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Abstract

The paper analyses how to compute the steady-state flow distribution through

a given network by using the Minimum Entropy Production (MinEP) princi-

ple. For isothermal and incompressible flows, this is equivalent to the minimal

dissipation of energy. The conditions that make this method equivalent to the

conventional one are studied. There must exist a power-law for the energy dissi-

pation (entropy generation) where the exponent must be the same for the whole

network. To our knowledge, Niven was the first to get to this result. However

he applied MinEP only to parallel pipes and unfortunately discarded it as a

general method.

The paper shows why it cannot be discarded yet. We discuss the role of the

chosen exponent m and its link to the underlying physical phenomena.

Moreover it is shown that there is a “hidden” fixed point value problem

that must be studied further. The method introduced in this paper is devel-

oped specially for tree-shaped duct-networks which are frequently encountered
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in HVAC (Heating Ventilation and Air Conditioning) systems. The paper ex-

plains briefly what triggered this research; specifically, difficulties related with

branched junctions, mainly in return-type networks.

Finally, we illustrate the method with some examples.

Keywords: MinEP, Entropy generation, steady-state, flow network, HVAC

duct network

1. Introduction

The importance of energy efficiency related to environmental issues increases

every year. In HVAC (Heating Ventilation and Air Conditioning) facilities, the

distribution of fluids to transfer thermal power is widespread. A better design

and analysis of the correct air flow distribution through the network is crucial

to achieve a good performance of the whole system (see for instance [1]).

However, a better efficiency is also related to the concept of entropy. Efforts

have been done in order to bring it to daily engineering practice. Remarkable

are those from A. Bejan et al. ([2],[3]), and many others after him. More

recent efforts like those from Herwig H. [4] in 2012 try to boost the attention

to its application to fundamental fluid and heat flow problems. In [5] Tammo,

Herwig et al. proposes the entropic potential number which is related to the

idea of losses (loss of availability) and the entropy generation, as a measure

of those losses. Moreover in [6] Herwig and Schmandt proposed to link the

entropy generation to a very well-known concept in fluid mechanics; the head

loss coefficient. This idea of a loss coefficient seems to have attracted others

researchers ([7]).

The minimisation of the entropy generation is not used here as a constructal

law (see [8]) where the unknown is the geometry (see [9]). In other words, the

purpose of the method is not the design of duct-networks. Here we have used

the principle of minimum entropy generation or according to our hypotheses,

minimum energy dissipation, as a means to discover the steady-state flow distri-

bution through an already existing network. However this does not mean that
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it cannot be used to design networks but this needs further research. Therefore

we stress the fact that our aim is the analysis of an existing network, not its

sizing or geometrical design.

By energy dissipation we mean the conversion of mechanical energy into

internal energy.

This paper goes closer to the ideas of R. Niven [10] which can be summarised

in the sentence: “the study of extremum methods to discover the steady-state

of systems”. In [10] Niven deals with two principles; MinEP (Minimum Entropy

Production) with respect the flow distribution and MaxEP (Maximum Entropy

Production) with respect to the choice of the flow regime.

This paper extends Niven’s results [10] to tree-shaped networks (although

we think they can even be extended to general ones). However, something new

comes up. We show that, in the most general situation, there exists a fixed point

value problem associated with the steady-state flow distribution through the

network. Moreover, any fixed point must also be a solution of the conventional

method (based on energy and mass balances). The solutions obtained by either

method are the same. However, we gain some additional insight which poses

some questions; what is the nature of the fixed point?. Is it a minimum or

a maximum of the net dissipation function?. What are the conditions which

guarantee that there is just one fixed point (a unique solution)?. Recall the fact

that any conventional solution must also be a fixed point in our method and

vice versa. Daily engineering practice (at least in the HVAC field) suggests that

there must be just a single fixed point (i.e. a unique solution). In other words,

there are no reports in the literature about networks switching back and forth

among different steady-states. In all cases found the fixed point is a minimum

of the network dissipation function.

Finally we would like to make some additional comments to this introduc-

tion. As Niven mentions in [10] :“. . . the term steady-state is something of a

misnomer, since it refers only to a constant mean flow . . . ”. Niven also pro-

poses deeper and interesting ideas about the use of the entropy concept. In

[11] he proposes the idea of maximising, not the thermodynamic entropy, but

3
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an information entropy of the system flows (flux entropy) for the analysis of

its steady-state. In the literature it is known as the the MaxEnt principle.

Niven deduces from it a relationship with the thermodynamic entropy gener-

ation. MaxEnt applied to the flux entropy would include, according to him,

other principles like; the MinEP (minimum entropy generation) and MaxEP

(maximum entropy generation) as particular cases.

We have tried to discover the usefulness of the method without going into

such details but it is referenced here for the interested reader.

1.1. Motivation

This short subsection adds extra content. It explains briefly what triggered

this research. It was motivated by some difficulties found mainly when design-

ing return duct-networks. The source of the difficulties came from branched

junctions. In return HVAC duct-networks, there exists the possibility of getting

negative head loss coefficients in the branched junctions (see the physical ex-

planation in [12]). The fact that the generated entropy or the energy dissipated

is always a positive quantity, stimulated this research.

The interaction between the branches of a junction is usually neglected in

networks with very long pipes/ducts but it is not the case for HVAC air duct-

networks.

Roughly stated the difficulty was the following. In order to find the operating

point of a net there exists a very common or popular method. It is based on

intersecting the fan curve with the network system characteristic curve. This

network curve is obtained, in turn, by compressing the network by using two

equivalent duct sections; one for sections arranged in series and another for

sections in Y (series+parallel). The method is, in fact, iterative since after an

operating point is estimated, the net must be decompressed to re-calculate both

the flows and the respective new hydraulic resistances. The expression of the

equivalent resistance, for the Y case, contains a square root of the hydraulic

resistances at the parallel branches. This square root along with a bad initial

guess during iteration and the possibility of achieving a negative head loss in
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branched junctions was the origin of the difficulties. This does not mean that

there is no solution. It does have one, however this negative head loss obliged

us to devise a special search algorithm.

The detailed explanation is deferred to another paper when dealing with

branched juctions. This paper is just a first step and focuses on exposing the

main new ideas.

Last but not least, despite the reason that triggered the research, the method

usefulness could be wider.

2. Analysis of losses in a conduit component in steady-state

The aim of this section is to relate the concept of loss to the entropy gener-

ation and to the energy dissipation.

The energy balance equation, in the steady-state, can be written as (see [13]

[14] or [15]):

ṁ

[(
u2 +

α2v̄
2
2

2
+ gz2

)
−
(
u1 +

α1v̄
2
1

2
+ gz1

)]
= Q̇12 − Ẇ12 (1)

with state variables on the left and action variables on the right (see figure

(1)) and α ≈ 1 for turbulent regime while in laminar regime α = 2 [17].

