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Abstract

The aim of this paper is to solve a class of non-autonomous linear fractional differential equations with random
inputs. A mean square convergent series solution is constructed in the case that the fractional order α of that Caputo
derivative lies in ]0, 1] using a random Fröbenius approach. The analysis is conducted by using the so-called mean
square random calculus. The mean square convergence of the series solution is established assuming mild conditions
on random inputs (diffusion coefficient and initial condition). We show that these conditions are satisfied for a variety
of unbounded random variables. In addition, explicit expressions to approximate the mean, the variance and the
covariance functions of the random series solution are given. Two full illustrative examples are shown.
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1. Motivation and preliminaries1

The combination of random/stochastic and fractional calculus is gaining influence in applied mathematics over2

the last few years through stochastic/random fractional differential equations (SFDEs/RFDEs). On the one hand,3

fractional calculus provides a powerful generalization of the classical derivative which is able to model memory and4

hereditary properties of various materials and processes, like viscoelasticity, phenomena with microscopic complex5

behaviour (fractals), etc., [? ? ? ? ? ]. On the other hand, stochastic/random calculus is the natural framework to de-6

scribe phenomena with inherent uncertainty usually meet in physics, biology, engineering, finance, etc. There are two7

main approaches when uncertainty is considered in fractional differential equations, namely, SFDEs and RFDEs. In8

the former case, uncertainty is usually modelled through a stochastic process, like Wiener process, having an irregular9

(e.g., continuous but nowhere differentiable) sample behaviour [? ]. In this approach uncertainty is often restricted10

to specific probabilistic patterns (typically Gaussian, Poisson, Markovian, etc.). RFDEs are those in which random11

effects are directly manifested in input parameters (initial/boundary conditions, source terms, coefficients, etc.), which12

seems to be more natural, since in many models they have a physical interpretation susceptible to encapsulate some13

kind of uncertainty due to measurement errors and/or the inherent complexity of the phenomenon under analysis [?14

]. Another important advantage of RFDEs is that inputs can have a wide variety of probability distributions like Bi-15

nomial, Poisson, Beta, Gamma, Gaussian, etc. In the extant literature, most of the contributions have focussed on16

SFDEs. Some recent contributions dealing with existence and uniqueness to solutions of RFDEs can be found in [?17

? ]. These results extend their deterministic counterpart. The goal of this paper is to contribute to the emergent area18

of RFDEs by randomizing a class of non-autonomous fractional differential equations (see (1)) that has been studied,19

in its deterministic formulation, using the successive approximation method or Picard’s method (see, [? , p.232]). As20
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we shall see later, we deal with its random formulation and will construct its solution by applying a random Fröbenius21

method assuming mild conditions upon random input data.22

Let us consider the following random non-autonomous fractional initial value problem (IVP)23 { (
C Dα

0+ Y
)

(t) − B tβY(t) = 0, t > 0, 0 < α ≤ 1, β > 0,
Y(0) = A,

(1)

where
(
C Dα

0+ Y
)

(t) := 1
Γ(1−α)

∫ t
0 (t − u)−αY ′(u) du, 0 < α ≤ 1, is the random mean square (m.s.) Caputo fractional24

derivative of order α of the stochastic process Y(t), see [? ] and references therein. The input data A and B are25

assumed to be independent real random variables (RVs) defined in the Hilbert space (L2(Ω), ‖ · ‖2) of second order26

RVs (2-RVs)27

L2(Ω) =

{
X : Ω −→ R :

(
E

[
X2

])1/2
< +∞

}
, ‖X‖2 =

(
E

[
X2

])1/2
, (2)

where E [·] stands for the expectation operator and (Ω,F ,P) denotes the underlying complete probability space for A28

and B. The norm ‖·‖2, usually referred to as 2-norm, is inferred from the inner product 〈X,Y〉 = E [X Y], X,Y ∈ L2(Ω).29

