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Abstract

People with Type 1 Diabetes lack the ability to secrete insulin and therefore need
to regulate their blood glucose with exogenous insulin delivery. The Arti�cial
Pancreas is presented as the ideal technological solution to reach the therapeutic
goals of normoglycaemia, freeing the patient from the current burden of self-control
and management. Nevertheless, the risk of hypoglycaemia and the high glycaemic
variability are still a limiting factors in the current control algorithms integrated
in the Arti�cial Pancreas.

The purpose of the present thesis is to delve into knowledge of hypoglycaemia and
to advance in the arti�cial pancreas control algorithms in order to minimise hypo-
glycaemia incidence and reduce glycaemic variability. After providing an overview
of the state of the art in the �eld of glucose control and arti�cial pancreas, this
thesis addresses issues on modelling and control, with the following contributions:

An extension of the Bergman Minimal model accounting for counterregulatory re-
sponse to hypoglycaemia is presented. This model explains the relationship be-
tween the several physiological changes produced during hypoglycaemia, with
adrenaline and free fatty acids as main players. As a result, a better understanding
of hypoglycaemia is gained, allowing to explain a paradoxical auto-potentiation of
hypoglycaemia as modeled through functional approaches in the widespread used
UVA-Padova Type 1 Diabetes simulator, which will be used in this thesis for in
silico validation of the developed controllers.

An assessment of glucose variability metrics and control quality indices is carried
out. The evaluation of the glycaemic variability on the controllers performance is
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necessary; but there is not a gold standard variability metrics yet. Therefore, an
analysis of the variability metrics available in literature is conducted in order to
de�ne a recommendable set of indicators.

Due to the limitations of single-hormone arti�cial pancreas systems in mitigating
hypoglycaemia in challenging scenarios such as exercise, this thesis focuses on the
developement of new dual-hormone control algorithms, with concomitant infusion
of insulin and glucagon. A coordinated dual-hormone controller with parallel con-
trol structures is proposed as a feasible control algorithm for hypoglycaemia mit-
igation and glycaemic variability reduction, demonstrating superior performance
as currently used control structures with independent insulin and glucagon control
loops. The controllers are designed and evaluated in-silico under challenging sce-
narios and their performance are assessed mainly with the set of metrics de�ned
previously as the recommendable ones.
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Resumen

Las personas con diabetes tipo 1 carecen de la capacidad de secretar insulina y, por
lo tanto, necesitan regular su glucosa en sangre con la administración de insulina
exógena. El páncreas arti�cial se presenta como la solución tecnológica ideal para
alcanzar los objetivos terapéuticos de la normoglucemia, liberando al paciente de
la carga actual de autocontrol y manejo. Sin embargo, el riesgo de hipoglucemia
y la variabilidad glucémica siguen siendo factores limitantes en los algoritmos de
control actuales integrados en el páncreas arti�cial.

El propósito de la presente tesis es profundizar en el conocimiento de la hi-
poglucemia y avanzar los algoritmos de control del páncreas arti�cial para mini-
mizar la incidencia de hipoglucemia y reducir la variabilidad glucémica. Después
de proporcionar una visión general del estado del arte del control de la glucosa y
el páncreas arti�cial, esta tesis aborda temas relacionados con el modelado y el
control, con las siguientes contribuciones:

Se presenta una extensión del modelo de Bergman Minimal que tiene en cuenta
la respuesta contrarreguladora a la hipoglucemia. Este modelo explica la relación
entre los diversos cambios �siológicos producidos durante la hipoglucemia, con la
adrenalina y los ácidos grasos libres como actores principales. Como resultado,
se obtiene una mejor comprensión de la hipoglucemia, lo que permite explicar
una auto-potenciación paradójica de la hipoglucemia como se modela a través
de enfoques funcionales en el ampliamente utilizado simulador de diabetes tipo
1 UVA-Padova, que se utilizará en esta tesis para la validación in silico de los
controladores desarrollados.
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Se realiza una evaluación de las métricas de variabilidad de la glucosa y los índices
de calidad de control. La evaluación de la variabilidad glucémica en el desempeño
de los controladores es necesaria; pero todavía no hay un conjunto de métricas de
variabilidad glucémica que sea considerado como el �gold estándar�. Por tanto, se
lleva a cabo un análisis de las métricas de variabilidad disponibles en la literatura
para de�nir un conjunto de indicadores recomendables.

Debido a las limitaciones de los sistemas de páncreas arti�ciales unihormonales
para mitigar la hipoglucemia en escenarios difíciles como el ejercicio, esta tesis
se centra en el desarrollo de nuevos algoritmos de control bihormonales, con in-
fusiín simultanea de insulina y glucagón. Se propone un controlador coordinado
bihormonal con estructuras de control paralelas como un algoritmo de control
factible para la mitigación de la hipoglucemia y la reducción de la variabilidad
glucémica, demostrando un rendimiento superior al de las estructuras de control
utilizadas actualmente con lazos de control independientes de insulina y glucagón.
Los controladores están diseñados y evaluados in silico en escenarios desa�antes
y su rendimiento se evalúa principalmente con el conjunto de métricas de�nidas
previamente como las recomendables.
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Resum

Les persones amb diabetis tipus 1 no tenen la capacitat de secretar insulina sec-
reta i per tant, necessiten regular la seva glucosa en sang amb l'administració
d'insulina exògena. El Pàncrees Arti�cials es presenta com la solució tecnològ-
ica ideal per assolir els objectius terapèutics de la normoglucèmia, alliberant al
pacient de la càrrega actual d'autocontrol. No obstant, el risc d'hipoglucèmia i
l'alta variabilitat glucèmica continuen sent un factor limitant en els algoritmes
de control actuals integrats en el Pàncrees Arti�cials. El propòsit de la present
tesi és aprofundir en el coneixement de la hipoglucèmia i millorar els algoritmes
de control per corregir amb antelació la dosi excessiva d'insulina, minimitzant la
incidència d'hipoglucèmia i reduint la variabilitat glucèmica.

Després de donar una visió general de l'estat de l'art del control de la glucosa i el
pàncrees arti�cial, aquesta tesi aborda aspectes de modelització i control, amb les
següents contribucions:

Es presenta una extensió del model Minimal de Bergman amb la contrarregulació.
Aquest model explica la relació entre els diversos canvis �siològics produïts durant
la hipoglucèmia. Així, permet comprendre millor la hipoglucèmia i comparar
els resultats amb els proporcionats per l'enfocament funcional del simulador de
diabetis tipus 1 més utilitzat a la comunitat cientí�ca.

Es realitza una avaluació de les mètriques de variabilitat glucèmica i dels índexs
de qualitat de control. Es necessària l'avaluació de la variabilitat glucèmica en el
rendiment dels controladors; però encara no hi ha un conjunt de mètriques consid-
erades com les �gold standard�. Per tant, es realitza una anàlisi de les mètriques
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de variabilitat disponibles a la literatura per de�nir un conjunt d'indicadors reco-
manables.

Es proposa un controlador bi-hormonal coordinat amb estructures de control
paral·leles com un algoritme de control viable per a la mitigació d'hipoglucèmia i
la reducció de la variabilitat glucèmica. Els controladors estan dissenyats i avaluats
in-silico en escenaris desa�adors i el seu rendiment es valora principalment amb
el conjunt de mètriques de�nides prèviament com les mètriques recomanables.
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Chapter 1

Introduction

This chapter introduces the main ideas of the thesis, which is con-
cerned with the generalisation of the current state of diabetes and the
advances in the Automatic Insulin Delivery Systems, in order to put
the reader into context. Besides, the ongoing limitations of the glu-
cose control algorithms are brie�y presented since they are the prin-
cipal motivation of this work. Then, the objectives that have lead the
way in the consecution of the present thesis are exposed. The chapter
concludes with a brief overview of the contents.

1.1 Motivation and background

Diabetes is a chronic disease with a high individual and social impact, and with an
important prevalence. It is estimated that the number of people with diabetes in
the world will reach about 10% of the adult world population between 20 and 79
years by 2045 (Shaw et al. 2010). In addition, diabetes is responsible for more than
10% of healthcare spending in most countries of the European Union (Federation
of European Nurses in Diabetes 2008).

Type 1 diabetes Mellitus (T1D) a�ects approximately 10% of diabetic patients and
is characterized by self-destruction of beta cells in the pancreas, which are respon-
sible for insulin secretion. This causes a constant state of hyperglycaemia (glucose
levels above 180 mg/dL) that can lead to chronic microvascular and macrovascular
complications besides of other short term complications. In the 1990s, the DCCT
study (Control and Group 1993) showed that an improvement in glycaemic control
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Chapter 1. Introduction

reduces the risk of su�ering the chronic complications associated with diabetes.
Therefore, normoglycaemia (glucose levels between 70 and 180 mg /dL) has been
established as a control objective in patients with T1D. Currently, patients follow
insulin replacement therapy with multiple daily inyections (MDI, 4 or more per
day) or continuous subcutaneous insulin infusion, based on usually intermittent
(3-6 per day) self-monitoring of capillary blood glucose. Patients education is a
cornerstone of the treatment, as they must learn how to interpret blood glucose
pro�les and adjust the insulin dose in response to changes in meal intake, physical
activity, illness, etc. This represent a considerble burden for both the patients and
the health care professionals and, despite considerable e�orts and the spreading of
continuous glucose monitoring, glycaemic control is still not satisfactory (Kowal-
ski 2009), with huge variations in plasma glucose concentrations. The result is a
signi�cant exposure to both hyperglycaemia (an average of 9h/day plasma glu-
cose values above 180 mg/dl) and hypoglycaemia (an average of 1h/day below 70
mg/dl), which poses the patient at risk for acute and chronic complications.

The Arti�cial Pancreas (AP), or Automatic Insulin Delivery Systems, is a tech-
nology that arouses great interest in the scienti�c community (Gibney 2013) since
it represents an important advance in the management of Type 1 Diabetes (T1D).
As long as the cure for T1D is not found, the arti�cial pancreas is presented as
the ideal technological solution to reach the therapeutic goals of normoglycaemia,
freeing the patient from the current burden of self-control and management. Ad-
vances in continuous glucose measurement technology led in 2006 to the creation
of an international consortium in arti�cial pancreas by the Juvenile Diabetes Re-
search Foundation (JDRF) (Jaeb Center for Health Research 2018). In addition,
that same year, the Food and Drug Administration (FDA) declared the arti�cial
pancreas a priority in its Critical Path Initiative. Then, the National Institutes
of Health (NIH) in the USA and the EU in the seventh framework program was
also joined to this commitment. Thus, all of those gave a crucial impulse to the
research in the area.

The current e�ort of the scienti�c community focuses on providing the system
with the necessary e�ciency and safety in the daily living conditions of the pa-
tient. One of the problems of the ongoing control strategies is the overcorrection
of the controller inducing an excess of insulin when it tries to compensate the meal
intake, which increases the risk of late postprandial hypoglycaemias. However, re-
duction of overcorrection is a di�cult task because patients with T1D exhibit high
glycaemic variability (glucose response is not the same even under theoretically
identical conditions, i.e. the same meal and insulin dose). Additionally, controllers
must be robust also against the errors in continuous glucose monitoring, which
performance has improved during the last years but that is far from being perfect.
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1.1 Motivation and background

High glycaemic variability is associated with a greater risk for hypoglycaemia, so
that a good control must also consider the reduction of glucose variability as a
control objective.

However, we are not yet able to emulate the insulin secretion of a healthy pancreas.
That is, the current insulin replacement in people with diabetes is still a bit far
from being perfect. There are several reasons why it is di�cult to replace insulin.
First, insulin is replaced in the wrong place, i.e. it is delivered in the subcuta-
neous tissue instead of the intravascular space. This is responsible for slow insulin
absorption at meal times with excessive increase in post-prandial blood glucose
concentrations (Dimitriadis and J. E. Gerich 1983). Besides, subcutaneous insulin
delivery induces systemic hyperinsulinemia (Bolli 1990). Such hyperinsulinemia
is itself a risk factor for hypoglycaemia, despite insulin resistance (DeFronzo et al.
1982).

Second, despite the use of insulin formulations with improved action pro�le and
patient empowerment with structured educational programmes, exogenous insulin
replacement cannot perfectly match insulin requirements, which vary greatly de-
pending on the physiological changes of insulin sensitivity and meal size and com-
position (Kelley 2003).

Thereby, the challenges for the development of the AP are multiple: the accu-
racy of continuous glucose monitors must be even more improved, especially in
hypoglycaemia; there are physiological delays due to the infusion of insulin subcu-
taneously compared to pancreatic secretion; the patient presents high variability;
and there are important disturbances such as meal, exercise and stress. Moreover,
the problem with the insulin delivery is that the e�ect of insulin is unidirectional
promoting a decrease in plasma glucose concentration. This means that if insulin
is delivered in excess, there are serious limitations to compensate for an excessive
drop in blood glucose concentration, being necessary rescue carbohydrates intake.

The home use of the arti�cial pancreas requires safety mechanisms that allow its
use without additional risk for the patient besides of an e�cient controller that is
able to cope with the conditions of daily life. The hypoglycaemia prevention and
the e�cient control involve providing the system with the ability to react. The
strategies based on MPC predict blood glucose in a given prediction horizon by
means of the calculation of the insulin infusion that maximizes the performance
of the controller (Hovorka et al. 2004). In the PID control schemes, a predicted
insulin feedback is added from a pharmacokinetic model (Steil et al. 2011). Addi-
tionally, supervisory algorithms for patient safety employ predictions of the risk of
hypoglycaemia (Patek et al. 2012). The used modelling techniques range from au-
toregressive models based on data (Ståhl and Johansson 2009; Finan et al. 2009)
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Chapter 1. Introduction

to physiological models, from greater to lesser complexity (Hovorka et al. 2004;
Dalla Man et al. 2007b).

The simplest strategy proposed in literature is the hypoglycaemia detection by
threshold and de�ning the hypoglycaemia risk when the glucose concentration is
lower than a second risk threshold after a certain time period (Choleau et al. 2002;
Children Network (DirecNet) Study Group 2004). Other technique proposed to
classify glucose measurements are the stochastic models based on the kernel den-
sity model (Signal et al. 2012) and linear statistical predictive models (Cameron et
al. 2008). Both techniques manage to be a robust event classi�er but do not have
an optimal prediction horizon. About simple linear models, Bremer and Gough
1999 showed that predictions could be obtained with a prediction horizon of 10
min if representative data were available. However, the data were not representa-
tive since they did not take into account the variability of human factors and the
fact that the dynamics of glucose follows a non-linear regime. In order to adjust
the system to the glucose variability, Daskalaki et al. 2013 proposed adaptive pre-
diction models (autoregressive model, autoregressive model with correction mod-
ule and recurrent neural networks); whereas Buckingham et al. 2009 developed
a partial-square-regression autoregressive algorithm to model and predict future
glucose concentrations and used it in an alarm system of hypoglycaemia. So as
to give robustness to the system, other authors (Dassau et al. 2010; Buckingham
et al. 2010) developed voting algorithms that operated in parallel to a thresh-
old alarm system consisting of linear prediction algorithms, statistical prediction,
Kalman �lter, HIIR (hybrid impulse response �lter) and another numerical logic
algorithm. These systems aimed to o�er better prediction than a system formed
by a single Kalman �lter as Palerm suggested (Palerm and Bequette 2004; Palerm
and Bequette 2007; Harvey et al. 2012).

In the proposed algorithms, the prediction depends on the level of glucose, al-
though hypoglycaemic episodes physiologically begin with more hormonal changes.
The current models are focused on insulin and glucose. However, insulin is only
one part of the glucose regulation especially during hypoglycaemia, where hor-
mones such as adrenaline, cortisol and growth hormone have an active role in
T1D patients, as well as the lipid and glucidic metabolism.

Presently, several AP prototypes based on proportional-integral-derivative (PID)
algorithms or model-based predictive control (MPC) have been validated clini-
cally in controlled environments and outpatient studies. In the second case, linear
approaches have been used, based on autoregressive models (ARX) (Magni et al.
2009) or the physiological models linearization (Magni et al. 2007). Both the PID
and the MPC have been shown to be e�cient at nocturnal control (Hovorka et al.
2010; Kumareswaran et al. 2011; El-Khatib et al. 2010; Kovatchev et al. 2010).
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1.1 Motivation and background

In addition, other clinical trials have been also performed out to test fuzzy al-
gorithms (Dovc et al. 2017) and a switched Linear Quadratic Gaussian (LQG)
controller combined with a Safety Auxiliary Feedback Element (SAFE) algorithm
(R. Sánchez-Peña et al. 2017; R. Sánchez-Peña et al. 2018). Nevertheless, post-
prandial control (compensation of a meal intake) is still an open problem due to
the overacting of the controller. This causes an excessive insulin infusion, inducing
late hypoglycaemia that can have unwanted consequences for the patient. Other
challenge is the control during physical activity since the glycaemic response de-
pends on the characteristics of the exercise (type, intensity, duration) as well as
the variability of the patient.

The problem of excessive insulin infusion has been approached from various per-
spectives: (1) the limitation of insulin infusion and (2) the use of glucagon as a
counterregulatory control action. Several prototypes have incorporated insulin on
board restrictions (IOB - insulin that is already in the body and has not yet acted-
), both by means of ad hoc solutions in PID algorithms (Weinzimer et al. 2008)
and integrated in the design of MPC controllers (Ellingsen et al. 2009). However,
the results have not been completely satisfactory. In the new prototypes based
on MPC, strategies that reduce the aggressiveness of the controller performance
have been included. This works as an open loop system with a basal insulin infu-
sion when the patient is in euglycaemia (control-to-range algorithms). It has been
demonstrated that these new algorithms improve the glycaemic control compared
to the standard therapy with insulin pumps in controlled studies of 22 hours which
included meal, nocturnal period and 30minutes of exercise (Breton et al. 2012).
The Sliding Mode of Reference Conditioning (SMRC) was applied in (Revert et al.
2013) in order to design an external loop that allow to limit the IOB in a generic
controller. Results were satisfactory in a clinical controlled study that included 8
postprandial hours (Rossetti et al. 2017).

Alternatively, dual-hormone systems have been developed in order to complement
the action of insulin with a subcutaneous infusion of glucagon, promoting the re-
lease of glucose in blood (unidirectional signal in the opposite direction to insulin).
The �rst results were validated in humans with good results in 51-hour trials (Rus-
sell et al. 2012). Then, Taleb et al. 2016 showed better results in dual-hormone
systems during studies with exercise. Besides, Castle et al. 2018 demonstrated
recently that the addition of glucagon delivery to the closed-loop system with
automatic exercise detection reduces hypoglycemia after aerobic exercise. So far,
the great limitation of these dual-hormone systems was the short stability period
of glucagon solutions for continuous pump infusion. However, currently, the new
formulation enables a viable use of glucagon in the glucagon pumps. This gives a
boost to the dual-hormone con�guration of the AP, and makes possible that both
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the single-hormone AP and the dual-hormone AP can already play in the same
league.

As it can be concluded from the discussion above, there is a worldwide interest in
the improvement of the Automatic Insulin Delivery Systems. Recent AP con�gu-
rations have achieved acceptable nocturnal control performance and a reduction
of time in hypoglycaemia in postprandial scenarios if they are compared with the
previous AP options. Nevertheless, the problem of hypoglycaemia is still relevant,
especially during the postprandial period and physical activity. Hypoglycaemia
is intimately related to glycaemic variability (Gimenez et al. 2018), and both are
associated with a signi�cant patient burden. Therefore, both issues should be
addressed by the new proposals of control algorithms.

This thesis studies the hypoglycaemia from a physiological point and develops a
model considering the hormones and mechanisms that are involved in the hypo-
glycaemia process. This model allows to understand better the glucose behaviour
in T1D patients, and it can be used as a reference for the validation tools of the
controllers (i.e. the in-silico simulators). In regard to the improvement of control
algorithms faced with hypoglycaemia, the development of dual-hormone control
algorithms is carried out. Then, the features of the proposed dual-hormone con-
troller are analysed by the times in ranges and the glycaemic variability metrics,
which have been also evaluated in the present work.

1.2 Objectives

The main objective of this thesis is the development of more e�cient control
algorithms mitigating hypoglycaemia and reducing glycaemic variability in the
challenging scenarios of patient's daily life. To achieve this, a dual-hormone con-
�guration of the controller is proposed besides of the previous study of a new hy-
poglycaemia model, which is the main current limitation of the controllers along
with the glycaemic variability.

In order to attain its consecution, this general objective is divided into three
speci�c sub-objectives:

1. Assesment of counterregulatory response modelling under hypoglycaemia for
in silico evaluation of controllers. The �rst step towards achieving the global
objective is to review the existing literature and research concerning the
physiological mechanisms hypoglycaemia stimulates and its changes due to
T1D. The key concept here is the counterregulatory response, thus, the next
step is to analyse the implementation of the counterregulation in the current
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available simulators used for in-silico validation. To this end, the functional
approach of the model used in the UVA-Padova simulator is evaluated. Then,
the physiology of the counterregulation is modelled, and compared with the
outcomes from the model used in the UVA-Padova Simulator.

2. Assessment of glycaemic variability metrics. Evaluation of the glycaemic
variability on the controller performance is necessary; but there is not a gold
standard variability metrics yet. Therefore, an analysis of the variability
metrics available in literature and, then, the de�nition of the recommendable
indicator is conducted.

3. Controllers design and evaluation for hypoglycaemia mitigation and gly-
caemic variability reduction under challenging scenarios. Due to the limi-
tations of single-hormone systems, especially under exercise, dual-hormones
systems will be considered here. The design of the controllers is carried
out using a suitable in-silico simulator (taking into account the results
from objective 1), and the proposed systems are evaluated considering the
recommendable metrics resulting of the objective 2.

Figure 1.1 shows the links between the contributions of the present thesis.

1.3 Structure of the thesis

This thesis is divided into two parts:

• Part I. This part summarises the most relevant concepts and results in liter-
ature related to the objectives of this thesis. In Chapter 2, the mechanisms
involved in glucose control are introduced. Besides, the main failures in this
process that are associated with Type 1 diabetes are presented, focusing on
defective counterregulatory response to hypoglycaemia.

Chapter 3 presents a summary on the Arti�cial Pancreas research, presenting
with deeper detail the strategies that have been taken into account in the
development of this thesis. These are the dual-hormone approach and the
strategies for the limitation of the insulin on board in order to avoid an
insulin overdose. Moreover, the glycaemic variability, which is considered
the other target along with hypoglycaemia avoidance, is assessed with the
indicators available in literature.

Finally, Chapter 4 carries out a revision of the mathematical models pro-
posed in literature. The Bergman Minimal Model is explained in more detail
since it is of relevance to this thesis, which extends this minimal model with
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the mechanisms involved in hypoglycaemia. Besides, the extended version of
the original Bergman Model with the Fatty acids are also described because
it is partially used in this work.

• Part II. This part contains the contributions of this work. The �rst contri-
bution is presented in Chapter 5, where the physiological model of glucose
autorregulation is presented. It is an extension of the Bergman Minimal
Model with the counterregulatory response which is involved in the hypo-
glycaemic ranges. Previously, a more detailed study of the physiological
behaviour related to hypoglycaemia is also realized.

Chapter 6 deals with the assessment of glucose variability. As said before,
glycaemic variability is a control target, but there is not a consensus on the
best method to measure it. Several authors have given their proposal, but
any analysis about their features have not been done. Therefore, in order to
determine the proper metrics to characterise our proposed glucose controller,
an analysis of variability metrics is conducted.

A better physiological
understanding is needed

PHYSIOLOGICAL MODEL
OF HYPOGLYCAEMIA

STUDY OF HYPOGLYCAEMIA

HYPOGLYCAEMIA

Is it well represented in current
simutalors for in silico evaluation?

GLYCAEMIC
VARIABILITY

How is Glycaemic
variability measured?

There is not a “Gold 
standard”

ASSESSMENT OF 
GLUCOSE VARIABILITY 

METRICS

ARTIFICIAL 
PANCREAS

TYPE 1 DIABETES

Current
limitations Improved glucose control 

algorithm is needful
DUAL-HORMONE

COORDINATED
CONTROLLER

STATE OF ART

Figure 1.1: Routemap of the present thesis.
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Chapter 7 presents the dual-hormone controller proposed to achieve a good
glycaemic control. The controller is evaluated in several scenarios with meal,
snack and exercise perturbations. In the most challenging scenario (exercise),
hypoglycaemia is not completely avoided; thus, a limitation of the insulin on
board is included.

• This thesis ends in Chapter 8, drawing some concluding remarks and pro-
viding some suggestions for future work.

Note that a full list of publications by the PhD candidate is presented in page
171.
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Chapter 2

Glucose control

This chapter presents an overview on the mechanisms involved in
glucose control. Particular failures on this process drive to the onset of
Diabetes. Speci�c interest has the Type 1 Diabetes in this thesis, whose
particularities are also explained. Hypoglycaemia is one of the most
serious complications in the treatment of this disease, and the current
technological solutions are focused on avoiding it. Thus, the �rst step
is to understand well the physiological processes and interactions that
participate in it.

2.1 Glucose control

Homeostasis is the process by which the internal environment of the body is main-
tained stable allowing optimal function and physiological balance. Control of
blood glucose is a fundamental part of this process. Plasma glucose concentration
in healthy people is subjected to a rigorous control that maintains the glucose
concentration in a narrow range (∼ 70 − 180 mg/dL) despite wide variability in
meal intakes size and composition, and physical activity, among others factors.
The upper limit is defended because high glucose concentration (hyperglycaemia)
can cause both acute (diabetic ketoacidosis -DKA-, coma, diabetic atherosclero-
sis) and chronic long-term complications (micro- and macrovascular damage); and
the lower limit is guarded in order to avoid glucose values under that threshold
(hypoglycaemia) since the brain cannot function properly without an adequate
supply of glucose.
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Chapter 2. Glucose control

Glucose regulation is a complex process which involves many organs. Figure 2.1
shows the major players in the regulation and utilization of plasma glucose, and
the role of each one is discussed below.

Plasma Glucose

(≈70-120mg/dL)

Absorption 

from diet

Pancreas

Kidneys
Brain

Heart

Adipose 

tissue

Skeletal 

muscle

Liver

Figure 2.1: Main organs that are involved in the plasma glucose regulation.

The brain function depends exclusively on glucose supply from plasma so that
it consumes a ∼ 50% of whole body glucose production under resting conditions.
Although alternative fuels (ketone and lactate) can be used in extreme condi-
tions (prolonged fasting, starvation), when plasma glucose fall acutely below ∼ 50
mg/dL brain disfunction ensues; when glucose levels decrease persistently and
consistently below 40 mg/dL, this can lead to permanent damage and/or death.

The liver is the major metabolic regulatory organ. In the basal (fasting) state,
about 90% of all circulating glucose comes from the liver. The liver contains
signi�cant amounts of stored glycogen available for rapid release into circulation
(glycogenolysis), and is capable of synthesizing large quantities of glucose from
other substrates like lactate and amino acids released by other tissues (gluconeo-
genesis). During prolonged starvation, the liver is the source of glucose and the
ketone bodies demanded by the brain to replace glucose.

The kidney has also the ability to release glucose into the blood. Under normal
conditions gluconeogenesis (glucose production from precursors like glycerol, lac-
tate, and amino acids) provides only a small contribution to the total circulating
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2.1 Glucose control

glucose; however, during prolonged starvation and fasting, the kidney contribution
may be comparable to that of the liver. Nevertheless, the role of kidney is crucial
in the glucose homeostasis because plasma glucose must be reabsorbed when it
passes through the kidney to prevent losses.

The muscle cannot deliver glucose to the bloodstream; however it is able to
increase quickly its glucose uptake for dealing with sudden increases in plasma
glucose. In addition, the skeletal muscle has also a role in maintaining plasma
glucose levels since it can realise free amino acids into circulation to be used as
substrates for the liver gluconeogenesis. The muscle can use glucose, FFA, and
ketone bodies for energy whereas it usually maintains signi�cant amounts of stored
glycogen, small amounts of FFA and large reserve of proteins that can be broken
down in critical situations.

The adipose tissue is the main triglyceride (glycerol and three FFAs) storage.
In conditions when liver gluconeogenesis is necessary, the adipose tissue supplies
FFA as an alternative fuel to glucose, and glycerol as a substrate for hepatic.
gluconeogenesis.

Finally, the pancreas is the source of insulin and glucagon, two of the most im-
portant regulatory hormones. Besides, the Hypothalamic-pituitary-adrenal
axis (HPA) has also an important role with the catecholamines adrenaline and
noradrenaline, cortisol and Grown Hormone secretion during hypoglycaemic situ-
ations.

Fasting and fed state are two physiological conditions that require to be distin-
guished in the glucose regulation process due to di�erences in their physiological
response. During fasting, insulin concentrations are reduced and glucagon in-
creased, which maintains blood glucose concentrations within the normoglycaemic
limits. The net e�ect is to reduce peripheral glucose utilization, to increase hep-
atic glucose production and to provide non-glucose fuels for tissues not entirely
dependent on glucose. In addition, plasma free fatty acids and ketone body con-
centrations also increase. These changes are mainly due to the decrease in plasma
insulin concentration which permits accelerated lipolysis with increased FFA re-
lease and ketone body formation. As fasting prolongs, muscle and other tissues
use FFA and ketone bodies more e�ciently.

Muscle and other tissues become progressively more dependent on free fatty acids
and ketone bodies. When plasma glucose tend to decrease, ketone bodies can be
used as an alternative fuel by the neural tissues, thus reducing - but not eliminating
- the need for glucose. After a short fast (e.g. overnight), glucose production
needs to be 5-6g/h to maintain blood glucose concentration. The required glucose
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Chapter 2. Glucose control

comes from glycogenolysis (60-80%) and gluconeogenesis (20-40%). Otherwise, in
prolonged fasting, glycogen becomes depleted and glucose production is primarily
from gluconeogenesis, with an increasing proportion from the kidney compared to
the liver. In extreme situations renal gluconeogenesis can contribute as much as
45% of glucose production. Thus glycogen is the short term or �emergency� fuel
source.

After meal (fed state), the rise in glucose concentrations results in an increase in
insulin and reduction in glucagon secretion. This balance favours glucose utiliza-
tion and reduction of glucose production, and increases glycogen, triglyceride and
protein formation. At the same time, the fatty acids are taken up into the adipose
tissue and re-esteri�ed to triglyceride (using glycerol derived from glucose) before
being stored. In addition, glucose uptake is increased (in proportion to plasma
glucose) in the liver. Lastly, hepatic glycogenolysis is suppressed and glycogen
deposition stimulated due to insulin concentration increase.

Figure 2.2 represents the pro�les of glucose and insulin concentrations throughout
24 h in non-diabetic subjects. As it can be observed, plasma glucose is maintained
below 100 mg/dL (5.56 mmol/L) during fasting and below ∼ 135 mg/dL (7.5
mmol/L) in the post-prandial period, even after a carbohydrate-rich meal. In the
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Figure 2.2: Physiology of glucose homeostasis in non-diabetic subjects (adapted from
Rossetti et al. 2008).
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2.1 Glucose control

fasting state, maintenance of normoglycaemia is possible because of the continuous
release of insulin from the pancreas which restrains hepatic glucose production (2-
3 mg/kg/min) as to match peripheral glucose uptake (50% the brain, 50% the rest
of the tissues). In the fed state, pancreas releases insulin very rapidely in response
to meal ingestion promoting the disposal of ingested glucose and controlling in this
way postprandial glucose excursions. However, of similarly importance is prompt
decrease of plasma insulin 60-90 minutes after meal ingestion, which prevents
hypoglycaemia in the post-prandial state. Finally, the fact that between-meal
plasma insulin is �at and peakless is the key factor in preventing interprandial
and fasting hypoglycaemia, especially during the nocturnal fasting hours.

2.1.1 Pancreas and neuroendocrine responses

The pancreas has two major functions: (1) synthesis and release of digestive en-
zymes, and (2) production and delivery of the two major hormones responsible
for the endocrine glucose metabolism control (insulin and glucagon).

The endocrine pancreas is composed of small groups of cells distributed throughout
the organ, the Islets of Langerhans. These groups are four and each one secretes
one major hormone: apha-cells are the insulin producing cells; beta-cells produce
glucagon; gamma-cells secrete somatostatin; and, PP-cells deliveries Pancreatic
polypeptide (I. A. Macdonald and King 2007).

The most relevant hormones involved in the glycaemia regulation are the following
�ve ones: insulin, glucagon, adrenaline, cortisol, and growth hormone. They are
described in detail because it is important to know the mechanisms of which
each one is responsible and the relationship between them in order to be able to
reproduce it mathematically.

• Insulin is a peptide hormone. It is secreted in response to elevated plasma
glucose, mannose, and some amino acids. On the other hand, insulin release
is inhibited by somatostatin, by cortisol, and by catecholamines. Insulin
e�ects on glucose metabolism are the stimulation of lipid synthesis and lib-
eration in the liver and protein synthesis. In addition, insulin stimulates
glucose uptake into adipose tissue and in muscle.

• Glucagon release is activated by low plasma glucose and by catecholamines
and glucocorticoids whereas it is inhibited by insulin and somatostatin.
Glucagon delivery is also inhibited by glucose but it is unknown if it is
due to a direct e�ect of glucose on alpha-cells or it is an indirect conse-
quence of elevated insulin levels. This hormone has an antagonistic actions
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of insulin. However, glucagon action is probably limited to the liver, with
limited e�ects in other tissues. Glucagon stimulates liver amino acid up-
takes, gluconeogenesis, and glucose release, and inhibits glycolysis and FFA
synthesis.

• The catecholamines adrenaline and noradrenaline, cortisol, and growth
hormone all acts to raise plasma glucose levels. Their behaviours are against
those of insulin, and they with glucagon are called counterregulatory hor-
mones. Due to the dependence of the brain on plasma glucose for energy,
hypoglycaemia can quickly end up in unconsciousness, brain damage, and
death. Thus, the counterregulatory hormones act to prevent hypoglycaemia
and avoid severe consequences.