Upstream

channel volume

Conduit

Component

Downstream

channel volume

Environment

Friction

Figure 1: Fluid flow inside a conduit component.(Adapted from [16]).
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Dividing equaqtion (1) by ṁ, we get:

(u2 − u1) +
(α2v̄

2
2 − α1v̄

2
1)

2
+ g(z2 − z1) = q12 − (wsh,12 + wf,12) (2)

If the fluid flow is assumed to be incompressible then the internal energy u

changes because of two effects; the heat transfer q12 or the energy dissipation,

that is, the conversion of mechanical energy into internal energy. In order to

make such dissipation ”visible“, equation 2 can be split into two as (see [15]):

mechanical:
(α2v̄

2
2 − α1v̄

2
1)

2
+ g(z2 − z1) = −(wsh,12 + wf,12)− ϕ12 (3a)

thermal: (u2 − u1) = q12 + ϕ12 (3b)

or, using wf,12 = (p2/ρ2 − p1/ρ1) and ρ1 = ρ2 = ρ:

mechanical: (
p2
ρ
− p1

ρ
) +

(α2v̄
2
2 − α1v̄

2
1)

2
+ g(z2 − z1) = −wsh,12 − ϕ12 (4a)

thermal: (u2 − u1) = q12 + ϕ12 (4b)

The mechanical part (left side) is the well-known Bernouilli equation while

the right hand side contains a term like:

ϕ =
Φ̇

ṁ
(5)

which is the mechanical energy dissipation into internal energy per unit of

mass. If we assume that the flow is isothermal and at the same temperature

than the environment, i.e., T∞ = Tb = Tfluid, then it can be related to the

entropy generation (see [13]):

per unit mass: ϕ = T Ṡgen/ṁ = Tsgen

per unit of time: Φ̇ = T Ṡgen

(6)

In other words, it is assumed that the only/main source of entropy generation

is the conversion of mechanical energy into internal energy.
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In [18] Herwig proposed to relate the dissipation inside straight pipes to the

Darcy-Weisbach friction factor fD as:

ϕ12 = fD,12
L12

Dh︸ ︷︷ ︸
Kp

· v̄
2

2
(7)

or in differential form:

dϕ

dx
= fD

1

Dh

v̄2

2
(8)

For fully developed flow in horizontal pipes (z2 = z1), without changes in

kinetic energy (α2v̄
2
2 = α1v̄

2
1) and wsh = 0, equation (8) (using eq.(4a)) can be

written in terms of pressure p as:

fD =
dϕ

dx

2Dh

v̄2
= −dp

dx

2Dh

ρv̄2
=

8τw
ρv̄2

(9)

or after integrating it:

ϕ12 = fD,12
L12

Dh

v̄2

2
= −∆p12

ρ
=

∆p21
ρ

(10)

which corresponds, although written differently, with equation (3.12) in [2].

Therefore, for an incompressible isothermal flow at the same temperature as

the ambient ∆p21 = ϕ12 · ρ = T∞ · sgen · ρ = wlost · ρ, the measured pressure

drop is related to the mechanical energy dissipated into internal energy (heat)

per unit of volume and is proportional to the entropy generated and the exergy

(availability) lost.

For any other type of conduit element a similar definition to (7) is commonly

used (see [19]):

ϕ = Kϕ ·
v̄2

2
(11)

Finally, the analysis of the losses could be extended to other types of flows,

see for instance [20] and [19]. There, Herwig generalises the idea of a loss

coefficient by defining an exergy loss coefficient KE . For our purposes, the

hypotheses made are enough.
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3. Using the Minimum entropy generation principle for estimating

the steady-state flow distribution in a tree-shaped network.

The aim of this section is to discuss, under what conditions, the traditional

methods of pipe network analysis are equivalent to the use of the minimum

entropy production (MinEP) principle or according to our aforementioned hy-

potheses to the minimum energy dissipation. Such equivalence, hopefully, would

allow us to turn, the network analysis problem, into a minimisation problem.

Our concrete goal is to estimate what is the steady-state air flow distribution

in a tree-shaped duct network when its total input/output flow V̇T is pre-defined

or fixed (see figure (3)). Firstly, we review the conventional formulation and

secondly we will search for the conditions that guarantee that the MinEP is

equivalent to that formulation.

3.1. Traditional closed-form solutions

Conventionally, the closed-form solution to this problem is obtained based

on energy and mass balances (see [21] or a recent review [22]):

• Mechanical energy conservation. The energy must be conserved be-

tween any two points of the network. This fact can be stated in different

forms. Along any path from node A to B, the total specific energy dif-

ference must be equal. This specific energy can be measured in different

ways and accordingly receives different names. The specific mechanical

energy em per unit of fluid weight γ = gρ is named head H (see eq. 12).

A closed loop is any path that starts and ends at the same node A. The

energy change around any closed loop must be zero. Finally there is a

special loop named pseudo-loop. It is a path between two nodes A and B

of known specific energy levels such as two tanks or reservoirs (like a big

room in HVAC). In this case, the energy change must be equal to a fixed

known value (for instance expressed in head: HA−HB = constant). Note

that both nodes can be the same, in which case, the closed loop case is

recovered.
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The relationship between the mechanical energy per unit mass (em), per

unit of weight (head H) and per unit of volume (total pressure pT ) is:

em =
p

ρ
+
αv̄2

2
+ gz

H =
em
g

=
p

gρ
+
αv̄2

2g
+ z

pT = em · ρ = p+
ραv̄2

2
+ ρgz

(12)

Let us see exactly how this energy balance looks like in a loop. By as-

suming that in any section the shaft work wsh = 0, the energy balance

equation (4a), applied to the loop of figure (2) has the form shown in

equation (13).

1

2
3

4

5
6

Figure 2: Flow loop. Arrows indicate the assumed flow sense.

In words, it means that the sum of the mechanical energy losses within

the loop must be zero. Looking at figure (2), the losses from node 1 to

node 4 along the path 1− 2− 3− 4 must be equal to the losses along the

9
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other path 1− 6− 5− 4.

em,1 − em,2 = ϕ12

+em,2 − em,3 = ϕ23

+em,3 − em,4 = ϕ34

+em,4 − em,5 = −ϕ54

+em,5 − em,6 = −ϕ65

+em,6 − em,1 = −ϕ16

0 = ϕ12 + ϕ23 + ϕ34 − (ϕ54 + ϕ65 + ϕ16)

(13)

• Mass conservation or continuity. The sum of the ingoing mass flow

rates of a node must be equal to the sum of its outgoing mass flow rates.

The unknowns in the steady-state analysis are the flows V̇j in each j-section

and the specific energy at each junction node. Thus, in a system with nnode

junction nodes and nsect sections the number of unknowns is nnode+ nsect.

3.2. Minimisation of the dissipation

In this section it is deduced and proved, mathematically, under what con-

ditions the minimisation of the dissipated energy is equivalent to the previous

conventional method. Stated in another way, the minimisation of the energy

dissipated by the network will allow us to find how a given (forced) flow rate

V̇T at one section is distributed through an already sized duct-network. Notice

that the V̇T sense can be either an inlet (supply-network) or outlet flow (return-

network). The energy dissipated by any network can be obtained simply by

adding the dissipation at each j section as:

Φ̇ =

nsect∑
j=1

(ϕj · ρ) · V̇j (14)

10
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By choosing a certain fixed volume flow rate V̇T , the previous equation can

be expressed as:

Φ̇ = (ϕT · ρ) · V̇T =

nsect∑
j=1

(ϕj · ρ) · V̇j =

nsect∑
j=1

ϕ̂j · V̇j = ϕ̂T · V̇T (15)

where by ϕ̂ = ϕ · ρ the dissipation per unit of volume is meant. 1

If we divide by V̇T then:

F (ψ1, ψ2, . . . , ψnsect) =
Φ̇

V̇T
= ϕ̂T =

nsect∑
j=1

ϕ̂j · ψj (16)

The ψj = V̇j/V̇T are the volume flow rate ratios. They can be arranged in

vector form as ~ψ = (ψ1, ψ2, . . . , ψnsect)
T and represents the distribution of the

V̇T through the network.