Notice that every RV with finite variance belongs to L2(Ω). This class of RVs is met in the most part of physical30

problems involving randomness. Given T ⊂ R, if Z(t) ≡ {Z(t) : t ∈ T } is a 2-RV for every t ∈ T , then Z(t) is termed31

a second-order stochastic process (2-SP). The convergence inferred by the 2-norm is referred to as mean square (m.s.)32

convergence. Unless otherwise indicated, throughout this paper we will consider 2-RVs and 2-SPs.33

The aim of the paper is to find general conditions on 2-RVs A, B so that for the random IVP (1) we can construct34

a m.s. solution of the form35

Y(t) =

∞∑
m=0

Xmt(α+β)m, (3)

where {Xm : m ≥ 0} is a sequence of 2-RVs to be determined. The study will be conducted by using the random m.s.36

calculus, see [? ]. We recall that a 2-SP {Z(t) : t ∈ T } is m.s. differentiable at t0 ∈ T with m.s. derivative Z′(t0) if37

limh→0
∥∥∥ Z(t0+h)−Z(t0)

h − Z′(t0)
∥∥∥

2 = 0. The next result provides information of the m.s. square derivative of the product38

of a deterministic function with a stochastic process.39

Theorem 1. [? ] If f is deterministic differentiable at t0 and the 2-SP Z(t) is m.s. differentiable at t0, then the 2-SP40

U(t) = f (t)Z(t) is m.s. differentiable at t0 and its m.s. derivative is given by U′(t) = f (t0)Z′(t0) + f ′(t0)Z(t0).41

Finally, we state a result for differentiating random series in the mean square sense that will be needed later.42

Theorem 2. [? , p. 1260] Assume that for m ≥ m0 ≥ 0, m0 integer, the process {Vm(u) : u ∈ I} satisfies43

i) Vm(u) is m.s. differentiable on I and V ′m(u) is m.s. continuous on I,44

ii) V(u) =
∑

n≥m0
Vn(u) is m.s. convergent on I,45

iii)
∑

n≥m0
V ′m(u) is m.s. uniformly convergent in a neighborhood of each u ∈ I.46

Then, for each u ∈ I, V(u) is m.s. differentiable and V ′(u) =
∑

n≥1 V ′n(u).47

2. Constructing a mean square convergent random generalized power series solution and approximating its48

main statistical properties49

First, we shall justify that the first m.s. derivative of the 2-SP Y(u) defined in (3) at t = u > 0 is given by50

Y ′(u) =

∞∑
m=0

Xm(α + β)mu(α+β)m−1. (4)

To this end, we apply Theorems 1 and 2. Let u0 > 0 be fixed and define Vm(u) = Xmu(α+β)m. Let us assume51

that Xm is a 2-RV. By applying Thm. 1, with f (u) = u(α+β)m and Z(u) = Xm, it follows that for each m, Vm(u) is m.s52

differentiable at u = u0 and its m.s. derivative is given by V ′m(u0) = Xm(α + β)mu(α+β)m−1
0 . It is easy to check that53

Vm(u) is m.s. continuous at u0. Once coefficients Xm are determined, we will find conditions on RVs A, B in order54
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to hypotheses ii) and iii) of Thm. 2 are met. For now on, assume that I ⊂ [0,∞). If V(u) =
∑

n≥m0
Vn(u) is m.s.55

convergent on I and
∑

n≥m0
V ′m(u) is m.s. uniformly (m.s.u.) convergent in a neighbourhood of each u ∈ I, then Thm. 256

implies (4) and57

(
C Dα

0+ Y
)

(t) =
1

Γ(1 − α)

∫ t

0
(t − u)−αY ′(u) du

=
1

Γ(1 − α)

∫ t

0
(t − u)−α

∞∑
m=0

Xm(α + β)mu(α+β)m−1 du

=

∞∑
m=0

Xm(α + β)m
1

Γ(1 − α)

∫ t

0
(t − u)−αu(α+β)m−1 du.

