278,765 6.14 · 1010 21.853 9.0

Kepital® F20-03 0.3475 68,600 9.96 · 1011 24.306 9.0

Tanoform® 300 0.1982 293,348 3.65 · 1012 27.186 9.0

3.6. The mold injection analysis

Once the reduction in strength associated with the fracture was quantified,245

the next step was to determine whether the part failure was due in part to an

error in design. With this objective in mind, and using the rheological test data,

the injection process was simulated using the Autodesk MoldFlow Insight® 2016

software.

During the development of the injection process model, a replica of the250

original mold was made, using five injection points, as well as the original cooling

system. This can be seen in Figure 15. The next step was to simulate the mold

filling to create the part. The filling was started at all five points simultaneously.

As can be seen in Figure 15, the use of multiple injection points produced

interactions between the material, which created residual tension, as well as255
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joint lines.

Figure 15: The mold filling efficiency

Figure 16 shows the shrinkage of the belt link, which is quite high, reaching

up to 2.5 mm. This shrinkage is basically due to the high thickness of the part

as well as the high shrinkage percentage of the material (2.1 %).

Looking at Figure 17 and Figure 18, it is possible to see that the zones260

with maximum suckbacks correspond to the weld lines, so the material becomes
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Figure 16: Part shrinkage

weaker in these areas[15–17]. On the other hand, the high thickness of the part

causes a high temperature gradient of the material during the cooling, so when

the outer part of the material solidifies, while the inner part is still melted.

As the inner part cools, it also shrinks, and if there is no new provision of265

material because the outer part has solidified, the volumetric shrinkage of the

inner part leads to inner holes known as suckbacks. Finally, the changes in the

flow direction as the mold is filled, can cause bad orientation of the polymeric

chains, and may even result in some chains being arranged in a perpendicular

direction to the load action. This would also significantly reduce the material270

strength.

Figure 17: Internal suckbacks

Finally, Figure 19 shows the area where the simulation predicts the formation

of air traps, which are produced by the thick/thin/thick change in thickness

causing changes in the flow rate due to venturi effect. On the other hand, a

large degree of thickness prevents the correct elimination of the air traps.275
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Figure 18: Weld lines

Figure 19: Air traps

As can be seen in Figure 19, the internal defects detected in the broken tested

belt links are located in the zone where the simulation predicted trapped air

bubbles, gaps, internal suckbacks and weld lines. These same zones are the most

stressed ones according to the earlier FEM analysis, and thus the combination of

both factors produces a significant loss of strength. It can therefore be deduced280

that the failure of the belt link was due not to an error in the processing of the

material, but rather in the design of the part.

4. Conclusions

Based on the results of this study it has been possible to determine that the

failure of the modular plastic belt was not due to an overload, to the material, or285

to the manufacturing process, but was in fact due to the poor design of the part.

This conclusion is taken from the mechanical characterization of the material,

as well as the strain simulation carried out using FEA and the analysis of the

manufacturing process. The stiffness reduction in the tested belt links reaches
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up to 50%, while the reduction in tensile strength may reach up to 70% when290

compared with the theoretical values. This variation can not be attributed solely

to the variability in the mechanical characteristics as it only has an influence of

25% on the theoretical tensile strength.

The simulation of the injection process showed how a set of unfavorable

factors caused the inner defects in the parts. These factors cannot be attributed295

to the material supplied by the manufacturer, as it has a rheology similar to

other manufacturers. Neither can the defects be attributed to material type.

The conclusive result of this study is that the failure of the belt links was due

to the geometry of the part itself, where significant shrinkage, weld-lines, the

zig-zagging of the flow and the thickness variation of the melted material led to300

the failure of the part. Regarding possible solutions to the problem, changing

the material is not a valid option. Although the use of other materials with a

greater Melt Flow Rate such as polypropylene could reduce some of these adverse

effects, they also bring their own set of disadvantages, such as a reduction in

the tensile strength of the parts as well as an increase in elongation along the305

life of the part.

Thus, the only viable option to avoid the formation of these defects is to

redesign the belt link and the mold, following the directions stated below:

� Reduce the thicknesses and make them uniform. With a reduction in thick-

ness of 2 or 2.5 mm, it would be possible to control better the problems310

associated with the material shrinkage. A more homogeneous thickness

allows the compacting time and pressure to be reduced, thus reducing

possible deformations.

� Addition of fillers into the material. Although the addition of fillers would

reduce the Melt Flow Rate, it would decrease the shrinkage associated with315

cooling after the injection process. This, in turn, would yield a reduction

in internal air traps, and would prevent the appearance of suckbacks.
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