Adrenaline is released by the adrenal medulla in response to hypogly-
caemia, and as part of the preparation for exercise. On the other hand,
noradrenaline is released from sympathetic neurons. Both catecholamines
have signi�cant roles in maintaining glucose levels in exercise; nevertheless,
adrenaline secretion has a more important contribution in terms of hypogly-
caemia prevention. Catecholamines stimulate glucagon secretion and inhibit
insulin delivery causing a decrease in the insulin-glucagon rate and hav-
ing indirect e�ects on liver glucose metabolism. Adrenaline also stimulates
liver gluconeogenesis, muscle glycolysis, and glycogen breakdown in liver and
muscle.

Cortisol is released from the adrenal cortex in response to stress of falling
plasma glucose levels. It stimulates gluconeogenesis and glycogen synthesis
in the liver, and reduce muscle and adipose tissue glucose uptake. It also
acutely inhibits insulin release and insulin action. Growth hormone is se-
creted in response to dropping down glucose levels, and its counterregulatory
action is the stimulation of lipolysis and an inhibition of insulin action.

2.2 Diabetes

Diabetes Mellitus is a condition characterized by chronic hyperglycaemia due to
absolute or relative insulin de�ciency (the pancreas cannot produce any or enough
insulin to match tissue requirements). Hyperglycaemia, if left unchecked over the
long term, can cause damage to various body organs, leading to the develop-
ment of disabling and life-threatening health complications such as cardiovascular
diseases, neuropathy, nephropathy, and eye disease (retinopathy leading to blind-
ness). However, if appropriate management of diabetes is achieved, these serious
complications can be delayed or prevented (Heinemann 2017).
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2.3 Type 1 diabetes

The classi�cation is complex. However, ∼ 90% of patients have Type 1 Diabetes
(T1D) (10%) and Type 2 Diabetes (T2D) (80%). Less common types of diabetes
include the gestational diabetes (GDM), the monogenic diabetes and secondary
diabetes. Monogenic diabetes is the result of a genetic mutation; secondary di-
abetes arises as a complication of other diseases such as hormone disturbances.
The present thesis addresses problems related to T1D. Therefore, T1D is the only
one explained below in more detail.

Diabetes complications can be divided into acute and chronic complications
(Melmed et al. 2016, Chapter 33). Acute complications include diabetic ketoaci-
dosis (DKA), hyperglycaemic hyperosmolar state (HHS), hyperglycaemic diabetic
coma, seizures or loss of consciousness and infections. Chronic microvascular
complications are nephropathy, neuropathy and retinopathy, whereas chronic
macrovascular complications are coronary artery disease (CAD) leading to angina
or myocardial infarction, peripheral artery disease (PAD) contributing to stroke,
diabetic encephalopathy and diabetic foot. In addition, diabetes has also been
associated with increased rates of cancer, physical and cognitive disability, tuber-
culosis, and depression.

2.3 Type 1 diabetes

Type 1 Diabetes is an autoimmune disease that causes the destruction of the beta
cells of the pancreas. This destruction produces the lack of endogenous insulin
secretion that leads to hyperglycaemia; then, endogenous insulin delivery has to
be provided. Figure 2.3 illustrates the di�erence between glucose regulation in
T1D subjects compared with the healthy ones.

Non-diabetic subjects maintain plasma glucose concentrations below 100mg/dL
during fasting state, and below 140mg/dL in the postprandial period. During
fasting, maintenance of normoglycaemia is possible due to the continuous secretion
of insulin from pancreas, which restrains hepatic glucose production and prevents
hyperglycaemia. At meal times, the pancreas releases insulin in response to meal
ingestion and drives the glucose levels to the basal concentrations. 60-90 minutes
after meal ingestion, the basal glucose concentration is achieved and the insulin
secretion is reduced to the basal levels to regulate hepatic glucose production to
maintain euglycaemia. This �atted insulin secretion is also crucial to prevent the
interprandial and fasting hypoglycaemias.

In contrast, the T1D patient has to replace this endogenous insulin production
(that is null) by an exogenous insulin delivery to avoid acute and chronic com-
plications. The insulin delivery should imitate the model of insulin dynamics of
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Figure 2.3: Glucose regulation in T1D people compared with healthy people.

non-diabetic subjects (Melmed et al. 2016, Chapter 32) (see Figure 2.2). That is,
in fasting state, insulin should be replaced using a preparation of �basal� insulin
ideally reproducing a �at and peakless concentration for all day long; at meal
times, a bolus injection of a rapid-acting insulin is needed in order to reproduce
the early and elevated peak plasma insulin in coincidence with carbohydrate in-
gestion. The delay associated to the abosrption from the subcutaneous tissue to
plasma retards insulin action until after starting carbohydrates absorption. This
fact increases the risk of post-prandial hyperglycaemia combined possibly with
the problem of late post-prandial hypoglycaemia due to continuing absorption of
insulin beyond the meal absorption. Hence, the insulin preparation (analogues)
and the insulin delivery must mimic the healthy human physiology (the phar-
macokinetics and pharmacodynamics characteristics must be close to the ideal
human insulin). However, physiological insulin replacement is a hard task, re-
sulting into a mismatch between insulin needs and supply. This causes hyper-
and hypoinsulinemia, generating hypo- and hyperglycaemic peaks, respectively.
Figures 2.4 shows the di�erences between healthy and T1D patients in terms of
plasma insulin concentration (secreted endogenously in Healthy people; delivered
exogenously in T1D patients), and glucose concentration. Here, it also can be ob-
served the di�erent performance of the regular and rapid-acting insulin analogues.

20



2.3 Type 1 diabetes

S.c. injection of lispro or aspart,
or glulisine in diabetic subjects
(Mean ± SE, n=10)

Normal postprandial values
(Mean±SD, n=23)

S.c. injection of soluble insulin
in diabetic subjects
(Mean ± SE, n=20)

0          2            4            6   8           10    12
Time After Insulin Injection or Meal Ingestion (Hours)

Pl
as

m
a 

Fr
ee

 In
su

lin
 (µ

U
/m

l)

0

20

40

60

80

(a)

Time (min)

0

20

40

60

80

100

120

In
su

lin
 (μ

m
ol

/l)
Pl

as
m

a 
G

lu
co

se
 (m

g/
dl

)

0

50

100

150

200

250

*
*

* * * *

*
*

* * * * ** *

0 
m

in

-3
0 

m
in

-6
0 

m
in

MEAL

N = 8 normal s.
Mean ± 1 SD

N = 8 T1DM s.
Mean ± SEM

*
*

* * * * * *
*

(b)

Figure 2.4: (a) Pharmacokinetics following subcutaneous injection of regular human in-
sulin, and rapid-acting insulin analogues. (b) Post-prandial insulin and glucose pro�les in
T1D patients vs healthy subjects. Both adapted from (Rossetti et al. 2008)

The treatment of T1D lie generally in an intensive therapy consisted of insulin
administration by an external pump or by three or more daily insulin injec-
tion (Melmed et al. 2016, Chapter 32). The �rst one involves administering a
rapid-acting insulin preparation by CSII (continuous subcutaneous insulin infu-
sion) through a catheter that is usually inserted into the subcutaneous tissues of
the anterior abdominal wall. The pump delivers insulin as a preprogramed basal
infusion in addition to patient-directed boluses given before meals or snacks or
in response to elevations in the blood concentrations outside the desired range.
This leads to greater �exibility for the patients compared by the multiple insulin
injections. The sensor-augmented-pump (SAP) therapy is also other alternative
that add a continuous glucose monitor to the CSII which enables to transmit glu-
cose values to the pump allowing patients and clinicians to monitor treatment.
The newest SAP includes the availability of low-glucose suspend features that
suspend insulin delivery when glucose levels reach a programmed lower limit or
when hypoglycaemia is predicted (Heinemann 2017).

The most serious complication of intensive regimens of insulin replacement is hy-
poglycaemia, and this is usually the factor that limits patients ability to achieve
tight glucose control. This is because patients with T1D have serious defects in
mechanism responsible for glucose counterregulation and this is the major under-
lying reason for the predisposition.
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The severity of hypoglycaemia increases with lower glucose concentrations. Non-
severe hypoglycaemia may lead to anxiety, nausea, confusion, blurred vision, and
di�culty in speaking; while severe hypoglycaemia is de�ned as the one that ne-
cessitates third party assistance, and if it is not solved, it leads to coma or seizure.
Hypoglycaemia is currently a factor of life for patients with type 1 diabetes with
an incidence rate of around 2.7 episodes of nonsevere hypoglycaemia per patient
per week (Leese et al. 2003). The incidence of severe hypoglycaemia is around 1.3
episodes per patient per year (Omar et al. 2018). The aim of novel therapeutic
options is to increase the time spent in normoglycaemia without increasing the
risk of hypoglycaemia.

2.3.1 Hypoglycaemia in type 1 diabetes

As said before, hypoglycaemia is the consequence of the mismatch between insulin
requirements and exogenous insulin infusion resulting in insulin excess. During
hypoglycaemia, while the glucose concentration is decreasing, central and periph-
eral glucose sensors activate mechanisms to evoke the corresponding neuroen-
docrine, autonomic and behavioural response (the so-called counterregulatory
response) (P. E. Cryer 2001). Thus, the hormones involved, which oppose the
action of insulin with its own mechanisms, are the counterregulatory hormones.
Many hormones are released when blood glucose is lowered, but glucagon, the
catecholamines -adrenaline and noradrenaline-, growth hormone, and cortisol are
the most important.

In healthy humans, the initial response to prevent a decline in blood glucose
concentration is a reduction in insulin secretion which begins while plasma glucose
concentration is still in the physiologic range, at approximately 80mg/dL (C.
Fanelli et al. 1994). Glucagon and adrenaline are secreted as glucose levels fall
slightly below the physiologic range, at approximately 68mg/dL (C. Fanelli et al.
1994; Mitrakou et al. 1991; Schwartz et al. 1987). Besides, there is an activation of
the autonomic nervous system which increases the amounts of noradrenaline and
adrenaline in the circulation. Beyond the suppression of insulin secretion, glucagon
plays the primary role in the hypoglycaemia correction whereas adrenaline has a
secondary role (J. Gerich et al. 1979; Rizza et al. 1979). If glucose continues falling
down, others counterregulatory factors are also activated: secretion of growth
hormone occurs at a plasma glucose threshold of approximately 66mg/dL, and
secretion of cortisol at approximately 58mg/dL.

The well-orchested counterregulatory response is managed by the following e�ects
on the glucose metabolism: The decrease in insulin secretion favours the incre-
ment of hepatic and renal glucose production besides of the decrease of glucose

22



2.3 Type 1 diabetes

utilization by insulin-sensitive tissues (e.g. skeletal muscle). Glucagon acutely
raises plasma glucose concentration by stimulating hepatic glucose production
via glycogenolysis and gluconeogenesis. Adrenaline increases glycogenolysis and
gluconeogenesis at the liver; reduces insulin secretion while increasing glucagon
release from the pancreatic islets; reduces glucose uptake and utilization and in-
creases glycolysis by muscle; and increases lypolysis in adipose tissue providing
alternative fuel (FFA) and substrate for gluconeogenesis (P. E. Cryer 1994). Cor-
tisol and Growth hormone increase the gluconeogenesis (glucose production from
precursors like glycerol, lactate, and amino acids mostly in the liver, although it
can occur in the kidneys too) and reduce glucose utilization. Note that glucagon
and adrenaline act within minutes to raise plasma glucose concentrations whereas
the actions of growth hormone and cortisol to support glucose production and
limit glucose utilization are delayed.

Although the primary role of the counterregulatory hormones is on glucose
metabolism, any e�ects on fatty acid (FFA) utilization has an indirect e�ect on
blood glucose. Thus, the increase in plasma adrenaline stimulates lipolysis in
adipose tissue and muscle and release FFA which are used as an alternative fuel
to glucose, making more glucose available for the central nervous system (brain)
which is always glucose dependent.

On the other side, the counterregulatory response to hypoglycaemia is altered
in T1D patients (Beall et al. 2012). Firstly, due to exogenous insulin therapy,
patients with T1D cannot imitate physiology and reduce systemic insulin levels
when blood glucose concentrations begin to decline, unless an arti�cial pancreas
or sensor-augmented pump is used (with the inherent limitations of subcutaneous
insulin delivery). Thus, subjects with T1D lack the �rst line of defence against
hypoglycaemia. Secondly, glucagon secretion in response to hypoglycaemia is lost
soon after the onset of the disease. And thirdly, the response of adrenaline to
a given level of hypoglycaemia is blunted and the glycaemic threshold for its
secretion is shifted to lower plasma glucose concentration (about 46mg/dL) (P. E.
Cryer 1994), together with reduced autonomic symptoms. The same decrease
happens to the glucose activation threshold of Growth hormone and Cortisol.
However, these two hormones do not have an immediate role in the recovery
from hypoglycaemia. Due to the loss of glucagon secretion and despite blunted
response, adrenaline becomes the main actor of the counterregulation

Comparison between the chain of counterregulatory physiological actions in T1D
patients and healthy humans are shown in Figure 2.5. It is important to remark
that the magnitude of the hormonal response also depends on the exposure to
hypoglycaemic episode (Mitrakou et al. 1991). In contrast, this response is atten-
uated as a result of a previous episode of hypoglycaemia (Heller and I. Macdonald
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1996) and even by prolonged exercise the day before hypoglycaemia is produced.
Recurrent hypoglycaemias can produce that glycaemia for initiation counterregu-
latory responses shift to lower plasma glucose concentrations each hypoglycaemic
event, and can lead to hypoglycaemia unawareness. This phenomenon is known
as hypoglycemia-associated autonomic failure (HAAF) in type 1 diabetes. It was
de�ned by P. E. Cryer 2001 as �recent antecedent iatrogenic hypoglycemia causes
both defective glucose counterregulation and hypoglycaemia unawareness, and
thus a vicious cycle of recurrent hypoglycaemia�. This concept is summarized in
Figure 2.6.

Chain of counterregulary physiological actions

Reduction
of insulin
endogenous
secretion

Glucagon
secretion

Adrenaline
secretion

GH and
cortisol
secretion

FFA availability

Plasma glucose
80mg/dL 68mg/dL 60mg/dL

Healthy
humans

First-line
action X Primary

role X Secondary
role

Not inmediate
response

Plasma glucose
50mg/dL 45mg/dL

T1D patients No endogenous
secretion×

Lost × Main
actorX

Secondary
actors

Figure 2.5: Chain of counterregulatory physiological actions.

Despite the relevant contribution of the counterregulatory response to hypogly-
caemia to glucose control in T1D, it is often neglected in simulation studies for
control strategies design or predictive algorithms for hypoglycaemia prevention.
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Hypoglycemia-Associated Autonomic Failure

Absolute Insulin De�ciency

No ↓ Insulin Type 1 Diabetes No ↑ Glucagon

Imperfect Insulin
Replacement

HYPOGLYCEMIA

Hypoglycemia
Unawareness

Defective Glucose
Counterregulation

Reduced Automonic (Including
Adrenomedullary) Responses

↓ Symptoms ↓ Epinephrine

Figure 2.6: Schematic representation of the concept of hypoglycemia-associated autonomic
failure in diabetes. Adapted from (P. E. Cryer 2001).

25





Chapter 3

Arti�cial Pancreas

This chapter gives a summary on the Arti�cial Pancreas (AP)
research. This introduces the type of control strategies that have been
proposed recently in order to face with the challenge of glycaemic con-
trol. Likewise, one section is dedicated to go into detail with the con-
trol objectives considered in the con�guration of the AP proposed. In
addition, variability metrics to assess the performance of the control
algorithms are presented. Finally, the strategies that have been used
in the development of this thesis are more detailed.

3.1 Arti�cial Pancreas

The AP, or also so-called Automatic Insulin Delivery, is a closed-loop control sys-
tem that delivers insulin to the patient, who is considered the plant or process of
the system. It is composed of three components: (1) a continuous glucose moni-
toring system (CGM), (2) an infusion pump as the actuator of the system, and (3)
a controller that regulates glucose concentrations through automatic adjustments
of hormonal delivery based on glucose measurements. The generic control scheme
of AP is depicted in Figure 3.1.

CGM is the glucose sensor that computes plasma glucose values from a cat-
alytic reaction based on the enzyme glucose oxidase immobilized into a polymeric
membrane covering an electrode sensing element. The glucose sensor is inserted
through the skin and placed at a depth of 8-12mm in the subcutaneous tissue.
It means that the sensor measures glucose in the interstitial �uid rather than
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Chapter 3. Arti�cial Pancreas

the blood. Therefore, dynamics of glucose transport between plasma and the in-
terstitial �uid introduce a measurement lag about 10 min (Hovorka 2006). This
physiological lag time is a factor to consider.

The infusion pump consists of a re�llable insulin cartridge, a pump mechanism,
and a programmable user interface, which can be used by the patient to establish a
basal infusion rate or give a discrete bolus in order to make up for a meal or correct
the hyperglycaemia. Since insulin is infused until its peak e�ect, approximately
80 minutes pass (Hovorka 2006). Therefore, this lag due to the insulin absorption
(from the sc tissue into plasma) besides the glucose sensor lag must be taken into
account by the controller.

Note that Implantable insulin pumps that infuse insulin into the peritoneum were
also proposed by Renard et al. 2010 in an attempt to closely emulate the pancreas.
Nevertheless, they were not considered feasible for a commercial AP since they
were invasive.

The controller is based on a control algorithm that suggests a certain insulin
infusion depending on the values provided by the glucose sensors. Particularly,
this is the component that has the most interest in this thesis.

CGM

(glucose sensor)

Control 

Algorithm

(Controller)

Insulin

Infusion

Pump

(Actuator)

+

-

PLANT

Disturbances

(meal, exercise,stress)

Glucose reference

(setpoint)

Plasma glucose

estimation Interstitial glucose

Insulin

infusion

Figure 3.1: Generic control scheme of AP.

Two con�gurations of the arti�cial pancreas have been proposed: a single-hormone
AP (delivers insulin alone) and a dual-hormone AP (delivers both insulin and
glucagon). Figure 3.2 illustrates the control scheme of a generic dual-hormone
AP.
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Figure 3.2: Generic control scheme of dual-hormone controller.

3.2 Control algorithms

The ideal closed-loop system would control blood glucose (BG) levels within a
target range, preventing postprandial and exercise-induced hypoglycaemia besides
of reducing glycaemic variability. Nevertheless, current AP systems still su�er
from hypoglycaemia, especially in the late post-prandial state.

A wide range of control algorithms have been proposed for the arti�cial pan-
creas, but only a few have been tested experimentally. The algorithms that have
been extensively tested fall under three classes of controllers: (1) Proportional-
integral-derivative (PID) (Weinzimer et al. 2008; El Youssef et al. 2011), (2) model
predictive control (MPC) (El-Khatib et al. 2010; Gondhalekar et al. 2015a) and,
(3) fuzzy logic Control (FL) (Atlas et al. 2010; Mauseth et al. 2013; Capel et al.
2014; Dovc et al. 2017).

Besides, controllers with pilot studies or tested only in simulations are H∞ con-
trollers (P. Colmegna et al. 2014), sliding-mode controllers (Abu-Rmileh et al.
2010), neural-network controllers (Trajanoski and Wach 1998),linear parameter-
varying controllers (Sánchez Peña and Ghersin 2010; P.H. Colmegna and R.S.
Sánchez-Peña 2014), switched LPV controllers (P.H. Colmegna et al. 2016b; P.H.
Colmegna et al. 2016a), adaptative controllers (see Cinar and Turksoy 2018, and
robust controllers (Kovács et al. 2008).

PID controllers have been linked to the dynamics of beta cells insulin secretion in
response to varying glucose levels in healthy individuals. They tried to adapt to the
changes in insulin sensitivity or rates of endogenous appearance without steady-
state errors in fasting glucose. Steil et al. 2003 presented an algorithm to insulin
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delivery predicted by a PID controller. From this con�guration, the next proposal
was the PID with a modi�cation to include the feedback of a model-predicted
insulin pro�le (Steil et al. 2006). This Insulin feedback (IFB) tried to reproduce
better the functioning beta cell, which reduces insulin secretion as plasma insulin
levels increase. The e�ect of insulin feedback on closed loop was assessed in (Steil
et al. 2011) particularly in the break fast-meal pro�le, after the good overnight
performance of PID controller was demonstrated in (Steil et al. 2006). Neverthe-
less, the occurrence of hypoglycaemia 2-3 hours post meals required rescue glucose
administration. In order to reduce the frequency of postprandial hypoglycaemia
associated with PID algorithms, a hybrid system in which basal insulin is raised
prior to the beginning of an intake to prevent or reduce the aggressive increase in
insulin delivery due to the fast rise of BG after meal was developed (Weinzimer
et al. 2008). (Ruiz et al. 2012) reported that PID + IFB markedly reduced the
occurrence of hypoglycaemia without increasing meal-related glucose excursions.
(percentage in hypoglycaemia of 9% vs 2% during 24h studies without exercise,
PID and PID+IFB respectively). Therefore, an important underlying problem of
the PID strategy is the di�culty in hypoglycaemia prevention associated with an
inaccurate or overestimated insulin dose. In that context, a predictive hypogly-
caemia alarm by means of hypoglycaemia models incorporation is advantageous
since the alarm suspends the insulin delivery and can markedly reduce the occur-
rence of moderate hypoglycaemia as (Buckingham et al. 2009) showed. Following
the same purpose, (Revert et al. 2013) developed a safety algorithm for glucose
control based on the PID controller with the addition of a IOB restriction by
means of sliding mode reference conditioning (SMRC) method and the IOB es-
timation. The results in simulation showed a signi�cant reduction of time in
hypoglycaemia (7% vs 15.75%, in scenarios of 16hours with three meals). This
controller was tested in a clinical trial and resulted consistent in the postprandial
control without an increase of the time in hypoglycaemia (Rossetti et al. 2017).

On the other hand, MPC is based on prediction of glucose dynamics using a
model of the patient metabolic system; besides, it is able to predict the e�ects
of meals and can introduce constraints on insulin delivery rate and glucose val-
ues. Speci�cally, it solves a �nite-horizon optimization problem every 5-15 min
to obtain an optimal insulin delivery pro�le that minimizes an objective function.
The objective function consist of 1) term that penalizes the mismatch between
future model-predicted glucose concentration and the target glucose level, 2) a
term that penalizes the control signal, and 3) a term that penalized the mismatch
between the model-predicted glucose concentration and the target glucose level.
The controller can handle meals and meal-time insulin boluses in a straightforward
manner. If the patients have a meal or deliver an insulin bolus, the algorithm will
be updated before the next cycle. The meal and the bolus will then change the
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predicted future glucose levels and a�ect the optimal insulin pro�le (Cobelli et al.
2009).

Several con�guration of MPC controllers are found in literature: among oth-
ers, Patek et al. 2007 propose a linear MPC where a linear quadratic Gaussian
based-feedback control algorithm was implemented, with the incorporation of a
Kalman �lter used to estimate di�erent metabolic states of the patient based on
subject-speci�c parameters. Results in-sillico were good (0.8% of time in hypogly-
caemia), but the duration of the simulation was one-day simulation, and exercise
and inter-day variability were not considered. Later, a non-linear state feedback
MPC scheme was proposed by Magni et al. 2008 and compared to open loop
performance in overnight and post-prandial studies. The improvement in hypo-
glycaemia events with the MPC was during the night (1.63 vs 0.13 events), but
there was not any di�erence during the postprandial period (Clarke et al. 2009). In
order to deal with the insulin overdose, Ellingsen et al. 2009 suggested an insulin
on board (IOB)-MPC, which uses the IOB as a safety constraint based on IOB
estimations; the IOB-MPC showed relatively robust results in silico. Percentage
of hypoglycaemia was 0.75% and 18.6%, MPC with and without IOB constraint
respectively, in a 24 hours study with three meals.

Grosman et al. 2010 presented a control algorithm based on zone-MPC that uses
mapped-input data, it is adjusted automatically by linear di�erence personalized
models, and the control variable objective is expressed as zone. Results showed
a reduction of glycaemic variability. Gondhalekar et al. 2013 proposed the �peri-
odic zone model predictive control� (PZMPC) strategy that employs periodically
time-dependent blood glucose output target zones and enforces periodically time-
dependent insulin input constraints in order to modulate its behaviour based on
the time of the day. Results showed improvements in nocturnal hypoglycaemia.

Gondhalekar et al. 2015b included a velocity weighting mechanism in the MPC
cost function, such that a predicted zone excursion is penalized taking into account
both its value and also the rate of change of the blood glucose trajectory. (Lee
et al. 2016) used and exponential-quadratic shaping for the cost function utilized
within an MPC block. It showed improved performance compared to previous
controllers that were validated in clinical settings. In (El Hachimi et al. 2017),
a MPC con�guration was proposed with a new formulation of the cost function
which includes an exponential asymmetric weighting of the glucose excursions in
order to accelerate the speed of control of AP and tackle the nonlinearity of the
control problem. In addition, other recent proposal for the MPC has been to
model the unavoidable uncertainty in probabilistic terms by means of Bayesian
network (Lackinger et al. 2017). Recently, the proposal of Renard et al. 2016
showed percentage of time in hypoglycaemia of 2.1% and 3.2%, AP vs SAP.
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In contrast, FL allows the development of a fuzzy controller without any patient
model by means of fuzzy rules inclusion. In this way, the controller rules are
provided by �experts� with knowledge of the system at hand and by medical
expertise (L. Wang 1997). In addition, multiple inputs and multiple outputs can
be included in a natural way. Di�erent groups have proposed an AP based on
fuzzy-controllers (Nimri et al. 2012; Mauseth et al. 2013; Mauseth et al. 2015)
and insulin limitation based on predictions of IOB are also applied in FL systems
in order to avoid insulin overdose (Kircher et al. 2015).

As seen above, there is a signi�cant number of approaches suggested with relevant
results. Nevertheless the hypoglycaemia due to challenging situations, such as
postprandial period or exercise, continues being the most important limitation of
all of them.

3.3 Challenges of Arti�cial Pancreas controllers

The daily use of the AP gives ambitious challenges to the controller performance.
These challenges are summarized in Figure 3.3. The most important challenges
for the closed loop are those that are inherent to human physiology: the hypogly-
caemia avoidance and the robustness against glycaemic variability. The insulin
delivered by the pump cannot be removed from the body once it is there; thus,
the controller should not be aggressive in excess. Additionally, insulin sensitivity
varies (Scheiner and Boyer 2005) due to factors such as time of day, stress, and
exercise; glycaemia is also a�ected di�erently depending on the meal composi-
tion; and, temperature along with other factors have also e�ect on the glycaemia
variation. Thus, controllers must be su�ciently robust to these variations. Fur-
thermore, the signi�cant dynamic lag due to the insulin subcutaneous route poses
other challenge to glucose control since the insulin e�ect cannot be easily coun-
teracted by the controller once insulin is infused.

For these reasons, it should take into account the insulin on board or follow other
control strategies in order to prevent the glucose descent towards hypoglycaemic
levels. Hypoglycaemia models that allow the prediction of hypoglycaemic events
and a dual-hormone control approach which push the glucose concentration up in
critical situations could be the keys in the optimal glucose control in T1D patients.
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Figure 3.3: Challenges of Arti�cial Pancreas controllers

3.3.1 Control strategies

In order to face with the above explained problems, two di�erent perspectives have
been addressed, not mutually-exclusive: (1) The incorporation of mechanisms for
insulin on board (IOB) limitation (Ellingsen et al. 2009; Revert et al. 2013; R.
Sánchez-Peña et al. 2017; R. Sánchez-Peña et al. 2018; P. Colmegna et al. 2018a);
and (2) the introduction of dual-hormone arti�cial pancreas systems which infuse
glucagon as counterregulatory action to increase plasma glucose (El-Khatib et al.
2010; Castle et al. 2010; Haidar et al. 2013; Herrero et al. 2012).
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Furthermore, it is worth noting that several groups have also proposed con�gu-
rations which include the insulin estimation in order to avoid the controller over-
actuation because of slow insulin absorption (even rapid-acting insulin analogues
are slower in comparison with physiological prandial insulin secretion) also in-
crease the risk of insulin stacking, particularly in the early post-meal periods.
This is so-called insulin feedback con�guration, which was originally proposed by
(Steil et al. 2011), and it has been incorporated to some control schemes based
on PID (Revert et al. 2013), MPC (Ellingsen et al. 2009), and FL (Kircher et al.
2015) to improve the controller performance.

The IFB algorithm emulates the physiological reduction of insulin production with
falling glucose levels. This is achieved through inhibition of insulin infusion as
plasma insulin levels are estimated to increase. The prediction of plasma insulin
is fed on the forward delivery of insulin of the control algorithms. The action
suggested by the controller is limited by an action proportional to the increment of
predicted plasma insulin concentration from the basal insulin concentration. Thus,
the IFB do not have e�ect on the total insulin action during basal (stationary)
conditions.

In order to avoid the over-insulination by means of IOB estimation, other strat-
egy is proposed in literature. This consists in the inclusion of a safety auxiliary
feedback element based on SMRC technique (Revert et al. 2013). The formulation
related to this technique is detailed due to its relevance in the development of this
thesis.

SMRC uses the modulation of glucose targets as a new degree of freedom for
glucose regulation. A prediction of IOB, IOB(t), drives a switching function
σsm(t), triggering a discontinuous signal ω(t) that, after a �ltering step, sums to
the standard glucose target/reference. Upper and lower limits for IOB can be
de�ned if desired. The upper limit of IOB de�nition promote an increase in the
glucose target value resulting in a decrease in the insulin delivery. Although the
controller response is in favour of insulin delivery reduction, the opposite e�ect
could be when a lower limit of IOB is de�ned. SMRC originates from concepts
of invariance control and sliding regimes as a transitional mode of operation. In
contrast to the conventional sliding mode control, the aim here is not evolving
toward the equilibrium point. Only when the system reaches a given sliding surface
separating the space into feasible and unfeasible regions (characterized by the
constraint on the IOB) is the sliding regime stabilized by conditioning the reference
until the system returns to the feasible region.
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Then, given an upper limit on IOB (or time varying IOB(t)) and the system state
x(t), the set

Σ =
{
x(t)|IOB(t) ≤ IOB(t)

}
(3.1)

is invariant for a discontinuing signal ω(t) of the form

ω(t) =

{
ω+ if σSM (t) > 0
0 otherwise

(3.2)

with ω+ > 0 large enough and

σSM (t) = IOB(t)− IOB(t) +
l−1∑
i=1

τi

(
IOB(t)

i − IOB(t)i
)

(3.3)

where l is the relative degree between the output IOB(t) and the input ω(t),
superscript i denotes i-th derivative, and τi are constant gains.

The �rst order �lter

dGRF
dt

= −αGRF (t) + α (GR(t) + ω(t)) (3.4)

keeps all signals in the control loop smooth, whereGRF (t) is the modulated glucose
target fed to the controller, GR(t) is the standard glucose target, and α de�nes
the �lter cut-o� frequency. Stability of the system is guaranteed, since SMRC
loop acts only on the setpoint, which is always bounded.

Relative degree l is determined by the relative degree of the �lter (Dalla Man
et al. 2014) and the relative degree of the IOB predictor. The IOB estimation was
obtained from the Hovorka subcutaneous insulin pharmacokinetic model (Hovorka
et al. 2004):

dS1(t)

dt
= I(t)− 1

tmaxI
S1(t) (3.5)

dS2(t)

dt
=

1

tmaxI
(S1(t)− S2(t)). (3.6)

Then, the IOB(t) was de�ned by:

IOB(t) = S1(t) + S2(t). (3.7)

The equations for the IOB estimation (3.5), (3.6), and (3.7) have a relative degree
of one, giving rise to a total relative degree of l = 2. According to the interest
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of limiting the Insulin delivery, IOB(t) must be considered and the switching
function (3.3) is

σSM (t) = IOB(t)− IOB(t) + τ

(
dIOB(t)

dt
− dIOB(t)

dt

)
. (3.8)

The switching function σSM (t) will be positive when IOB(t) + τ (dIOB(t)/dt)
is higher than the IOB(t). How close IOB is allowed to approach its limit will
depend on the IOB tend, weighted by the parameter τ . This de�nes a threshold
on IOB, which corresponds to IOB − τ (dIOB(t)/dt). A rapidly changing IOB
will lower this threshold, compared to an IOB slowly approaching the limit. When
IOB goes beyond this threshold, an increment on the glucose setpoint is triggered,
resulted by the discontinuous signal ω(t) and amounting ω+, after a transient
state given by the �lter. As a reaction to the new glucose reference, the controller
will reduce the insulin delivery, impeding violation of the IOB limit. The glucose
reference will return to its original value after the transient state imposed by the
�lter, when IOB returns below the threshold, in which case ω(t) = 0.

The IOB limitation with SMRC was evaluated in a clinical study (Rossetti et al.
2017), where it showed an improvement of postprandial control with a signi�cant
decrement of postprandial peak and increment of the time in range; nevertheless,
hypoglycaemia continued being the main weakness.

Dual-hormone approach

Current dual-hormone systems are based on two control loops with an insulin
controller and a glucagon controller. The latter is activated in certain circum-
stances with the goal of triggering a counterregulatory control action to mitigate
hypoglycaemia. It has been commonly thought that dual-hormone systems may
allow being more aggressive with the insulin infusion compared to a single hor-
mone system since it is possible to modulate the excessive insulin action with the
glucagon infusion. However, recent studies demonstrate that the excess of insuline-
mia reduces the glucagon e�ectiveness and have negative e�ect on hypoglycaemia
incidence (El Youssef et al. 2014).

The viability of a dual-hormone system in humans was demonstrated in (El-Khatib
et al. 2010). The system was based on an MPC controller for insulin infusion
and a PD controller for the glucagon infusion which was only activated when
glycaemia was lower than a given target threshold or close to this threshold with
a fast falling down. Similar structure has been used in other groups for glucagon
and insulin infusion. As an example, a Fading Memory Proportional Derivative
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(FMPD) algorithm for the insulin and glucagon action with di�erent parameters
and target glucose in each hormone was presented in (Ward et al. 2008). However,
in (Haidar et al. 2013), an MPC controller was used for the insulin delivery that
takes into account the glucagon on board, whereas glucagon is delivered following
heuristic rules. Other approach available in literature is the use of a bio-inspired
controller for the insulin and a PD controller for the glucagon (Herrero et al. 2012).