Figure 3 shows a general tree-shaped network, typical of HVAC systems. It

can be either a supply or a return network (V̇T sense would be reversed). For a

supply network, point B represents the air at the room and therefore its kinetic

energy is assumed to be zero and point A is the fan outlet. Notice that in this

case ϕ̂T in equation (16), equals the total pressure difference between points A

and B:

ϕ̂T = ∆pT (17)

The flow ratio ψi at leaf i of the tree receives a special name: xi = V̇i/V̇T .

These have been chosen as the flows in the pseudo-loops because they are mean-

ingful in HVAC systems as they are the targeted or desired supply/return flows.

Recall that our aim is to discover the flow distribution through a given network

not its geometrical design, or in other words, how close are the actual flows from

these targeted flows. The flow ratio ψj at each j section can be expressed as

a function of these xi. They can be included inside equation (16) by noticing

1Notice that for the case of a horizontal pipe ϕ̂ = ∆p, i.e., equals the pressure drop
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L1 L2 L3 L4 L5

S1

S2

S3

S4

S5

nsect

S6

S7

S8

A B

Figure 3: General tree-shaped duct network with 5 levels and nsect sections. (Dotted lines

represent pseudo-loops.)

that the dependency of ψj on xi is simply (see equation (18)).

ψj =
∑

if leaf i is downstream j

xi (18)

Notice that not all the xi are independent since one flow rate V̇T is enforced

and the mass conservation constraint must be fulfilled. Therefore if an xi is

arbitrarily chosen (xn, for instance) then the following equation holds;

xn = 1−
n−1∑
i=1

xi (19)

Thus the components of the vector ~x = (x1, x2, . . . , xn−1)T are actually the

independent variables.

Summarizing, a general mapping g can be defined from an independent set

of flow ratios ~x to the flow at the sections ~ψ, as:

g : ~x ∈ Rn−1 → ~ψ ∈ Rnsect (20)

which allows us to rewrite equation (16), by using the map composition with

12
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g, as:

(F ◦ g)(x1, x2, . . . , xn−1) =

nsect∑
j=1

ϕ̂j · ψj(~x) (21)

In concrete for a tree-shaped network the g map can be written as:

~ψ(~x) : ~ψnsect×1 = [M ]nsect×n ·
(
[v1]n×1 + [B]n×(n−1) · ~x(n−1)×1

)
(22)

How to construct the matrices [M ], [v1] and [B] is best illustrated, in what

follows, by using the example network of figure (4). Each row of matrix [M ]

represents the equation (18), its entries are just 0 and 1, therefore for this

example:

[M ] =



1 1 1 1

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(23)

The term between brackets in equation (22) maps ~x to (x1, x2, . . . , xn), therefore

the last row is equal to equation (19). For this example:

[v1] + [B] · ~x =


0

0

0

1

+


1 0 0

0 1 0

0 0 1

−1 −1 −1

 ·

x1

x2

x3

 (24)

Since we look for the conditions that minimise the equation (21) we need to

evaluate its first and second derivatives.

The derivative Dg ≡ [ψ′] (Jacobian) of the flow distribution vector ~ψ(~x) with

respect to the ~x can be obtained easily. A mnemonic rule can be devised. Take

[M ]T select the row of the xi previously selected to be removed (xn in our case),

multiply it by −1 and add that row to the others. Finally remove it (row n in

our case) from the matrix.
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Figure 4: Example of a tree-shaped duct network (nsect = 7).

The result is [ψ′]T . In the case of the example (see figure (4)) the matrix is:

[ψ′]T =


∂ψ1

∂x1

∂ψ2

∂x1

∂ψ3

∂x1

∂ψ4

∂x1

∂ψ5

∂x1

∂ψ6

∂x1

∂ψ7

∂x1

∂ψ1

∂x2

∂ψ2

∂x2

∂ψ3

∂x2

∂ψ4

∂x2

∂ψ5

∂x2

∂ψ6

∂x2

∂ψ7

∂x2

∂ψ1

∂x3

∂ψ2

∂x3

∂ψ3

∂x3

∂ψ4

∂x3

∂ψ5

∂x3

∂ψ6

∂x3

∂ψ7

∂x3

 =


0 1 −1 1 0 0 −1

0 1 −1 0 1 0 −1

0 0 0 0 0 1 −1


(25)

If the vectors are arranged in column form, the stationarity condition of the

energy dissipation (see equation (21)) implies that:

DF (~ψ(~x)) = D(F ◦ g) = D




ϕ̂1

ϕ̂2

. . .

ϕ̂nsect



T

·


ψ1

ψ2

. . .

ψnsect



 = ~0 (26)

The total derivative of the dissipation function with respect to ~x gives:


0

0

. . .

0

 =


∂ϕ̂1

∂x1

∂ϕ̂2

∂x1
. . . ∂ϕ̂nduct

∂x1

∂ϕ̂1

∂x2

∂ϕ̂2

∂x2
. . . ∂ϕ̂nduct

∂x2

. . . . . . . . .

∂ϕ̂1

∂xn−1

∂ϕ̂2

∂xn−1
. . . ∂ϕ̂nduct

∂xn−1

 ·


ψ1

ψ2

. . .

ψnduct

+ [ψ′]T ·


ϕ̂1

ϕ̂2

. . .

ϕ̂nduct

 (27)
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However, as it will be clear afterwards, it is much more useful to use the

mapping g (see equation (20)) and to apply the chain rule (see [23]):

D(F ◦ g) = (DF ◦ g) · Dg (28)

and therefore equation (27) can be written as:

D(F ◦ g)T =


0

0

. . .

0

 =

= [ψ′]T ·




∂ϕ̂1

∂ψ1

∂ϕ̂2

∂ψ1
. . . ∂ϕ̂nduct

∂ψ1

∂ϕ̂1

∂ψ2

∂ϕ̂2

∂ψ2
. . . ∂ϕ̂nduct

∂ψ2

. . . . . . . . .

∂ϕ̂1

∂ψnduct

∂ϕ̂2

∂ψnduct
. . . ∂ϕ̂nduct

∂ψnduct

 ·


ψ1

ψ2

. . .

ψnduct

+ [Id] ·


ϕ̂1

ϕ̂2

. . .

ϕ̂nduct




(29)

where by [Id] we mean an identity matrix. The second derivative (Hessian)

applying the chain rule, as well, is (see [23]):

D2(F ◦ g) = D (DF ◦ g)Dg) =

= (D(DF ◦ g))Dg + (DF ◦ g)D2g =

=
(
D2F ◦ g

)
Dg)Dg + (DF ◦ g)D2g

(30)

In our case D2g = 0. Therefore:

D2(F ◦ g)T = [ψ′]T ·


∂2F
∂ψ2

1

∂2F
∂ψ1∂ψ2

. . . ∂2F
∂ψ1∂ψnsect

∂2F
∂ψ2∂ψ1

∂2F
∂ψ2

2
. . . ∂2F

∂ψ2∂ψnsect

. . . . . . . . . . . .

∂2F
∂ψnsect∂ψ1

. . . . . . ∂2F
∂ψ2

nsect

 · [ψ
′] (31)

Equations (29) and (31) are the general first and second derivatives of the

energy dissipation of the network.
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In what follows it is assumed that:

ϕ̂j = ϕ̂j(ψj) (32)

, i.e., the specific dissipation (pressure loss) in a network section is just a

function of the flow through that section ψj . As it will be shown in another

article, this is not an obstacle when dealing with branched junctions. This

implies that the matrix [∂ϕ̂j/∂ψk] in equation (29) is a diagonal matrix, i.e., an

entry is zero if j 6= k.

Looking at the i component of equation (29) (the stationarity condition of

the dissipation) the physical meaning of the previous equations can be clarified.