(5)

The commutation of the series in the last step is legitimated because it is m.s.u. convergent. Now, using the substitution58

u = vt on the above integral and the relationship between beta, Be(·, ·), and gamma, Γ(·), special functions, namely,59

Γ(α1)Γ(α2)/Γ(α1 + α2) = Be(α1, α2), where Be(α1, α2) =
∫ 1

0 vα1−1(1 − v)α2−1 dv, α1, α2 > 0, one gets60

1
Γ(1 − α)

∫ t

0
(t − u)−αu(α+β)m−1 du =

tm(β+α)−α

Γ(1 − α)

∫ 1

0
(1 − v)−αvm(α+β)−1 dv =

Γ(m(α + β))
Γ(m(α + β) − α + 1)

tm(β+α)−α.

Therefore,61

(
C Dα

0+ Y
)

(t) =

∞∑
m=0

Xm(α + β)m
Γ(m(α + β))

Γ(m(α + β) − α + 1)
tm(β+α)−α =

∞∑
m=0

Xm+1
Γ((m + 1)(α + β) + 1)

Γ((m + 1)(α + β) − α + 1)
t(m+1)(β+α)−α, (6)

in the last step we have used the gamma duplication formula, xΓ(x) = Γ(x + 1), x > 0 with x = (m + 1)(α + β) > 0.62

Substituting (6) into (1) yields63

(
C Dα

0+ Y
)

(t) − BtβY(t) =

∞∑
m=0

[
Xm+1

Γ((m + 1)(α + β) + 1)
Γ((m + 1)(α + β) − α + 1)

− BXm

]
t(m+1)(β+α)−α = 0. (7)

If Xm+1
Γ((m+1)(α+β)+1)

Γ((m+1)(α+β)−α+1) = BXm, m = 0, 1, 2, .... As Y(0) = A = X0, it follows from last equation that Xm =64

BmA
∏m

n=1
Γ((n−1)α+βn+1)

Γ(n(α+β)+1) for m ≥ 1. As a result,65

Y(t) = A +

∞∑
m=1

BmA
m∏

n=1

Γ((n − 1)α + βn + 1)
Γ(n(α + β) + 1)

t(α+β)m (8)

is a m.s. solution of random IVP (1) on I provided that Y(t) is m.s. convergent on I and Y ′(t) =
∑∞

m=1 BmA(α +66

β)m
∏m

n=1
Γ((n−1)α+βn+1)

Γ(n(α+β)+1) t(α+β)m−1 is m.s.u. convergent on I. Let us first show that Y(t) is m.s. convergent on I. To this67

end, we will assume the following hypotheses68

H1: For m,m0 integers

∃ η,H > 0, p ≥ 0 : ‖Bm‖2 ≤ ηH
m−1((m − 1)!)p, ∀m : m ≥ m0 ≥ 1.

H2: A and B are independent RVs69

Now,70

∥∥∥∥∥∥∥BmA
m∏

n=1

Γ((n − 1)α + βn + 1)
Γ(n(α + β) + 1)

t(α+β)m

∥∥∥∥∥∥∥
2

≤ ηHm−1((m − 1)!)p‖A‖2
m∏

n=1

Γ((n − 1)α + βn + 1)
Γ(n(α + β) + 1)

t(α+β)m := δm(t). (9)
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The analysis of the convergence of the series
∑∞

m=0 δm(t) will be performed by using the ratio or D’Alembert test.71

Indeed, we compute the limm→∞
δm+1(t)
δm(t) with the aid of Stirling’s formula, Γ(x + 1) ≈ xxe−x

√
2πx as x→ ∞:72

lim
m→∞

δm+1(t)
δm(t)

= lim
m→∞

Hmp Γ(mα + (m + 1)β + 1)
Γ((m + 1)(α + β) + 1)

tα+β

= lim
m→∞

Hmp(mα + (m + 1)β)mα+(m+1)βe−(mα+(m+1)β)
√

2π(mα + (m + 1)β)[
(m + 1)(α + β)

](m+1)(α+β) e−(m+1)(α+β)
√

2π(m + 1)(α + β)
tα+β

= lim
m→∞

Hmp
[

mα + (m + 1)β
(m + 1)β + (m + 1)α

]m(α+β) [ mα + (m + 1)β
(m + 1)β + (m + 1)α

]β
×

(
1

β + α

)α (
1

m + 1

)α
eα

√
mα + (m + 1)β

(m + 1)β + (m + 1)α
tα+β.