Current clinical trials have not demonstrated a clear superiority of the dual-
hormone systems compared to single-hormone ones since the hypoglycaemia in-
cidence is similar in both. Nevertheless, single and dual- hormone systems are
clearly better than the conventional therapy (P. A. Bakhtiani et al. 2013; Weisman
et al. 2017). Comparisons between the single- and dual-hormone approach have
been carried out by several authors. During nocturnal control, the single-hormone
systems is able to perform an e�cient control (Haidar et al. 2015). However, the
dual-hormone system showed superior results during studies with exercise (Taleb
et al. 2016), the percentage time in hypoglycaemia (<72mg/dL) was 0% vs. 11%,
and the percentage of time in range (72-180 mg/dL) was 100% vs 71.4%. Nev-
ertheless, this good point has not been proved in outpatient studies (Haidar et
al. 2017) since there were not signi�cant di�erences between the hypoglycaemia
events (6 events in dual-hormone con�guration vs. 14 events in single-hormone
system), but authors proposed larger studies to assess properly the di�erences
due to the complexity of dual-hormone systems. Recently, (Castle et al. 2018)
have demonstrated that the incorporation of glucagon delivery to the closed-loop
system with automatic exercise detection reduces hypoglycemia after exercise.

Physiologically, in pancreatic islets (contains a network of cells responsible for dif-
ferent hormonal secretion), there is communication between the beta and alpha
cells, responsible for the insulin and glucagon secretion, respectively (Jain and
Lammert 2009). In (B. A. Cooperberg and P. E. Cryer 2009) it is demonstrated
that an increment in plasma and intra-islets insulin levels produces a suppression
in glucagon secretion, and a decrement in insulin levels with low plasma glucose
concentrations stimulate glucagon secretion. Furthermore, authors in (Rodriguez-
Diaz et al. 2011a) showed that the alpha cell anticipates the possible hypergly-
caemic rebounds due to the glucagon secretion by means of beta cell stimulation,
con�rming the tight paracrine communication in both directions. Thus, coordi-
nation between the secretion of both hormones is a relevant factor to take into
account in the glycaemic control. In a recent work, a coordinated biologically
inspired glucose control strategy was presented (Herrero et al. 2017), achieving
in silico a reduction of hyperglycaemia without increasing hypoglycaemia when
compared to its non-coordinated con�guration (1.79% of time below 70mg/dL).
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However e�cient hypoglycaemia mitigation in dual-hormone systems is still an
open issue.

Of note one of barriers to implementation of the dual-hormone controllers was
the unavailability of stable glucagon formulations (the available subcutaneous
glucagon formulation was only stable for 24 hours). Fortunately, a novel stable
peptide analogue of human glucagon has been recently developed (Dasiglucagon
is the proposed international non-proprietary name) (Hövelmann et al. 2018), al-
lowing its use in pump delivery devices in the clinical outpatient setting.

In order to improve AP performance, Chapter 7 shows the dual-hormone control
algorithm we have developed in this thesis. The controller is based on a collabo-
rative parallel control formulation for multiple-input single output processes.

3.4 Control targets

3.4.1 Hypoglycaemia avoidance

Hypoglycaemia prevention remains one area that can still be improved since a
majority of studies reported at least one episode during the closed-loop evaluation.
Moreover single and dual hormone AP have shown reduction in time spent in
hypoglycaemia compared with the conventional treatment (SAP, multiple insulin
injections), but have not yet been able to eradicate it completely. Therefore,
a study of the causes that promote hypoglycaemia and its e�ects, besides of a
better understanding of the factors that determine hepatic glucagon sensitivity in
T1D and the mechanisms involved in hypoglycaemia are needed. There are many
factors related to the Hypoglycaemia events and, thus, they must be considered
in order to face with this problem.

During exercise, especially aerobic exercise, blood glucose concentrations often
fall rapidly, increasing the risk of hypoglycaemia (Children Network (DirecNet)
Study Group 2006). Many factors a�ect the variations in glucose concentrations
during exercise: type, intensity, and duration of exercise are prominent factors;
but starting glucose level, time since last insulin bolus, and insulin injection site
are important factors too (Riddell et al. 2015). The risk of hypoglycaemia in-
creases during exercise due to the rapid utilization of glucose by muscle and the
short-term improvement in the insulin sensitivity. Additionally, the latter prolongs
also several hours after exercise increasing the risk for late evening and noctur-
nal hypoglycaemia (Maran et al. 2010; Iscoe and Riddell 2011). Di�erent types
of exercise (resistance vs. aerobic) can have contrasting e�ects on the duration
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and severity of exercise-induced hypoglycaemia and post-exercise hypoglycaemia
(Yardley et al. 2012).

Nowadays, patients use several strategies in order to prevent exercise-induced
hypoglycaemia as suppression of basal insulin (Diabetes Research in Children
Network (DirecNet) Study Group et al. 2006), ingestion of carbohydrates (Riddell
et al. 1999), or, reduction of pre-meal insulin dose (Rabasa-Lhoret et al. 2001);
nevertheless, the hypoglycaemia problem is not yet solved, and it continues to be
common during exercise. Other factor to consider is the mental stress and sickness
a�ect glucose control through peripheral and hepatic insulin resistance leading to
hypoglycaemia.

Finally, it is also to highlight that the hypoglycaemia a�ect the relationship be-
tween interstitial glucose and plasma glucose concentrations (Moscardo et al.
2018). Since sensors measure glucose concentration in the interstitial �uid, control
action calculations might be a�ected.

3.4.2 Glycaemic variability reduction

Glucose variability describes within-day and between-day �uctuations in glucose
concentration and is elevated in people with type 1 compared with people with
healthy glucose tolerance.

Clinical observations in T1D suggested that glucose pro�les can greatly di�er
even among people with glycated hemoglobin (HbA1c) values approaching target,
de�ning that glucose variability is an important component of dysglycaemia (C.
Wang et al. 2012). Indeed, increased glycaemic variability is also associated with
a higher incidence of severe hypoglycaemia in patients with T1D (Kovatchev and
Cobelli 2016). Reduction of glucose variability to address the risk of hypo- and
hyperglycaemia is a target in diabetes treatment; besides, variability has been
also associated with macro- and microvascular complications (Quagliaro et al.
2005; Schiekofer et al. 2003; Monnier et al. 2006; Ali et al. 2008), neuropathy
(Krinsley 2008), retinopathy (Kilpatrick et al. 2007), atherosclerosis (Rodbard
2009a), kidney disease (Hill et al. 2011), cardiovascular disease (Health Research
(JCHR) 2018), and impairment of cognitive function (Whitelaw et al. 2011).

• Variability within the same patient (Intrapatient variability).

Insulin sensitivity within the same patient may exhibit random day-to-day vari-
ations (±30%) depending on the stress level, exercise level, and food intake (El
Youssef et al. 2011; Taplin et al. 2010; Pa«kowska et al. 2012; Swan et al. 2009;
Cavallo et al. 2001; Burstein et al. 1985). For example, the lower insulin sensitivity
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after exercise event (Taplin et al. 2010), and the insulin sensitivity changes due to
the sickness/stress (El Youssef et al. 2011) or menstrual cycles (Trout et al. 2007).

Other source of variability is the meal absorption since meals with identical carbo-
hydrates content but di�erent fat and protein contents show di�erent absorption
pro�les (Elleri et al. 2013). It means that the calculated bolus taking into account
the amount of carbohydrates could not have the same e�ect on the glucose levels
in di�erent meals with same carbohydrates amount.

In addition, variability of the pharmacokinetics of insulin formulations after its
injection in the subcutaneous tissue can contribute to inter day variability of
plasma insulin and therefore glucose levels.

• Variability between patients.

Insulin sensitivity vary signi�cantly between patients. Basal insulin needs can be
as low as 0.2U/hours in young children and as high as 2.0U/hour in obese adults.
Similarly, total daily insulin needs can vary between 0.3U/kg in insulin-sensitive
patients to 1.3U/Kg in insulin resistant patients (Haidar 2016). Most controllers
are thus designed so that their gain is individualized using clinical variables such
as total daily insulin as a surrogate of insulin sensitivity (El Youssef et al. 2011).
For instance, PID are individualized by their coe�cients (Steil et al. 2011; El
Youssef et al. 2011) and model predictive controllers are individualized through
either the weighting parameters of the objective function or the models used for
predictions (El-Khatib et al. 2010; To�anin et al. 2013; Harvey et al. 2014; Haidar
2012). Adaptive algorithms adjust and individualize the controllers gain in real
time.

As commented before, for intrapatient variability, pharmacokinetics of insulin for-
mulation a�ects also the variability between patients. For instance, time-to-peak
of insulin absorption varies between individuals by as much as �vefold and can
be anywhere between 30 and 150 min. Absorption time cannot be predicted re-
liably from clinical variables but may be estimated in real time by means of the
insulin-glucose data relationship (Haidar 2012; Hovorka et al. 2010; Mazor et al.
1998).

Other factors obviously related to the variability are, among others, physical
activity (varying types and intensities), meals (varying sizes and composition),
health status, and biological factors (puberty, menstrual cycles, pregnancy, and
menopause).
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Alternative classi�cation of glycaemic variability factors is shown in (Kudva et al.
2014), where the physiologic factors that could a�ect the glycaemic variability are
grouped by time scale considerations. This classi�cation is shown below.

� Time scale of minutes to hours: mixed-meals with di�erent macronutrient
composition; gastrointestinal dysmotility, type of physical activity, alcohol
ingestion, medication e�ects.

� Time scale of days: menstruation, workdays vs nonwork days, working day
vs nonwork days, shift workers.

� Time scale of months: weight gain or loss, physical training program, closed-
loop use, kidney function changes.

� Life cycle-related issues: puberty, menstruation, pregnancy, trimester of
pregnancy, menopause, postmenopausal.

It is clear that a good glycaemic control in the context of the AP can be achieved
only if the control action is robust enough to compensate for intra- and between
patients variability.

Glycaemic variability metrics

Currently available continuous glucose monitoring (CGM) devices provide glucose
data every 5 minutes and from these data, multiple indices or glycaemic variability
metrics can be calculated. In order to quantify glucose variability, several authors
have de�ned indicators. Nevertheless, there is not a clear consensus on the gold-
standard method to measure glucose variability in clinical practice and research.
The easiest way to get an impression of the glucose variability in an individual
patient is to calculate the SD of glucose measurements and/or the coe�cient
of variation. However, in this way, a lot of useful information about glycaemic
performance can be lost.

The indicators that can be founded in literature are listed below and their math-
ematical formulations are available in appendix A. Introducing them is essential
to carry out the �rst objective of this thesis.

• Standard deviation (SD), mean glucose and coe�cient of variation (CV).
SD is an index of dispersion of data around mean blood glucose. It was the
simplest approach for the evaluation of glucose variability, beyond the simple
determination of mean blood glucose (Whitelaw et al. 2011).
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• Mean Amplitude of Glucose Excursion (MAGE). MAGE is the mean of the
daily glucose excursions that exceed the SD measured over the 24h period
(Hill et al. 2007).

• Continuous overlapping net glycaemic action over n-hour period (CONGAn).
This is an indicatior of within-day glucose variability. It calculates the dif-
ference between current observation and observation in the previous n hours.
The higher CONGA value, the greater the glycaemic excursion (McDonnell
et al. 2005).

• Mean of Daily Di�erences (MODD). MODD quanti�es the phenomenon of
between-day variability from CGM readings. It is the mean of the absolute
di�erence between glucose values taken on two consecutive days at the same
time (Molnar et al. 1972).

• M-value of Schlichtkrull (M-VALUE). This metrics measures the stability of
glucose excursions in comparison with an ideal glucose value (Service 2013).

• J-INDEX. The J-INDEX is an indicator that correct the SD for mean blood
glucose (Service 2013).

• Mean Absolute Glucose (MAG). MAG assesses short-term within-day tem-
poral variability (Service 2013).

• Absolute Average rate of change (AARC) (Whitelaw et al. 2011).

• Lability Index (LI). It is also known as Hypo Index. It assesses glycaemic
lability (Ryan et al. 2004).

• Glycaemic Risk Assessment Diabetes Equation (GRADE). It is the mean
approximation of the results from a function relating risk to glycaemia (Hill
et al. 2007). The GRADE formula generated by this process allowed the
assessment of each discrete point in a glycaemic pro�le. The contribution
of hypoglycaemia, euglycaemia and hyperglycaemia to the GRADE score is
expressed as percentages: %GRADE-hypo, %GRADE-eu, %GRADE-hyper.

• Risk index (RI), Low blood glucose index (LBGI), and High blood glucose
index (HBGI). These parameters were developed by Kovatchev et al. 2006.
They are a logarithmic transformation of the blood glucose data. LBGI
and HBGI represent the frequency and extent of low and high blood glucose
measurements, respectively. Higher LBGI and HBGI values indicate more
frequent or more extreme hypo- and hyperglycaemia, respectively.

42



3.4 Control targets

• Average Daily Risk Range (ADRR). It is the average sum of the HBGI for
maximum glucose plus the LBGI for minimum glucose for each day. It is
equally sensitive to hypoglycaemic and hyperglycaemic blood glucose (Ko-
vatchev et al. 2006).

Newer metrics for the assessment of glycaemic control based on CGM data have
been de�ned for use in clinical practice and in the research setting. They are:

• Index of Glycaemic Control (IGC). This metrics combines the results from
a Hyperglycaemia Index and a Hypoglycaemia Index (Rodbard 2009a; Rod-
bard 2009b).

• Personal Glycaemic State (PGS). It evaluates four dimensions of glycaemic
control: mean glucose, glycaemic variability, percent time in range and fre-
quency and severity of hypoglycaemia (Hirsch et al. 2017).

• Glycaemic Variability Percentage (GVP). It is based on the length of the
continuous glucose monitoring temporal trace normalized to the duration
under evaluation (Hirsch et al. 2017).

The availability of an excessive number of variability indices leads to an increase of
the existing confusion surrounding this important issue. Interrelationship between
them must be assessed. Likewise, the vulnerability faced with inter-, intra- vari-
ability must be studied in order to �nd the best and rigourous indicator. Finally,
a di�erentiation between glucose variability metrics and quality control indices
will be also useful in the analysis of controllers performance.
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Chapter 4

Models of glucose regulation in

type 1 diabetes

One of the main problems for glucose control is the insu�cient
accuracy of existing mathematical models for describing the physiol-
ogy of the glucoregulatory system. In this chapter the modelling and
simulation context for the arti�cial pancreas will be reviewed, and the
state of the art of mathematical models in literature will be described.
The models described in detail are the ones which are considered in
this thesis.

4.1 Mathematical representation of glucoregulation

Models that describe dynamics of glucose regulation are crucial in the context
of the AP. These are generally used for three main purposes: (1) to support
physiology studies, (2) to perform simulations, and (3) as part of the closed-loop
controllers.

1. Models to support physiology studies.

These models are usually minimal models. It means that the models are par-
simonious descriptions of the key components of the system functionality and are
able to measure crucial processes of glucose metabolism, thus also improving our
understanding of the system. Bergman et al. 1981 introduced the minimal model
method to describe an IVGTT (intravenous glucose tolerance test) in order to
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analyse the glucose metabolism by means of insulin and glucose measurements.
From these measurements and with that Minimal Model, an index of insulin ac-
tion, called insulin sensitivity, was obtained.

The features of the minimal models are (Cobelli et al. 2009): 1) physiology based;
2) parameters estimated with reasonable precision; 3) parameter values within
physiologically plausible ranges; and, 4) system dynamics described with the
smallest number of identi�able parameters. Moreover, a good minimal model
is a small-scale one because it is not necessary that every known substrate or hor-
mone was included in the model because the macro-level response of the system
would be relatively insensitive to many micro-level relationships.

The most popular model is Bergman's minimal model, which is widely used to
estimate insulin sensitivity (Bergman et al. 1979). Nevertheless, other models
have been developed to assess the beta-cell responsiveness (Hovorka et al. 1998)
and glucose e�ectiveness (Vicini et al. 1997) and, to estimate the time-varying
metabolic functions such as endogenous glucose production and rate of glucose
consumption (Steele et al. 1968; Radziuk et al. 1978; Mari 1992), among others.

2. Models for simulation.

Models used for simulations are often complex, physiologically inspired, nonlinear,
high order; these adopt the compartmental approach, and are built from smaller
submodels such as glucose-kinetics, insulin-action, insulin-absorption, and meal-
absorption submodels. Those are maximal models. They are comprehensive
descriptions that attempt to implement fully the body of knowledge about the
system. This class of models cannot be identi�ed easily, generally.

It is important to note that the large-scale models are very useful as a research
tool. The Dalla Man model (Dalla Man et al. 2007b) is one of the most widely used
maximal model in the AP community. Indeed, it is the kernel of the UVA-Padova
T1D Simulator (Dalla Man et al. 2014), a simulation tool for the evaluation of
glucose controllers accepted by the FDA as a substitute for animals trials. Hovorka
Model (Hovorka et al. 2004), (Wilinska et al. 2010) is the other one popular
maximal model, which considers the meal component and includes carbohydrate
digestion and absorption. The Identi�able Virtual Patient Model (S. S. Kanderian
et al. 2012) is other example.

3. Models for control systems.

Glucose models have also constituted an integral part of the closed-loop predic-
tive glucose controllers. Control-oriented models are generally simpli�cations of
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simulation models and are considered at the controller design phase since most
of the well-established theory of control law design accommodates only simpler
models. That is, although control-oriented models have to represent the under-
lying dynamics to some degree, they are mainly obtained for synthesis purposes
and have a much simpler mathematical formulation (P. Colmegna et al. 2018b).
These models can be characterized as being parametric low-order models such as
those used in physiology studies (Parker and Doyle III 2001) or proposed in (van
Heusden et al. 2012; P. Colmegna et al. 2018b), parametric high-order models
but with a low number of free parameters to allow real-time estimation, and non-
parametric models, such ARMAX models and impulse response models. Most of
these models were derived from existing ones that were originally developed for
simulations (Sorensen 1985) or physiological studies (Parker and Doyle III 2001)
but some models were derived speci�cally to be used in closed-loop controllers
(Fabietti et al. 2006).

Regardless of the di�erent purpose of the model, modelling of the glucose regula-
tion for any subcutaneous insulin therapy (Single-hormone AP) must involve the
following three subprocess or components:

� A subcutaneous insulin pharmacokinetic model describing how insulin ap-
pears in blood after subcutaneous infusion.

� An insulin action model describing how plasma insulin concentration exerts
its e�ect on glucose metabolism.

� A glucose metabolism model describing the comprehensive e�ect of insulin
on plasma glucose concentration.

In the case of dual-hormone therapy, the following four additional subprocesses
must be also considered:

� A subcutaneous glucagon pharmacokinetic model describing how glucagon
appears in blood after subcutaneous infusion.

� A glucagon action model describing how plasma glucagon concentration ex-
erts its e�ect on glucose metabolism.

� A glucose metabolism model describing the comprehensive e�ect of glucagon
on plasma glucose concentration.

� Model of the interaction between insulin and glucagon.
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4.2 Simulation models for in silico testing of control

algorithms in T1D

The main uses of maximal models and simulation in AP are: (1) to develop and
test theories about insulin signalling (e.g. Sedaghat et al. 2002) and secretion (e.g.
Grodsky 1972 and Cerasi et al. 1974); (2) with educational purpose, interacting
with the models, clinicians and patients gain understanding of glucose regulation
(e.g. AIDA educational package (Lehmann et al. 1993), KADIS system (Rutscher
et al. 1994), and DIAS (Andreassen et al. 1994)); (3) to use as a test beds for
examining the empirical validity of models intended for clinical applications, i.e.
the substitution of animal trial with in silico experiments in T1D (Cobelli et al.
2014). Of special interest in the context of this thesis is the simulator used as a
validation tool for assessing the control algorithms, especially the representation
of hypoglycaemia, whose mitigation is the main target of the to-be-developed
controllers.

In metabolism and diabetes, there are situations where in silico experiments with
complex models could be of enormous value. In fact, it is often not possible, appro-
priate, convenient, or desirable to perform an experiment on the glucose system,
because it cannot be done at all, or it is too di�cult, too dangerous, or unethical.
In such cases, simulation o�ers an alternative way of in silico experimenting on
the systems. Indeed, simulation models have been published and already used
to examine various aspects of diabetes control (for assessing di�erent control al-
gorithms and di�erent insulin infusion routes). Nevertheless, it is important to
mention that good in silico performance of a control algorithm does not guarantee
in vivo performance.

Algorithms for closed-loop insulin delivery in subjects with type 1 diabetes can be
designed and tuned empirically, and evaluated during clinical testing. However, a
validated simulation model of glucose regulation in type 1 diabetes accelerates the
design and the evaluation process. The recent simulators are built from smaller
already existing submodels that represent the glucose regulation. Hence, the sim-
ulators core often include a submodel of the glucose kinetics and insulin action.
Notice that if the simulation model is to be used for testing the arti�cial pan-
creas that drives a subcutaneous insulin infusion pump based on subcutaneous
glucose measurements, it is also necessary to consider submodels that represent
both the subcutaneous insulin kinetics and the interstitial glucose kinetics. The
principal simulation environments and their related models available in literature
are presented below.

� Sorensen model (Sorensen 1985).
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Sorensen model belongs to the class of complex physiological based on compart-
mental models. The model was based on earlier work (Guyton et al. 1978). It
divides the body into six physiologic compartments: the brain, the heart, the pe-
riphery (includes skeletal muscle and adipose tissue), the gut, the liver, and the
kidneys. Glucose and insulin subsystems are considered separately, with coupling
through metabolic e�ects.

The parameters values were derived from the literature and hence could only
represent a nominal �average� virtual subject with type 1 diabetes. Therefore the
model fails to represent the within subject variability. Sorensen model was further
developed (Parker et al. 1999; Parker et al. 2000) to test glucose controllers.

� Fabietti model (Fabietti et al. 2006).

The model is based on a modi�ed Bergman Minimal model. External inputs of
the model such as meals and intravenous glucose boluses were added together
with the submodel of the glucose absorption from the gastrointestinal tract. The
circadian variability of insulin sensitivity was represented by a sinusoidal signal.
In addition, most of the parameters were obtained from the literature or by �tting
published data. Thus, this is the most important limitation.

� Hovorka model (Hovorka et al. 2004).

This simulation model is based on the compartment model of glucose kinetics and
insulin action described by Hovorka et al. 2002. From this, two-compartment mod-
els of the subcutaneous insulin and subcutaneous glucose kinetics are included as
well as two compartment model of the glucose absorption from the gastrointestinal
tract.

An important property of this simulation environment is its ability to represent
between and within subject variability. The between subject variability is repre-
sented by a population of 18 virtual subjects with T1D. The model parameters
were obtained either from clinical studies in subjects with type 1 diabetes or from
informed probability distributions. The within subject variability of the glucoreg-
ulatory system was implemented by superimposing sinusoidal oscillations on a
subset of model parameters.

The main weakness of the Hovorka virtual patient model is that the representa-
tion of glucose absorption from the gut is simple and it may need to be re�ned.
Moreover, the within subject variability may also require re�nement (Wilinska
and Hovorka 2008).

� Medtronic virtual patient (S. Kanderian et al. 2006).

49



Chapter 4. Models of glucose regulation in type 1 diabetes

The simulation model used Bergman minimal model at its core interacting with
two-compartment models of the subcutaneous insulin kinetics and the meal ab-
sorption. Nevertheless, diurnal variations of minimal model parameters such as
insulin sensitivity and glucose e�ectiveness at zero insulin concentration, and the
endogenous glucose production were introduced.

The principal limitation is the simplistic representation of the glucose kinetics by
Bergman minimal model which includes a short duration of insulin action and
overestimation of glucose e�ectiveness (Wilinska and Hovorka 2008).

� Dalla Man model (Dalla Man et al. 2007a; Dalla Man et al. 2014; Visentin
et al. 2018).

The Padova University team, led by Prof. Claudio Cobelli, developed a meal-
simulation model of glucose-insulin system utilising data collected in 204 healthy
subjects. The simulation model is made up of several parsimonious submodels
describing the various unit processes (liver, gastrointestinal tract, muscle and adi-
pose tissue, and beta cell process) (Dalla Man et al. 2007b). There are two main
systems in the model (glucose and insulin subsystems); both are described by two
compartment models.

The simulation model was employed to simulate a typical day of a non-diabetic
subject with three meals. To account for diurnal variations in insulin sensitivity
and beta-cell responsiveness, it was assumed that insulin sensitivity is fast and the
lunch and beta-cell responsiveness is 25% lower during the lunch and the evening
meal compared to the breakfast. As the simulator model was obtained in healthy
subjects, for T1D simulations, authors substituted the insulin secretion model
with the model of subcutaneous insulin kinetics. To account for the higher basal
glucose in T1D, the endogenous glucose production was also increased.

The weakness of this proposal was the fact that the diurnal variations of certain
model parameters were not been modelled. Besides, the hypoglycaemia implica-
tions and counterregulation were not included in the �rst version (UVA-Padova
Type 1 Diabetes Simulator, S2008).

Later versions, the UVA-Padova Type 1 Diabetes Simulator, S2013 (Dalla Man
et al. 2014), incorporated a nonlinear glucose response to hypoglycaemia and a
model of counterregulation. Besides, it was also included a population of 300
in-silico subjects (100 adults, 100 adolescents, and 100 children), as in its �rst
version. The limitations of this version was the �single-meal� domain of validity.

The latest version, the UVA-Padova Type 1 Diabetes Simulator, S2017 (Visentin
et al. 2018), includes the model of intraday insulin sensitivity variability (the
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circadian variability of insulin sensitivity demonstrated by Hinshaw et al. 2013).
In addition, its domain of validity was extended from �single-meal� to �single-day�.
Finally, S2017 incorporates new models implementing the current performance of
insulin delivery and glucose sensing. It is worth remarking, that despite the label
"single-meal" or "single-day" considered in FDA documentation, the simulator
has been extensively used in the arti�cial pancreas community to simulate long
complex scenarios for controllers testing prior to clinical studies.

Notice that the above-mentioned simulation environments does not consider the
particularities of hypoglycaemia nor counterregulation e�ect, excepting the UVA-
Padova Type 1 Diabetes Simulator, S2013 and S2017. Recently, the simulator
whose use is more spread in the scienti�c community is the UVA-Padova Type 1
Diabetes Simulator, S2013

4.3 Models considered

Many models are found in literature to describe the relationship between insulin,
glucose and other possible factors that each model also may include. For the sake
of brevity, only the models which are relevant in the context of this thesis are
explained in detail below.

4.3.1 Bergman minimal model and extensions

Bergman et al. 1979 quanti�ed the pancreatic responsiveness and insulin sensi-
tivity of a diabetic patient using a three-compartment model, namely, I, X and
G which represent plasma insulin (µU/mL), insulin action from a remote com-
partment (min−1) and plasma glucose (mg/dL) concentrations respectively. The
model compartmental representation can be observed in Figure 4.1. The equations
(4.1), (4.2), and (4.3) de�ned the Bergman Minimal model. It is a second-order,
nonlinear model relating plasma insulin concentrations (input) and plasma glucose
concentration (output). Plasma insulin, I(t), enters from the circulatory system
into the remote compartment, X(t), which is modelled with a �rst-order system
representing a lagged action of insulin. This promotes the uptake of plasma glucose
(G(t)) by the hepatic and extrahepatic tissues. The plasma glucose concentration
G(t) is inhibited by the glucose itself and insulin e�ect. A constant hepatic glucose
production p1 ·Gb is considered that drives the system to equilibrium for a basal
insulin concentration Ib. p1, p2, and p3 are kinetic parameters. p1 is the kinetic
parameter that governs the rate at which glucose is removed from the plasma
space independently of the insulin in�uence (the so-called glucose e�ectiveness);
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lastly, Insulin Sensitivity is de�ned by p3/p2.

İ(t) = −nI(t) +
u1(t)

V olI
(4.1)

Ẋ(t) = −p2X(t) + p3 (I(t)− Ib) (4.2)

Ġ(t) = −p1G(t)−X(t)G(t) + p4 +
u2(t)

V olG
(4.3)

x(0) = 0, G(0) = Gb, I(0) = Ib.

Glucose and insulin distribution volumes are indicated by V olG and V olI , respec-
tively.

Roy and Parker 2006b proposed an extension of the Minimal Model with the
intention of developing a model of T1D patient that fully characterizes endoge-
nous energy production. That was the addition of the FFA dynamics and its
interactions with glucose and insulin dynamics. In Figure 4.2, the compartmen-
tal representation of this extension is depicted in order to identify visually the
relationship between the compartments.

The equations representing plasma insulin and remote insulin remain the original
ones (4.1). The plasma glucose dynamics was modi�ed as follows:

Ġ(t) = −p1G(t)− p4X(t)G(t) + p6G(t)Z(t) + p1Gb − p6GbZb +
u2(t)

V olG
(4.4)

u1 I
p5

p1 (k5 + k6)

p4 (k3 + k4)

n

X
p3 p2

G

u2

Periphery
k6

Liver

k3 k4

k5

Figure 4.1: Compartmental representation of Bergman Minimal Model. Adapted from
(Roy and Parker 2006b).
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u1 I
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p4 (k3 + k4)
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n

X
p3 p2

G

u2

Periphery
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Minimal model

Figure 4.2: Compartmental representation of FFA extension of Bergman Minimal Model.
Adapted from (Roy and Parker 2006b).

Parameters p1, p4, Gb, V olG, and u2(t) are the same as in equation (4.3). The
imparing action of plasma FFA on glucose uptake is represented by the parameter
p6.

Insulin from the circulatory system enters the compartment Y(t), with dynamics:

Ẏ (t) = −pF2Y (t) + pF3I(t). (4.5)

This promotes uptake of plasma FFA into the adipose tissue for storage, which is
known as lipogenesis The rate of disappearance of insulin from this remote insulin
compartment is managed by the parameter pF2, and the rate at which plasma
insulin enters into this remote insulin compartment is governed by the parameter
pF3.
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Plasma FFA is taken up by the periphery (including the adipose tissue). High
glucose levels, representative of low insulin levels, are associated with lipolysis,i.e.
the release of FFA is promoted from the adipose tissue into the circulatory system.
That is,

Ḟ (t) = −p7F (t)−p8Y (t)F (t)+p9(G)F (t)G(t)+p7Fb−p9(G)FbGb+
u3(t)

V olF
(4.6)

Fb is the basal FFA concentration, V olF is the FFA distribution volume. u3(t)
is the exogenous contribution of FFA. The insulin independent dynamics of FFA
is governed by p7. p8 represents the rate of disappearance of plasma FFA under
the in�uence of insulin (the antilipolytic e�ect of insulin). The lipolytic e�ect
associated with plasma glucose concentration level is indicated by the parameter
p9(G), where

p9(G) = 0.00021e−0.00556.

The remote FFA dynamics are represented by the compartment Z, which a�ects
glucose uptake in the hepatic and peripheral tissues:

Ż(t) = −k2Z(t) + k1F (t) + k2Zb − k1Fb. (4.7)

Zb represents the basal remote FFA concentration. The rate of disappearance
and appearance of FFA from the remote FFA compartment are driven by the
parameters k2 and k1, respectively.

Simulations with this model demonstrated a successful performance, achieving
a good representation of the physiological interaction between plasma insulin,
glucose and FFA concentrations.

Other extensions

Notice that Cobelli et al. 1986 and Cobelli et al. 1999 developed a revised mini-
mal model in order to separate the e�ects of glucose production from utilization.
(Hovorka et al. 2002) extended the original minimal model even further by adding
three glucose and insulin subcompartments in order to capture the observed ab-
sorption, distribution, and disposal dynamics, respectively. In addition, Roy and
Parker 2006a also extended the Bergman Minimal Model to include the major
e�ects of exercise on plasma glucose and insulin levels. Di�erential equations were
developed to capture the exercise-induced dynamics of plasma insulin clearance
and the elevation of glucose uptake and hepatic glucose production rates. The
changing liver glucose output resulting from prolonged exercise was modelled us-
ing an equation depending on exercise intensity and duration.
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4.3.2 Hypoglycaemia models

As seen in Chapter 2, counterregulation is a relevant factor when hypoglycaemia
occurs. However, counterregulation is often neglected in simulation studies for
control strategies design and is not considered in the models that are part of the
hypoglycaemia prediction algorithms.

To date, few works have partially included counterregulatory response in predictive
or simulation models for a more accurate description of hypoglycaemia episodes
and time-course recovery from them. A main di�culty is the quanti�cation of
counterregulatory plasma hormonal concentrations. Kovatchev in (Kovatchev et
al. 1998) presented a mathematical model of insulin-glucose dynamics that in-
cludes estimations for the onset and rate of counterregulatory responses. In that
work, a dynamical network model of insulin, glucose, physical activity, and coun-
terregulation interactions was presented. The system was de�ned in terms of �ve
dependent state variables: plasma glucose levels, insulin, food intake, physical
activity, and liver stores. The counterregulatory process was represented by the
loop between liver stores and plasma glucose concentration. Then, this process
was modelled as a release of glucose from a multicompartmental storage pool.
It was assumed that during euglycaemia no counterregulatory response occurred,
whereas the model expected onset of counterregulation during descent into hypo-
glycaemia. Moreover, the counterregulation term was de�ned as a uni- or bi-modal
function depending of the subject data. Finally, they used plasma adrenaline
concentrations only to validate models results, showing a high correlation with
counterregulation rates. This contribution demonstrated that counterregulation
is a process that is directly involved in glucose metabolism, speci�cally during
hypoglycaemia, and its relevance as a part of the glucose dynamics mathematical
models. Besides, it promoted the idea that a deeper study of this was needed.