Due to the presence of [ψ′]T we can split the addends into positive and negative.

If by {j, Y (xi), N(xn)} it is meant that the flow ψj at duct-section j is influenced

by the flow xi but no by xn ( the flow removed from the equations previously),

and vice versa, then the terms can be grouped as follows:

∂F

∂xi
=

∑
j,Y (xi),N(xn)

(
ψj ·

∂ϕ̂j
∂ψj

+ ϕ̂j

)
−

∑
j,N(xi),Y (xn)

(
ψj ·

∂ϕ̂j
∂ψj

+ ϕ̂j

)
= 0

i ∈ {1, . . . , n− 1}

(33)

Figure 5 shows graphically the meaning of each component of equations

(29) or (33). They are making balances of the terms between brackets over the

pseudo-loops which start and end at the same reservoir (the room). Therefore

an obvious question arises; when equation (33), that represents the stationar-

ity condition of the dissipation, is equivalent to the energy balance?, i.e., an

equation like (13).

It seems obvious that by assuming the following relationship:

ψj ·
∂ϕ̂j
∂ψj

= m · ϕ̂j (34)

where m ∈ R is a constant, we can take out ϕ̂j as common factor in equation

(33) and by dividing by (m+ 1) we would get an equation like (13).
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Positive

Negative

Figure 5: Visualization of the gradient ∇F for the example network of figure 4.

The previous hypothesis (34) leads to:

dϕ̂j
ϕ̂j

= m · dψj
ψj

ln(ϕ̂j) = m · ln(ψj) + ln(K̂j) = ln(K̂j · ψm)

ϕ̂j = K̂j · ψmj

(35)

Taking into account the sense of the flows and the equation (35)2 , the

dissipation function (16) can be rewritten as:

F (ψ1, . . . , ψnsect) = ϕ̂T =

nsect∑
j=1

K̂j · |ψj |m−1 · ψj · ψj =

nsect∑
j=1

K̂j · |ψj |m+1 > 0

(36)

The dissipation power-law3 in equation (35) was, to our knowledge, first

discovered by Niven [10]. Note that K̂j is a positive constant, related to the head

loss coefficient so we call it simply, loss coefficient. By substituting equation

2to take into account, implicitly, the sense of the flow, it is written as ϕ̂j = K̂j ·|ψj |m−1 ·ψj .
3 For a horizontal duct/pipe equation (35) is more easily recognized as ∆pj = K̂j · V̇mj , as

appeared in Niven [10]
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(35) into equation 33, we can check that the stationarity (extremum) of the

network dissipation implies the energy conservation of the conventional closed-

form solution:

∑
j,Y (xi),N(xn)

(
ψjm ·Kj · ψm−1j + ϕ̂j

)
−

∑
j,N(xi),Y (xn)

(
ψjm ·Kj · ψm−1j + ϕ̂j

)
= 0,

∑
j,Y (xi),N(xn)

(
m ·Kj · ψmj + ϕ̂j

)
−

∑
j,N(xi),Y (xn)

(
m ·Kj · ψmj + ϕ̂j

)
= 0,

(m+ 1) ·

 ∑
j,Y (xi),N(xn)

ϕ̂j −
∑

j,N(xi),Y (xn)

ϕ̂j

 = 0

i ∈ {1, . . . , n− 1}

(37)

Equation (37) is just equal to equation (13) written for the pseudo-loop i.

Therefore, if we assume that the equation (34) is true and since the energy

conservation must be fulfilled at the steady-state solution at every loop, then

the dissipation function (21) has a stationary point at same point ~x∗ as the

traditional solution using the closed-form solution of flow network analysis.

Moreover, in order to see that the stationary point of F is a minimum, the

second derivative (Hessian, see equation (31)) of F must lead to a definite

positive bilinear form. The matrix [∂2F/∂ψj∂ψk] in equation (31) is a diagonal

matrix. Any diagonal element has the form:

∂2F

∂ψ2
j

=
∂2ϕ̂j
∂ψ2

j

· ψj + 2 · ∂ϕ̂j
∂ψj

(38)
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If equation 38 is positive, we can build a matrix like:

[
√
D2F ] =

=



√
∂2ϕ̂1

∂ψ2
1
· ψ1 + 2 · ∂ϕ̂1

∂ψ1
0 . . . 0

0
√

∂2ϕ̂2

∂ψ2
2
· ψ2 + 2 · ∂ϕ̂2

∂ψ2
. . . 0

. . . . . . . . . . . .

0 0 . . .
√

∂2ϕ̂nduct

∂ψ2
nduct

· ψnduct + 2 · ∂ϕ̂nduct

∂ψnduct


(39)

and then the equation (31) can be expressed as:

D2(F ◦ g) =

[ψ′]T · [
√
D2F ] · [

√
D2F ] · [ψ′] =

[R]T · [R]

(40)

where [R] is a rectangular matrix. There is a well known theorem which says

: “ A matrix A is positive definite if and only if it can be written as A = RT ·R

for some possibly rectangular matrix R with independent columns.” It is easy

to prove since: xT · A · x = xTRTRx = (Rx)T · (Rx) = ||Rx||2 > 0. Besides,

since the columns are independent, Rx 6= 0 if x 6= 0.

Let us see that equation (40) complies this theorem and therefore the sta-

tionary point is a minimum. On one hand, the columns of [ψ′] are independent

since they represent independent loops of the tree-shaped network. On the

other, the condition on equation (38) taking into account equation 35, leads

after some algebra (see annex A) to the equation:

∂2F

∂ψ2
j

= m(m+ 1) · K̂j · |ψj |m−1 > 0 (41)

Equation (41) is fulfilled whenever the exponent m /∈ [−1, 0]. This result

was already obtained by Niven [10] but only for parallel pipes.

In summary, to achieve that the stationary point ~x∗ of the dissipation (21)

was equivalent to the energy conservation in the network, the following is needed:
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• Power-law for the dissipation (equation (35)) at each j section.

• K̂j the loss coefficient of the j section must be positive.

• The exponent m ∈ {R− [−1, 0]}, although it is indeterminate, it must be,

-in general-, the same for all the network.

These are the outcomes of a pure mathematical reasoning. Some questions

arise: what should the actual value of the exponent m be?, what is the under-

lying physical meaning of K̂j , moreover are they really constant?, if not, what

does it mean?. Next §4 and its subsections try to answer these questions. The

discussion is based on the energy dissipation by the simplest and well-studied

network element: the straight pipe/duct.

4. The loss as a power-law in networks.

In the previous §3 it was concluded that the dissipation law, i.e., the con-

version of mechanical energy into internal energy as a function of the flow rate

must follow a power-law (see equation (35)). The loss coefficients K̂ must be

positive real numbers. The well-known book from Idelchik [24] gathers the

head loss coefficients of many fittings and branched junctions. In particular,

according to Idelchik, for the case of branched junctions these values can be

negative (mainly in the converging cases -return networks-). However, in this

case the correct name should be head change not head loss. In [12] B. Schmandt

and H. Herwig using CFD made a clear discussion about why these coefficients

might attain a negative value. Roughly, the reason relies in the fact that by

its traditional definition they include a diffusive exchange of mechanical energy

between the junction branches which might overcome the dissipative effect in a

branch. Notice, nevertheless, that the branched junction as a whole dissipates

mechanical energy. The discussion about how to incorporate these junctions

in the MinEP method to estimate the steady-state flow distribution deserves

a separated paper and will be delayed. A hint about the solution relies in the

redefinition of the so called loss coefficients for junctions. Schmandt’s paper
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shows that branched junctions are also dissipative structures, in which a proper

loss coefficient Kϕ > 0 can be defined.