(10)

As limm→+∞

[
mα+(m+1)β

(m+1)β+(m+1)α

]m
= e−

α
α+β , limm→+∞

mα+(m+1)β
(m+1)β+(m+1)α = 1, for 0 ≤ p ≤ α and t ≥ 0 it follows73

lim
m→+∞

δm+1(t)
δm(t)

= tα+β H

(α + β)α
lim

m→+∞

mp

(m + 1)α
= H tβ

(
t

α + β

)α
lim

m→+∞

mp

(m + 1)α
=


0 if 0 ≤ p < α,

H tβ
(

t
α + β

)α
if p = α.

Therefore, the series
∑∞

m=0 δm(t) is convergent for all t in D, where74

D =


[0,∞[ if 0 ≤ p < α,[

0, (α+β)
α
α+β

H
1

α+β

[
if p = α,

(11)

which implies that Y(t) is m.s. convergent for every t in D. Following a similar analysis, it can be shown that Y ′(t)75

is m.s. convergent for every t in D. We conclude that for any closed interval I in D, Y(t) is m.s convergent on I and76

Y ′(t) m.s.u. convergent on I. As a consequence, hypotheses i) and ii) of Th. 2 hold. Hence, we have established the77

following result:78

Theorem 3. If the RVs A, B satisfy conditions H1 and H2, then the s.p. Y(t) defined by (8) is a m.s. solution of the79

random IVP (1) on any closed interval I ⊂ D, where D is defined in (11).80

Remark 1. Although the random IVP (1) deals with the case that the order of the fractional derivative α lies in the81

interval 0 < α ≤ 1, it is worthy to point out that the ideas exhibited in this paper can be extended to the general82

scenario that α ∈]n− 1, n], n ≥ 1 integer. Just to illustrate the main ideas behind such extension, in the case that n = 2,83

so 1 < α ≤ 2, then the solution stochastic process corresponding to RFDE given in (1) with random initial conditions84

Y(0) = A1 and Y ′(0) = A2, can be sought in the following form85

Y(t) = Ŷ0(t) + Ŷ1(t), Ŷ0(t) =

∞∑
m=0

X̂m,0t(α+β)m, Ŷ1(t) =

∞∑
m=0

X̂m,1t(α+β)m+1.

Coefficients X̂m,0 and X̂m,1 can be determined via appropriate recurrences using the random Fröbenius technique.86

Remark 2. It is important to remark that H1 is an implication of the quotient norm condition87

∃ p ≥ 0 :

∥∥∥Bm+1
∥∥∥

2

‖Bm‖2
= O(mp), ∀m : m ≥ m0 ≥ 1, m,m0 integers, (12)

where O(·) denotes the Landau’s symbol. By definition of O(·), condition (12) means88

∃H , p ≥ 0 :
∥∥∥Bm+1

∥∥∥
2 ≤ Hmp ‖Bm‖2 , ∀m : m ≥ m0 ≥ 1, m,m0 integers. (13)

By applying (13) recursively we obtain H1. Hence, the conclusion of Theorem 3 is valid if B satisfies the quotient89

norm condition (12) and A and B satisfy H2. In some situations, the quotient condition is easier to check than H1.90
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Remark 3. The set of RVs satisfying condition H1 is not empty. Important unbounded RVs satisfy condition H1.91

Indeed, for instance, a gaussian RVs, say B, with zero mean and finite variance, σ2 < ∞, B ∼ N(0;σ2) satisfies92

condition H1 for p = 1/2, η = σ > 0 andH = σ
√

2 since93 ∥∥∥Bm+1
∥∥∥

2

‖Bm‖2
=

(
E

[
B2(m+1)

])1/2(
E

[
B2m])1/2 = σ

√
(2m + 2)(2m + 1)