More recently, Dalla Man (Dalla Man et al. 2014) have included in the UVA-
Padova T1D Simulator an improved description of glucose kinetics during hypo-
glycaemia by means of a functional approach. They have incorporated glucagon
secretion and action, as well as a paradoxical increment of glucose utilization
during hypoglycaemia. This paradoxical increase of glucose comsumption when
plasma glucose decreases under a given threshold was obtained from data of hy-
perinsulinemic clamps in T1D (Bergman et al. 1981; Schwartz et al. 1987), and it
was represented by a nonlinear increase of insulin-dependent glucose utilization.
However, during hypoglycaemia counterregulation response actually achieves a
reduction (not an increase) or peripheral glucose uptake, promoving the use of
alternative fuels (FFA) in order to maintain glucose supply to the brain.
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The formulation of the insulin-dependent glucose utilization, and the risk function
included by the authors are described in the following equation:

Uid(t) =
[Vm0 + Vmx ·X(t) · (1 + r1 · risk)] ·Gt(t)

Km0 +Gt(t)
(4.8)

risk =


0 if G ≥ Gb

10 · [f(G)]
2 if Gth ≤ G ≤ Gb

10 · [f(Gth)]
2 if G ≤ Gth

(4.9)

f (G) = log

(
G

Gb

)r2
(4.10)

where Uid(t) is the insulin-dependent utilization, X(t) the insulin e�ect, Gt is
the plasma glucose concentration, Gb the basal glucose concentration, Gth the
hypoglycaemic threshold, which is modi�ed by the risk function when glucose is
below basal, and Vm0, Vbmx, Km0, r1, r2 are model parameters.

This functional approach achieves good performance, as shown in Chapter 5. Nev-
ertheless, the physiological mechanisms involved in hypoglycaemia are not taken
into account and have no mathematical representation. The paradoxical behaviour
needs to be clearly understood in order to be con�dent with the mathematical ap-
proximation done. Therefore, a faithful representation of counterregulation during
hypoglycaemia could be complementary or improve these �ndings.
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Contributions





Chapter 5

Physiological modelling of

hypoglycaemia

Hypoglycaemia is one of the most important limitations in type 1
diabetes management. However, counterregulatory response to hypo-
glycemia is often neglected in current simulators, or modelled through
functional approaches with no clear physiological explanation. The
�rst step towards achieving the complete understanding of the hypo-
glycaemic response morphology is to review the existing literature con-
cerning the physiological mechanisms hypoglycaemia stimulates and
changes due to T1D. Hence, �rstly, in this chapter, a deeper expla-
nation of the counterregulatory mechanisms is provided. From the
physiological knowledge, a physiological model of counterregulatory re-
sponse to hypoglycaemia is built, and the current functional approach
in the FDA-accepted UVA-Padova simulator for in silico evaluation
of controllers for the arti�cial pancreas is assessed.

5.1 Preliminaries

Hypoglycaemia is one of the greatest limitations of the glycaemic control in T1D
patients, as seen in Chapter 3. Hence, it is important to understand the mecha-
nisms involved in hypoglycaemia, besides of its representability by means models.
It will help to evaluate the simulator that we will use for the in silico validation
of our controllers.
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Several glucose dynamics models have been proposed and proven to be useful
in tacking various aspects and several physiological responses in T1D patients.
However, the hypoglycaemia continues being their weak spot.

Most of the models assume the same dynamics across the di�erent glycaemic
ranges (i.e. euglycaemia, hyperglycaemia and hypoglycaemia) although it is
known that there are additional mechanisms that act defending the organisms
against low (and dangerous) glucose concentrations during hypoglycaemia.

Therefore, the good understanding of the hypoglycaemia and the mechanisms
that it involves is necessary to current models limitations. During hypoglycaemia,
while the glucose concentration is decreasing, central and peripheral glucose sen-
sors activate mechanisms to elicit the neuroendocrine, autonomic and behavioural
response (the so-called counterregulatory response) (P. E. Cryer 2001).

To date, few works have partially included counterregulatory response in pre-
diction or simulation models for a more accurate description of hypoglycaemia
episodes and time-course recovery from them. A main di�culty is the quanti�ca-
tion of counterregularoty plasma hormonal concentrations. In (Kovatchev et al.
1998) a mathematical model of insulin-glucose dynamics that include estimates
for the onset and rate of counterregulatory responses is presented. This approach
considered an additional counterregulation term to be a uni- or bimodal function,
corresponding to a one- or two-compartment model. This term could have one,
two or more additive components depending on the subject data. In (Thomaseth
et al. 2014), the role of the counterregulatory response in healthy humans was as-
sessed modelling the glucose and the free fatty acid (FFA) kinetics during insulin-
modi�ed intravenous glucose tolerance test. They worked in a modi�cation to
the glucose minimal model using the glucose concentration below a threshold as a
signal for the counterregulation and model predictions improved for both glucose
and FFA concentrations. More recently, the UVA-Padova T1D Simulator (Dalla
Man et al. 2014) has included an improved description of glucose kinetics during
hypoglycaemia by means of a functional approach (risk function based on the high
blood glucose index (HBGI), the low blood glucose index (LBGI) and a glucose
transformation (Kovatchev et al. 2006)). They have incorporated glucagon secre-
tion and action, as well as a paradoxical increment of glucose utilization during
hypoglycaemia.

Being the UVA-PADOVA simulator the main tool used for in silico validation of
controllers for the arti�cial pancreas, it is necessary a better understanting and
assessment of response to hypoglycaemia, especially in the context of the design
of controllers aiming at a better hypoglycaemia mitigation.
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Thus,the work presented in this chapter is focused on a deeper study and physio-
logical modelling of hypoglycaemia, particularly in the counterregulatory response,
for which the counterregulatory hormones are responsible.

Adrenaline becomes the main actor of counterregulatory response to hypogly-
caemia in T1D. Subjects with T1D lack the �rst line of defence against hypogly-
caemia since they cannot reduce systemic insulin levels as blood glucose concentra-
tions begin to decline, unless an arti�cial pancreas or sensor-augmented pump is
used (with the inherent limitations of subcutaneous insulin delivery). Secondary,
glucagon secretion in response to hypoglycaemia is lost soon after the onset of the
disease. Additionally, the response of adrenaline to a given level of hypoglycaemia
is blunted; but the glycaemic threshold for its secretion is shifted to lower plasma
glucose concentration (around 60mg/dL) if it is compared with the response of
healthy subjects (Schwartz et al. 1987; Tesfaye and Seaquist 2010). It means
that due to the absence of endogenous insulin and glucagon response, adrenaline,
although blunted, is the most important hormone in the recovery from hypogly-
caemia. For this reason, the model of the counterregulatory response proposed
in this chapter is based on adrenaline secretion and action. Besides, the FFA
dynamics is also added since it improves the representability of the model giving a
physiological explanation to certain interactions within it. Of note, a high insulin
level leading to hypoglycaemia results in an inhibition of lypolysis, which reduces
substrates for glucose production by the liver.

This chapter is organized as follows: a physiological description of the counter-
regulation and the hypoglycaemia problem is presented in Section 5.2; in Section
5.3, the description of the methodology followed throughout this chapter is ad-
dressed. In Section 5.4, the adrenaline secretion model is proposed; the adrenaline
action model is presented in Section 5.5; �nally, the integration of the two previous
models, as well as the incorporation of the FFA dynamics, leading to a complete
extension of the Bergman minimal model with counterregulatory response is car-
ried out in Section 5.6; besides of the comparison between the physiological model
obtained and the functional approaches used in the UVA-Padova simulator. Con-
clusions are shown in Section 5.7.
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5.2 Counterregulation

Plasma glucose concentration remains normally within a narrow safe physiological
range by means of a combination of neural, hormonal, and cellular factors. Then,
hypoglycaemia occurs when plasma glucose drops below this normal physiological
range. The American Diabetes Association de�ned in 2004 the hypoglycaemic
threshold as 70mg/dL. Nevertheless, there is a recent proposal to set also 54mg/dL
as a glycaemic threshold to consider (Amiel et al. 2017). The variable activation of
a single counterregulation in an individual makes di�cult the de�nition of a single
glucose threshold for a biochemical de�nition of hypoglycemia. Thus, three levels
of hypoglycemia need to be considered: Level 1: glucose alert value is 70 mg/dL;
Level 2: glucose alert value is 54 mg/dL; and Level 3: severe hypoglycemia,
denoting severe cognitive impairment and need of external help.

Once hypoglycaemia starts, the counterregulatory response is also activated. The
counterregulatory response to hyapoglycaemia is de�ned in (Tesfaye and Seaquist
2010) as: �The counterregulatory response to hypoglycaemia is a complex and
well-coordinated process. As blood glucose concentration declines, peripheral and
central glucose sensors relay this information to central integrative centers to coor-
dinate neuroendocrine, autonomic, and behavioural responses and avert the pro-
gression of hypoglycaemia�. That is, the counterregulatory response is a defense
mechanisms against low glucose concentrations and its consequences.

The �rst response to prevent the drop in glucose concentration is the reduction
in insulin secretion. However, T1D patients cannot reduce systemic insulin levels
when blood glucose concentrations begin to decline. Secondary, the expected in-
crement in glucagon secretion in response to hypoglycaemia is also compromised
because the glucagon delivery is mostly suppressed in T1D. The next actor in the
action line is the adrenaline secretion, which increases glycogenolysis and gluco-
genesis at the liver, reduces insulin secretion while increasing glucagon released
from the pancreatic islets (in healthy subjects), reduces glucose uptake and uti-
lization, increases glycolysis by muscle, and increases lipolysis in adipose tissue.
Nevertheless, the threshold that activates the adrenaline action is lower in T1D
than healthy subjects. That is, in healthy subjects, glucagon plays the primary
role in the correction of hypoglycaemia while adrenaline has a secondary role. By
contrast, adrenaline has the primary role in T1D patients although its activation
threshold is lower than in healthy subjects (≈ 50 mg/dL vs 69 mg/dL).

As glucose levels fall further, other counterregulatory factors are activated: secre-
tion of growth hormone and cortisol. Both induce changes in metabolic processes
over longer periods of time (hours) by stimulating lipolysis in adipose tissue, keto-
genesis and gluconeogenesis in the liver. Moreover, they do not have an immediate
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5.2 Counterregulation

role in the recovery from hypoglycaemia, but they have more prominent roles in
the setting of prolonged hypoglycaemia. As it was the case with adrenaline, the
activation threshold of these hormones is lower in T1D patients. Thus, there is
a delay in the onset of secretion for both hormones with respect to healthy pat-
terns. Cortisol and growth hormone responses start two hours after hypoglycaemia
(Amiel et al. 1988). Remark that, preceding hypoglycaemia, severe or recurrent
hypoglycaemias shift glycaemic thresholds for initiation of counterregulatory hor-
mones response (Galassetti et al. 2006).

Considering the works reported in (P. E. Cryer 2001; Tesfaye and Seaquist 2010;
Watts and Donovan 2010; Marty et al. 2007), Figures 5.1 and 5.2 were built
in order to give a general idea about the di�erent interactions and mechanisms
that are involved in the glucoregulation when glucose concentrations starts to
decrease from 70mg/dL. The physiological terms that are named in the diagram
are introduced in Chapter 2.

Figures 5.1 and 5.2 are simpli�ed and customized for T1D patients in Figure
5.3. Figure 5.3 will be useful to obtain a counterregulation model. In addi-
tion, Figure 5.4 shows the typical performance of the four counterregulatory hor-
mones (glucagon, adrenaline, cortisol, and growth hormone) that are responsible
for pushing glucose concentration up when hypoglycaemia occurs. Data is from
the eu-hypoglycaemic clamp carried out with T1D patients in the Clinic Univer-
sity Hospital of Valencia, Spain, whose results were published in (Moscardo et al.
2018).

As it can be observed, glucagon secretion is not activated when hypoglycaemia
starts, and the concentration remains practically constant throughout the clamp.
By contrast, adrenaline secretion starts as soon as glucose concentration is lower
than a given threshold. Cortisol and GH are also incremented during hypogly-
caemia, but such increase is lower than the adrenaline. Finally, FFA secretion
shows also an increment in hypoglycaemia with respect to euglycaemic phase.

According to the above-described, the adrenaline plays the role of counterreg-
ulation conductor in T1D. Cortisol and growth hormone reinforce the e�ect of
adrenaline on glucose concentration but in case of prolonged hypoglycaemias.
Therefore, the development of a model that includes the counterregulatory re-
sponse must be based mainly on adrenaline. That is, this consideration was carried
out in order to reduction of the complexity and because the most immediate e�ect
in glucose concentration during hypoglycaemia is provided by adrenaline. Cortisol
and Growth hormone are neglected due to their weak and delayed response faced
with the onset of the hypoglycaemia event.
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Figure 5.1: Relation between the hormones and mechanisms involved in counterregulation:
Part 1.
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Figure 5.2: Relation between the hormones and mechanisms involved in counterregulation:
Part 2.
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GROWTH

HORMONE
CORTISOLADRENALINE

EUGLYCAEMIA

GLUCAGON INSULIN

Glucose

Glucose < 50 mg/dL

Glucose

Glucose < 49X mg/dL Glucose < 44 mg/dL
~ ~ ~

Figure 5.3: Response of counterregulatory hormones in T1D patients.

Figure 5.4: Representation of counterregulatory hormones faced with glucose concentration
daring a eu-hypoglycaemic clamp (glucose, adrenaline, FFA, cortisol, and glucagon).
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5.3 Methods

The modelling process starts with the assessment of the available experimental
data in order to determine if they are su�ciently (or not) rich to enable estimations
to be made of all the known parameters. After that, the structure of the model
and its corresponding parameters need to be de�ned in order to get the system's
model. Once data are properly processed and model structure and parameters are
established, the value of unknown parameters are obtained by means of parameter
identi�cation techniques. This process continues with the model validation, that
is, examining whether the model performance is good enough in relation to its
intended purpose. In order to quantify the goodness of �t of the model, several
statistical metrics must be de�ned. Finally, the simulation of the formulated model
is carried out in order to reproduce the system dynamics and assess its output
behaviour. Figure 5.5 summarizes all the above-described process, particularizing
in the methodology followed in this chapter.

5.3.1 Experimental data

Data from an eu-hypoglycaemic clamp study was used in the identi�cation of the
models proposed in this chapter. Fourteen subjects with T1D (age 36.5 ± 9.1
years, 9 female, BMI 25.3± 3.0 kg/m2, diabetes duration 15.2± 9.8 years, HbA1c
7.9 ± 0.4% or 62.8 ± 2.02 mmol/mol; all data mean±SD) were enrolled in the
study performed at the Clinic University Hospital of Valencia, Spain. The study
protocol was approved by the Ethical Committee of the Clinic University Hospital
of Valencia and patients were informed of the objective, methodology, bene�ts and
risks of the study before they signed their informed consent.

Each individual participated in two eu-hypoglycaemic clamp studies with di�er-
ent levels of insulinemia (0.3 mU/Kg/min -Low Insulin- vs 1 mU/Kg/min -High
Insulin-). In addition, two patients dropped out the study. That is, a total of 24
clamps were performed. In an initial phase glucose was normalized to 90 mg/dL
by using a variable intravenous (i.v.) insulin infusion. Then a hypoglycaemic
plateau at 50 mg/dL was induced for 45 minutes with previous and subsequent
phases of euglycaemia. The total duration of the study was 8.5 hours. Figure 5.6
illustrates the phases of the studies.

Plasma glucose was measured every �ve minutes (YSI 2300, YSI Incorporated Life
Sciences, Yellow Springs, Ohio, USA). Plasma adrenaline concentration was mea-
sured by HPLC (Waters Corporation) every 30 minutes due to blood sampling
limitations. Plasma insulin was measured with the same frequency by chemilumi-
nescence immunoessays (Abbot Architect).
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Experimental design

Eu-hypoglycaemic clamp

Unknown system

Model structure
determination

Compartemental models

Parameter estimation

Cost function: Least squares function
Optimization algorithm: CMA-ES

Software used: MATLAB

Model validation

Goodness of �t metrics
(R2,MAPE,RMSE,...)
Residual Analysis

Final model

Input Output

Experimental
data

Figure 5.5: Overview of the methodology followed in this chapter for the models identi�-
cation

Glucose, insulin and adrenaline measurements were available from 24 clamp stud-
ies. Before starting with identi�cation, data from three clamp studies were ex-
cluded because of inaccurate adrenaline measurements (noise greater than re-
sponse to hypoglycaemia). Data from another one was not included neither, due
to the lack of counterregulatory response (adrenaline behavior was oscillatory
around its basal values until the end of study). It means, the number of experi-
ments considered in the models identi�cation was 21 (N=21).
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Figure 5.6: Experimental design of the eu-hypoglycaemic clamp.

5.3.2 Identi�ability of the model

The identi�ability analysis studies if the unknown parameters of the proposed
model can be estimated in a unique way, assuming ideal observation conditions and
independence between particular values of the parameters and the experimental
conditions.

The identi�ability analysis provides the knowledge of which combination of param-
eters are identi�able. In case that the number of identi�able parameters is lower
than the number of model parameters, a reduction of the number of parameters
to estimate or a modi�cation of the model structure is required.

For linear systems, a common method is the analysis of the number of solutions
of the following equation:

ym(s, p̂)− ym(s, p) = 0, ∀s, u(s) (5.1)

where ym is the system output Laplace transform, p the unknown actual values
of the model parameters; p̂ the �ctitious model parameter values leading to the
same output; and u(s) the system input.

In order to analyse the identi�ability of the systems presented in this chapter when
it is needed and the systems are linear, the equation (5.1) is solved by means of
the transfer function method (Walter and Pronzato 1997; Bellman and Aström
1970).
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Given the state-space structure described by:

dx(t)

dt
= A (p)x(t) +B (p)u(t);x(0) = 0 (5.2)

ym(t) = C (p)x(t, p) +D (p)u(t), (5.3)

where A is the state matrix; B is the input matrix; C is the output matrix; D is
the feedforward matrix; and p is the p-dimension vector containing the A, B, C,
D parameters belonging to the space P (a subspace of the real space R).

The system output expressed in the Laplace domain is:

ym (s, p) = H1 (s, p)u (s) +H2 (s, p)x0(p), (5.4)

where

H1 (s, p) = C (p) (sI −A (p))
−1
B (p) +D (p) , (5.5)

H2 (s, p) = C (p) (sI −A (p))
−1
. (5.6)

Then, the equation (5.1) is solved by comparison of transfer functions coe�cients
leading to a set of algebraic equations whose solutions determine the identi�ability
of the system according to: the single parameter pi is a priori globally identi�able
if, and only if, for almost any p̂ ∈ P , the system of equations has the one and
only solution; pi is locally identi�able if, and only if, for almost any p̂ ∈ P , the
system of equations has for pi more than one, but �nite number of solutions; pi
is non-identi�able if, and only if, for almost any p̂ ∈ P , the system of equations
has for pi an in�nite number of solutions.

On the other hand, when the system is nonlinear, the identi�ability analysis needs
to be studied by other available methods (Carson and Cobelli 2014). In this thesis,
the di�erential algebra algorithm proposed in (Saccomani et al. 1997) is used.
Given the model:

dx (t)

dt
= f (x (t) , p, u (t)) , (5.7)

y (t) = f (x (t) , p, u (t)) , (5.8)

where x (t) is the states variable vector, p is the parameters vector, u (t) is the
inputs vector, and y (t) is the output vector.

The goal is to calculate the characteristic set of the model, which is the minimal
set of di�erential polynomials that, when set to zero, has the same solutions as
the original model. To accomplish this, the Ritt's algorithm is used (Audoly et al.
2001).
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This algorithm requires the introduction of a ranking among the variables; in
particular, the higher ranked variables are eliminated �rst. The unknown state
variables and their derivatives are ranked highest so they are preferentially elimi-
nated. Then the polynomials de�ning the system (equations 5.7-5.8) are reduced
using Ritt's pseudo-division algorithm. Once the system can no longer be re-
duced, the characteristic set has been obtained. Then, the corresponding system
of di�erential polynomial equations results in:

fi (p) (y1, ẏ1, ÿ1, . . . , yr, ẏr, ÿr, . . . , u1, u̇1, ü1, . . . , um, ˙um, üm, . . . ) = 0, i = 1, . . . r
(5.9)

where r is the number of system outputs, and m the number of inputs.

Therefore, equation 5.9 is a function of only the model inputs, outputs, and their
derivatives, which are all theoretically known variables. Hence its coe�cients in
the parameter vector, p, are known. In order to uniquely �x the coe�cients, these
are extracted to form the exhaustive summary of the model. The Buchberger
algorithm is applied to solve it, and the Gröbner basis provides the number of
solutions for each unknown parameter (Forsman and Glad 1990).

If all the parameters have only one solution, then the model is a priori globally
identi�able. If there are a �nite number of possible parameter sets then the model
is locally identi�able, and if there are an in�nite number of parameter sets the
model is non-identi�able. The reader is referred to Section 5.5.2 for an application
of this method.

5.3.3 Parameter estimation

The identi�cation procedure is established as an optimization problem based on
the minimization of the weighed distance between the experimental values (y) and
the predicted values (ŷ). The cost function used in all identi�cations carried out
in this chapter is the least square function, which is de�ned as:

J (p) =
n∑
i=1

wi (ŷi − yi (p))
2
, (5.10)

where wi is the weigh coe�cient for the instant i-th. The weight coe�cients are
positive or zero, and they are set a priori (their value can be chosen empirically).
The greater the wi, the more it costs the model to deviate from the experimental
data yi. The value of wi represents, then, the relative con�dence in both the
experimental data and the importance of each component of y and its value in the
model performance.
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Therefore, the optimization problem results in �nding the value of the parameter
p that minimizes the function J(p). That is,

p̂ = arg min
p

J(p). (5.11)

Since the introduced optimization problem cannot be solved analytically, an it-
erative optimization procedure is proposed for the problem resolution. Firstly,
the structure of the model, experimental data, and the parameters to estimate
are de�ned. Starting from initial values for the parameters (p0), the optimization
routine is based on calculating the value of the objective function and generating
new values for the parameters in such a way that they decrease the value of the
de�ned objective function. This process is repeated iteratively until reaching a
solution within the previous speci�ed tolerance.

These routines can be solved using local methods since they are e�cient and
converge in a proper solution (global solution) if initial values are good quality
(inside of the area of attraction of the global solution) or if the problem is convex.
However, optimization problems are often multimodal (they present local optimal
solutions), so these methods will converge on local solutions. Thus, in order to
avoid this limitation, global optimization algorithms are used in this work.

The global optimization algorithm CMA-ES (which stands for Covariance Matrix
Adaptation - Evolution Strategy) (Auger and Hansen 2005; Hansen et al. 2003;
Hansen 2006; Hansen 2016) was used for the estimation of the parameter vectors
in our models identi�cations. CMA-ES is a stochastic, derivative-free method
for numerical optimization of non-linear or non-convex continuous optimization
problems. This algorithm considers a black box search scenario where parameters
vector is considered as the input and the cost function to be minimized is the
output. The aim is to �nd candidate values of evaluated parameters with an
objective function value as small as possible.

5.3.4 Goodness of �t assessment

The accuracy of the data �t is tested by the coe�cient of determination (R2), usu-
ally interpreted as the percentage of the total variation of the dependent variable
around its mean that is explained by the �tted model, and by the normalized root
mean square error (NRMSE) where lower values indicate less residual variance of
the model adjustment. In addition, the mean absolute percentage error (MAPE)
is calculated as a measure of model prediction accuracy. Therefore, the goodness
of �t of the model is evaluated by the closeness of its coe�cient of determination
to 100% and its NRMSE to 0. Besides, the smaller the MAPE, the smaller the
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5.4 Model of adrenaline secretion

estimation error. The coe�cient of variation of the RMSE, CV(RMSE), is also
considered to observe its variability. These metrics are calculated as:

R2 = 1− V ARres
V ARtot

; (5.12)

MAPE =

n∑
i=1

|yi − ŷi|
yi

N
; (5.13)

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

N
; (5.14)

NRMSE =
RMSE

ymax − ymin
; (5.15)

CV (RMSE) =
RMSE

ȳ
; (5.16)

where V ARres and V ARtot are the variance of the model residual and the obser-
vations respectively; ŷi is predicted value at instant i-th; yi is measured value at
instant i-th; ymax and ymin are the maximum and minimum value of yi; ȳ is the
mean value of yi; and n is the number of predictions.

The proper and valid results of the parameters from an identi�cation process are
the ones in which the residual error is random, not autocorrelated, and, then,
unpredictable. Hence, the residual error evaluation is required.

Therefore, the assessment of the model residuals is carried out with the study of
residuals autocorrelation by means of the Ljung-Box Q-test for residual autocor-
relation. In the Ljung-Bos Q-test, the number of lags used was min(20, T − 1) as
Box et al. 2015 suggested. In addition, the residual independence is also tested
with the Wald-Wolfowitz Runs tests (Box et al. 2015).

5.4 Model of adrenaline secretion

As said before, the counterregulatory hormones play an important role in recovery
from hypoglycaemia. Particularly, in T1D patients, adrenaline is the �rst line
of counterregulatory hormone response to hypoglycaemia. For this reason, this
section is focused on analysing and modelling the e�ect of glucose concentration
on adrenaline secretion. That is, the model considers the glucose concentration as
the input of the model, and adrenaline concentration as the output. This general
idea is represented in Figure 5.7.
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Adrenaline
secretion model

Glucose Adrenaline

Figure 5.7: General representation of the adrenaline secretion model. Glucose is considered
as the input and adrenaline as the output.

5.4.1 Physiological description of the system and the signals to model

Figure 5.8 represents a typical response for adrenaline in our dataset after data
interpolation. Adrenaline secretion presents a biphasic nature: the �rst phase
is a quick response against hypoglycaemia that starts when glycaemia is lower
than a given threshold; the late phase is associated to the recovery presenting
di�erent dynamics. Adrenaline concentration remains constant at basal values
until counterregulatory response begins.

The glucose threshold that activates the adrenaline secretion will be subject-
dependent. Remark that this does not refer to the hypoglycaemia level of 70
mg/dL. It is known that this threshold can be a�ected by the number of severe
hypoglycaemias, the incidence of unawareness hypoglycaemia or the occurrence of
recurrent hypoglycaemias (Beall et al. 2012; de Galan et al. 2003). Likewise, the
amplitude of adrenaline signal is also subjected to the physiological condition of
the individual.

5.4.2 Model proposal

According to the characteristics that the adrenaline temporal signal presents, a
four-compartmental model is proposed. The structure of the model is de�ned by
two chains. One chain is formed by two compartments which represent the slow
phase of the adrenaline behaviour; the other one is composed by one compart-
ment representing the fast phase. The last compartment, Q3 is the measuring
compartment of adrenaline concentration. Figure 5.9 depicts the scheme of the
model.

The parallel-input compartmental model represented in Figure 5.9 is described by
the following equations:

Q̇1(t) = −ka1Q1(t) + β1ua(t) (5.17)

Q̇2(t) = ka1 (Q1(t)−Q2(t)) (5.18)
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5.4 Model of adrenaline secretion

Q̇3(t) = ka1Q2(t)− keQ3(t) + ka2Q4(t) (5.19)

Q̇4(t) = −ka2Q4(t) + β2ua(t) (5.20)

ua(t) =

{
0 G(t) ≥ Gth

Gth −G(t) G(t) < Gth
(5.21)

A(t) =
Q3(t)

V olA
+Abasal

Q1(0) = Q2(0) = Q3(0) = Q4(0) = 0;

Constant at basal values until
counterregulatory response begins.

Biphasic nature of 
counterregulatory response:

1. Quick response against
hypoglycaemia.

2. Late phase associated
to the recovery
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Figure 5.8: Example of adrenaline response to hypoglycaemia.

Q1(t) Q2(t) Q3(t)

Q4(t)

ua(t)

β1 ka1 ka1 ke

A(t)

β2 ka2

Figure 5.9: Compartmental model of adrenaline secretion.
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where A(t) is plasma adrenaline concentration (pg/mL); Abasal is basal adrenaline
concentration (pg/mL); V olA is the distribution volume of adrenaline (dL); G(t) is
plasma glucose concentration (mg/dL); Gth is the glucose concentration value that
activates the counterregulatory response of adrenaline (mg/dL); ua(t) is the model
input corresponding to glucose deviation from the activation threshold Gth (glu-
cose does not a�ect adrenaline secretion unless it goes below this threshold); Q3(t)
(pg) is the measurement compartment of adrenaline mass; the rest of compart-
ments, Q1(t) (pg), Q2(t) (pg) andQ4(t) (pg), de�ne the dynamics of each secretion
phase (second and �rst order, respectively); β1 (dL·min−1) and β2 (dL·min−1)
represent the gain of physiological response; ka1 (min−1) and ka2 (min−1) are
transfer rate constants between compartments; and ke (min−1) is adrenaline rate
of disappearance.

Notice that ua(t) is preceded by a minus sign (−). It is because the in�uence of
glucose concentration on adrenaline secretion is in the opposite direction. That is,
the more negative the value of ua(t), the greater the adrenaline secretion should
be since the glycaemic values are closer to severe hypoglycaemia.

Looking at the equations (5.17)-(5.21), β1, β2, ka1, ka2, ke are unknown pa-
rameters which must be estimated. Then, the parameter vector is de�ned as
p = [β1, β2, ka1, ka2, ke, Gth]T . In contrast, V olA can be considered known, with
a population value (Dejgaard et al. 1989). Therefore, from (5.17)-(5.21), the
adrenaline concentration at time ti, A(ti) is predicted by a function of the un-
known parameter vector p and the unknown constant threshold Gth, and ti, i.e.,
A(ti) = h(ti, p,Gth).

5.4.3 Identi�cation and validation

A priori (structural) identi�ability deals with the uniqueness of the solution with
respect to model parameters p in the whole complex space under the ideal condi-
tions of error-free model structure and noise-free data. There are many methods
for testing identi�ability of the models. As mentioned previously, the transfer func-
tion method is the one used in this work. Thus, equation (5.1) is particularized
for the adrenaline secretion system: ym corresponds to the system output Laplace
transform, i.e. the plasma adrenaline concentrations A; and u(s) corresponds to
the system input ua(s).

In order to apply the transform function method, the output of the system needs
to be expressed in the Laplace domain.
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5.4 Model of adrenaline secretion

Considering the state-space of the model de�ned by equations (5.17)-(5.21):

A =


−ka1 0 0 0
ka1 −ka1 0 0
0 ka1 −ke ka2

0 0 0 −ka2

 , B =


−β1

0
−β2

0

 , (5.22)

C =

[
0 0

1

V olA
0

]
, D = 0. (5.23)

Laplace Transform of the output is:

y(s, p) = H1(s, p)ua(s) +H2(s, p)x0(p), (5.24)

H1(s, p) = C(p) [sI −A(p)]
−1
B(p) +D(p), (5.25)

H2(s, p) = C(p) [sI −A(p)]
−1

; x0(p) = 0 (5.26)

y(s, p) = −

(
β2ka2

V olA (ka2 + s) (ke + s)
+

β1k
2
a1

V olA (ka1 + s)
2

(ke + s)

)
ua(s). (5.27)

Remark that the H2(s, p) is not used since the initial conditions are in the equi-
librium, i.e. x0(p) = 0.

Evaluating the equality (5.1), there is only one set of parameters p that can lead
to a given output. This is,

β1 = β̂1; β2 = β̂2; ka1 = k̂a1; ka2 = k̂a2; ke = k̂e. (5.28)

Thus, the model is structurally identi�able.

In order to reduce the number of dimensions in the global optimisation problem,
prior to the identi�cation of the model parameters vector p, an identi�cation of
the glucose threshold (Gth) was carried out for each clamp study by detecting
a signi�cant change in the slope of the adrenaline temporal signal. To this end,
the rate of change of adrenaline concentration was assessed as Figure 5.10 shows.
The results across all clamp studies indicated that basal oscillations were always
lower than 1 pg·mL−1·min−1. Hence, the Gth was obtained as the value of glucose
concentration from which the adrenaline slope is greater than 1 pg·mL−1·min−1

and glucose concentration is lower than 70 mg/dL. That is,

If
∆Ay(t)

∆Ax(t)
> 1 pg·mL−1·min−1 and G(t) < 70 mg/dL. (5.29)

The values estimated for each clamp study are summarized in Table 5.1. The
average value was approximately 60 mg/dL (60.58±6.57 mg/dL), consistent with
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Chapter 5. Physiological modelling of hypoglycaemia

the �ndings of other studies (Schwartz et al. 1987; Tesfaye and Seaquist 2010).
Variability of this value could be caused by extra-patient variability (for example
variability from noise in the data), by physiological inter-individual variability
or likely by previous episodes of hypoglycaemia a�ecting both the degree and the
threshold of the adrenergic response to hypoglycaemia (Beall et al. 2012; de Galan
et al. 2003). The identi�ed values were consistent as demonstrated by a successful
posterior identi�cation of the model parameters p.
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Figure 5.10: Assessment of adrenaline concentration rate of change

In addition, the distribution volume of adrenaline, V olA, was set to 200 dL, taking
as a reference studies in the scienti�c literature (Dejgaard et al. 1989) for an
average patient.

Once Gth was set for each clamp study, parameter vector p = [β1, β2, ka1, ka2, ke]
T

was estimated for each clamp study using the global optimization algorithm CMA-
ES. A least squares error function was considered as the cost function to be min-
imized:

p̂ = arg min
p

N∑
i=1

(
Âi(p, t)−Ai(t)

)2

(5.30)

where Âi(p, t) is the predicted adrenaline value at instant t, Ai(t) is the measured
value and N is the number of data points. p̂ and p are the estimated parameters
vector and the parameter vector respectively. During the optimization process, a
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5.4 Model of adrenaline secretion

#
Gth

(mg · dL−1)
#

Gth

(mg · dL−1)
#

Gth

(mg · dL−1)

1 52.61 8 61.95 15 58.86

2 58.65 9 71.27 16 60.49

3 52.46 10 65.53 17 63.74

4 50.78 11 63.39 18 63.55

5 74.53 12 60.15 19 49.19

6 65.28 13 52.87 20 62.29

7 67.31 14 59.28 21 57.95

Table 5.1: Individual estimation of Gth.