In short, for branched junctions (we insist, mainly in converging ones) it is

possible for the pressure drop in a branch to be positive or negative (see [24] and

for an explanation [12] ). However, the branched junction, taken as a whole, is

a sub-system whose energy dissipation is always positive.

Therefore here, we will focus on systems made up of conduit elements with

two-ports and the dissipation at the branched elements will be neglected. This

will serve to expose the main fundamental ideas.

First, we make a review of recent advances about the losses occurring in

straight pipes (smooth and rough). This will allow us to link the K̂j and the

exponent m with the physics.

We will show how to apply the theory to a network system made up of smooth

pipes. In this case the outcomes from §3 can be applied in a straightforward way.

However for networks composed by rough pipes the solution needs a fixed-point

iteration since the K̂j cannot be kept constant . Finally a discussion follows

about the chosen value of the exponent m and about how to incorporate the

fittings or minor losses.

4.1. Straight pipe/ducts network systems

Let us assume that the only dissipative elements are straight ducts (or pipes).

The Darcy friction factor fD, in pipes has been extensively studied. Although,

unfortunately, it still remains more to be done to fully understand the turbulence

phenomenon [25].

The fD factor is commonly defined by:

∆p = fD ·
L

Dh
· ρv̄

2

2
(42)

This friction factor is traditionally represented in what is known as Moody’s

diagram [26]. Mc Govern [27] recently published a report with the most recent

advances about this Moody’s diagram (see figure (6)). In concrete, he prepared

variants that include not only monotonic roughness curves, but also inflectional
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roughness curves. The roughness ε (named ks in the specialised literature) that

appears in this chart is the equivalent Nikuradse’s sand roughness [28] (see [18]

[29] [30]). Nikuradse made experiments with pipes coated inside with sand of a

certain regular grain-size ε (in other words, densely packed spheres of diameter

ε). The equivalence between Nikuradse’s roughness and the actual pipe is done

experimentally at the complete turbulent zone.

In 2008, [18] Herwig et al. made an insightful paper. Here we summarized

some of their findings which are important to understand what follows. They

showed that equation (42) is valid for horizontal fully developed flows and that

it can be generalised for the dissipation ϕ̂ as:

ϕ̂ = fD ·
L

Dh
· ρv̄

2

2
(43)

The friction factor in the turbulent region has three different behaviours; the

smooth pipe curve, the transition region and the fully/complete turbulent zone.

This different behaviour is related to the physical phenomena occurring at the

boundary layer.

A smooth pipe is supposed to have no roughness ε = 0 and the friction

factor always decreases with the Reynolds number Re. It can be argued that

the friction is controlled by a viscous sub-layer close to the pipe wall.

On the contrary at the transition region the behaviour is very different ac-

cording to the type of roughness. The original Moody’s chart was done for

commercial pipes whose roughness is completely random or irregular. This cor-

responds to the monotonic curves at the transition zone. Therefore the friction

factor is a monotonically decreasing curve that departs from the smooth-pipe

curve at some point and reaches a value independent of the Reynolds number

in the complete turbulent zone. However if the roughness has a regular pattern

(Herwig studied T, Q and S-types) then the new inflectional curves appear. In

other words, fD departs from the smooth-pipe curve but its behaviour is not

monotonical at the transition region. An extreme case is that of Nikuradse ex-

periments with the sand coated pipes (not shown in figure (6)). Nikuradse did
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Figure 6: (source [27])Diagram of friction factor for pipe flow, including sample inflectional

roughness curves.
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not found a smooth transition zone, but a jump from the smooth-pipe curve to

the fully turbulent region.

Regular roughness

smooth-pipe

Irregular roughness

Reynolds number

Sand roughness

Moderate Reynolds High Reynolds

Figure 7: (Adapted from [18]):Decreasing height of the viscous sub-layer with increasing

Reynolds numbers and the intrusion of sand, regular and irregular roughnesses into it (dashed

line: edge of the viscous sublayer)

Figure (7) is a modified version of a figure appearing in [18]. Although the

full discussion of the wall roughness effects is hard and out of the scope of the

paper, that figure serves to grasp the main current ideas which try to explain

the behaviour of fD (for more details see for instance [31]). Figure shows that

the core of the flow is not aware of the roughness until a high enough Reynolds

number is reached. In the case when the roughness is regular (according to

Jimenez [31]), it seems that there are two contraposing effects; it creates an

extra form or pressure drag, which increases the skin-friction and weakens the

viscous generation cycle which decreases it. At high Reynolds the form drag

dominates. This creates the inflectional-type curves at the transition. Jimenez

also points out that already Colebrook in 1939 suggested that for irregular

roughness these effects are built up gradually since ”each roughness element”

becomes active individually at some Reynolds. This would give a monotonically

curve in the transition zone. However, for a completely smooth-pipe the physical
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mechanism for energy dissipation does not change with the Reynolds.

Summarizing for rough pipes, it could be said that from the point of view

of the flow, the pipe is not always the same object. At moderate Reynolds

the flow ”sees” a smooth-pipe but at some Reynolds it becomes aware of the

actual geometrical roughness either suddenly or gradually, and thus it is as if

the pipe-object was changed.

Therefore it seems that there is a roughness scale which changes with the

Reynolds number. In 2007 Noor Afzal [32] proposed an interesting idea. He

defined a roughness scale φ, which after using the parameters appearing also in

[32], can be rewritten as:

φ = 1 + 0.306 · ε
D
·ReD ·

√
fD
8
· exp

[
−
(
j̃

1

(ε/D) ·ReD

√
8

fD

)]
(44)

where j̃ is a free parameter. For j̃ = 0 the monotonical transition zone

is obtained while for j̃ 6= 0 an inflectional zone is modelled. Afzal suggests,

based on experimental data to use j̃ = 11. Note also, that the smooth-pipe case

(ε = 0) is equivalent to φ = 1.

Moreover Afzal defines the roughness Reynolds number Reφ as:

Reφ =
ReD
φ

(45)

This allows him to propose, in his own words, a universal relation (equation

(25b) in [32]):

1√
fD

= 2 · log10

(
Reφ ·

√
fD

)
− 0.8 (46)

When φ (eq. 44) is used in eq. (46) the following equation is obtained:

1√
fD

= −2 · log10

[
2.51

ReD
√
fD

+
1

3.7(D/ε)
· exp

(
−j̃ · 2.83

ReD
√
fD(ε/D)

)]
(47)

Precisely equation (47) was used by Mc Govern in [27] to obtain the diagram

of figure (6).

25



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

The reason why Afzal calls equation (46) a universal relation is because

figure (6) is transformed just into the curve shown in figure (8).

0.01

0.02

0.03

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1x10
6

Universal relation

Figure 8: Universal relation (equation 46 solid-line) and a power-law fit (48) (dotted line)

using Reφ ∈ [15000, 600000].

Observe that the x-axis is Reφ and that for a smooth-pipe Reφ = ReD.

Equation (46) can be fit very accurately to a power-law as:

fD = Kfit ·Re
mfit

φ = Kfit ·
(
ReD
φ

)mfit

=

(
Kfit

φmfit

)
·Remfit

D (48)

For air duct systems in HVAC ReD ∈ [15000, 600000]. Making the regres-

sion analysis to fit the power-law (48) inside that range, the following values are

obtained: Kfit = 0.1847979768, mfit = −0.2017240066 (R − squared = 0.998,

standard error Serr = 0, 00735475 and the maximum and minimum relative er-

rors are 0.82% and −3.18% respectively for that ReD range). The range is high-

lighted in figure (8) and shows the very good fit. The values change slightly with

the range of ReD taken. For instance, for a big range like ReD ∈ [15000, 107]

the regression results are; Kfit = 0.1326376858, mfit = −0.1751199428 (R −

squared = 0.994, standard error Serr = 0.0184 and maximum and minimum
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relative errors are 1.38% and −9.56%.