2(m + 1)
= O(m1/2),

where we have used that the moments w.r.t. the origin of B are E
[
B2n

]
= (σ2n(2n)!)/(2n n!) (see [? ]). Additionally, it94

is straightforwardly to check that an important class of RVs satisfying condition H1 with p = 0 are bounded RVs. As95

a consequence, significant RVs such that binomial, beta, uniform, triangular, etc. verify hypothesis H1. This fact is96

particularly useful from a practical standpoint since unbounded RVs can be approximated by truncating them so that97

the resulting bounded RV contains a prefixed mass of probability of the original unbounded RV.98

As the m.s. solution Y(t) of random IVP (1) is a 2-SP represented through an infinite series (see expression (8)), in99

practice, must be truncated at a positive integer M,100

YM(t) = A +

M∑
m=1

BmAGmt(α+β)m, Gm :=
m∏

n=1

Γ((n − 1)α + βn + 1)
Γ(n(α + β) + 1)

. (14)

Its main relevant statistical information of Y(t) is then given by the mean, the variance and the covariance functions101

of YM(t). Considering that A and B are independent RVs, the mean of YM(t) can be written as102

E [YM(t)] = E [A] +

M∑
m=1

E
[
Bm]

E [A] Gmt(α+β)m. (15)

As the covariance of two any RVs Ã and B̃ is defined by Cov[Ã, B̃] = E[ÃB̃]−E[Ã]E[B̃], and in particular, Cov[Ã, Ã] =103

E[Ã2] − (E[Ã])2 = V[Ã], where V[Ã] denotes the variance of Ã, the cross-covariance of YM(t) and YN(s) with M,N104

positive integers and t, s in I ⊂ R is given by105

Cov [YM(t),YN(s)] = Cov

A +

M∑
m=1

BmAGmt(α+β)m , A +

N∑
n=1

BnAGns(α+β)n

 +

N∑
n=1

M∑
m=1

Cov
[
BmA, BnA

]
GmGnt(α+β)ms(α+β)n

= V[A]

1 +

N∑
n=1

E
[
Bn]Gnt(α+β)m +

M∑
m=1

E
[
Bm]

Gmt(α+β)m


+

N∑
n=1

M∑
m=1

(
E

[
A2

]
E

[
Bm+n] − (E [A])2 E

[
Bm]

E
[
Bn])GmGnt(α+β)ms(α+β)n.

(16)

Since V [YM(t)] = Cov [YM(t),YM(t)], setting M = N and t = s in (16), one also obtains the variance of YM(t)106

V [YM(t)] = V[A]

1 + 2
M∑

m=1

E
[
Bm]

Gmt(α+β)m

 +

M∑
n=1

M∑
m=1

(
E

[
A2

]
E

[
Bm+n] − (E [A])2 E

[
Bm]

E
[
Bn])GmGnt(α+β)(m+n).

(17)

3. Examples and Conclusions107

Now, we first illustrate the theoretical results previously established through two examples. The first one is a full108

numerical example while the second example illustrates the potentiality of random fractional IVP (1) in a mathematical109

modelling setting using real data.110
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Example 1. This example has been devised to illustrate the different domains of convergence for the mean and stan-111

dard deviation depending upon the relationship between parameters p and α (see Th. 3 and expression (11)). Let112

us consider the random fractional IVP (1) in two scenarios (Cases I and II) depending on the order α ∈]0, 1] of the113

fractional derivative, the parameter β and the probability distributions chosen for RVs B and A.114

Case I (p < α) : α = 0.7, B is a beta RV of parameters (50, 100), i.e., B ∼ Be(50; 100) (thus, according to Remark 3, p = 0115

because B is a bounded RV); A is a Gaussian RV with mean µ = 0.1 and variance σ2 = 1, i.e., A ∼ N(0.1; 1)116

and, β = 0.1. In Fig. 1, we have plotted approximations of the mean and standard deviation by expressions (15)117

and (17), respectively, using different orders of truncations M over the interval t ∈ [0, 15]. Notice that these118

results are in agreement with our theoretical findings. Indeed, as p = 0 < 0.7 = α, we can observe that both119

statistical moments converge for every value of t.120

Case II (p = α) : α = 0.5, B ∼ N(0; 0.1) (thus, p = 0.5), A ∼ N(0.1; 1) and, β = 2. As p = α, according to Th. 3 and121

expression (11), the domain of convergence is D = [0, 2.626578[ since η = σ = 0.1 andH = σ
√