#
β1 β2 ka1 ka2 ke

(10−7dL·min−1) (10−7dL·min−1) (min−1) (10−2 min−1) (min−1)

Mean

(SD)
209.52(115.32) 1.36(1.09) 3.87(2.63) 6.94(4.83) 0.96(1.78)

Median

[IQR]
177.1[139.45; 294.68] 0.21[0.14; 1.24] 1.1[0.22; 4.66] 6.45[2.68; 9.03] 0.49[0.18; 0.81]

Table 5.2: Values of the estimated parameters of the adrenaline secretion model.

fourth-order Runge-Kutta method (ode45 in Matlab) was used for model simula-
tion.

The estimated values for the model parameters, considering the corresponding
glucose threshold Gth are shown in Table 5.2. Individual values for each clamp
study are shown in Appendix B.1. Variability of parameters β1 and β2 between
subjects is due to a signi�cant di�erence in peak values of adrenaline in each
subject, although the adrenaline dynamics remains the same among subjects. It
thus re�ects a change in the system gain. Parameters ka1 and ka2 have lower order
of magnitude. Inter-patient variability was also lower re�ecting more uniform
dynamics among patients.

The fact that the second chain has lower gains and that dynamics is slower than
the �rst chain demonstrated that the �rst chain manages the quick secretion of
adrenaline to correct the hypoglycaemic state since it is an emergency situation.
However, this emergency is not latent when glycaemia starts to going up. There-
fore, from this moment, the adrenaline concentration is going to come back its
basal values by means of a more relaxed response.
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Chapter 5. Physiological modelling of hypoglycaemia

The accuracy of model �tting was tested by the coe�cient of determination (R2)
and NMRSE. The median coe�cient of determination across clamp studies was
95.45% with a maximum of 99.67% and a minimum 76.22%. The most un-
favourable case corresponded to an �outlier� behaviour with a fast increase of
glucose level and slow stop of adrenaline secretion which requires further inves-
tigation. Nevertheless, Figure 5.12 shows a general acceptable estimation across
the studies since the mean of estimated and measured adrenaline concentration
are quasi-concordant.

The values of the model accuracy are shown in Table 5.3. Nine clamp studies had
R2 above 98%, while only three clamp studies had coe�cients of determination
below 90%. The median NRMSE of the model �ts was 0.1166±0.067 with a range
from 0.045 to 0.284. This indicates a good model �t for all studies because lower
values of it indicate less residual variance.

Moreover, the residual analysis showed that the residual error from the estimation
was random and unpredictable. The analysis of residual correlation with Ljung-
Box Q-test run proved that they were not autocorrelated (p > 0.05 for all studies
parameter estimations). Besides, the Wald-Wolfowitz run tests also proved the
residual independence across all individual estimations (p > 0.05 for all studies).
Overall, it means that the estimated values of the model parameters are not likely
to be biased. Individual p-values of each test are shown in Appendix B.2 along
with the individual parameters value for each clamp study.

Remark that the di�erent levels of insulinemia (low and high insulin) a�ected
slightly the amplitude values of adrenaline secretion (see Figure 5.4). However, it
was not relevant to include an insulin-dependent factor in the model because in-
sulin e�ect was comparable to the other variability sources that were not included.
Some variability sources might be recurrent hypoglycaemias (Moheet et al. 2014),
previous adrenaline response or antecedent increase in plasma cortisol (de Galan
et al. 2003), di�erences in the treatment and the goodness of the glycaemic control
(Amiel et al. 1988), and moderate physical activity during the day previous to the
study (Galassetti et al. 2006) among others.

# R2 (%) MAPE (%) NRMSE CUV (NRMSE)

Mean

(SD)
93.19 (6.00) 17.89 (6.30) 0.12 (0.06) 0.24 (0.20)

Median

[IQR]
95.45 [89.64;95.93] 17.10 [13.92;21.03] 0.07[0.05;0.21] 0.12[0.08;0.25]

Table 5.3: Statistical metrics of adrenaline secretion model �tting (goodness-of-�t).
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Figure 5.11: Model �t in study #9. (Top) glucose measurements, (middle) input consid-
ered in our model, (bottom): adrenaline concentration estimated compared with adrenaline
measurements.

Figure 5.12: Mean temporal signal of the adrenaline experimental data (blue) versus the
adrenaline secretion model output (magenta), considering the 21 studied subjects.

As an example, Figure 5.11 presents the data �t for study #9 (it is not the best
case, but the average one) whose R2 was 97.78% and NRMSE was 0.1127. It is
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worth remarking that in this example, data showed an increment of adrenaline
sooner than the model �t, which may indicate an overestimation of the glucose
threshold. This may have been caused by the oscillatory behaviour of basal se-
cretion, which was neglected. According to the results, the model proposed can
reproduce the adrenaline behaviour in spite of several disturbance sources (sensor
noise, measurements error, among others).

The main limitation found has been the variability in adrenaline response (percep-
tible in Figure 5.4, even in the same subject, which may be due to the occurrence
of previous hypoglycaemic episodes a�ecting counterregulatory response. Then,
results could be improved by repeating the analysis on di�erent datasets and in-
creasing the number of studied subjects. Nevertheless, the features of the model
are acceptable to take it into account and integrate it in the subsequent extension
of the Minimal model as a part of the counterregulatory response.

5.5 Model of adrenaline action

Adrenaline acts as a brake to hypoglycaemia. Hence, a model that includes the
adrenaline counterregulatory action ensures a more complete physiological de-
scription of plasma glucose regulation. It will provide a better description of
hypoglycaemia severity and its recovery phase besides of an improvement in the
overall performance of the glucoregulatory model. To this end, an extension of
the Bergman Minimal Model of insulin-glucose dynamics (Bergman et al. 1981)
is considered, including the counterregulation as a new term within the model.
For the sake of reduced complexity, the counterregulation in the model proposed
in this section is led by the adrenaline concentration as the �rst line of action in
type 1 diabetes. The general idea is represented in Figure 5.13.

Bergman Minimal Model
+

Counterregulatory Response
component

Insulin

Adrenaline
Glucose

Figure 5.13: General representation of the glucoregulatory model that is addressed to
better explain hypoglycaemic pro�les. Glucose is considered as the output, and Adrenaline
and insulin as the input. The mathematical relationship between them is represented by the
box.
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5.5.1 Model proposal

Bergman Minimal model (Bergman et al. 1981) quanti�es the pancreatic respon-
siveness and insulin sensitivity of a diabetic patient using a three-compartment
model, I(t), X(t), and G(t) which represent plasma insulin, insulin action from a
remote compartment and plasma glucose concentrations respectively, as showed
in Chapter 4. Adrenaline has no e�ect on insulin secretion, thus, the modi�cation
is carried out on glucose compartment. The extension of the Minimal Model con-
sidering adrenaline response is based on a modi�cation in the glucose dynamics
(equations (4.1)-(4.3) in Chapter 4) by the addition of two terms, as follows,

İ(t) = −nI(t) +
u1(t)

V ol1
(5.31)

Ẋ(t) = −p2X(t) + p3I(t) (5.32)

Ġ(t) = −p1G(t)−X(t)G(t) + p4 +
u2(t)

V olG
+ paAd(t)− ph max (Gb2 −G(t), 0)

(5.33)

Ad(t) =

{
0 G(t) > Gth

A(t)−Abasal G(t) ≤ Gth
(5.34)

where lack of endogenous insulin secretion is considered thereby modelling the
insulin-dependent diabetic patient. All the necessary insulin must then be in-
fused exogenously. Insulin secretion is thus substituted by i.v. insulin infusion,
u1 (µU/min), and i.v. glucose infusion, u2 (mg/min), is also added in order to
represent the clamp experimental conditions used for model �tting. p3 (min−1)
represents the kinetic parameter that governs the rate of appearance of insulin in
the compartment X(t) (µU· mL−1). n (min−1) is the rate of disappearance, and
p2 (min−1) is the kinetic parameter that governs the rate of disappearance from
X(t). p1 (min−1) is the kinetic parameter that governs the rate at which glucose is
removed from the plasma space independently of the insulin in�uence. X(t)G(t)
represents glucose uptake under the in�uence of insulin. p4 (mg· dL−1 · min−1)
represents hepatic glucose production rate (given by the original Bergman model
as Gbp1, where Gb is the glucose basal value yielding a given steady state). Glu-
cose and insulin distribution volumes are indicated by V olG (dL) and V olI (mL),
respectively. In addition, A(t) is the plasma adrenaline concentration (pg/mL);
Abasal is basal adrenaline concentration; Gth (mg/dL) is the glucose threshold that
activates adrenaline response; and Ad(t) is the adrenaline �e�ect� activated below
the glucose threshold Gth, expressed as the increment of adrenaline concentra-
tion from its basal value. This increment is associated with the counterregulatory
response of this hormone during a hypoglycaemic event, which is modulated by
the parameter pa (min−1). It is considered that adrenaline e�ect is immediate,
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representing a very fast counterregulatory action in face of hypoglycemia. Gth
values are coincident with the glucose threshold used in the adrenaline secretion
model (Section 5.4). It is the glucose value that activates the adrenaline coun-
terregulatory response. Parameter Gb2 is other glucose threshold that triggers a
paradoxical glucose use modulate by parameter ph (min−1). The above model
considers that plasma insulin, I, enters from the circulatory system into the re-
mote compartment, X, which is proportional to remote insulin denoting its action
in promoting the uptake of plasma glucose (G) by the hepatic and extrahepatic
tissues.

Adrenaline acts estimulating hepatic and renal glucose production, inhibiting glu-
cose peripheral uptake, and estimulating lipolysis (which is an indirect route to
estimulate gluconeogenesis in the liver) (Bolli and C.G. Fanelli 1999). However,
for the sake of model identi�ability, a lumped e�ect is considered here as expressed
by the �rst new term, paAd(t). This term depends on the deviation of plasma
adrenaline concentration from its basal value and it is null until counterregulatory
response of adrenaline begins (i.e., when G(t) ≤ Gth). The second term consid-
ered, ph ·max (Gb2 −G(t), 0), represents an increase in glucose use when glucose
is below a given threshold Gb2 (always inside of hypoglycaemic range and greater
than Gth). The physiological explanation of this term is controversial. However,
data indicated that such e�ect should be included in order to get a good model
�t. Figure 5.14 depicts such need showing the hypoglycaemia overestimation of
the model if the second term is not added. This is in line with the approach of
(Dalla Man et al. 2014), where a �paradoxical� increment of glucose utilization
during hypoglycaemia is considered. However, this contrasts with the inhibition
of glucose uptake and insulin resistance induced by the stimulation of free fatty
acids due to the adrenaline e�ect. As a possible hypothesis, a stimulatory e�ect on
blood �ow by insulin was reported (Enoksson et al. 2003) which might be relevant
during hypoglycaemia. This will be subject of further investigation in Section 5.6.

The model equilibrium point, for a given basal plasma insulin concentration I∗ is
given by:

G∗ =
p4

p1 +
p3

p2
I∗
. (5.35)

As G∗ > Gb2 and G∗ > Gth in equilibrium initial condition, the equilibrium initial
conditions correspond to:

X(0) =
p3

p2
I∗; G(0) = G∗;A(0) = Abasal. (5.36)

Remark that since plasma insulin measurements are available, equation (5.31) is
not relevant in the identi�cation process. Instead the measurement of plasma
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Figure 5.14: Representation of glucose measurements and the estimations of the model
including one term or two terms.
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Figure 5.15: Individual pro�le of plasma glucose and adrenaline concentration during the
eu-hypoglycaemic clamp. A(t) is the temporal signal used as input in the model; it represents
the increase of plasma adrenaline concentration from basal value.

85



Chapter 5. Physiological modelling of hypoglycaemia

u1 I
p4 n

X
p3 p2

G

u2

Peripheryk2Liver

A

ph

pa

Gb2 −G
k1

Figure 5.16: Bergman Minimal Model diagram of insulin and glucose dynamics with the
modi�cation to account counterregulatory e�ect.

insulin concentration (I(t)) is considered as an input of the model in equation
(5.32). Similarly, A(t) is also considered as an input since its measurements are
available. Nevertheless, they could be also an estimated measurement using the
adrenaline secretion model (obtained in previous section), but it was preferable
not to add complexity (more equations) to the system identi�cation at this stage
in order to validate the proposed model structure.

As an illustration, Figure 5.15 shows the temporal evolution of plasma adrenaline
and plasma glucose concentrations for subject #3 during the High Insulin study.
Adrenaline remains in its basal value (around 20 pg/mL for this patient) while
plasma glucose concentration keeps in the normoglycaemic range. When glu-
cose concentration begins to decline below the activation threshold of adrenaline,
adrenaline counterregulatory response starts in order to prevent plasma glucose
to continue falling, reaching peak adrenaline concentration at the hypoglycaemic
plateau. By contrast, adrenaline secretion rapidly decreases when hypoglycaemia
recovery begins, returning to its basal value.

Likewise, the diagram of the proposed model is shown in Figure 5.16. As men-
tioned before, the concentration of compartment I is known since insulin concen-
tration was measured. For this reason, the insulin �ow coming from the insulin
system, u1, and parameter n, rate of disappearance from I, is not part of the
equations used in the extension of the model that has been proposed.
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5.5.2 Identi�cation and validation

Equation (5.31)-(5.36) were used in the model parameters identi�cation. Accord-
ing to the identi�cation procedure, parameters that determine the output of our
model are: p1, p2, p3, p4, V olG, pa, ph, Gb2, Gth. Values for parameter Gth
were taken from the previous work (Section 5.4); and, the distribution volume of
glucose, V olG, was �xed to 117dL, taking as a reference studies in the scienti�c
literature (Roy and Parker 2006b) for an average patient. The rest of parameters,
p = [p1, p2, p3, p4, pa, ph, Gb2]

T , were estimated for each study.

The estimation process was carried out in two stages: (1) Estimation of the char-
acteristic parameters of the Bergman Minimal model during euglycaemic phase,
i.e. pMM = [p1, p2, p3, p4]

T ; (2) Estimation of the parameters that de�ne the
glucose dynamics due to the counterregulation, i.e. pCR = [pa, ph, Gb2]

T .

The a priory identi�ability of the system considered at each stage of the iden-
ti�cation procedure was analysed by means of the di�erential algebra algorithm
proposed by Saccomani et al. 1997 as exposed below.

The polynomials obtained from the model de�ned by equations (5.31), (5.32), and
(5.33) are:

−p2X + p3I − Ẋ, (5.37)

−p1G−XG+ p4 +
u2

V olG
+ paAd − ph(Gb2−G)− Ġ, (5.38)

y −G, (5.39)

At the �rst stage (1), the parameters vector to identify was pMM , parameter pa
and ph were considered zero, and Gb2 ≤ G(t). Thus, the two terms paAd and
ph(Gb2 − G) of the polynomial 5.38 were null. Besides, I(t) was considered an
available measurement. The polynomials were ordered and reduced according the
rank: u2 < I < Ad < y < ẏ < ÿ < X < G < X < G. Hence, the di�erential
polynomial that contains the information on the model identi�ability (i.e. the
polynomial that does not contain the state variables (X,G) or its derivatives as
variable) was:

y−1

(
−p2p4 − p2

u2

V olG
+ p2ẏ + ÿ

)
+ p2p1 + p3I + y−2

(
p4 +

u2

V olG
− ÿ
)

(5.40)

The coe�cients were extracted to form the exhaustive summary, the Buchberger
algorithm was applied, and the Gröbner basis was:

−p2p4, p2, p3, p4, p2p1 (5.41)
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By equating the polynomials (5.41) to known symbolic values α, β, γ, δ, and ε, it
was determined if the parameters can be uniquely identi�able. That is,

−p2p4 = α, p2 = β, p3 = γ, p4 = δ, p2p1 = ε, (5.42)

This systems could be solved for p1 = β/ε, p2 = β, p3 = γ, and p4 = δ. Therefore,
the model is globally identi�able.

Likewise, an analogous analysis was carried out at the second stage of the identi-
�cation procedure. In that case, the parameters vector to estimate was pCR, and
pMM was considered known. Hence, the di�erential polynomial that contains the
information on the model identi�ability was:

y−1

(
−p2p4 − p2

u2

V olG
+ p2ẏ + p2phGb2 + p2paAd + ÿ

)
+ p2p1 + p2ph + p3I

+ y−2

(
p4 +

u2

V olG
− phGb2 − paAd − ÿ

)
, (5.43)

and the extracted coe�cients were:

−ph, phGb2, pa, (5.44)

By equating the polynomials (5.44) to known symbolic values α, β, and γ, the
system could be solved for ph = α, Gb2 = β/α, and pa = γ. Thus, the model
is globally identi�able when parameters estimation is carried by the two stages
above described.

The least-square-error function was considered as the cost functions to be mini-
mized:

p̂MM = arg min
pMM

n∑
i=1

ωi

(
Ĝi(pMM , t)−Gi(t)

)2

(5.45)

where

ωi =

{
0 if Gi < 70mg/dL
1 otherwise

(5.46)

p̂CR = arg min
pCR

n∑
i=1

(
Ĝi(pCR, t)−Gi(t)

)2

(5.47)

where Ĝi is the predicted plasma glucose value at instant i, Gi is the measured
value and n is the number of data points. p̂MM and p̂CR are the estimated
parameters vectors; and, pMM and pCR are the parameters vector. ωi is the weight
of the i-th residual in order to exclude data a�ected a priori by counterregulation
(hypoglycaemic range).
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5.5 Model of adrenaline action

The parameters vector p̂MM was estimated considering equations (5.32)-(5.36)
and forcing ph = 0 and pa = 0. After that, parameter vector p̂CR was obtained
taking into account the equations (5.32)-(5.36) and the values of p̂MM as known
parameters, i.e., the values identi�ed previously. These results are shown in Table
5.4. Parameter pa presents signi�cant variability (CV=0.88). It is due to the
variability of the maximum value of adrenaline secretion across the subjects dur-
ing hypoglycaemia. This is demonstrated with the strong correlation that exists
between pa and the peak value of adrenaline concentration (correlation coe�-
cient=0.67). This parameter is responsible for modulating the counterregulation
which is represented in our model by the adrenaline signal.

By contrast, the parameter Gb2 shows lower variability (CV=0.21). This parame-
ter is related to the not fully explained e�ect of hypoglycaemia on plasma glucose
concentration by increasing glucose uptake. The in�uence of hypoglycaemia �per
se� is done uniformly across the patients when a strong hypoglycaemic tendency
occurs. The glycaemic pro�le of the studied subjects is almost the same due to
data coming from a clamp. For this reason, the variability of parameter Gb2 could
be due to the hypoglycaemia sensibility of each patient and the history of severe
hypoglycaemic events.

#
p1 p2 p3 p4 pa ph Gb2

(min−1) (min−1) 10−5min−1 mg·dL−1·min−1 (107min−1) (min−1) (mg/dL)

Mean

(SD)
0.010(0.008) 0.046(0.082) 6.180(4.230) 0.821(0.445) 0.192(0.106) 0.036(0.021) 63.940(9.500)

Median

[IQR]

0.008

[0.004;0.017]

0.027

[0.014;0.033]

3.390

[2.390;7.010]

0.730

[0.309;1.234]

0.156

[0.054;0.312]

0.021

[0.014;0.043]

63.049

[57.294;70.952]

Table 5.4: Value of estimated parameters.

Figure 5.18 represents the scatter matrix of the parameters. It demonstrates that
there is no dependence between the parameters identi�ed and thus the soundness
of the new model presented is proved. Parameters draw a lognormal distribution;
this can be also observed in the �gure.

The accuracy of data was tested by the coe�cient of determination (R2) and
NMRSE. The median coe�cient of determination across clamp studies was 91.22%
with a maximum of 96%. The most unfavorable case corresponded to a study
with a poorer adjustment in euglycaemia phase, while showing a good �t in the
hypoglycaemic phase (R2=85%). As our modi�cation of the Minimal Model aims
at improving the adjustment during hypoglycaemia, it has been also calculated
the value of goodness of �t indicators considering only the hypoglycaemic phase.
All values are shown in Table 5.5.

89



Chapter 5. Physiological modelling of hypoglycaemia

-30 20 70 120 170 220 270 320
20

40

60

80

100

120

G
lu

co
se

 c
on

ce
nt

ra
tio

n
(m

g/
dL

)

-30 20 70 120 170 220 270 320
Time (min)

0

100

200

300

A
dr

en
al

in
e 

co
nc

en
tr

at
io

n
(p

g/
m

L
)

(a)

140 160 180 200 220 240 260
20

40

60

80

100

G
lu

co
se

 c
on

ce
nt

ra
tio

n
(m

g/
dL

)

140 160 180 200 220 240 260
Time (min)

0

100

200

300

A
dr

en
al

in
e 

co
nc

en
tr

at
io

n
(p

g/
m

L
)

(b)

Figure 5.17: Comparison of the model output considering and non-considering counterreg-
ulation extension. (a) All phases of the study (feedback, normoglycaemia, controlled slow
fall, hypoglycaemic plateau, controlled rapid rise, and normoglycaemia); (b) Considering two
phases: controlled slow fall and hypoglycaemic plateau.
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Figure 5.18: Scatterplots and histograms of the individual parameter values, as obtain
after model parameters estimation.
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5.5 Model of adrenaline action

Phase
Statistical indicators

R2(%) NRMSE CV(RMSE)

Euglycaemia and

Hypoglycaemia

91.22 (13.94)

90.94[86.94;94.04]

0.089 (0.034)

0.084[0.065;0.109]

0.060(0.020)

0.048[0.035; 0.076]

Hypoglycaemia
84.39 (11.93)

84.62[79.31; 91.32 ]

0.094 (0.103)

0.103 [0.065; 0.174]

0.028 (0.017)

0.033 [0.019;0.042]

Table 5.5: Statistical metrics of the model �t.

Figure 5.19 presents a data �t for study #1 whose R2 is 86.6% and NRMSE is
0.08. As it can be observed, the hypoglycaemia phase is well characterized by
this model. This case is not the best, but it is an average one. Across the clamp
studies, the NRMSE average of the model �ts was 0.094± 0.034. This indicates a
good model �t for all studies because lower values indicate less residual variance.
Likewise, the low coe�cient of variation of RMSE (0.06 ± 0.02) points out a
good adjustment across clamp studies. Figure 5.17a manifests the improvement
that counterregulation consideration in the model achieves during hypoglycaemic
range. This is not the best case, but it demonstrated that the model works.

Moreover, the residual analysis showed that the residual error from the estima-
tion was random and unpredictable. The analysis of residual correlation with
Ljung-Box Q-test run proved that they were not autocorrelated (p > 0.05 for all
clamp studies parameter estimations). Besides, the Wald-Wolfowitz run tests also
proved the residual independence across all individual estimations (p > 0.05 for
all studies). Overall, it means that the estimated values of the model parameters
are not likely to be biased. Individual p-values of each test are shown in Appendix
B.2 along with the individual parameters value for each clamp study.

To sum up, the extension of Bergman Minimal Model with the adrenaline dy-
namics can reproduce the physiological behaviour during hypoglycaemia. These
modi�cations mean that the inclusion of two terms which represent the coun-
terregulatory response and the �in�uence of hypoglycaemia per se� on glucose
homeostasis.

However, this latter term still remains paradoxical, as it was the case with the
functional model in UVA-Padova simulator motivating this work, and requires
further analysis for a physiological explanation. This will be carried out in next
Section with the study of the role of free fatty acids in counterregulation. In
addition, the integration of the adrenaline secretion model will lead to the �nal
complete model of counterregulation proposed in this work.
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Figure 5.19: Model �t in subject #1 during the High insulin study (top) and during the
Low insulin study (bottom).

5.6 Role of free fatty acids in counterregulation: a

comprehensive physiological model of hypoglycaemia

The behaviour of Bergman Minimal model improves when a counterregulation
dynamics is included, as demonstrated in the previous section. Thus far, the
counterregulatory factor has been de�ned only as a function of adrenaline response
since it is the main actor of such mechanism in T1D subjects. However, its
mathematical formulation still shows a paradoxical increment of glucose utilization
during hypoglycaemia that needs to be physiologically explained.

As studies demonstrated in (DeFronzo et al. 1980; Clutter et al. 1980), adrenergic
mechanisms do play a role in the prevention of severe hypoglycaemia at a very
early as well as late phase of hypoglycaemia with its contribution in the increase
in hepatic glucose production and with the activation of lipolysis as the other
powerful counterregulatory mechanism. Besides, there is a substrate competition
between FFA and glucose in the oxidation and in the utilization processes of pe-
ripheral tissues during hypoglycaemic conditions. For this reason, FFA dynamics
during counterregulation deserves a much deeper attention.

Figure 5.20 shows the pro�les of adrenaline and FFA considering di�erent ranges
of plasma glucose concentrations (euglycaemic and hypoglycaemic ranges). Pro-
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5.6 Role of free fatty acids in counterregulation: a comprehensive physiological model of hypoglycaemia

Figure 5.20: Database (average of 12 T1D patients, shading area represents mean±SD).
Insulin plasma concentrations (top panel, left), FFA (top panel, right), Adrenaline (bottom
panel, left) and Glucose (bottom panel, right). Each one is plotted during Low insulin studies
(magenta) and High insulin studies (green).

�les are grouped by insulin levels, high (green line) and low (magenta line) levels,
to provide a better physiological understanding. As it can be observed, when the
hypoglycaemic event occurs during both high and low insulin studies, the coun-
terregulatory response of adrenaline is clear. Adrenaline remains in basal values
while plasma glucose concentration is within the normoglycaemic range. When
glycaemia begins to decline below the activation threshold, around 60 mg/dL
(Schwartz et al. 1987; Tesfaye and Seaquist 2010), counterregulation response
of adrenaline starts in order to prevent plasma glucose continues falling. This
adrenaline secretion decreases when hypoglycaemia recovery begins. On the other
hand, the FFA response is mostly modulated by insulin plasma levels. When in-
sulin levels are high, FFA secretion is practically suppressed although adrenaline
concentrations tend to stimulate some FFA secretion (much lower than basal se-
cretion). On the contrary, when insulin concentration is low, FFA is suppressed
but less, and insulin does not get to inhibit the FFA estimulation by adrenaline;
besides, this secretion is strengthened by the adrenaline response (DeFronzo et al.
1980).

To incorporate FFA dynamcs into counterregulation, the model proposed by A.
Roy (Roy and Parker 2006b), which extends Bergman minimal model with FFA,
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was considered. Roy's model was then extended with adrenaline secretion and
action and the relationship between FFA and adrenaline. Hence, the model was
modi�ed as the subsequent equations show. The reader is referred to Section 4.3
for the presentation of the Roy model on which this work is based on.

The equations of insulin (4.1) and remote insulin (4.2) compartments remain un-
modi�ed from the Bergman Minimal model as follows:

İ(t) = −nI(t) +
u1(t)

V ol1
(5.48)

Ẋ(t) = −p2X(t) + p3I(t) (5.49)

where u1 (µU/min) is the i.v. insulin infusion, n the rate of disappearance from I
(µU/mL); p3 represents the kinetic parameter that governs the rate of appearance
of insulin in the compartmentX (µU/mL), and p2 (min−1) is the kinetic parameter
that governs the rate of disappearance from X.

About the FFA dynamics, the remote insulin concentration promoting FFA stor-
age and utilization (Y ), and the remote FFA concentration which a�ects glucose
uptake (Z) are taken from the Roy A. model (Roy and Parker 2006b) without any
modi�cations:

Ẏ (t) = −pF2Y (t) + pF3I(t) (5.50)

Ż(t) = k2 (Zb − Z(t)) + k1 (F (t)− Fb) (5.51)

where k1 (min−1) and k2 (min−1) modulate the remote FFA concentration e�ect;
pF2 (min−1) and pF3 (min−1) are the rate constants representing plasma FFA
concentration with insulin in�uence; and Fb (µmol/L) and Zb (µmol/L) are the
basal values concentration of the F (µmol/L) and Z (µmol/L) compartments
respectively.

The incorporation of adrenaline response and FFA dynamics into the model was
based on: 1) a modi�cation of glucose dynamics by the addition of the direct e�ect
of the adrenaline deviation from its basal value, i.e. pa ·Ad(t) (as done in Section
5.5); and, 2) a modi�cation of FFA dynamics adding the adrenaline contribution
to its secretion mechanisms (as a substitute of the paradoxical term in Section
5.5). The second part was carried out by means of the incorporation of two
terms which depend on the deviation of adrenaline concentrations from the basal
adrenaline value when glucose is below the given threshold Gth2 (always within
hypoglycaemic range and greater than Gth), i.e. k1w ·A(t) ·max(Gth2 −G(t), 0);
and, the adrenaline rate of change, k2w · F (t) · dA(t)/dt. k1w (µL·pg−1 ·min−1) is
the kinetic parameter of the adrenaline e�ect on the FFA secretion (lipolysis), and
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k2w (mL/pg) is de�ned as the parameter which controls the e�ect of the adrenaline
rate of change in FFA dynamics. This term incorporates the e�ect of the rate of
change of the plasma adrenaline on FFA secretion so that lypolysis increase and,
then, the increase of substrates for gluconeogenesis is promoted in the onset of the
counterregulatory response due to an emergency situation (DeFronzo et al. 1980).
These considerations modi�ed the original formulations as follows:

Ḟ (t) =− p7F (t)− p8Y (t)F (t) + p9(G)F (t)G(t) + p7Fb − p9(G)FbGb +
u3(t)

V olF

+ kw1A(t) max (Gth2 −G(t), 0) + kw2F (t)
dA(t)

dt
(5.52)

Ġ(t) =− p1G(t)−X(t)G(t) + p6Z(t)G(t) +XbGb +
u2(t)

V olG
+ paAd(t) (5.53)

where p1 (min−1) is the rate at which glucose is removed from the plasma space
independently of the insulin in�uence; u2(t) is the external glucose infusion rate
(mg·dL−1·min−1); V olG (dL) is the glucose distribution space; p6 (min−1 ·µmol−1)
is the constant rate that represents the e�ect of plasma FFA on glucose uptake,
Xb is the basal insulin of the insulin remote compartment; p7 (min−1) the con-
stant rate representing plasma FFA concentration without insulin in�uence (taken
from adipose tissue and periphery); X(t)G(t) represents glucose uptake under the
in�uence of insulin; Z(t)G(t) represents glucose production under the in�uence of
FFA; Gb is the basal glucose concentrations; A(t) is the adrenaline concentration
(pg/mL); Ad(t) is the deviation of adrenaline concentration from its basal value
Abasal (pg/mL); and p9 (G) is the lipolytic e�ect of glucose obtained by:

p9(G) = 0.00021e−(0.0055·G). (5.54)

Lastly, the adrenaline secretion model developed in Section 5.4, was included as
well. The corresponding equations of the model are the following ones:

Q̇1(t) = −ka1Q1(t) + β1ua(t) (5.55)

Q̇2(t) = −ka1 (Q1(t)−Q2(t)) (5.56)

Q̇3(t) = −ka1Q2(t)− keQ3(t) + ka2Q4(t) (5.57)

Q̇4(t) = −ka2Q4(t) + β2ua(t) (5.58)

ua(t) =

{
0 G(t) > Gth

Gth −G(t) G(t) ≤ Gth
(5.59)

Ad(t) =

 0 G(t) > Gth
Q3(t)

V olA
G(t) ≤ Gth

(5.60)
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A(t) =

{
Abasal G(t) > Gth

Ad(t) +Abasal G(t) ≤ Gth
(5.61)

where V olA is the distribution volume of adrenaline (L); Gth the glucose concen-
tration value that activates the counterregulatory response of adrenaline; ua(t)
the glucose deviation from the activation threshold Gth (glucose does not a�ect
adrenaline secretion when above this threshold); Q3(t) is the measurement com-
partment of adrenaline mass; rest of compartments, Q1(t), Q2(t), andQ4(t), de�ne
the dynamics of each secretion phase; β1 and β2 represent the gain of physiological
response; ka1 and ka2 are transfer rate constants between compartments; and ke
is adrenaline rate of disappearance. Finally, it worth to note that Xb is considered
as a equilibrium value of the insulin remote compartment de�ned by p3/p2 · Ib.
Likewise, Zb was taken as (k1Fb)/k2.

5.6.1 Model identi�cation

A scheme of the system which relates each compartment of the complete model
proposed is shown in Figure 5.21. Given the complexity of the model, identi�abil-
ity and computational issues arise when model inputs and plasma measurements
of glucose, FFA, adrenaline and insulin are considered. For this reason, the model
is divided into three unit-processes of Adrenaline, FFA and Glucose (Figure 5.22).
Thus, the parameters that are responsible of the dynamics of each unit were iden-
ti�ed from individual data with a forcing function strategy (Cobelli and Carson
2008). It means that some variables were considered as the input of the unit
process (although these are not the inputs of the model) and were assumed to be
known without error.

Unit 1. FFA subsystem

FFA submodel is composed of two compartments (Y and F ) and the correspond-
ing equations are (5.50) and (5.52). In order to estimate the parameters, mea-
surements of plasma insulin (I(t)), plasma glucose (G(t)) and plasma adrenaline
concentration (A(t)) are considered as the model inputs. Then, the equilibrium
point, for a given basal plasma insulin concentration (I∗), basal adrenaline con-
centration (A∗), and glucose concentration (G∗), is given by:

Y (0) = I∗
pF3

pF2
; F (0) =

Fb (p7 − p9(G∗))Gb

p7 + I∗
pF3

pF2
− p9(G∗)

. (5.62)
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Initially, an adrenaline remote compartment was considered, but the quick in�u-
ence of this hormone in the FFA dynamics forced to remove it. By contrast, this
intermediate compartment (Y) does exist in the insulin-FFA relationship.
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Figure 5.21: Modi�cation of Model diagram based on Bergman Minimal Model, FFA
dynamics and adrenaline counterregulatory behaviour.
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Y (t)

F (t)
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F (t) A(t)G(t) G(t)F (t)

I(t)
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Figure 5.22: Unit processes division. Unit 1: FFA subsystem; Unit 2: Adrenaline subsys-
tem; and, Unit 3: Glucose subsystem.
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To reduce identi�cation issues, the parameters estimation process was divided
into two phases. The �rst one took into account the isolated in�uence of plasma
insulin; this implied considering only the euglycaemic glucose pro�les since the
counterregulatory response has not yet started in this phase. It means that,
according to the protocol, the considered data was the data between time -30 and
time 120min; and between time 270 and time 330; and the equation corresponding
to the output F, in this phase was considered as:

Ḟphase1(t) =− p7Fphase1(t)− Y (t)Fphase1(t) + p9(G)Fphase1(t)G(t) + p7Fb

− p9(G)FbGb +
u3(t)

V olF
. (5.63)

Therefore, the equations included in the identi�cation process were (5.50) and
(5.63), and the estimated parameters vector in this phase, pU1phase1

resulted in:

pU1phase1
= [p7, pF2, pF3, Fb] . (5.64)

Regarding the second phase, complete pro�les of glucose concentrations were con-
sidered, i.e. from time −30 to time 330 min in order to estimate the parameters
related to FFA and adrenaline interaction. To this end, equations (5.50) and
(5.52) were used, i.e.,

Ḟphase2(t) =− p7Fphase2(t)− Y (t)Fphase2(t) + p9(G)Fphase2(t)G(t) + p7Fb

− p9(G)FbGb +
u3(t)

V olF
+ kw1A(t) max (Gth2 −G(t), 0)

+ kw2Fphase2(t)
A(t)

dt
. (5.65)

Adrenaline concentration was considered as a measurement; and the value of pa-
rameters that were estimated in the previous phase were included as known pa-
rameters. Thus, the estimated parameters vector in this phase, pU1phase2

was:

pU1phase2
= [k1w, k2w, Gth2] . (5.66)

Remark that there was not exogenous infusion of FFA in the data used. Thus,
u3(t) was null during the whole study for all subjects and V olF was not estimated.