Therefore equation (43) assuming v̄ · (πD)/4 = V̇ , can be written as:

ϕ̂ =
Kfit

φmfit
·
(

4

ν · π ·D

)mfit

·
(

8ρL

π2 ·D5

)
· |V̇ |(1+mfit) · V̇ (49)

or in non-dimensional form as:

ϕ̂ =
Kfit

φmfit
·
(

4

ν · π ·D

)mfit

·
(

8ρL

π2 ·D5

)
· V̇ (2+mfit)

T · |ψ|(1+mfit) · ψ (50)

In other words, for horizontal smooth-pipes using mfit = −0.2017240066,

equation (50) means that the pressure drop ∆p = ϕ̂ is proportional to the

volume flow rate to the m = 1.798 ( while the Blassius correlation would give

m = 1.75). In [33] Cory suggests an exponent value in the range between 1.7

and 1.9 in the transition flow and 2 in the fully turbulent zone.

Finally from equation (50) the loss coefficient of a straight duct/pipe has

the form:

K̂ =
Kfit

φmfit
·
(

4

ν · π ·D

)mfit

·
(

8ρL

π2 ·D5

)
· V̇ (2+mfit)

T (51)

This equation allow us to link K̂ to the physics for the case of straight

pipes/ducts.

4.2. Straight smooth-pipe network system

Let us assume that our network is made up of straight smooth pipes/ducts,

without any fittings like elbows, reductions and as aforementioned, the effect

of branched junctions is negligible. In order to simplify things, in each section

there is only one pipe of a certain size.

According to §3, the algorithms 1 and 2 are enough to solve for the steady-

state flow distribution through the network in just one minimisation step. Note

that in this case for any j-section, the roughness scale φj = 1 and therefore the

loss coefficient K̂j (eq. (51)) does not depend on the section flow rate ψj . In

other words, for a given geometry, the K̂j is constant.
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Algorithm 1 Dissipation function

Parameters:
~̂
K, mfit

1: procedure F (~x;
~̂
K,mfit)

2: ~ψ ← g(~x) . eq. (22)

3: return F (~ψ;
~̂
K,mfit) . eq. (36)

4: end procedure

Algorithm 2 Dissipation minimisation

Parameters: V̇T ,
~̂
K, mfit.

1: procedure Minimise-F (~x0;V̇T ,
~̂
K, mfit) . initial value

2: Compute the K̂j for each j

3: ~xsol ← Minimise~xF (~x0;
~̂
K,mfit)

4: return ~xsol . Solution

5: end procedure

4.3. Straight rough pipe network system

According to the discussion in §§4.1 for rough pipes the roughness scale

φ 6= 1. This means that the loss coefficients K̂ are, additionally, a function of

the flow rate. Note that the dissipation function (36) contains all the physics

inside the loss coefficient vector
~̂
K. Therefore the function is not explicitly aware

about the physical mechanisms by which a certain
~̂
K is obtained. In some sense

each K̂ is like a black-box. Some variables like pipe length L or the diameter

D can be used as ”external” controls to modify the K̂ value. However, the

roughness scale φ seems to act as an ”internal” control - not directly accessible

- which modifies the actual pipe that the flow “sees‘”. Moreover, it can modify

the balance among the physical dissipation mechanisms as in the case of the

inflectional transition zone. As shown in §4.1, this does not happen in smooth

pipes and a certain mfit (and Kfit) can be found, that renders K̂ independent

of the flow rate.

Therefore for rough pipes we need to search for the correct K̂ that is “com-

patible”, “coherent” or that “matches” the roughness scale φ imposed by the
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obtained flow rate from the minimisation step.

Algorithm 3 Fixed point search

Parameters: V̇T , mfit

1: procedure FPS(~x0;V̇T , mfit) . Initial value

2: ~ψ0 ← g(~x0)

3:
~̂
K ← Compute K̂j for each j

4: count← 0 ; norm← 1

5: while norm > 10−9 or count > 100 do

6: ∆
~̂
K ← ~̂

K . Store in ∆
~̂
K the current

~̂
K

7: ~xsol ← Minimise~xF (~x0;
~̂
K,mfit)

8: ~x0 ← ~xsol . Update initial value

9: ~ψ0 ← g(~x0)

10:
~̂
K ← Compute K̂j for each j . New K̂j values

11: ∆
~̂
K ← ∆

~̂
K − ~̂

K . Compute the change in
~̂
K

12: norm← ||∆ ~̂
K||2

13: count← count+ 1

14: end while

15: return ~xsol . Steady state solution

16: end procedure

Algorithm (3) is a simple implementation of such search. It uses the two

previous algorithms. The minimisation step (2) is inside the while loop. The

difference is that now K̂j depends on the roughness scale φj which in turn de-

pends on the flow rate ψj obtained at section j. There is an implicit dependency

in φ (see equations (44) and (47)). Therefore the roughness scale is cleared from

equation (48) after solving for fD, as:

φ =

(
Kfit

fD

)1/mfit

·ReD (52)

and used for the computation of K̂j using equation (51). Note that the φ in

equation (52) depends on {ReD, ε,D, j̃}.
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Algorithm 4 Fixed Point function

Parameters: ~x0,mfit

1: procedure FPF(
~̂
K;~x0,mfit)

2: ~xsol ← Minimise~xF (~x0;
~̂
K,mfit)

3: ~x0 ← ~xsol . Update initial value

4: ~ψ0 ← g(~x0)

5:
~̂
K ← Compute K̂j for each j . New K̂j values

6: return
~̂
K

7: end procedure

In fact, Algorithm (3) can be viewed as a fixed point function search, since

it is a map from
~̂
K ∈ Rnsect+ (i.e. with positive coordinates) to itself. The fixed

point function could be defined as FPF (
~̂
K) in Algorithm (4). Once the correct

fixed point FPF (
~̂
K∗) =

~̂
K∗ is obtained, that is, the one that is compatible with

the flows obtained at the minimisation step, then this is the correct distribution

of the flow through the network. Therefore finding one implies finding the other.

4.4. About the role of the exponent m of the power-law (eq.(35))

As mentioned in §3 the exponent m must be the same for the whole network.

In §§4.1 it was shown that the Afzal’s universal relation allows to chose a certain

mfit for straight pipes. However the pressure loss in fittings (elbows, reductions,

etc.) normally is given as a function of v̄2.

The selected m does not make a real difference. In other words, once an

exponent m is chosen for all the elements of the network, it is possible to apply

the Algorithm (3) and the solution will be the same regardless of the m value.

Obviously, there are differences. Changing m, requires a reformulation of the

loss coefficients and the number of iterations to get to the solution, might be

different.

Let us assume that Afzal’s universal relation is not used. This is equivalent

to set mfit = 0 and Kfit = fD, that is, the specific dissipation (pressure loss)

now is proportional to the square of the flow rate ψ (i.e., m = 2 instead of
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m = 1.798).

ϕ̂ = fD ·
(

8ρL

π2 ·D5

)
· V̇ 2

T · |ψ| · ψ (53)

Now the loss coefficient is written as:

K̂ = fD ·
(

8ρL

π2 ·D5

)
· V̇ 2

T (54)

Equation (54) means that now even for the case of smooth-pipes the K̂j

depends on the flow rate ψj . Therefore for a network composed only of straight

smooth-pipes, Algorithm (2) is not enough and Algorithm (3) must be employed

instead. It could be said that a pure minimisation problem has been transformed

into an equivalent fixed point one. Anyhow the flow distribution at the steady-

state will be the same.