2 ≈ 0.141421122

(see Remark 3). In Fig. 2 , we have plotted approximations of the mean and standard deviation using different123

orders of truncations M over the time intervals t ∈ [0, 3.5] and t ∈ [0, 3], respectively. To delineate the region of124

convergence we have plotted a vertical red line. For the sake of clarity, a part of the region of convergence has125

been magnified for both the mean and the standard deviation (right column of Case II in Fig. 2). The numerical126

results agree with theoretical findings.127

0 5 10 15

t

0

5

10

15

20

25

30

E
[Y
M

(t
)]

M=6

M=8

M=10

M=12

M=14

0 5 10 15

t

0

50

100

150

200

250

300

350

400

σ
[Y
M

(t
)]

M=6

M=8

M=10

M=12

M=14

Case I: (p < α)

Figure 1: Approximations of the mean and the standard deviation of the solution SP to the random IVP (1) using different orders of truncations M
in Case I (p < α) described in the context of Example 1. Notice that the approximations corresponding to M = 12 and M = 14, for the mean and
the standard deviation, match on the whole time interval t ∈ [0, 15], thus showing convergence.

When p = α, as reported in (11), the domain of convergence [0, t1[ of the solution stochastic process may be small128

(it will depend on the fractional derivative order α, β model parameter and the constantH that appears in hypothesis129

H1). This domain [0, t1[ with t1 = ((α + β)
α
α+β )/(H

1
α+β ), can be extended using the following strategy, which has been130

successfully applied in another contributions, [? ]. Once the solution Y(t), given by (8), has been constructed in the131

interval [0, t1[, we seek a solution stochastic process, say Y1(t), of the form132

Y1(t) =

∞∑
m=0

Xm,1(t − t1)(α+β)m, (18)

i.e., centered at t1, of the same RFDE given in (1), but whose random initial condition matches the value of the solution,133

Y(t), constructed in the piece [0, t1[ at the ending time point, that is, Y1(t1) := Y(t1). Then, using a similar reasoning134
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Figure 2: Approximations of the mean and the standard deviation of the solution SP to the random IVP (1) using different orders of truncations
M in Case II (p = α) described in the context of Example 1. On the left side, we have delineated the domain of convergence for the mean and
the standard deviation plotting a vertical line. On the right side, we show a zoom on a piece of the domain of convergence, for the sake of clarity.
Observe that the approximations corresponding to M = 4, 6, 8, 10 match for the mean, while this same fact happens when M = 9, 10, in the case of
the standard deviation.

we have exhibited in our development, one can determine the new coefficient random variables Xm,1, m ≥ 0, and it can135

be proven that random series (18) is m.s. convergent in the piece [t1, 2t1[. This procedure can be successively applied136

to extend the solution on a desired interval, say [0,T ].137

Example 2. Now, we illustrate an application of random fractional IVP (1) to model the dynamics of growth bacte-138

ria over the time using real data. Differential equation in (1) can be interpreted as a generalization of the classical139

exponential (or Malthusian) model with time-dependent population growth rate, Btβ, for a species whose initial pop-140

ulation, A is known. Here, this generalization has been made in two senses, namely, first introducing the Caputo141

fractional derivative,
(
C Dα

0+ Y
)

(t) with 0 < α ≤ 1, instead of classical derivative, Y ′(t), and secondly, by considering142

model parameter B and initial condition A as RVs rather than deterministic values. On the one hand, the use of a143

fractional derivative can be justified because the growth dynamics is determined by genetic, environmental factors,144

etc., developed over previous periods, then it is expected these biological features can be better modelled via Caputo145

fractional derivative, which is defined in terms of an integral (thus with memory), instead of classical derivative that146

just characterizes instantaneous changes. On the other hand, the consideration of randomness in model inputs B147

and A can be justified because the complex nature of population growth rate, which depends on uncertain biological148

factors, and, in practice, the value of the initial condition is usually known on the basis of sampling, respectively. In149