The identi�cation process was carried out with the global optimization algorithm
CMA-ES. Besides, the estimation was individual for each clamp study considered.
The parameter estimator in each phase was:

p̂U1phase1
= arg min
pU1phase1

n∑
i=1

ωi

(
F̂phase1i

(
pU1phase1

, t
)
− Fphase1i

(t)
)2

, (5.67)
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Params. Mean (SD) Meadian [IQR] Unit

p7 0.058 (0.010)
0.055

[0.0505; 0.065]
min−1

pF2 1.330 (0.569)
1.381

[0.0.750; 1.781]
min−1

pF3 5.006 (2.256)
4.943

[2.971; 7.320]
10−4min−1

Fb 239.327 (110.645)
230.972

[170.144; 289.681]
µmol/L

Gb 83.649 (17.313)
87.145

[78.268; 94.050]
mg/dL

k1w 0.079 (0.050)
0.073

[0.039; 0.110]
(µL·pg−1·min−1)

k2w 2.397 (0.694)
1.923

[1.132; 2.389]
mL/pg

Gth2 64.6876 (12.3778)
58.0549

[59.9370; 76.49148]
mg/dL

Table 5.6: Parameter estimation of unit 1.

# R2 (%) NRMSE MAPE (%)
Mean (SD) 86.13 (6.23) 0.081 (0.031) 24.12(6.69)
Median
[IQR

84.67 [84.15;91.59] 0.0758[0.066;0.0984] 25.32[18.94;28.35]

Table 5.7: Statistical metrics of unit 1 (goodness-of-�t)

where

ωi =

 1 if ti ≤ 120
0 120 < t < 270
1 otherwise

(5.68)

p̂U1phase2
= arg min
pU1phase2

n∑
i=1

(
F̂phase2i

(
pU1phase2

, t
)
− Fphase2i(t)

)2

, (5.69)

where F̂phase1i is the predicted plasma FFA value at instant i, Fphase1i is the
measured value and n is the number of data points. p̂U1phase1

and p̂U1phase2
are

the estimated parameters vectors; and, pU1phase1
and pU1phase2

are the parameters
vector. ωi is the i-th element of the weight vector.

The results of the identi�cation routine for the parameters of the model are shown
in Table 5.6. Furthermore, the statistical characteristics of the goodness of �t of
the model adjustment are presented in Table 5.7. Notice that the similar values of
Gth2 to the values of parameter Gb2 from the model presented in previous section
(p = 0.978) demonstrates that the e�ect observed previously can be explained
with the adrenaline indirect e�ect through the FFA.
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Figure 5.23: Unit 1 estimation outcomes. Measured (blue) vs estimated FFA concentration
(magenta) during Low (left) and High (right) insulin clamp.

Quantitatively, model predictions were consistently within on standard deviation
of the mean of experimental data. The model was able to reproduce the two
phases of the FFA behaviour. The basal state is managed by the insulin con-
centration which remains constant during the clamp whereas the FFA secretion
due to the lower glucose concentrations were successfully �tted with the contri-
bution of adrenaline e�ect. In Figure 5.23, the good �tting of the Unit 1 can be
observed; however, it is important to note that in the last part of the clamp, the
submodel was less accurate in the latest new basal concentrations of FFA. It could
be explained by the lack of FFA plasma-interstitium equilibrium.

The unit 1 or FFA subsystem includes the e�ect of the adrenaline counterregula-
tory response on FFA secretion. Thus, this implies an indirect e�ect on glucose
concentration through FFA.

During the identi�cation process, the need for including another term in addition
to the insulin impact on FFA secretion, which was reported and demonstrated
previously (Roy and Parker 2006b), was proved with the improvement achieved
in the glucose concentration �tting due to adrenaline e�ect addition. Periwal
et al. 2008 suggested that the physiology of glucose and FFA regulation may
have unknown mechanisms. This hypothesis could be supported by the above
results where the unknown mechanism could be identi�ed as the counterregulatory
response or the interaction between Glucose-Adrenaline-FFA.

The relationship between insulin and FFA is known (Li et al. 2016), insulin reduces
the blood glucose levels with the promotion of glucose uptake, decreases FFA se-
cretion in the liver, and increases glucose utilization. During hypoglycaemia, as
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FFA secretion occurs in an emergency situation, the systemic increase of glucose
is not manifested since the glucose utilization increase in order to achieve �emer-
gency fuel� to face with the hypoglycaemic conditions and maintain the central
nervous system with enough substrate. Then, this paradoxical e�ect appears.In
addition, counterregulatory response is also risen. It means that the secretion
mechanism of FFA is not just dependent or modulated by insulin; but counterreg-
ulatory response (adrenaline) also has an important role, speci�cally during the
hypoglycemic range.

FFA concentrations are managed by insulin until hypoglycaemia occurs and also
by adrenaline concentration when glucose concentration is below a threshold (Gb2).
From this glucose value, adrenaline promotes the FFA secretion which is also
enhanced by the rate of change of adrenaline concentration (because of quick
response requirement).

Unit 2. Adrenaline subsystem

The adrenaline block is explained by four compartments which are well de�ned
by the adrenaline secretion model presented and successfully identi�ed in Section
5.4. Table B.1 summarizes the value of the parameters of this unit.

The adrenaline subsystem results in a compartmental model which was able to
reproduce the biphasic dynamic of adrenaline secretion. As observed in the equa-
tions of the model, the adrenaline concentration depends on glucose concentra-
tions, being this the only input of the submodel.

Unit 3. Glucose subsystem

The three compartmental submodel of unit 3 was also identi�ed on individual
plasma glucose with the forcing function strategy: plasma insulin, plasma FFA and
plasma adrenaline concentration are the inputs of the system and plasma glucose
concentration is the output. These variables were assumed to be known without
error. To avoid identi�cation problems, as occurred in unit 1, the parameters of
the system were estimated gradually in di�erent phases. Considering the system
inputs and their expected e�ect in plasma glucose concentration, three steps were
carried out.

The �rst evaluated group of parameters was the parameters of the model with-
out the proposed extensions. It was addressed during the euglycaemic period
of the clamp in order to exclude the e�ect of the counterregulatory mechanisms
(adrenaline and FFA e�ects) on glycaemic dynamics. That is, the considered data
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was, according to the protocol, the data between time -30 and time 120 min; and
between time 270 and time 330; and the equation corresponding to the output G,
in this phase (phase1)was considered as:

Ġphase1(t) = −p1Gphase1(t)−X(t)Gphase1(t) + p1Gb +
u2(t)

V olG
. (5.70)

Therefore, the equations included in the identi�cation process were (5.49), (5.51),
and (5.53), and the equilibrium conditions for a given basal insulin (I∗), basal
FFA concentration (F ∗), and basal adrenaline (A∗), were:

Z(0) =
k1F

∗

k2
; X(0) =

p3

p2
I∗; G(0) =

Gb

p1 − p6
k1

k2
F ∗

. (5.71)

The estimated parameters vector in this phase, pU3phase1
resulted in:

pU3phase1
= [p1, p2, p3, Gb, V olG] . (5.72)

However, the parameter Gb was estimated in the subprocess unit 1. Hence, Gb
is considered as known parameter, and then the de�nitive estimated parameters
vector is:

pU3phase1
= [p1, p2, p3, V olG] . (5.73)

The second step was the evaluation of the in�uence of the FFA into glucose dynam-
ics during hypoglycaemia (phase 2). As shown before, it was based on the addition
of several terms and compartments to the Bergman minimal model equations. In
that case, measurements from all study (euglycaemia, hypoglycaemia and recov-
ery) were used and the value of the parameters estimated in the previous step
(pU3phase1

) were considered known parameters. As only the FFA contribution was
taken into account in this phase, the corresponding equation to the output G was:

Ġphase2(t) = −p1Gphase2(t)−X(t)Gphase2(t) + p6Z(t)Gphase2(t) +XbGb+
u2(t)

V olG
.

(5.74)

Thus, the equations included in the identi�cation process were (5.49), (5.51),
(5.53), and (5.71). The estimated parameters vector in this phase, pU3phase2

re-
sulted in:

pU3phase2
= [p6, k1, k2, Fb] . (5.75)

Nevertheless, parameter Fb was already estimated in the unit 1. Then, the de�ni-
tive estimated parameters vector was:

pU3phase2
= [p6, k1, k2] . (5.76)
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Notice that the indirect e�ect of the adrenaline was also considered by means the
promotion of FFA secretion.

Finally, the third stage (phase 3) addressed the complete extended model through
the addition of the direct adrenaline e�ect on glucose dynamics to the previous
phase. Therefore, the corresponding equation to the output G(t) was the complete
equation (5.53), i.e. Gphase3(t) = G(t), then,

Ġphase3(t) =− p1Gphase3(t)−X(t)Gphase3(t) + p6Z(t)Gphase3(t) +XbGb

+
u2(t)

V olG
+ paAd(t); (5.77)

and the parameter in this phase, pU3phase3
was:

pU3phase3
= pa. (5.78)

The identi�cation process was carried out with the global optimization algorithm
CMA-ES. Besides, the estimation was individual for each clamp study considered.
The parameter estimator in each phase was:

p̂U3phase1
= arg min
pU3phase1

n∑
i=1

ωi

(
Ĝphase1i

(
pU3phase1

, t
)
−Gphase1i(t)

)2

, (5.79)

where

ωi =

 1 if t ≤ 120
0 120 < t < 270
0 otherwise

. (5.80)

p̂U3phase2
= arg min
pU3phase2

n∑
i=1

(
Ĝphase2i

(
pU3phase2

, t
)
−Gphase2i(t)

)2

, (5.81)

p̂U3phase3
= arg min
pU3phase3

n∑
i=1

(
Ĝphase3i

(
pU3phase3

, t
)
−Gphase3i(t)

)2

, (5.82)

where Ĝphase1i
is the predicted plasma glucose value at instant t, Gphase1i

is
the measured value and n is the number of data points. p̂U3phase1

, p̂U3phase2
,

and p̂U3phase2
are the estimated parameters vectors; and, pU3phase1

, pU3phase2
, and

pU3phase3
are the parameters vector. ωi is the i-th element of the weight vector.

The values of the identi�ed parameters of the glucose subsystem, unit 3, are
provided by Table 5.8. Moreover, the goodness of �t of the model adjustments is
shown in Table 5.9.
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Params. Mean (SD) Meadian [IQR] Unit

p1 0.064(0.114)
0.014

[0.009; 0.034]
min−1

p2 0.040(0.032)
0.026

[0.014; 0.034]
min−1

p3 5.452(5.790)
3.332

[2.080; 6.67]
10−5 min−1

p6 6.0996(4.0837)
3.4600

[2.4643; 7.7558]
10−5(min ·µmol)−1

V olG 122.845(25.526)
119.729

[105.916; 140.229]
dL

pa 0.064(0.231)
0.043

[0.011; 0.023]
107 min−1

Table 5.8: Parameter estimation of unit 3.

# R2 (%) NRMSE MAPE (%)
Mean (SD) 88.29(8.29) 0.094 (0.034) 5.46 (2.91))
Median
[IQR]

90.03 [83.26;94.68] 0.089 [0.065;0.109] 5.14 [4.02;5.70]

Table 5.9: Statistical metrics of unit 3 (goodness-of-�t).

In addition, Figure 5.24 exposes an example of the �tting model with the glu-
cose experimental data at the di�erent phases of the identi�cation process: (1)
considering only the FFA contribution, and (2) adding both FFA and adrenaline
contribution.

As expected in the unit 3 evaluation, adrenaline response plays an essential role in
the glucose kinetics during hypoglycaemia. Without considering the counterreg-
ulatory mechanisms (phase 1), the predicted glucose completely failed to match
experimental data during hypoglycaemia period since glucose concentration was
overestimated. When FFA secretion was considered, the �tting improved; never-
theless, some compensatory additional factor was needed as it can be observed in
Figure 5.24. For this reason, the addition of the direct e�ect of adrenaline secre-
tion to the model improved the model performance during hypoglycaemia, and
the glucose behaviour was also better explained. Besides, the goodness of �t of
glycaemic pro�le was greater during the whole clamp (R2=88.30± 8.20%, MAPE
= 5.65± 1.83).

In addition, the residual analysis showed that the residual error from the esti-
mation was random and unpredictable. The analysis of residual correlation with
Ljung-Box Q-test run proved that they were not autocorrelated (p > 0.05 for
all studies parameter estimations). Besides, the Wald-Wolfowitz run tests also
proved the residual independence across all individual estimations (p > 0.05 for
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Figure 5.24: Unit 3 �t in clamp study #13 resulting in the phase 2 of the identi�cation
process (green line) and in phase 3 (magenta line).

all studies). Overall, it means that the estimated values of the model parameters
are not likely to be biased. Individual p-values of each test are shown in Appendix
B.2 along with the individual parameters value for each clamp study.

The novel terms of the model represent the straight counterregulatory response
along with the increase in glucose clearance promoted by hypoglycaemia (Clutter
et al. 1980), which is activated when glucose level is below a given threshold
Gth2 (this value is always inside of hypoglycaemic range and greater than Gth).
The increase in glucose clearance leads to an increment of the glucose utilization
besides of a simultaneous promotion of the FFA secretion in order to compensate
the rising in glucose uptake while glucose continues decreasing.

These �ndings are supported by the physiological behaviour since the e�ect
of adrenaline in glucose concentration is demonstrated by several studies (C.G.
Fanelli et al. 1992) and the impact of this hormone in the FFA secretion, especially
during hypoglycaemia.
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5.6.2 Model comparison with other model approaches

The physiological model approach presented in this chapter was compared to
both the Bergman Minimal Model (Bergman et al. 1981) and the Minimal Model
extended with the functional approach suggested by Dalla Man et al. 2014, which
were introduced in Chapter 4, and used in the UVA-Padova simulator. The core
of both approaches is the Bergman Minimal model; besides an important goal
of this work is explaining the functional approach of Dalla Man by means of the
modelling of physiological interactions. For this reason, the following comparisons
will show the improvements achieved with both extensions, and the performance
of the functional approach.

Simulations were carried out for each model using the experimental data from the
clamp. Outcomes from each model were evaluated by several metrics: apart from
the metrics computed to assess the goodness of �t of the model (R2, NRSME,
and MAPE), outcome metrics such percentage of values in hypoglycaemia and
area under the curve (AUC) for hypoglycaemic values were calculated in both
the measured data and each model predicted data. Then, the di�erence between
AUCs of each model predicted and measured glucose concentration was calculated
(dAUC), i.e., dAUC = AUCmeasurement−AUCestimation, where AUCmeasurement
is the area under the curve of the experimental data and AUCestimation is the one
calculated with the estimated data. Finally, a Kruskal-Wallis test was used to
assess the statistical di�erences between the several approaches and a subsequent
post-hoc analysis showed where the di�erences were. The signi�cance level set at
p-value=0.05.

Table 5.10 summarizes the statistical indicators calculated for each model in order
to compare them during hypoglycaemia period. Additionally, Figure 5.25 shows a
graphical comparison between the estimated glucose concentration for each model.
Here, the glucose pro�le estimation is represented for two random clamp studies.

From metrics showed in Table 5.10, it is important to note that the 18.19% of
hypoglycaemic values were unnoticed by the Minimal Model compared to the
6.93% and 7.58% of the Dalla Man and our approach respectively. Moreover,
the average of dAUC with negative value demonstrated a glucose overestimation
during hypoglycaemia.

Statistical analysis of the considered metrics shown that there are signi�cant dif-
ferences between approaches (p = 0.005, p = 0.006 and p = 0.001, p = 0.006 for
MAPE, R2, dAUC, and unnoticed hypoglycaemia respectively). Post hoc anal-
ysis proved that Bergman minimal model is di�erent from the other approaches
(p < 0.05 in all comparisons). Nevertheless, there were not statistical di�er-
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Figure 5.25: Comparison between the physiological and functional approaches (Bergman
Minimal Model, Dalla Man approach, physiological model with counterregulatory response
extension).

ences between the Dalla Man functional approach and our physiological approach
(p = 0.452, p = 0.091, p = 0.058, and p = 0.784; MAPE, R2, dAUC, and unno-
ticed hypoglycaemia respectively).

Looking at comparisons, the functional approach and our physiological approach
work in a similar way (both behaviours are not statistically di�erent). It means

Metrics
(hypoglycaemic

phase)

Approach

Bergman et al. 1981 Dalla Man et al. 2014 Our approach

MAPE (%) 25.99(37.63)† 5.20 (2.08)∗ 5.37 (2.08)∗

R2(%) 54.33(34.12)† 79.56 (20.85)∗ 77.88 (15.41)∗

dAUC (mg/dL) −362.76(462.78)† -8.68 (290.61)∗ 8.38 (271.24) ∗

Unnoticed
hypoglycaemic
values (%)

18.19(26.33)† 6.93 (12.10)∗ 7.58 (13.32)∗

(∗) Signi�cantly di�erent from Bergman Minimal Model.
(†) Signi�cantly di�erent from Dalla Man Model.

Table 5.10: Model approaches comparison.
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that both perspectives could be equivalent in terms of outcomes since both were
capable of reproducing the hypoglycaemic periods. Thus, our proposal is able
to link the mathematical terms with physiological relationships and behaviours.
Indeed, our model allows to provide a physiological explanation to the functional
approach, in principle paradoxical, used in the UVA-Padova simulator, which will
be used in clinical validations in Chapter 7.

5.7 Conclusions

In this chapter, an exhaustive study of physiology was carried out and the better
understanding of counterregulatory mechanisms were achieved. From this study,
adrenaline was found as the main counterregulatory hormone during hypogly-
caemia events since glucagon delivery is practically suppressed in T1D patients.
The assessment of the adrenaline secretion and action were also conducted in order
to extend the Bergman Minimal Model.

From the adrenaline action model, a paradoxical increment of glucose utilization
during hypoglycaemia was observed. This led to �nd some physiological explana-
tion to the phenomenon. Finally, the consideration of FFA mechanisms, which are
involved also in the hypoglycaemia avoidance, provided a suitable model approach.

Therefore, an extension of Bergman Minimal Model was proposed based on
adrenaline response as the main counterregulation line. The e�ect of adrenaline
was included as a direct e�ect on glucose concentration and indirectly through
the in�uence on FFA secretion. In addition, the adrenaline secretion model was
also incorporated to the model extension presented.

The goodness of �t of the model showed an acceptable performance and an im-
provement in hypoglycaemia reproduction compared to the Minimal Model. More-
over, the features of the physiological approach proposed in this work were com-
pared with the functional approach in UVA-Padova simulator (i.e. a risk function
explanation of hypoglycaemic glucose levels) and both worked similarly. It means
that our proposal is able to associate the mathematical terms with physiological
mechanisms and hormones and metabolites interactions.

The main limitation is the variability of the adrenaline response, even in the same
subject, which may be due to occurrence of previous hypoglycaemic episodes af-
fecting counterregulatory response. The di�erences between the amplitude of the
adrenaline responses could also be due to the large adrenaline sampling period
(30min) since this fact could cause that the real adrenaline peak was not exactly
registered. Nevertheless, increasing the sampling frequency was not possible since
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patient safe blood extraction volume have to be guaranteed. However, this lim-
itation a�ects mainly to the gain of the system since the morphology (i.e. the
structure of the system) is not a�ected by such variability. However, it is con-
sidered that this has no major impact according to the model objectives, which
were to derive a physiological explanation of hypoglycaemia, and above all, the
paradoxe introduced by the functional modelling carried out in the UVa-Padova
simulator which will be used for in silico evaluation of controllers derived in Chap-
ter 7.

Other limitation could be the reduced number of subjects and the duration of the
clamp. For this reason, a future work could be a validation with experimental data
from clinical studies with longer duration and greater number of participants. It
would provide subjects with a broader range of adrenaline response variation and
a better representation of T1D population. Nevertheless, results obtained with
the Minimal Model extended with counterregulatory response are successful and
relevant.
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Chapter 6

Glucose Variability Assessment

Reduction of glucose variability, along with the avoidance of hypo-
glycaemia events, is a control target which must be considered during
the controller design in order to improve the Arti�cial Pancreas per-
formance. In literature, there are multiple indicators that are used
to quantify such glucose variability. Nevertheless, these could be in-
trinsically a�ected by the intra- and inter-subject variability besides
that there is not a consensus about which metrics are the most rig-
orous ones. In this chapter, the assessment of the performance of
multiple glucose variability metrics is carried out to determine their
ability to discriminate between di�erent subjects (inter-subject vari-
ability) and attenuate the e�ect of within-subject variability. To this
end, the discriminant ratio (DR) is used to compare them, and the
relevant information from the correlation analysis is also included.

6.1 Preliminaries

Glucose variability describes within-day and between-day �uctuations in glucose
concentration (intra-patient variability), and it is elevated in people with type
1 diabetes. Moreover, the glucose pro�les can also greatly di�er even among
people with HbA1C1 values approaching target (inter-patient variability). The

1The term HbA1c refers to glycated haemoglobin. By measuring glycated haemoglobin, clinicians
are able to get an overall picture of what average blood sugar levels have been over a period of
weeks/months. For people with diabetes this is important as the higher the HbA1c, the poorer
control of blood glucose levels.
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(a) (b)

(c) (d)

Figure 6.1: Glucose variability. (a) Daily glucose pro�le of one patient in 7 consecutive
days; (b) Glucose pro�le of one patient during 8 hours in clinical trial; (c) Glucose pro�le of
20 patients during one day; (d) Glucose pro�le of 20 patients during 8 hours in clinical trial.

relevance of Glucose variability comes from the association of this factor with a
higher incidence of severe hypoglycaemia in patients with type 1 diabetes (T1D)
(Kilpatrick et al. 2007), besides the suggestion that glucose variability is an im-
portant component of dysglycaemia, i.e. abnormalities in blood sugar stability
such as hypoglycaemia and hyperglycaemia (Monnier et al. 2008). In (Gimenez
et al. 2018), the association between higher HbA1C values and increased glucose
variability is demonstrated.

In order to illustrate this concept, Figure 6.1, shows the several de�nitions of
variability mentioned above. Figure 6.1a represents the daily pro�le of one patient
in seven consecutive days. Days have been superposed to represent more clearly
the between-day �uctuations.

As observed, changes within subjects are considerable, that is, even being from the
same person, glycaemia is not easily predictable. Pro�les of the same patient from
two di�erent days but identical study conditions are represented in Figure 6.1b.
This controlled environment, which reduces the e�ect of the underlying external
variability factors, proves the intra-patient variability.
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Figure 6.1c represents the glycaemia of 20 patients during one day. The pattern
of each line is di�erent for each other. Inter-patient variability is shown here.
Nevertheless, part of this variability may be due to the di�erences in the meal time,
the amount of carbohydrates, and physical activity or lifestyle. In order to exclude
these factors, Figure 6.1d represent the pro�le of 20 patients during eight hours of
study in the same conditions (same meal, same time, same physical activity). The
di�erences in the glucose excursions in this Figure con�rms that there are other
factors that have an e�ect on glucose variability across the subjects since even
in the same conditions, glycaemia discerns signi�cantly. Pro�les of �gures 6.1b
and 6.1d are taken from the study carried out by (Rossetti et al. 2017). Likewise,
data of the �gures 6.1a and 6.1c are taken from a Juvenile Diabetes Research
Foundation (JDRF) database which is widely used in the present contribution.
More details about it are given in Subsection 6.3.1.

Currently available continuous glucose monitoring (CGM) devices provide imme-
diate feedback on the glucose concentration, and the magnitude, direction and rate
of change (Kohnert et al. 2015). These measurements enable direct assessment
of the dynamics of glycaemic �uctuatios and calculation of variability metrics.
There are a large number of measures of glycaemic variability, including standard
deviation (SD), percentage coe�cient of variation (%CV), mean amplitude of glu-
cose excursion (MAGE), mean absolute Glucose(MAG), mean of daily di�erences
(MODD), and continuous overlapping net glycaemic action over an n-hour period
(CONGAn).

Similarly, there are numerous measures of quality of glycaemic control like the
Glycaemic Risk Assessment Diabetes Equation (GRADE), the Index of Glycaemic
Control (IGC), the High Blood Glucose Index (HBGI), the Low Blood Glucose
Index (LBGI), the Average Daily Risk Range (ADRR), Personal Glycaemic State
(PGC) and percentage of time under, within and above speci�ed glucose ranges.
All of these metrics are described in Section 3.4. As an illustration, they have
been calculated for the JDRF database patient #4 depicted in Figure 6.1a and
shown in Table 6.1 in order to understand how each indicator gives information
related to the glycaemic pro�le.

GLUCOSE
MEAN

SD CV MAG
GVP
(%)

LI
M-

VALUE
J-

INDEX
CONGA1 MAGE

259.31 117.60 0.45 3.14 52.46 12.35 58.20 142.06 4.25 202.75

ADDR RI LGBI HBGI GRADE
%GRADE
HYPO

IGC PGS PTIR
PT

HYPO
PT

HYPER
62.16 26.64 0.13 26.52 19.76 0.00 7.01 21.50 29.60 0.00 70.40

Table 6.1: Metrics for subject #4 of Figure 6.1a.
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According to the values of the calculated metrics, all of them suggest that the
subject has a poor glycaemic control and a moderate-high variability. This af-
�rmation is based on: ADDR > 40 (ADDR < 30 is Low risk; 20 ≤ ADDR ≤
40 is moderate risk; ADDR > 40 is high risk (Hill et al. 2007)); M-VALUE ≥32
(0 ≤ M ≤ 18 is good control, 19 ≤ M ≤ 31 is fair control, and 32 ≤ M is poor
control (Service 2013)); J-INDEX > 40 (10 ≤ J ≤ 20 is ideal control, 20 < J ≤ 30
is good control, 30 < J ≤ 40 is poor control, and J > 40 is lack of control (Service
2013)); GRADE > 5 ( GRADE ≤ 5 is good control, besides 50 is the maximum
value for GRADE representing this value a bad control). Looking at the time in
hyperglycaemia, the reason of this bad control is that the glycaemia is above the
target control. About variability, GVP are around the 50% which is a signi�cant
value of variability. Besides, MAG is not around zero which con�rms the presence
of glucose variability.

As seen, the assessment of glucose variability is a speci�c area where several
methods are at hand to the researcher. The advantages, limitations, and in-
terrelationships among the available mentioned methods have been described pre-
viously (Rodbard 2009a). However, a gold standard measurement has not been
identi�ed, limiting e�orts to demonstrate a relationship between variability and
clinically relevant micro- and macrovascular diabetes complications, and making
heterogeneous the analysis of the glycaemic control outcomes.

In arti�cial pancreas context, these metrics are used as indices that describe the
controller's performance in T1D patients, speci�cally the glucose variability im-
provements. Nevertheless, a consensus on which is the recommendable indicator
is necessary since the comparison between controllers would be easier and the
de�nition of a good controller more robust.

A set of basic outcome measures was identi�ed in (Maahs et al. 2016), but it
was focused mostly on the glycaemic range control that includes time spent in
desired ranges (70-140 mg and 70-180 mg(dL) as well as time in hypo- (de�ning
three di�erent thresholds: 50, 60, and 70 mg/dL) and hyperglycaemia (de�ning
also three di�erent thresholds: 180, 250, and 300mg/dL), mean glucose, standard
deviation, coe�cient of variation, severe hypoglycaemic events, total daily dose
of insulin and total daily dose of glucagon or other hormones. However, as said
before, this is not enough and a consensus remains challenging; a concise de�ni-
tion of desired range is recommendable besides that the de�nition of consistent
indicators to measure the glucose variability must also be considered.

Discriminant ratios suggest which test is better able to distinguish individual vari-
ation within a population and have been used previously to compare insulin sen-
sitivity measures by calculating the ratio of the underlying between-subject stan-
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dard deviation to the within-subject standard deviation (Hermans et al. 1999;
Verkest et al. 2010). Hence, in the work here presented, we have applied dis-
criminant ratios to commonly used measures of glucose variability and quality of
glycaemic control in order to demonstrate which metric is the most e�ective at
distinguishing between-subject glucose variability di�erences in a large population
with type 1 diabetes using CGM data.

This work is organized as follows: the discriminant Ratio is introduced in Sec-
tion6.2; in Section6.3, the metrics comparison is shown and the main results
about it are presented; the interrelationship between metrics by means of cor-
relation analysis is carried out in Section 6.4. Conclusions in Section 6.5 gather
some �nal remarks.

6.2 Discriminant ratio

The Discriminant Ratio (DR) methodology compares di�erent tests or indicators
measuring the same underlying physiological variable by determining the ability of
a test to discriminate between di�erent subjects, and the comparison of discrim-
ination between di�erent tests (Hermans et al. 2011; Levy et al. 1999; Hermans
et al. 1999). In our case, the variable under study is the glucose variability, and
the di�erent tests are the several metrics available in literature to measure it.

DR is de�ned as the ratio of the unbiased between-subject standard deviation
(SDu) and within-subject standard deviation (SDw) (Hermans et al. 1999). That
is,

DR =
SDu

SDw
, (6.1)

SDu =

√
SD2

B −
SD2

w

k
, (6.2)

where SDB is the between-subject standard deviation of the metrics values, and
k is the number of replicate measurements performed in each subject, i.e., the
number of temporal windows considered in each subject.

The between-subject standard deviation (SDB) is obtained as the SD of the
subjects mean values calculated from the k replicates that are performed in each
subject. This overestimates the underlying SDu due to the presence of within-
subject variation. Thus, it is important to adjust it using a standard formula (6.2)
to yield an unbiased estimate, the SDu.
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The within-subject standard deviation (SDw) is the variation underlying
each subject which is obtained for each subject from its recordings.

Glucose temporal signal is divided into k windows or replicas in each subject; and
the variability metrics are calculated for each window in each patient. Then, the
following matrices are de�ned for each metrics:

X =


x11 x12 · · · x1k

x21 x22 · · · x2k

...
...

. . .
...

xn1 xn2 · · · xnk

 (6.3)

Xmean =

[
k∑
j=1

x1j

k

k∑
j=1

x2j

k
· · ·

k∑
j=1

xnj
k

]T
(6.4)

where X ∈ Rn×k, being i-th row the i-th subject, and j-th column the j-th
window. X is the metrics considered andXmean is the mean of the metric obtained
for each subject considering all windows.

Particularly, from matrices above, the SDw for the i-th subject (denoted as SDwi)
and SDB are calculated for each metrics as follows:

SDwi =

√√√√ k∑
j=1

(xij − xmeani)2

k
(6.5)

SDB =

√√√√ n∑
i=1

(
Xmean − xmeani

)2
n

(6.6)

where Xmean is the mean of Xmean. Therefore, (6.1) and (6.2) are rewritten as
follows:

DRi =
SDui

SDwi

(6.7)

SDui =

√
SD2

B −
SD2

wi

k
(6.8)

The absolute value of DR is the mean or median (depending on the distributions)
of DRs across the subjects.
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Notice that the DR is calculated using the same glucose recordings in all metrics.
This fact enables the proper comparison between tests (metrics) since the absolute
DR values are not comparable between outcomes from di�erent populations.

6.3 Metrics comparison

6.3.1 Data description

Data from the Juvenile Diabetes Research Foundation (JDRF) CGM study were
used. The JDRF dataset is freely accessible and was obtained from the Jaeb
Center for Health Research (Health Research (JCHR) 2018). The study was a 26-
week randomised, parallel group, study that evaluated the impact of continuous
glucose monitoring on glucose control in children and adults with T1D.

The rules to standardize the data in our work were:

� 24 weeks of complete CGM data were used for each participant although
incomplete day recordings due to sensor changes were allowed.

� Data were processed each �ve minutes and the lack of data in a period larger
than two hours was considered as a gap. Missing data were interpolated by
linear method interpolation.

As a result of data normalization, 179 patients were included in the analysis (55.3%
males; ages= 24.12 ± 14.60 years; HbA1c=7.44 ± 0.88%; T1D duration=14.07 ±
12.39 years).

Data from each patient were divided into windows in order to obtain the values
of the di�erent assessed metrics per window. The length of the temporal window
was set at 12 days since this value was previously de�ned by (Neylon et al. 2014)
as the minimum duration of sensor data from which glycaemic variability can be
consistently evaluated.

6.3.2 Metrics assessement with DR

The glycaemic variability measures that were evaluated are: AARC; CONGA1;
CV; GVP; J-INDEX; LI; MAG; MAGE; MODD; and, M-VALUE. Likewise, the
quality of glycaemic control indices assessed were: ADRR; GRADE; %GRADE-
Hypo; HBGI; LBGI; PGS; RI; IGC; the percentage of time between several ranges
(pTIR50-140, pTIR70-180); the percentage of time below 54mg/dL (pT<54) and
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Figure 6.2: Median of DR corresponding to the evaluated Glycaemic Variability metrics
and Glucose Control indices.