4.5. Fittings

The dissipation (pressure loss in fittings) has the form:

ϕ̂ = Cfitting ·
ρv̄2

2
(55)

Using the volume flow rate it can be rewritten as:

ϕ̂ = Cfitting ·
8ρ

π2D4
· V̇ 2

T · |ψ|ψ (56)

This corresponds to the case m = 2 and the loss coefficient is given in this

case by:

K̂fitting,2 = Cfitting ·
8ρ

π2D4
· V̇ 2

T (57)

If other exponent is chosen, by using, for instance, the fit to the Afzal’s

31



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

relation (i.e., using mfit) then the expression is:

ϕ̂ = Cfitting ·
8ρ

π2D4
· V̇ 2

T ·
1

|ψ|mfit
· |ψ| · ψ · |ψ|mfit

ϕ̂ = Cfitting ·
8ρ

π2D4
· V̇ 2

T ·
1

|ψ|mfit
· |ψ|(1+mfit) · ψ

ϕ̂ = Cfitting ·
8ρ

π2D4
· V̇ (2+mfit)

T · 1

|ψ|mfit · V̇ mfit

T

· |ψ|(1+mfit) · ψ

(58)

and the loss coefficient is written as:

K̂fitting,mfit
= Cfitting ·

8ρ

π2D4
· 1

|ψ|mfit · V̇ mfit

T

· V̇ (2+mfit)
T (59)

5. Examples

This section is dedicated to illustrate what has been said in the previous

sections with some exercises.

The example networks are shown in figure (9) and their parameters can be

found in table (1). The three following cases have been solved:

• Network system made up exclusively of straight tubes; smooth and rough.

• Network with fittings using mfit.

• Network with fittings using m = 2.

The air properties are evaluated at Tdb = 20[◦C] and humidity ratio W =

0.008[kgH2O/kgda]; ρ = 1.20657[kg/m3], ν = 1.49389 · 10−5[m2/s]. The mean

velocity imposed at section 1 is v̄1 = 7[ms−1], or according to the diameter

at that section V̇T = 1.9792[m3s−1]. For the minimisation (Algorithm (2))

we have used the Nelder-Mead algorithm (with a tolerance in the search space

of 10−9). This algorithm does not require to evaluate the derivatives of the

objective function. In practice a more specific method could be employed.
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S1

S2

S3

S4

S5

S1

S3

S4

S5

S2

(A)

(B)

Figure 9: Example networks. (A) without fittings only straight ducts.(B) With fittings, one

elbow and diffusers.The values are collected in table (1)

5.1. Straight ducts network (smooth and rough)

We start by the simplest case; only straight smooth ducts . First let assume

that the tubes are smooth and that the the Afzal’s universal relation has been

fit between the Reynolds range [15000, 600000] (see §§4.1). In this case it suffices

to use Algorithm (2) and mfit = −0.2017240066 (m = 1.798). The initial state

value is taken x1 = 0.5 and x2 = 0.4 and the solution is x1 = ψ4 = x2 = ψ5 =

0.3549206. The total pressure loss is ∆pT = 12.7246[Pa] and the dissipated

mechanical power is ϕ̂T · V̇T = 25.18[W ].

If we add roughness to the ducts then we must use Algorithm (3). As was

said, the m value chosen for the potential-law for the whole network is an open

question. We have used both the one obtained by the fit to the Afzal’s universal

relation (as was done for the smooth case mfit = −0.2017240066 (m = 1.798))

and also with m = 2. The solution in both cases is exactly the same ( therefore
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Section L[m] D[m] εsmooth εrough Cfitting

S1 10 0.6 0 0.14 0.00

S2 5 0.5 0 0.14 0.22

S3 10 0.4 0 0.14 1.00

S4 1 0.4 0 0.14 1.00

S5 1 0.4 0 0.14 1.00

Table 1: Parameters of the example duct network of figure (9). The roughness value corre-

sponds to galvanized steel.

Section K̂[Jm−3] ≡ [Pa] V̇ [m3s−1] Re v̄[ms−1]

S1 7.2457696 1.979200 281146 7.00

S2 8.6893641 1.404920 239483 7.15

S3 50.701286 0.574283 122365 4.57

S4 5.0701286 0.702460 149677 5.59

S5 5.0701286 0.702460 149677 5.59

Table 2: Example duct network: smooth ducts. figure (9 (A)) steady-state solution using

mfit.
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Section K̂mfit
[Jm−3] K̂2[Jm−3] V̇ [m3s−1] Re v̄[ms−1]

S1 85.524209 85.524209 1.979200 281146 7.00

S2 113.92824 121.96710 1.411560 240614 7.20

S3 693.42272 892.10513 0.567644 120951 4.52

S4 72.451495 89.203863 0.705780 150384 5.62

S5 72.451495 89.203863 0.705780 150384 5.62

Table 3: Example duct network: rough ducts without fittings. Figure (9) (A) steady-state

solution -fixed point- using either mfit (K̂mfit ) or m = 2 (K̂2) .

only one set of values is shown). The difference relies on the amount of iterations

needed to find the fixed point. The initial value is always the same as in the

smooth case. Using mfit Algorithm (3) takes 7 iterations while using m = 2

takes 9. The solution is : x1 = x2 = 0.3565978. The total pressure loss is

∆pT = 158.906[Pa] and the dissipated mechanical power is ϕ̂T · V̇T = 314.5[W ]

5.2. Network made up of rough straight ducts and fittings

This case corresponds to figure (9) case (B). In this case Algorithm (3)

must also be employed. It has been solved as for the case of rough ducts, for

two different values of m. In the case of using mfit the number of iterations

was 10 while for m = 2, it was 5. The steady-state flows are exactly the same:

x1 = x2 = 0.3489582. The total pressure loss is ∆pT = 180.6[Pa] and the

dissipated mechanical power ϕ̂T · V̇T = 357.4[W ].

5.3. Visualization of the fixed point iteration

Figure (10) serves to illustrate the Algorithm (3). The z-axis represents

the dissipation (eq. (21)) as a function of the independent flow rate vector ~x

(x, y-plane) for the example network shown in figure (9 (B)). The surfaces have

been computed by giving values to x1 ∈ [0, 1] and x2 ∈ [0, 1] and x1 + x2 ≤ 1.

For a given pair (x1, x2) the flow rate ψj at every section is known and then

each K̂j can be computed. If the Reynolds number is below a threshold then
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Section K̂mfit
[Jm−3] K̂2[Jm−3] V̇ [m3s−1] Re v̄[ms−1]

S1 85.524209 85.524209 1.979200 281146 7.00

S2 125.97395 135.45323 1.381320 235459 7.04

S3 818.25506 1041.7404 0.597885 127394 4.76

S4 193.15424 238.85692 0.690659 147162 5.49

S5 193.15424 238.85692 0.690659 147162 5.49

Table 4: Example duct network: rough ducts with fittings, figure (9) (B) steady-state solution

using either mfit (K̂mfit ) or m = 2 (K̂2) .

a laminar regime is assumed and the friction factor is computed with the well-

known expression:

fD =
64

ReD
(60)

Following the interesting discussion of Martyushev [34], we have chosen to

used the following relationship for the critical Reynolds ReD,c for the laminar-

turbulent transition:

ReD,c =

(
64

Kfit

)(1/(mfit+1))

(61)

In our case the fit in the range Re ∈ [15000, 6 · 105] leads to ReD,c = 1518.