this spirit, here we consider the classical non-autonomous Malthus model to a generalized one, in which ordinary150

derivative and model inputs are replaced by fractional derivatives and RVs, respectively. Our example is based on151

measured population values of Rhodobacter Capsulatus anaerobic photosynthetic bacteria {yi : 0 ≤ i ≤ 4} corre-152

sponding to days ti (Table 1). This information has been obtained from source [? ]. First, we have performed a153

classical (or deterministic) fitting based upon minimizing the mean square error between real data yi, and the solution154

of the corresponding deterministic differential equation (Y ′(t) = BtβY(t), Y(0) = A = 5.83 × 105), which is given by155

Y(t) = A exp
(

B
1 + β

+
Bt1+β

1 + β

)
.

Using PSO (Particle Swarm Optimization method) with 1000 iterations [? ], we have obtained the following estimates156

for deterministic model parameters: β = 2.2573 and B = 0.168764, being the RMSE (Root Mean Square Error) of157

this fitting εdet. = 763 (observe that units are of magnitude 106. In Table 1 we show the results, ydet.
i , provided by this158
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approach. Secondly, we have assumed that B is a Gamma RV of parameters (rB, sB) and the initial condition A is an159

Exponential RV of parameter λA = 1/(5.83× 105). On the one hand, observe that the choice made for the distribution160

of B is justified because real data yi have a positive trend, hence B must be a positive RV and Gamma distribution holds161

this feature, moreover it is a flexible distribution able to perform a good fitting since it depends on two parameters162

(rB and sB). On the other hand, Exponential distribution guarantees the positiveness of the initial condition, and we163

have imposed that its mean E[A] = 1/λA matches the initial condition 5.83 × 105. Then, considering this choice for164

the distributions of random inputs B and A, we have performed a (random) fitting based upon minimizing the mean165

square error between real data yi and the mean of the solution stochastic process of the random fractional IVP (1),166

i.e.,167

min
rB,sB,β>0; 0<α≤1

Error(rB, sB, β, α) =

4∑
i=0

(yi − E[YM(ti; rB, sB, β, α)])2 ,

where E[YM(ti; rB, sB, β, α)] is given by (14)–(15). We have again applied PSO method with 1000 iterations to solve168

this minimization program taking as truncation order M = 20 (for which the approximation of the exact expectation is169

very accurate) and then we have obtained the following estimates for model parameters: β = 0.1975, rB = 14.64, sB =170

75.32 and α = 0.89, being the RMSE (Root Mean Square Error) of this fitting εrandom = 660. In Table 1 we show the171

results, yrandom
i , provided by this approach. We have shown that εrandom < εdet., in order to complete better an adequate172

comparison between deterministic and random fractional approaches, in Table 1 we give an important goodness-of-173

fit measure, MAPE (Mean Absolute Percentage Error). Again, we can observe that our proposed approach provides174

better results for this statistical measure.

ti (time in days) 0 2 4 7 9 MAPE
yi (population cells/mL) 5.830E + 05 6.350E + 05 1.08E + 06 3.20E + 06 5.23E + 06 —-

ydet.
i (deterministic fitting) 6.667E + 05 9.189E + 05 1.435E + 06 3.141E + 06 5.589E + 06 0.20144
yrandom

i (random fitting) 5.830E + 05 8.504E + 05 1.338E + 06 2.932E + 06 5.307E + 06 0.13533

Table 1: Cell counts yi of Rhodobacter Capsulatus anaerobic photosynthetic bacteria at the time instants ti (data retrieved from [? ]). Values of the
determinsitic fitting (ydet.

i ) and random fractional fitting yrandom
i . Goodness-of-fit measure for both approaches: MAPE (Mean Absolute Percentage

Error). Example 2.

175

Finally, we want to underline that this study seeks to contribute to the emergent area of random fractional differential176

equations (RFDEs) where the areas of fractional calculus and differential equations meet to provide a rigorous treat-177

ment of randomness. We think that the generality of fractional derivatives and the powerful of differential equations178

will give RFDEs a prominent role also in modelling phenomena with uncertainty.179
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