70mg/dL (pT<70); and, the percentage of time above 140mg/dL (pT>140) and
180mg/dL (pT>180). Previous to the analysis, the implementation of these indi-
cators was carried out in MATLAB 2017 according to their original formulation
(see appendix A). It is important to note that the M-VALUE, PGS, and IGC were
calculated using the default values of their parameters, i.e. M-VALUE100, IGC1.

Each metrics was calculated in each window of each patient across the 24 weeks
of data. Then, matrices (6.3) and (6.4) were de�ned for each metrics and (6.7)
and (6.8) were computed. For example, the matrix (6.3) is de�ned for MAGE
calculations as (6.9) where k = 14 and n = 179. This matrix for the other metrics
are de�ned by the same token.

MAGE =


MAGE11 MAGE12 · · · MAGE1k

MAGE21 MAGE22 · · · MAGE2k

...
...

. . .
...

MAGEn1 MAGEn2 · · · MAGEnk

 (6.9)

Due to the non-normality of the data, DRs were expressed as the median [IQR].
The values obtained are shown in Table 6.2, and Figure 6.2 is added to make
easier the comparison between metrics.

In addition, in order to assess the e�ect of k value consideration, statistical com-
parison was carried out between the results obtained with a di�erent number of
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windows (i.e. di�erent lengths of the recordings consideration, k ∈ {3, 4, 5, · · · , 14}
where k = 14 is equivalent to 24 weeks of recordings). Then, DR was considered
constant from the k value whose results were statistically di�erent from the im-
mediately lower k results and not signi�cantly di�erent from the results of the
subsequent higher k values.

For sake of clarity, it is worth to mention that the evaluation of the parameter
k is independent of the glucose variability analysis. That is, the analysis of the
parameter k evaluates the metrics DR metrics instead of the glucose variability
directly. In each window (1, 2, . . . , k), glucose variability needs to be properly
assessed; thus, the number of days included in each windows must be 12 days.
As commented before, 12 days are de�ned as the minimum duration of sensor
data from which glycaemic variability can be consistently evaluated (Neylon et al.
2014).

For the evaluated glycaemic variability metrics, the MAG has the highest DR
value and is statistically signi�cantly greater than the other metrics (p < 0.001)
except for the GVP (p = 0.430), indicating that both metrics may be the most
unbiased and most e�ective at distinguishing between variability di�erences across
individuals. However, the LI, M-Value and J-index also showed no signi�cant
di�erences from GVP (p = 0.989; p = 0.977; p = 1.00; respectively).

In Figure 6.3, the mean of DRs versus weeks considered are represented in order
to determine the e�ect of the parameter k and the vulnerability of the metrics.
The study of this parameter implies the analysis of the e�ect of the inter-day
variability in the assessment of glycaemic variability by means of the available
metrics. MAG converges faster to a stable value at k = 8 compared with the
slightly slower convergence of GVP at k = 9 (p < 0.001) and M-Value and J-
Index at k = 13 (p = 0.012 and p = 0.019, respectively). That means that MAG
and GVP indicators are less vulnerable to the e�ect of inter-day variability and,
then, a better discriminators.

By looking at data, percentage of time below 50mg/dL and 54mg/dL showed the
highest DR values. However, these values are biased due to both metrics are con-
centrated around similar values describing a left skewed distribution (the number
of severe hypoglycaemia are low). They are therefore relatively less a�ected by
variability and cannot be properly evaluated as a good discriminators in relation
to intra and inter-patient variability.

For Glucose Control Indices, LBGI presents the most favourable value for DR.
However, it is not signi�cantly di�erent from the HBGI, RI and IGC (p = 0.976;
p = 0.998; and, p = 1.000 respectively). Considering the k screening, the ro-
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GLYCAEMIC
VARIABILITY
METRICS

Metrics
Median
[IQR]

MAG
2.98

[1.64; 3.67]

GV P
2.20

[1.39; 3.01]

LI
2.11

[1.20; 3.10]
M −

V ALUE
2.00

[1.30; 2.94]

AARC
1.95

[1.41; 2.64]
J −

INDEX
1.85

[1.34; 2.59]

CONGA1
1.73

[1.37; 2.18]

SD
1.62

[1.21; 1.99]

MAGE
1.56

[1.22; 1.93]

MODD
1.47

[1.11; 1.98]

CV
1.33

[1.08; 1.63]

GLUCOSE
CONTROL
QUALITY
INDICES

Metrics
Median
[IQR]

LBGI
1.93

[1.15; 3.44]

IGC
1.92

[1.27; 2.93]

RI
1.87

[1.32; 2.72]

HBGI
1.83

[1.34; 2.72]

ADDR
1.81

[1.40; 2.28]
%GRADE

hypo
1.79

[1.04; 4.46]

PGS
1.71

[1.44; 2.02]

GRADE
1.67

[1.30; 2.27]

GLUCOSE
CONTROL

QUALITY INDICES
(Time in ranges)

Metrics
Median
[IQR]

PT
(BG < 50mg/dL)

2.33
[1.06; 6.35]

PT
(BG < 54mg/dL)

2.15
[1.08; 5.28]

PTIR
(70− 180mg/dL)

1.74
[1.31; 2.02]

PTIR
(70− 160mg/dL)

1.63
[1.29; 2.01]

PTIR
(54− 180mg/dL)

1.61
[1.32; 2.09]

PT
(BG > 180mg/dL)

1.59
[1.27; 2.09]

PTIR
(70− 140mg/dL)

1.58
[1.36; 1.85]

PTIR
(54− 140mg/dL)

1.56
[1.31; 2.09]

PT
(BG > 160mg/dL)

1.56
[1.32; 1.97]

PT
(BG > 140mg/dL)

1.54
[1.29; 1.85]

PT
(BG < 70mg/dL)

1.51
[1.07; 2.77]

Table 6.2: DR values for the evaluated glycaemic metrics expressed as median [IQR].
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Figure 6.3: Discriminant Ratio versus temporal length consideration (number of weeks)
used to obtain the calculations. Only the metrics which have the highest DR are represented.

bustness of the LBGI and IGC is demonstrated (they were constant from k = 9
and k = 8 respectively) while HBGI stabilized at k = 13 and RI is not stable at
k = 13). Therefore, IGC may be preferable to LBGI as the inter-day variability
has less e�ect on its calculation.

In addition, several time in range indices were evaluated separately. Based on
these results, the optimal ones are the commonly used percentage of time between
70mg/dL and 180mg/dL followed by the range de�ned by 70mg/dL and 160mg/dL
without a statistically signi�cant di�erence between both ranges (p = 0.197).

6.4 Interrelationship between metrics

Apart from the robustness of the metrics faced with glucose variability, interre-
lation between them is also important in order to identify redundancies in the
information that all of them provide. In order to assess this behaviour, the corre-
lation between metrics was calculated since the correlation represents the degree
to which the tests are assessing the same physiological trait. From this analysis,
it is possible to de�ne a small number of recommendable metrics to evaluate the
e�cacy and safety of therapies, devices, and algorithms. That means identifying
which metrics could be taken as the reference, and which others could be in the
background. In order to assess the correlation between metrics, Spearman's cor-
relation coe�cient (rs) was used due to the Non-normality of the data (Mukaka
2012). Table 6.3 summarizes the interrelationships between the metrics that were
strongly correlated with PTIR, PT(BG<th), and PT(BG>th), for the di�erent
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PTIR
[54-140] [54-180] [70-140] [70-180]

M-VALUE -0.63 -0.83 -0.70 -0.88
J-INDEX -0.85 -0.92 -0.84 -0.87
HBGI -0.87 -0.95 -0.86 -0.90
RI -0.77 -0.93 -0.82 -0.95

GRADE -0.93 -0.95 -0.93 -0.91
IGC -0.47 -0.68 -0.59 -0.79
PGS -0.72 -0.87 -0.80 -0.92

PT (BG < th)
th 50 54 70

LGBI 0.77 0.82 0.96
GRADE-hypo 0.73 0.76 0.74

PT (BG > th)
th 140 160 180

J-INDEX 0.84 0.90 0.94
HBGI 0.87 0.93 0.97
RI 0.70 0.80 0.86

GRADE 0.89 0.93 0.93
PGS 0.64 0.74 0.79

GRADE-hyper 0.59 0.61 0.60

Table 6.3: Spearman's correlation coe�cient for the metrics correlated with the times in
ranges (PTIR), percentage of times in hypoglycaemia PT (BG < th), and percentage of
times in hyperglycaemia PT (BG > th).

evaluated thresholds (th). In addition, Table 6.4 abridges the correlation between
the metrics more correlated with the time in ranges considered. The purpose of
di�erentiation by range is to identify which metrics are more associated with the
characterization of the hypo-, eu- and hyperglycaemic range.

Results showed a high correlation between the percentages of times in ranges
and M-Value, J-Index, RI, GRADE, PGS and IGC. The IGC, PGS include two
components corresponding to hypo- and hyperglycaemia limits besides penalty
scores. That is, the metrics are customizable to weight hypoglycaemia and hy-
perglycaemia. The default values, which are used in the present analysis, usually
assign the same weight to both glycaemic zones. For this reason, the high correla-
tion showed with the euglycaemic range. Nevertheless, the relationship with IGS
is weaker with a narrower range since it is strongly dependent of the upper and
lower range threshold de�nition. The same phenomenon occurred with PGS, but
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less markedly since this metrics also depends on other parameters. Therefore, the
customisation of range in both IGC and PGS (penalty scores) is the determinant
that de�nes the relative in�uence of hypo-and hyperglycaemia in the outcomes.

On the other hand, RI and GRADE are a functional approximation which are
based on �xed parameters. Nevertheless, the correlation remains high across the
several considerate ranges, but with two particularities: (1) values of RI correla-
tion lessen when the hyperglycaemic threshold is reduce; (2) the rs coe�cients of
GRADE practically do not change with the di�erent thresholds. It demonstrates
that in case that the control target range change, GRADE is even able to provide
proper results according to the target. Likewise, if the upper threshold change, a
reformulation of RI could be required.

About the correlation between these glycaemic control range metrics (Table 6.4),
they are greatly correlated between them (rs > 0.75 in all cases). This fact proves
that all of them are describing the same physiological trait.

Percentages of time in hypoglycaemia are highly correlated with LBGI and
GRADE%hypo. However, LBGI shows better rs for the threshold equal to 54 and
70mg/dL. The weaker correlations with the threshold equal to 50 mg/dL might
be due to the small number of glucose values under this threshold. Correlation
between LGBI and GRADE%hypo are marginally high, but the discrepancies
could be due to the di�erent functional approaches of each index.

Regarding the percentages of times in hypergycaemia, J-INDEX, HBGI, RI and
GRADE are highest correlated. The performance of GRADE and RI that has been
commented previously in the time in ranges is also observed in this case. The rs of
RI is higher with the hyperglycaemia threshold de�nition as 180mg/dL; instead,
the di�erences in the coe�cient across the several thresholds is not observed in the
GRADE. However, HBGI is more correlated with time in hyperglycaemia than
GRADE%hyper, although HBGI shows the same e�ect of the threshold de�nition
on rs values than RI. PGS shows lower correlation with the threshold equal to 140
mg/dL due to the customization of the hypo- and hyperglycaemia were the default
ones (70 mg/dL and 180 mg/dL respectively). Nevertheless, as said before, this
metrics is customizable depending the glycaemic zone that is considerate as the
critical one. It means that this lower correlation coe�cient value could be improve
if the hyperglycaemia is higher weighted.

To summarise, although percentage of time in ranges has the theoretical limitation
that it assigns the same penalty score to all glucose values; calculations suggested
that simple indices such as PTIR, PT(BG<th), PT(BG>th) may be as informa-
tive as the �risk index� criteria, as proposed previously (Rodbard 2018). IGS and
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PGS are able to accomplish the same function with parameter tunings. Besides,
this possibility of customization allows to con�gure the metrics to study the over-
all glycaemic control, hypoglycaemic or hyperglycaemic range. By contrast, the
times in ranges showed higher vulnerability to intra- and interpatient variability
than the risk indices with lower values of DR.

M-
VALUE

1.00

J-
INDEX

0.81 1.00

LGBI 0.11 -0.33 1.00

HBGI 0.81 0.99 -0.36 1.00

RI 0.97 0.90 -0.06 0.91 1.00

IGC 0.93 0.61 0.36 0.61 0.86 1.00

PGS 0.90 0.80 0.05 0.81 0.92 0.86 1.00

GRADE 0.78 0.89 -0.34 0.93 0.89 0.63 0.82 1.00

GRADE
-LOW

0.24 -0.07 0.71 -0.10 0.13 0.45 0.26 -0.04 1.00

GRADE
-HIGH

0.28 0.54 -0.60 0.59 0.40 0.04 0.28 0.50 -0.65 1.00

GRADE
-EU

-0.73 -0.63 0.00 -0.67 -0.75 -0.65 -0.70 -0.67 -0.05 -0.58 1.00

M-
VALUE

J-
INDEX

LGBI HBGI RI IGC PGS GRADE
GRADE
-LOW

GRADE
-HIGH

GRADE
-EU

Table 6.4: Spearman's correlation coe�cient between glycaemic control quality indices.

With regard to variability metrics, MAG is correlated with LI (rs = 0.87);
CONGA with LI (rs = 0.89); and GPV with AARC (rs = 0.9). This correlation
is explained by the fact that they are sensible to the time parameter and this
parameter is the same although they compute di�erent glucose functions. In the
case of GVP and AARC, the great interrelationship is due to both represent the
rate of change but with di�erent formulation. Lastly, MAGE, MODD, and ADDR
are correlated with no times in ranges, suggesting that they are able to describe
glucose variability independently of the glucose zone.

In summary, considering these results along with the results from the previous
analysis with the DR, the ICG is suggested as the recommendable control quality
index since is a good discriminator, besides that it is able to carry out the same
function that the percentage of times in ranges giving an overall glycaemic control
view. Moreover, MAG is proved as the crucial glucose variability outcome for

124



6.5 Conclusions

people with type 1 diabetes since it is the most e�ective one at distinguishing
between and within subject variability di�erences using CGM data.

6.5 Conclusions

Increasing adoption of continuous glucose monitoring (CGM) technologies to sup-
port self-management of type 1 diabetes is creating a large volume of data for
people with diabetes, their careers, and healthcare professionals to re�ect on.
Conventional glucose metrics such as mean glucose, HbA1c, and time in range
are accessible and easily understood but may not be sensitive to variability in
glucose and there is potential bene�t from standardising measurement to assess
variability and to measure the impact of an intervention, especially in clinical re-
search. Several measures of glycaemic variability have been described. These can
be broadly subdivided into measures to evaluate glycaemic variability (e.g. SD,
CV, MAGE, CONGA, MODD, LI, J-Index, M-Value, and MAG), and measures
to evaluate glucose control quality that are also sensitive to glycaemic variability
(e.g. GRADE, pTIR, ADRR, IGC, PGS, RI, LBGI, and HBGI). The interre-
lationship analysis between them suggests that simple metrics such as times in
ranges are correlated and could be as informative and useful as the risk indices
are, provided that they are good discriminators of glucose variability.

The results reported in this chapter are obtained from the largest freely-available
CGM dataset and describe the ability of di�erent glycaemic variability metrics
and glucose control quality indices to discriminate between individuals. Mean
Absolute Glucose (MAG), a glycaemic variability metric that is the measure of
glucose rate of change over time, has the highest discriminant ratio while LBGI
and IGC have the higher DR values for measures of glucose control quality. These
LBGI outcomes are supported by an analysis of glucose variability metrics in
children using principal components analysis (PCA) (Guilmin-Crépon et al. 2018).

For times in ranges, time between 70 and 180 mg/dL is most e�ective at dis-
criminating between individuals. To speci�cally assess time in hypoglycaemia the
International Hypoglycaemia Study Group de�ned threshold of 54 mg/dL appears
to discriminate e�ectively when time below threshold is assessed. The limitations
of this work include the exclusion of glycaemic pro�les which include episodes
of severe hypoglycaemia. This may result in a bias in the analysis of the per-
centage of time below 50 and 54 mg/dL due to relatively fewer samples in these
ranges. An analysis with data from studies that includes people with higher risk
of hypoglycaemia could reinforce the results of these both metrics.
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In summary, the data presented do not de�ne an absolute gold standard for gly-
caemic variability measurement but strongly support the use of MAG as an im-
portant glucose variability outcome for people with type 1 diabetes that may be
used, alongside HbA1c and a measure of hypoglycaemia, to assess glucose and the
impact of interventions in a meaningful way. The most robust time in range is
70 to 180 mg/dL and we advocate standardization of this as the primary time in
range metric whereas LBGI and IGC should be considered the optimal glucose
quality metrics. LBGI is recommended particularly in performances where the
hypoglycaemia assessment is one of the object of study.
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Chapter 7

Dual-hormone coordinated

control

The main goal of control algorithms for the Arti�cial Pancreas
is to maximize the percentage of time in target and to avoid hypogly-
caemia events. Besides, a reduction in glycaemic variability is also
pursued. Due to the limitations of single-hormone arti�cial pancreas
systems in mitigating hypoglycaemia in challenging scenarios such as
exercise, this thesis focuses on the developement of new dual-hormone
control algorithms, with concomitant infusion of insulin and glucagon.
In this chapter, a dual-hormone arti�cial pancreas system is presented.
This is designed according to coordinated insulin and glucagon deliv-
ery strategies, which may play a key role in glucoregulation since a
bi-directional communication among beta and alpha cells in the pan-
creas exists. Then an insulin on board limitation is incorporated to
the initial coordinated scheme. The performance of the controllers is
assessed in order to test if the proposed controller achieves low time
in hypoglycaemia and a reduction in the glycaemic variability.
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7.1 Preliminaries

A crucial aspect in the design of control algorithms in the Arti�cial Pancreas
area is the unidirectional e�ect of insulin, which promotes the reduction of blood
glucose concentration. In case of an excessive insulin delivery, there are some re-
strictions to compensate for the substantial drop in plasma glucose concentration,
inducing then hypoglycaemias or severe hypoglycaemias. This problem has been
addressed from two main perspectives as reviewed in Section 3.2: (1) the inclusion
of mechanisms that restrict the insulin on board (IOB) in the single-hormone sys-
tems (Ellingsen et al. 2009; Revert et al. 2013); and, (2) the use of dual-hormone
systems, which de�ne the glucagon as the contrarregulatory action since it has an
opposed e�ect to insulin on glucose concentration (El-Khatib et al. 2010; Haidar
et al. 2013; Herrero et al. 2012; Ward et al. 2008).

The lack of a signi�cant reduction in hypoglycaemia has been associated with
excessive circulating insulin. Moreover, high levels of plasma insulin concentration
may limit the e�ects of glucagon (El Youssef et al. 2014). It was also demonstrated
that high insulin on board increases signi�cantly the risk of glucagon failure in
preventing hypoglycaemia (P. Bakhtiani et al. 2015). On the other hand, the
antagonistic e�ect of insulin and glucagon along with the structure of the current
systems based on independent control loops, might cause unwanted oscillations
between hypoglycaemia and hyperglycaemia (El Youssef et al. 2014).

A better understanding of physiology can help the development of new bio-inspired
strategies. The drop in glucose concentration during hypoglycaemia triggers the
counterregulatory response. In healthy people, the �rst counterregulatory re-
sponse is the reduction of endogenous insulin secretion, which occurs when blood
glucose levels fall below 81 mg/dL, still within the normal glycaemic range. When
blood glucose falls outside this range, below 65-70 mg/dL, the secretion of glucagon
and adrenaline begins, among other neuroendocrine responses, (see Chapter 5 to
more detail).

Thus, glucagon secretion is always preceded in healthy subjects by a reduction in
the plasma insulin level, which prevent high insulin concentrations accompanying
the glucagon secretion. This means that glucagon should be used as a rescue
from hypoglycaemia along with stopping the insulin infusion. The success will
depend on the current insulin on-board due to the subcutaneous infusion. Besides,
glucagon can help to mitigate the excessive aggressiveness of the insulin infusion
to achieve better postprandial control and lower blood glucose average. Hence, a
recommendable arti�cial pancreas approach will be one that uses glucagon as a
modulator to prevent hypoglycaemia.
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In addition, according to physiology, there is paracrine communication between
alpha and beta cells, glucagon and insulin secretors respectively (Jain and Lam-
mert 2009). Beta cells inhibit the e�ect of alpha cells. In patients with T1D,
it was demonstrated that the increase in insulin levels produces a suppression
of glucagon secretion, and that the decrease of insulin levels combined with low
glucose values stimulates glucagon secretion (B. Cooperberg and P. Cryer 2010).
However, this stimulation did not exist during normoglycaemia. It means that
insulin is a paracrine glucagon inhibitor whereas the secretion of glucagon as a
counterregulatory response is signalled by the decrease in insulin concentrations.
On the other hand, alpha cells sensitize the beta cells by means of glucagon se-
cretion and acetylcholine in order to respond optimally to the subsequent glucose
increase (Rodriguez-Diaz et al. 2011b). Thus, alpha cells anticipate possible hyper-
glycaemic rebounds by means of the beta-alpha cells communication. Therefore,
paracrine communication is observed in both directions. This fact reveals that
the coordination between the secretion of both hormones is a relevant factor in
the glycaemic control.

The work presented in this chapter is focused on the development of new control
algorithms based on a dual-hormone con�guration which incorporate the coordi-
nation above described between insulin and glucagon infusion. They are able to
improve the features of the arti�cial pancreas. From the coordinated dual-hormone
proposal, an insulin on board limitation is also included in such con�guration in
order to manage the excessive amount of circulating insulin, which could inter-
fere in the glucagon e�ect on glucose concentration and in the rate of glucose
decrease. Therefore, this chapter is organized as follows: Section 7.2 introduces
brie�y the current dual-hormone systems; Section 7.3 presents a description of
the glucose-insulin-glucagon model that is used in this work; then, the control
strategy followed here in order to de�ne our controller proposal is described in
Section 7.4. Section 7.5 describes the coordinated controller proposal and shows
the results from the comparison between coordinated and non-coordinated con�g-
urations; Section 7.6 exposes the new controller con�guration with the addition
of the insulin on board limitation; here, a comparison between the previous coor-
dinated controller and the new proposal of coordinated dual-hormone controller
with insulin on board limitation is also carried out. Finally, Section 7.7 shows the
conclusion of this work.
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Chapter 7. Dual-hormone coordinated control

7.2 Current dual-hormone systems structure

The current dual hormone control systems are founded on the control structure
of Figure 7.1. All of them are based on an insulin controller, to which a new
glucagon control loop is added. The glucagon controller is activated under certain
circumstances with the aim of triggering a counterregulatory action that prevents
or minimizes the hypoglycaemia generated by the insulin controller.
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Controller
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Insulin
Pump

Glucagon
Pump

+
-

+
-

Gref ins

Gref ggon
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uins
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Figure 7.1: Dual-hormone control system based on independent loops for the insulin and
glucagon controllers.

The ongoing implementation of dual hormone systems include ad-hoc solutions
with heuristic components such as controller activation rules, action saturation,
rules to compensate for unwanted interactions between controllers and di�erent
considerations of glucose reference for insulin and glucagon controllers. Consid-
ering two di�erent references implies an additional degree of freedom for tuning,
although the goal of each controller from the physiological point of view is common
(normoglycaemia).

In addition, the dual hormone system allows more aggressive insulin infusion, com-
pared to a single hormone system, since the dual con�guration uses the glucagon
infusion as a modulator to avoid hypoglycaemia. However, as discussed in the pre-
vious section, excess of insulin may reduce the e�ectiveness of glucagon resulting
in hypoglycaemia incidence despite glucagon counterregulatory action. Besides,
insulin and glucagon secretion are intimately coordinated through paracrine com-
munication between the alpha and beta cells of the pancreas. These aspects justify
the interest in new control structures that permit a more systematic design, as
well as the coordination of the delivery of both hormones.
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7.3 Models of the glucose-insulin-glucagon system

The development of new dual hormone control algorithms requires models that
describe the action of insulin and glucagon in glucose regulation, as well as the
respective pharmacokinetics of subcutaneous infusion.

As exposed in Chapter 4, there are three models that are widely used: Bergman
minimal model (Bergman et al. 1981), the Hovorka model (Hovorka et al. 2004),
and the Dalla Man model (Dalla Man et al. 2007b). This last model is integrated
in the UVA/Padova simulator which is used in the present chapter to carry out
the simulations and validations.

The Bergman minimal model is a non-linear second order model that relates
plasma insulin concentration and plasma glucose concentration. This model was
obtained in order to measure the insulin sensitivity from plasma glucose and
plasma insulin data. Thus, the model did not include neither the pharmacoki-
netics of insulin nor the model of carbohydrates absorption. The Hovorka model
is a non-linear seventh order model that relates the intake and subcutaneous in-
sulin infusion with the plasma glucose concentration. The pharmacokinetics of
insulin is represented by a linear, third order system.

The Bergman minimal model has been widely used in combination with models
of subcutaneous insulin pharmacokinetic and carbohydrates absorption from the
intake since it is simple and identi�able. The Identi�able Virtual Patient (IVP)
model (S. S. Kanderian et al. 2012) is one example that join the Bergman model
with the carbohydrates absorption model from Hovorka model and a reduction of
the pharmacokinetics model of insulin considering only one compartment.

The incorporation of the e�ect of glucagon on the models was carried out in
analogous procedure. The Bergman minimal model was extended by (Herrero et
al. 2013) in order to incorporate the pharmacokinetics and pharmacodynamics of
exogenous glucagon infusion. This model is relevant in our work since its equations
will reveal some characteristics of our coordinated control scheme. Such model is
described by the following equations:

Ḟ (t) =
1

tmaxG
(−F (t) +AGDG) (7.1)

Ṙa(t) =
1

tmaxG
(−Ra(t) + F (t)) (7.2)

Ṡ1(t) = u(t)− S1(t)

tmaxI
(7.3)
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Ṡ2(t) =
S1(t)− S2(t)

tmaxI
(7.4)

İ(t) = −keI(t) +
S2(t)

VItmaxI
(7.5)

Ẋ(t) = −p2X(t) + p2SI (I(t)− Ib) (7.6)

Ż1(t) = w(t)− Z1(t)

tmaxN
(7.7)

Ż2(t) =
Z1(t)− Z2(t)

tmaxN
(7.8)

Ṅ(t) = −kNN(t) +
Z2(t)

VN tmaxN
(7.9)

Ẏ (t) = −p3Y (t) + p3SN (N(t)−Nb) (7.10)

Ġ(t) = − (SG +X(t)− Y (t))G(t) + SGGb +
Ra(t)

VG
(7.11)

Equations (7.1)-(7.2) are related to the intake, as well as equations (7.3)-(7.6) are
associated with to pharmacokinetics and e�ect of insulin e�ect. Likewise, (7.7)-
(7.10) corresponds to the pharmacokinetics and e�ect of glucagon. Lastly, the
glucose metabolism is described by equation (7.11).

The terms about the intake and the model of the insulin pharmacokinetics
are corresponded with the Hovorka model. In the meal absorption model, Ra
(mg/min−1kg−1) is the plasma glucose rate of appearance, F is the glucose
appearance in the �rst compartment. AG is the carbohydrate bioavailability,
and DG (mg) is the amount of carbohydratres ingested, and lastly, tmaxG is the
time-to-maximum of carbohydrate absorption.

In the pharmacokinetic and absorption insulin model, I (µU/ml) is the plasma
insulin concentration, ke (min) is the �rst-order decay rate for insulin in plasma,
u (µU/kg) is the subcutaneous insulin infusion rate, VI (ml/kg) is the distribution
volume of plasma insulin, tmax I (min) is the time-to-maximum insulin absorption,
and S1 and S2 are a two-compartment chain representing absorption of subcuta-
neously administered insulin.

The pharmacokinetics and the e�ect of glucagon are incorporated and modelled
by the same model structure as the one de�ned for the insulin where N (pg/ml)
is the plasma glucagon concentration, kN (min−1) is the �rst-order decay rate for
glucagon in plasma, Z1 and Z2 are the two-compartment chain that represents
the absorption of the glucagon administered subcutaneously. w(t) (ng/kg) is the
subcutaneous glucagon infusion rate, VN (mL/kg) is the distribution volume of
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plasma glucagon, and tmaxN (min) is the time-to-maximum glucagon absorption.
The e�ect of glucagon on glucose is also modelled following a similar approach to
the one used in the Bergman Minimal model, y(t) is glucagon action on glucose
production, Nb is the glucagon basal value, SN (min−1 per pg/mL) is glucagon
sensibility, and p3 (min−1) is the constant rate that describes the dynamics of
glucagon action. Lastly, the e�ect of glucagon on glucose concentration is incor-
porated in (7.11) with opposite sign to insulin. This e�ect is modulated by the
glucose concentration, Y (t) · G(t).The hepatic production is modulated by the
glucagon sensitivity.

In a control context, the analysis of the insulin and glucagon dynamics is a point
of interest. In the system de�ned by equations (7.1)-(7.11), the parameters that
are responsible of the mentioned dynamics are tmaxI , ke and p2 for the insulin
whereas tmaxN , kN and p3 for the glucagon. The value of these parameters in
the patients identi�ed in (Herrero et al. 2013) demonstrated that the glucagon
dynamics is faster that the insulin one, i.e. tmaxN > tmaxI , kN > ke and p3 > p2.
Therefore, this feature about the di�erences between dynamics must be considered
in the con�guration of our control system.

7.4 Control of Multiple Input-Single Output systems

The control problem of the dual-hormone AP can be casted as the design of a con-
troller for a MISO plant, where insulin and glucagon infusion are the plant inputs
and glucose the output. The system to be controlled in this chapter is described
by the model (7.1)-(7.11). According to them, the system can be expressed as:

ẋ(t) = f(x(t), u(t), w(t), d(t)), (7.12)

G(t) = h(x(t)), (7.13)

where x ∈ Rn is the system state, u ∈ R is the subcutaneous insulin infusion,
W ∈ R is the subcutaneous glucagon infusion, and d ∈ R is a perturbation that
contains the glucose �ux due to the ingestion. Therefore, the exposed system is a
non-linear MISO system that has two inputs (insulin and glucagon delivery) and
one output (glucose concentration).

MISO systems are common in the industrial processes. Within these MISO sys-
tems, the control strategies can be divided into non collaborative and collaborative
ones (Rico-Azagra et al. 2014). Non collaborative control selects a plant inside
a battery of them, which covers a wide range of operating points for the output.
The selection criterion is based on the stationary capacity of each plant. Thus,
the control law is designed for an equivalent SISO system. A selector splits online
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the control action to the plant or plants with capacity to regulate the output in
the actual operating point.The split-range method is the most representative of
this class of controllers where design reduces to a pure SISO system, which closes
a single feedback loop around a plant. That is, only one control input is acting
to one plant at any given time. The inputs to the other plants could be manip-
ulated manually or are left constant. On the other hand, collaborative strategies
bene�t from dynamic strengths of each plant to improve the performance of the
controlled output considering the restrictions of the manipulated variables and
individual outputs (Rico-Azagra et al. 2014). In the literature, the concept of col-
laborative MISO has been developed under several nomenclatures, such as VPC
(Valve Position Control) (Shinskey 1978; Yu and Luyben 1986), habituating con-
trol (Henson et al. 1995; McLain et al. 1996), main-vernier control (Lurie and
Enright 2011), PQ design method (Schroeck et al. 2001), or Midranging control
(Allison and Isaksson 1998).

The coordinated control strategies are of special interest in this work. The concept
of habituating control strategy was introduced by (Henson et al. 1995); it is used
to coordinate the available manipulated inputs so that the outputs are maintained
at their references whereas the overall cost of control actions is minimized. Most
control systems employ only slow and �cheap� variables as the manipulated inputs,
although additional fast, but �expensive� inputs are available. In habituating
control systems, the fast (secondary) inputs can be used to track reference changes
and reject disturbances rapidly. As the slower (primary) inputs begin to a�ect the
outputs, the fast inputs can be habituated by slowly returning to their desired
values. Improved performance can be obtained with little additional cost because
the expensive secondary inputs are not used at steady state.

A cardiovascular system that employs a habituating control strategy for regulating
arterial blood pressure was inspired by (Henson et al. 1995). The arterial pressure
is determined basically by two physiological variables: 1) the sympathetic system,
which acts slower on the peripheral resistance, and 2) the parasympathetic system
that acts faster on the cardiac output. A continuous action on cardiac output is
costly. For this reason, the brain coordinates both physiological variables in order
to achieve the best features at expenses of the minimum possible cost. That is, as
long as the sympathetic response on the peripheral resistance is being greater, the
parasympathetic system is �being habituated� in order to provide an equilibrium
value for the cardiac output. This system has similarities with the dual-hormone
problem since two control actions are also considered, glucagon and insulin infu-
sion; besides that glucagon can be categorized as the �fast and expensive� control
action whereas insulin can be de�ned as �slow and cheap� action. Glucagon can be
identi�ed as the secondary action due to the amount of glucagon delivered must be
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as low as possible (side e�ects could be manifested if the glucagon administration
was higher that a daily limit around 1mg). Hence, glucagon provides a quick and
optimal response to avoid the hypoglycaemia while a decrease in insulin delivery
has a later e�ect.

In that cardiovascular system, the steps proposed to design the controllers are: 1)
de�nition of the desired transfer function between the output and its reference;
2) de�nition of the desired transfer function between the secondary action and its
reference; 3) decoupling of the response between the reference of the secondary
action and the output; 4) achievement of asymptotic tracking of both references; 5)
Ensuring nominal closed-loop stability. However, in our dual-hormone problem,
a reference for the glucagon infusion di�erent from zero has no sense since the
glucagon infusion is only in case of hypoglycaemia emergency. From the good
results obtained with this methodology, the habituating control methodology was
extended to the case of non-linear processes in (McLain et al. 1996). Then, the
application of the methodology to the voltage control problems in quasi-resonant
converters was proposed by (Cevantes and Alvarez-Ramirez 2004). The control
strategy was tested in a reactor control problem in (Monroy-Loperena et al. 2004).