According to Martyushev, normally the transition is assumed to happen at

ReD,c = 2300, but this depends on the disturbances on the flow. The previous

value would represent a lower bound for ReD,c.

Finally the dissipation of the network is obtained by using equation (36).

On one hand, if the system consists only of smooth straight ducts and the

fit to the Afzal’s universal relation is used, then any K̂j is independent of the

flow rate ψj and
~̂
K would be the same for the whole range of ~x. The shape of

the dissipation surface for this case is similar to the ones shown in figure (10).

In just one minimisation step the steady-state solution is found, so the jumps

shown in that figure would correspond to the minimisation process.
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On the other hand, in the general case
~̂
K varies with ~x. That means we must

do a fixed point search. Given an initial value for the flows ~x0 the corresponding

vector of loss coefficients is found
~̂
K

(0)

( see figure (10)). After a minimisation

step (with a previously chosen power-law , i.e., m) a new point is reached ~x1

and a new vector can be computed
~̂
K

(1)

, and so on until a fixed point
~̂
K

(∗)
is

reached. In other words, in the general case, each jump in figure (10) represents

a minimisation step (see Algorithm (2)).
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Figure 10: Total pressure loss ∆pT ≡ ϕ̂T as a function of the distribution flow rates for the

network of figure (9). Rough ducts. Bottom surface corresponds to the case without fitting

(case (A)). Upper surface includes the effect of the fittings (case (B)).

6. Discussion

This section gathers the discussion of some aspects that were left out previ-

ously to allow a better exposition.

6.1. Flow sense

The dissipation function is a positive definite function. It depends on the

absolute value of the flow rates ψj and on the positive loss coefficients K̂j .

However, in a practical calculation the flow rates could be negative (reverse their

sense). This is taken into account by the value of the K̂j which might change

upon a flow sense reversion. The system under analysis may have symmetrical

objects (like straight ducts or pipes or constant cross area elbows), but also
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unsymmetrical ones like a reduction (which would turn into an expansion, thus

changing its loss coefficient).

For instance, in our example of a duct network made up of straight tubes,

the resulting steady-state flow distribution will be the same regardless of taking

the V̇T as a supply or a return flow.

6.2. Dissipation as a measure

The results in §3 seem to indicate that the dissipation function (eq. (36)) is

a kind of a measure. It can be considered as an `(m+1) norm, since it can be

written as:

||ϕ̂T ||(m+1) = (m+1)

√√√√nsect∑
j=1

∣∣∣∣ (m+1)

√
K̂j · ψj

∣∣∣∣(m+1)

(62)

All the physics is enclosed into the loss coefficients K̂j . It seems that if the

physical dissipation mechanism, the one that depends on the flow rate, remains

the same then it is possible to find a proper m which leaves K̂j constant. That

is the case for instance of smooth-pipes/ducts in the turbulent regime (by using

the mfit) or the linear dependence of the dissipation with the flow rate for

the laminar regime (m = 1). In this cases a single dissipation power-law can be

found. In the smooth-pipes system if the correctm is used then the minimisation

step of Algorithm (2) is enough. If, on the contrary, the dissipation function

is not correctly tuned, then the same problem looks like and turns into a fixed

point problem (Algorithm (3)).

Although in the examples above, the number of iterations was shown for

completeness, the paper does not analyse the effect of choosing a certain expo-

nent m on the speed of finding the solution.

Anyhow, always in real practice there will be several physical mechanisms

playing different roles and it will not be possible to tune the dissipation occurring

through the network to a single power-law (see the Cory’s comments [33] at this

respect). Therefore the problem, in practice, will be always of the fixed point

type.
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6.3. Type of extremum of the fixed point solution

Finally, although it was shown that if the loss coefficients are constant the

stationary point is a minimum, when dealing with the fixed point problem this

is not guaranteed. In fact, there could be more than one fixed point, each

one with a different nature (i.e. local minimum or maximum). For the cases

shown it seems to be globally also a minimum and therefore the idea of using a

MinEP principle could still be applied although hidden in a fixed point function

problem.

However, this point and its practical implications deserves further analysis

in future researches.

7. Conclusions

The paper shows under which conditions the MinEP (Minimum Entropy

Production) could be equivalent to the standard close-form solutions employed

in flow network analysis. The MinEP for isothermal and incompressible flows

has been shown to be equivalent to the Minimum Energy Dissipation.

It has been shown that although the same power-law (same exponent m)

must be used for the whole network and the loss coefficient must be constant,

these are not real obstacles for its application. In fact, the interplay of the

loss coefficients with the flow rate seems to hide a deeper physical content and

some understanding about its nature has been pointed out. The combination of

the minimisation step with the physical dependence of the K̂j on the flow rate,

leads to a fixed point function formulation of the problem. The solution of this

latter problem seems to lead to the stationary point or points of a dissipation

function. This new function seems to have also a minimum at the solution

but the properties of this function related to the dissipation of the individual

components of the network should be studied further.

Although we think this new method has advantages in the case of return

networks with branched junctions, these latter have not been included in the

current analysis in order to present the main ideas. However, it was pointed
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out that they can be included in the current analysis but it will be discussed in

detail in another paper.

Finally, despite our main target has been to find the steady-state flow distri-

bution of a given tree-shaped HVAC duct-network, the extension to other types

of networks will be taken as a future work.

Acknowledgements
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Appendix A Second derivative of F

Since:

ϕ̂ = K · |ψ|m−1 · ψ (63)

We have:

∂ϕ̂

∂ψ
= K|ψ|m−1 +K(m− 1)ψ2|ψ|m−3

∂2ϕ̂

∂ψ2
= 3K(m− 1)|ψ|m−3ψ +K(m− 1)(m− 3)|ψ|m−5ψ3

(64)

Therefore according to equation (38):

∂2F

∂ψ2
= 2K|ψ|m−1 + 5K(m− 1)|ψ|(m− 3)ψ2 +K(m− 1)(m− 3)|ψ|m−5ψ4

∂2F

∂ψ2
= |ψ|m−5K

[
2|ψ|4 + 5(m− 1)|ψ|2ψ2 + (m− 1)(m− 3)ψ4

]
∂2F

∂ψ2
= |ψ|m−5K [2 + 5(m− 1) + (m− 1)(m− 3)] |ψ|4

∂2F

∂ψ2
= Km(m+ 1)|ψ|m−1

(65)
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Nomenclature

Acronyms

v̄ Mean velocity [m · s−1

Q̇ Heat flow [W ]

V̇ Volume flow rate [m3 · s−1]

Ẇ Work [W ]

D Total derivative

K̂ Loss coefficient [J ·m−3] ≡ [Pa]

D Diameter [m]
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em Mechanical energy (pressure,kinetic and potential) per unit mass [J · kg−1]

g Gravity acceleration [m · s−2]

H Head [m]

p Pressure [Pa]

ReD Reynolds number

Reφ Roughness Reynolds number

u Specific internal energy [J · kg−1]

z Height [m]

Greek Symbols

α Correction factor for computing the kinetic energy

φ Roughness scale

ρ Density [kg ·m−3]

ϕ Energy dissipation per unit mass [J · kg−1]

ϕ̂ Energy dissipation per unit volume [J ·m−3]
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* computing the steady-state distribution of a flow network based on MinEP 

* only dissipative characteristics of the conduit elements are needed 

* it is applied to any tree-shaped air flow network common in HVAC systems 

* a fixed point value problem emerges along with the minimisation problem 