Other interesting approach is the cooperative-feedback control, which considers the
use of additional actuators in order to avoid the saturation of the main actuator.
To this end, a parallel structure with a switch function is able to de�ne the con-
tribution of each control action in the output response. A design of cooperative
controllers based on the plant factorization was suggested by (Alvarez-Ramirez et
al. 2004). It consists in two steps: 1) design the controller for one of the factors; 2)
design of a divisor in order to split the total �control e�ort� into the two available
control actions so that the closed-loop performance is preserved. The e�ectiveness
of this approach was tested in (Velasco-Perez et al. 2009) and (Velasco-Pérez et al.
2011). In the glucose control context, a glucose control system was proposed in
(Sun et al. 2012) using the MPC control from (Henson et al. 1995) with intravenous
insulin and glucose infusion as control variables. This control con�guration could
be interpolate to our problem, but as mentioned above, the reference of glucagon
action cannot be di�erent from zero unlike the case of glucose as the secondary
control action.

The parallel control structures are the most suitable approach to assess the dual-
hormone problem. This kind of structures arise for instance in the plant factor-
ization presented in (Alvarez-Ramirez et al. 2004) , which will set the foundations
of the design strategy of the controller proposed in the present chapter. Thus, it
is explained in more detail below.
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Consider the plant:
y(s) = H1(s)u1(s) +H2(s)u2(s) (7.14)

where

H1(s) =
N1(s)

D1(s)
e−d1s, H2(s) =

N2(s)

D2(s)
e−d2s, d1 ≥ d2. (7.15)

Then, (7.14) can be expressed as:

y(s) =
N+

1 (s)N+
2 (s)

Q(s)
e−d1s

(
N−1 (s)Q(s)

N+
2 (s)D1(s)

u1(s) +
N−2 (s)Q(s)

N+
1 (s)D2(s)

e(d1−d2)su2(s)

)
(7.16)

y(s) = H ′(s)e−d1s
(
F1(s)u1(s) + F2(s)e(d1−d2)su2(s)

)
(7.17)

where

H ′(s) :=
N+

1 (s)N+
2 (s)

Q(s)
, F1(s) :=

N−1 (s)Q(s)

N+
2 (s)D1(s)

, F2(s) :=
N−2 (s)Q(s)

N+
1 (s)D2(s)

(7.18)

where N+
i (s) is the factor that contains all the right-hand side zeros (including

those in the imaginary axis) of the transfer functionHi(s), i = 1, 2 withN+
i (0) = 1

and Q(s) is a stable polynomial satisfying Q(0) = 1 such that H ′(s) is a proper
transfer function and F1(s) and F2(s) are non-strictly proper transfer function.
To guarantee these characteristics, the following condition must be met:

deg(Q(s))≥max

{
deg(N+

1 (s)N+
2 (s)), deg

(
N−1 (s)

N+
2 (s)D1(s)

)
,deg

(
N−2 (s)

N+
1 (s)D2(s)

)}
(7.19)

Notice that �deg� denotes degree of polynomial.

As a consequence:

� H ′ is stable and non-invertible where H ′(0) = 1 and

deg(Q(s))≥deg (N+
1 (s)N+

2 (s)).

� F1 and F2 are invertible, and F1(s)−1 and F2(s)−1 are proper; where Fi(0) =
Hi(0), and r deg(Fi(s)) ≤ 0, i = 1, 2. Notice that �r deg� denotes relative
degree.

From (7.17), the virtual action is de�ned as:

µ(s) := F1(s)u1(s) + F2(s)e(d1−d2)su2(s). (7.20)
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Considering that υ2(s) represents the secondary action which presents the faster
dynamics faced with the primary action, υ1(s) and υ2(s) are de�ned as:

υ1(s) := F1(s)u1(s), (7.21)

υ2(s) := F2(s)e(d1−d2)su2(s). (7.22)

Thus,
µ(s) = υ1(s) + υ2(s). (7.23)

Therefore the SISO plant of the system is summarized in:

y(s) = H ′(s)µ(s) (7.24)

This is an equivalent representation of plant (7.14) with control input µ(s) and
control output y(s). After plant factorization, the controller design is carried out
following the subsequent steps:

1. The design of the master controller C(s) according to the plant.

µ(s) = C(s)e(s), where e(s) is the error, i.e., e(s) = yref (s)− y(s). (7.25)

2. The design of the divisor, which is responsible to distribute the virtual ac-
tion µ(s) to the primary and secondary control actions (υ1(s) and υ2(s)).
To this end, as described by (Alvarez-Ramirez et al. 2004), the following
optimization problem is posed:

min
(υ1,υ2)

1

2

(
αυ1(s)2 + (1− α) υ2(s)2

)
(7.26)

with the restriction
µ(s) = υ1(s) + υ2(s). (7.27)

where α ∈ [0, 1] is a customizable parameter that weights each control action.

The optimization problem solution is:

υ1(s) = (1− α)µ(s), υ2(s) = αµ(s). (7.28)

3. De�nition of the real control actions u1 and u2 considering υ1 and υ2. That
is,

u1(s) = F−1
1 υ1(s); u2(s) = F2(s)−1e(d1−d2)sυ2(s). (7.29)
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Then, the stability and features of the MISO system are determined by the stabil-
ity and features of the SISO system whose closed loop transfer function is de�ned
by

Hcl(s) =
C(s)H ′(s)

1 + C(s)H ′(s)
(7.30)

The resultant control structure described above is shown in Figure 7.2.
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Figure 7.2: General block diagram of the parallel control structure applied to the dual-
hormone arti�cial pancreas system.

7.5 Coordinated controller proposal

In a dual-hormone arti�cial pancreas systems, an analogy of the �fast and cheap�
is established with glucagon action due to a faster subcutaneous pharmacokinetics
and pharmacodynamics, although its delivery must be constrained to 1 mg/day
due to the possible side e�ects; then, the �slow and cheap� action is identi�ed
with the insulin action. Glucagon can respond quickly when hypoglycaemia oc-
curs while insulin decreases to produce a latest e�ect on plasma glucose concen-
trations. Besides, glucagon may ultimately act as a secondary control action when
either insulin is saturated (insulin infusion cannot have negative values) or insulin
delivery is below a given threshold for hypoglycaemia mitigation.

Overall, the control e�ort provided by the combined action of insulin and glucagon
must be the one needed to maintain the glucose control targets. To this end, the
general parallel control structure in Figure 7.2 is proposed in this work, as opposed
to independent control loops for insulin and glucagon used in the most current
systems (see Figure 7.1). A master controller computes a virtual control action
representing a control e�ort, which is then distributed among insulin and glucagon
according to given logics leading to a coordinated hormones delivery.
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The design of the control system in Figure 7.2 is adapted from (Alvarez-Ramirez
et al. 2004) according to the theory exposed in previous section, leading to the
controller depicted in Figure 7.3. It is expected that the relation between in-
sulin, glucagon and glucose presents nonlinear and even time-varying dynamics.
However, for simplicity, a system linearized at its basal values is considered in
this thesis for the controller design. Hence, the design steps, which will be illus-
trated considering the glucose-insulin-glucagon model in Section 7.3, are de�ned
as follows:

1. Linearization and factorization of the system.

Considering the equations (7.1)-(7.11) that describe the system to be controlled,
the system is linearized as follow:

∆G(s) = H1(s)∆u(s) +H2(s)∆ω(s) +H3(s)∆Ra(s), (7.31)

where

H1(s) =
G∗SIp2

VIt2maxI

1(
s+

1

tmaxI

)2

(s+ ke)(s+ p2)(s+ SG)

(7.32)

H2(s) =
G∗SNp3

VN t2maxN

1(
s+

1

tmaxN

)2

(s+ kN )(s+ p3)(s+ SG)

(7.33)

H3(s) =
1

Vg

1

(s+ SG)
(7.34)

∆G(s) is the deviation of plasma glucose concentration from the equilibrium value
G∗, (∆G(t) := G(t)−G∗); ∆u(s) is the deviation of insulin infusion from the equi-
librium value u∗, (∆u(t) := u(t)−u∗); ∆ω(s) is the deviation of glucagon infusion
from the equilibrium value ω∗, which is null (∆ω(t) := ω(t)); and, ∆Ra(s) is the
disturbance due to the meal intake (∆Ra(t) := Ra(t)). Transfer functions H1(s),
H2(s), and H3(s) are the linearized plants representing the glycaemic e�ect of
insulin, glucagon and meal intake respectively, with H1(0) = 1, and H2(0) = 1.
Thus, gains α and β correspond to the insulin and glucagon sensitivities, respec-
tively. Remark that, due to subcutaneous pharmacokinetics and pharmacody-
namics of insulin and glucagon, H1(s) will have a slower dynamics than H2(s)
(see Section 7.3).

In the absence of disturbance, the plant with faster dynamics (i.e., H2(s)) can be
factorized as follows:

∆G(s) = H2(s)

(
H1(s)

H2(s)
∆u(s) + ∆ω(s)

)
(7.35)
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where

H1(s)

H2(s)
= − SI

SN

p2

p3

VN
VI

(
tmaxN
tmaxI

)2

(
s+

1

tmaxN

)2

(s+ kN )(s+ p3)(
s+

1

tmaxI

)2

(s+ ke)(s+ p2)

(7.36)

with static gain equal to:

H1(0)

H2(0)
= − SI

SN

kN
kI

VN
VI

= − SI
SN

ClN
ClI

, (7.37)

where ClN = kNVN and ClI = kIVI are the �clearance� of glucagon and insulin.
This concept corresponds to the plasma volume of each hormone per time unit
that is cleared.

Altenatively to equation (7.31), model linearisation can be expressed as

∆G(s) = αH1(s)∆u(s) + βH2(s)∆ω(s) +H3(s)∆Ra(s), (7.38)

where α = −SI/ClI and β = SN/ClN so that H1(0)/H2(0) = 1. This will be the
representation considered henceforth, for an explicit representation of gain α and
β, that will need individualization.

De�ning now

∆µ(s) := ∆v1(s) + ∆v2(s), (7.39)

∆v1(s) := α
H1(s)

H2(s)
∆u(s), (7.40)

∆v2(s) := β∆w(s). (7.41)

Equation (7.35) can be expressed as a SISO system in terms of a new virtual
control action as follows:

∆G(s) = H2(s) ·∆µ(s) (7.42)

where ∆µ(s) represents the �control e�ort� without saturation constraints, unlike
insulin, ∆u(s), and glucagon, ∆w(s), infusion that must be non-negative.

2. Design of master controller C(s) for the equivalent SISO plant.

A controller design can thus be carried out for the SISO system (7.42), with
closed-loop dynamics given by

Hcl(s) =
C(s)H2(s)

1 + C(s)H2(s)
(7.43)
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yielding the master controller C(s) in Figure 7.5.2. In this work, a PD controller
is considered:

C(s) =
∆µ(s)

Gref (s)−G(s)
= kp(1 + Tds) (7.44)

∆µ(s) = kp(1 + Tds) (Gref (s)−G(s)) (7.45)

where kp is the proportional gain, Td is the derivative time, and Gref is the value
of the glucose reference.

3. Divisor design to distribute the total virtual control action ∆µ(s) in both
primary ∆v1(s) and secondary ∆v2(s) actions.

The control action computed in (7.45) can be distributed in terms of ∆v1(s) and
∆v2(s) with consideration of the constraint imposed by (7.39), i.e., both actions
must add up the total control e�ort needed. Then, by inverting (7.40) and (7.41),
the �nal insulin and glucagon infusions can be obtained as:

∆u(s) =
1

α

(
H1(s)

H2(s)

)−1

∆v1(s), (7.46)

∆w(s) =
1

β
∆v2(s), (7.47)

u(t) = ∆u(t) + u∗, (7.48)

w(t) = ∆w(t). (7.49)

For the design of the divisor that distributes the virtual control action ∆µ(s), an
optimization problem with restrictions was considered, equivalently to (Alvarez-
Ramirez et al. 2004). The restriction is expressed by the equation (7.39) and the
function to minimize is:

arg max
∆v1,∆v2

1

2

(
γ∆v1(s)2 + (1− γ)∆v2(s)2

)
(7.50)

where γ ∈ [0, 1] is a design parameter to �x the relative weight of each control
action (∆v1,∆v2) determining the degree of collaboration between them. The
solution of the optimization problem is

∆v1(s) = (1− γ)∆µ(s), (7.51)

∆v2(s) = γ∆µ(s). (7.52)

Intuitively, insulin delivery should be prioritized with respect to glucagon. The
latter should be delivered only when insulin infusion is below a given threshold,
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uth. Thus, the following divisor is de�ned

γ =

{
0 ũ(t) > uth
1 ũ(t) ≤ uth

(7.53)

where ũ(t) is the would-be insulin infusion if directing the control e�ort through
the insulin input channel. In the extreme case where uth = 0, glucagon would
act when the insulin pump is shut o� in response to impending hypoglycaemia.
However, delays due to glucagon subcutaneous absorption may be a limitation
to successfully avoid hypoglycaemia. For this reason, uth ≥ 0 will be considered
here. Remark that for γ = 1 (activation of glucagon delivery), the insulin infusion
will correspond to the free response of the system (7.46), since ∆v1(s) = 0.

The switching due to (7.53) does not a�ect the closed-loop transfer function.
When γ = 0, the closed-loop transfer function is

H0
cl(s) :=

C(s)
1

α

(
H1(s)

H2(s)

)−1

αH1(s)

1 + C(s)
1

α

(
H1(s)

H2(s)

)−1

αH1(s)

=
C(s)H2(s)

1 + C(s)H2(s)
(7.54)

and, when γ = 1:

H1
cl(s) :=

C(s)
1

β
βH2(s)

1 + C(s)
1

β
βH2(s)

=
C(s)H2(s)

1 + C(s)H2(s)
. (7.55)

Therefore, the closed-loop transfer function remains unaltered and it will be stable
by the design conditions on C(s).

7.5.1 Tuning of the coordinated controller (CC) proposed.

• Master controller, C(s).

The master controller is de�ned by equation (7.44), and the parameters that de-
termine its dynamics are Kp, Td, and Gref . Kp and Td were manually tuned to
achieve the best possible glycaemic outcomes in the average patient, i.e. percent-
age time in target range [70, 80] mg/dL and percentage time below target. Figure
7.4 shows a representation of the parameter values screening. Gref was �xed to
100 mg/dL because it is the desirable value for an optimal glycaemia. One day
scenario with three meals (7am (50g), 1pm (80g), 8pm (60g)) was used for the
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Gref +
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Figure 7.3: Block diagram of the closed-loop system for glucose coordinated control based
on the proposed parallel control structure.

parameters tuning. Intrasubjects variability was also included. For all the evalu-
ated subjects, these parameters were �xed to the same value: kp = 3.1350× 104,
Td = 90 min and, Gref = 100mg/dL, considering them as population parameters
since they were evaluated in the average patient.
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Figure 7.4: Graphical representation of the results from parameters screening.
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• Filter

After the identi�cation process, the �lter resulted in:(
H1(s)

H2(s)

)−1

=
s2 + 0.01074s+ 4.395× 10−5

0.3522s2 + 0.008251s+ 4.395× 10−5
(7.56)

with unitary static gain: (
H1(0)

H2(0)

)−1

= 1. (7.57)

An identi�cation procedure was conducted using the average patient in the dis-
tribution version of the UVA-Padova simulator, resulting in second order systems
relating the dynamics of both hormones, which is considered constant in all pa-
tients. However, the �lter is multiplied by an individualized gain, 1/α, which
depends on the insulin sensitivity.

The parameter α was individualized for each patient following an identi�cation
procedure based on the impulse response for a set of bolus doses. As an example,
Figure 7.5 shows the identi�cation process output of patient #10. The individu-
alization was carried out to reduce the outcomes variability and reduce the error
between a population insulin sensitivity and the real one for each patient. Besides,
an interesting point of this parameter is that it could be determined clinically in
T1D patients. The value of α identi�ed for each patient is show in Table 7.1.
Likewise, β was obtained for each patient analogously to the parameter α. This
parameter is related to the glucagon sensitivity. Table 7.1 summarizes the identi-
�ed values of α and β for each patient.

# 1 2 3 4 5 6 7 8 9 10 11

α 0.0179 0.0147 0.0126 0.0164 0.0135 0.0072 0.0311 0.0119 0.0173 0.0097 0.0124

β 633.20 1214.00 5378.00 459.60 844.60 253.40 103.00 350.80 1285.00 807.20 807.10

Table 7.1: α and β values identi�ed for each patient.

• Divisor

The divisor requires special attention since it determines the performance of the
controller in terms of switching between glucagon and insulin. The switch condi-
tion is de�ned in equation (7.53), thus, depending on the value of uth, the delivery
of the hormones is simultaneous or non-simultaneous. It means that the con�g-
uration of this component allows to de�ne how the delivery of both hormones is

144



7.5 Coordinated controller proposal

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

time (min)

0

2

4

6

8
d

el
ta

 I
IR

 (
p

m
o

l/
K

g
/m

in
)

Identification input

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

time (min)

-10

-5

0

5

10

d
el

ta
 G

p
 (

m
g

/d
L

) Measured output

Identification output

Figure 7.5: Outcomes from insulin sensitivity identi�cation process for patient #10.

distributed. This fact is relevant and can modify signi�cantly the performance of
the variable to control because of the di�erences in the pharmacodynamics and
interactions.

Therefore, the e�ect of the parameter uth on the controller performance was evalu-
ated in order to determine the optimal switch condition for the CC. The following
thresholds were considered: uth ∈ {0, 0.25u∗, 0.5u∗, 0.75u∗}. Each one of them
was evaluated in the three di�erent scenarios, which were used in the subsequent
in-silico evaluation of the controllers, in order to de�ne the value of uth with bet-
ter performance. Results of these simulations (glucose mean, percentage of several
times in ranges, and the total amount of insulin and glucagon delivered) are shown
in Appendix C. Figure 7.6 summarizes the results of interest to set the optimal
value of uth in the CC con�guration.

The higher the value of uth, the lower the time in hypoglycaemia, without com-
promising the time in range. In the case uth = 0, the values of hypoglycaemia are
signi�cantly high during the scenario with exercise disturbance. This value for
the switch condition means that the glucagon delivery only occurs when the in-
sulin delivery suggested by the controller is zero. Therefore, results show that the
anticipated glucagon delivery during physical activity is relevant to face with the
faster drop in glucose concentrations. uth = 0.5u∗ improves the hypoglycaemic
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Figure 7.6: Illustration the time in range vs time in hypoglycaemia, and the insulin delivery
vs the glucagon delivery for each threshold considered. Data from the three di�erent scenarios
are included.

percentages although the insulin delivery is even superior to the case uth = 0.75u∗.
The total glucagon daily delivered is higher in uth = 0.75u∗, but it is within the
healthy limits (1mg/day). De�nitely, looking at the results, the best controller
performance is found with uth = 0.75u∗. Therefore, the parameter uth of the CC
con�guration is set to 0.75u∗.

7.5.2 Comparison between non-coordinated and coordinated control
strategies.

In this section, the contribution of coordination is evaluated, by comparing with a
standard independent insulin and glucagon loops structure. The non-coordinated
structure (NCC) considered for the comparison is shown in Figure 7.7. In order to
be consistent with the structure evaluation, the design and tuning of the insulin
loop is the same as the one used in the coordinated controller (CC). It means
that the insulin infusion is equivalent to setting γ = 0 in equations (7.51)-(7.52).
Insulin infusion is saturated to be non-negative. The design of the glucagon loop
is based on the proportional-derivative controller (PD) proposed in (Herrero et al.
2012), in which the proportional term only acts when glucose is below the glucose
reference for the glucagon loop, Grefggon :

PDggon(s) = κ+KpggonTdggons (7.58)
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κ =

{
Kpggon if Grefggon −G(t) > 0

0 otherwise
(7.59)

w(s) = PDggon(s)
(
Grefggon(s)−G(s)

)
(7.60)

where PDggon is the controller transfer function, Kpggon is the proportional gain
and Tdggon is the time derivative.

Gref +
C(s)

1

α

µ
(
H1

H2

)−1v1

u∗

+

PDggon

uins

uggon

+

PLANT

G

CGM

−

Grefggon +

−

Figure 7.7: Block diagram of the closed-loop system for glucose non-coordinated control
(NCC).

In current dual-hormone systems based on insulin and glucagon independent loops
structure, an activation condition for the glucagon loop is de�ned. To evaluate the
isolated e�ect of the coordination on the dual-hormone controller performance, the
glucagon loop is activated equivalently to the switching condition (7.53). Thus,
the glucagon action is de�ned as:

uggon(t) =

{
0 uins(t) > uth

w(t) uins(t) ≤ uth
(7.61)

Regarding to the tuning of the NCC controller, the values of the parameters
that are part of the insulin loop (kp, Td, Gref , β, and α) were the same as the
values identi�ed in the CC controller. On the other hand, the parameters of the
independent glucagon loop (Tdggon and Grefggon) were manually tuned to achieve
the best possible glycaemic outcomes in the average patient, i.e., percentage time
in target range [70, 80] mg/dL and percentage time below target; instead, kpggon
was expressed as a function of glucagon sensitivity β.

In order to make a rigorous comparison and analyse the e�ect of the coordination,
the value of uth was set to the same value that it was set in the previous case of
CC. That is uth = 0.75u∗, giving rise to the con�guration referenced as NCC-A.
This means that glucagon activation will happen at the same time, changing the
way it is subsequently delivered.
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CC NCC-A NCC-B
Kp 3.1350× 10−4 3.1350× 10−4 3.1350× 10−4

Td(min) 90 90 90
Grefmg/dL 100 100 100

α (∗) (∗) (∗)
β (∗) (∗) (∗)

Kpggon - 0.3228/β 0.3228/β
Tdggon (min) - 10 10

Grefggonmg/dL - 90 90
uth 0.75u∗ 0.75u∗ 0

Table 7.2: Value of the parameters for CC, NCC-A, and NCC-B.

On the other hand, the optimal uth value for the NCC con�guration was also
identi�ed following a similar procedure to the CC case (more details about this
analysis in Appendix C). The analysis proved that the optimal threshold for the
non-coordinated con�gurations was uth = 0 (referenced as NCC-B). It means
that the glucagon pump is only activated when theoretical insulin delivery has
negative values (insulin saturation in zero). Therefore, the anticipation of glucagon
delivery is not suitable in this con�guration. Table 7.2 summarizes the value
of the parameters in the three con�gurations considered during the controllers
assessment.

7.5.3 In silico evaluations

Simulation scenarios description

The simulator UVA-Padova Simulator (Dalla Man et al. 2014) with the addition
of the exercise model (Schiavon et al. 2013) and intra-day and intra- subject
variability was used to assess the proposed coordinated control structures. Notice
that the addition of variability sources provides more realistic scenarios besides
of making possible the robustness evaluation of the controller against common
uncertainty sources.

Intra-day variability was introduced to the simulator by modifying some of the
parameters: meal variability was emulated by introducing meal-size variability
(CV = 10%), meal-time variability (SD = 20) and uncertainty in the carbohy-
drate estimation (uniform distribution between −30% and +40%). Variability of
meal absorption rate (kabs) and carbohydrate bioavailability (f) were considered
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to be ±30% and ±10% respectively. For intra-day meal variability, the 11 meals
corresponding to each cohort were randomly assigned at each meal intake.

To emulate intra-subject variability, insulin absorption model parameters (kd, ka1,
ka2) were varied ±30%. Insulin sensitivity parameters (Vmx, Kp3) were assumed
to change along the day following the sinusoidal pattern

p(t) = p0 + 0.3 · p0 sin

(
2π

24 · 60

)
t+ 2π ·RND, (7.62)

where p(t) is the corresponding time-varying parameter (i.e. Vmx or kp3); p0 is
the default parameter value in the simulator; and RND is a randomly uniformly
generated number between 0 and 1.

Finally, variability into exercise was added modifying the starting time (STD =
20 min), the exercise intensity (CV = 10%), and the duration (CV = 10%).

Three scenarios were considered, all of them with meal announcement:

� Scenario A. The daily patterns of carbohydrate doses in this scenario are the
following : 7am (50g), 1pm (80g), 8pm (60g).

� Scenario B. The daily patterns of carbohydrate doses in this scenario are the
same than scenario A with the addition of a daily snack (30g) at 5pm.

� Scenario C. The daily patterns of carbohydrate doses in this scenario are the
same than scenario A. The peculiarity lies in the incorporation of an exercise
event at 3pm with a duration of 60min and an intensity (V O2max%) of 50%.

The duration of the simulations was two weeks and, the cohort analysed was 100
adults based on the 10 adults that are available in the educational version of
the UVA/Padova simulator, with 10 repetitions each getting di�erent instances of
variability. The chosen basal insulin infusion rates (u∗) were the ones provided by
the simulator for each subject.

Outcomes from simulations

The performance of each con�guration (CC, NCC-A, and NCC-B) was assessed
in order to compare the features of each one. To quantify the goodness of the
glycaemic control, the following internationally accepted metrics (Maahs et al.
2016) were calculated: mean blood glucose (BG); percentage time in target range
[70,180] mg/dl (TIR); percentage time below target (< 70 mg/dL); percentage
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time below 54mg/dL (< 54 mg/dL); percentage time above target (> 180 mg/dL);
standard deviation (STD); daily average of insulin delivered in units of insulin
(INS); and daily average of glucagon delivered in mg (GGON). Additionally, MAG,
LBGI and IGC were also obtained since it was demonstrated in Chapter 6 that
they are the most appropriate metrics to assess glycaemic variability. Then, the
di�erences between the three con�gurations were evaluated non-parametrically in
each scenario, using the Kruskal Wallis test with Fisher's LSD post-hoc analysis.

Table 7.3 shows the results for scenario A. Across the patient cohorts, when there
was only meal perturbation, the time in hypoglycaemia was the same in CC and
its equivalent non-coordinated con�guration, NCC-A, (p = 0.232 for percentage
of time under 70 mg/dL, and p = 0.924 for time under 54mg/dL) although with
greater glucagon infusion in the latter (p < 0.001). Nevertheless, the mean glucose
and the time above range were greater in the non-coordinated con�guration (p <
0.01) despite higher insulin delivery in NCC-B. These results re�ect that, when the
glucagon delivery is triggered at the same time, the NCC-A is prone to glucagon
and insulin over-delivery resulting in increased hyperglycaemias, compared to CC.

On the other side, comparisons between the CC and the best con�guration for
NCC, NCC-B, showed the same performance in time in range (p = 0.652), and
time above 180 mg/dL (p = 0.233); but time below 70 mg/dL and 54 mg/dL
were lower in CC (p < 0.01 in both cases). The hormone delivery was the same
for insulin (p = 0.328), but it was greater for glucagon in NCC-B (p < 0.01). It
means that the di�erent way to distribute the glucagon delivery of CC resulted in
a reduced time in hypoglycaemia.

The results from scenario B are shown in Table 7.4. The addition of snack per-
turbation implied an increase on the number of hypoglycaemic events relative to
scenario A for NCC-B; this di�erence was statistically signi�cant (p < 0.001) with
respect to CC controller, which showed to be most favourable. Glucagon and in-
sulin delivery was the same in both (p = 0.346 for insulin delivery, and p = 0.734
for the glucagon delivery), although the performance was sub-optimal in NCC-B
con�guration. However, the percentage of time in hypoglycaemia was statisti-
cally similar in CC and NCC-A, although it was at the expense of a higher time
in hyperglycaemia in NCC-A (p < 0.01), a higher glucose mean and variability
(p < 0.01 in both), and a higher hormones delivery (p < 0.01 in glucagon and
insulin delivery). Therefore, the CC con�guration showed improved performance.

Lastly, when exercise perturbation was added (scenario C), CC and NNC-A con-
�gurations performed similarly as in scenario A although the number of hypogly-
caemic events increased. Nevertheless, the amount of glucagon was signi�cantly
higher in NCC-A (p < 0.001) and the percentile 75 is further of the physiologi-
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CC NNC-A NNC-B
CC vs
NCC-A

CC vs
NCC-B

MG
(mg/dL)

129.04(5.55)
129[126.19; 131.63]

141.47(17.58)
137.32[134.72;139.59]

121.60(5.52)
120.71[117.33;124.59]

P-value
<0.01

P-value
<0.01

TIR(%)
94.13(3.27)

94.49[92.11;96.78]
88.18(15.84)

92.83[89.96;96.22]
94.58(3.62)

95.57[92.37;97.61]
P-value
<0.01

P-value=
0.652

>180(%)
5.73(3.35)

5.43[2.90;7.89]
11.81(15.84)
7.17[3.78;9.98]

4.53(3.53)
3.47[1.56;6.78]

P-value
<0.01

P-value=
0.233

<70(%)
0.14(0.30)

0.00[0.00;0.00]
0.01(0.04)

0.00[0.00;0.00]
0.89(0.95)

0.57[0.25;1.26]
P-value=
0.232

P-value
<0.01

<54(%)
0.00(0.02)

0.00[0.00;0.00]
0.00(0.00)

0.00[0.00;0.00]
0.06(0.13)

0.00[0.00;0.05]
P-value=
0.924

P-value
<0.01

INS
(U/day)

47.43(11.52)
44.41[40.23;53.25]

52.49(12.50)
51.17[44.38;58.14]

49.10(12.12)
45.80[41.50;55.00]

P-value
<0.01

P-value=
0.328

GGON
(mg/day)

0.64(0.54)
0.44[0.25;0.92]

2.08(2.48)
1.21[0.65; 2.16]

0.72(0.75)
0.31[0.18;1.11]

P-value
<0.01

P-value
<0.01

MAG
(mg/dL)

1.20(0.21)
1.19[1.01;1.39]

1.28(0.35)
1.23[1.02;1.38]

1.23(0.22)
1.18[1.05;1.43]

<0.01 <0.01

GVP
(%)

12.84(3.62)
11.78[9.73;19.96]

13.49(5.42)
12.02[9.44;16.02]

13.19(3.84)
11.75[9.99;16.81]

0.078 <0.01

LBGI
0.13(0.11)

0.09(0.05;0.16)
0.05(0.05)

0.03[0.02;0.05]
0.46(0.25)

0.39[0.28;0.63]
<0.01 <0.01

IGC
0.32(0.12)

0.31[0.23;0.39]
0.63(0.72)

0.42[0.30;0.53]
0.37(0.19)

0.32[0.23;0.46]
<0.01 0.069

Table 7.3: Statistical analysis for comparison CC vs NCC, Scenario A.

cal acceptable limit (1mg/day). If the best con�guration for NCC is considered
for the comparison, the glucagon delivery was improved but it was even greater
(p < 0.01) compared with CC con�guration whereas the insulin delivery was sta-
tistically similar (p = 0.346). Looking at Table 7.5, results were acceptable for CC
con�guration, but hypoglycaemia events were not completely avoided, remaining
an average of 3.40± 2.92% of time in hypoglycaemia.

In addition, these comparisons are also shown in Figure 7.8. Median and in-
terquartile range for each scenario and controller con�guration are represented for
the studied cohort. Two days has been represented instead of all fourteen days
of the simulation in order to observe better the behaviour described by the two
con�gurations proposed.

About glucose variability analysis in each controller, a reduction of glucose vari-
ability is observed in CC con�guration (p < 0.05 in all MAG and LBGI compar-
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CC NNC-A NNC-B
CC vs
NCC-A

CC vs
NCC-B

MG
(mg/dL)

130.53(5.53)
130.41[128.03;132.95]

142.52(16.32)
137.99[136.03;141.60]

122.60(5.44)
121.42[118.27;126.81]

P-value
<0.01

P-value
<0.01

TIR(%)
94.32(3.12)

94.92[92.97;96.49]
88.26(14.66)

92.77[89.93;95.45]
94.54(3.67)

95.54[92.61;97.32]
P-value
<0.01

P-value=
0.814

>180(%)
5.57(3.13)

5.02[3.39;7.03]
11.73(14.67)

7.23[4.55;10.07]
4.40(3.32)

3.44[1.96;5.84]
P-value
<0.01

P-value=
0.210

<70(%)
0.11(0.27)

0.00[0.00;0.11]
0.02(0.06)

0.00[0.00;0.00]
1.06(1.32)

0.60[0.15;1.38]
P-value=
0.518

P-value
<0.01

<54(%)
0.00(0.01)

0.00[0.00;0.00]
0.00(0.00)

0.00[0.00;0.00]
0.21(0.43)

0.00[0.00;0.24]
P-value=
0.968

P-value
<0.01

INS
(U/day)

48.77(11.87)
45.31[41.98;54.94]

53.85(12.81)
51.96[46.07;59.76]

50.42(12.47)
46.67[43.13;56.68]

P-value
<0.01

P-value=
0.346

GGON
(mg/day)

0.61(0.51)
0.47[0.23;0.94]

2.01(2.35)
1.20[0.67;2.18]

0.66(0.67)
0.30[0.17;1.12]

P-value
<0.01

P-value=
0.734

MAG
(mg/dL)

1.21(0.20)
1.21[1.02;1.38]

1.29(0.32)
1.26[1.04;1.42]

1.24(0.21)
1.20[1.04;1.40]

<0.01 <0.01

GVP
(%)

12.54(3.44)
11.84[9.56;16.00]

13.17(4.96)
11.90[9.38;15.80]

12.84(3.63)
11.65[9.67;15.74]

0.527 0.001

LBGI
0.11(0.11)

0.08[0.04;0.14]
0.05(0.06)

0.02[0.01;0.05]
0.48(0.29)

0.40[0.25;0.57]
<0.01 <0.01

IGC
0.33(0.14)

0.31[0.24;0.38]
0.64(0.67)

0.45[0.33;0.55]
0.42(0.28)

0.33[0.22;0.61]
<0.01 0.018

Table 7.4: Statistical analysis for comparison CC vs NCC, Scenario B.

isons). The mean absolute glucose (MAG) is lower in CC con�guration, which
implies a reduction in the within-day variability, the percentage of glucose vari-
ability (GVP) is also lower in CC, but it is not statistically di�erent from NCC-A
in scenario A (p = 0.078) and B (p = 0.527). The LBGI is lower in the NCC-A
but it is due to the higher glucose mean (p < 0.001). In addition, the control
quality index (IGC) is more favourable in CC and NCC-B. Nevertheless, the sce-
nario C shows a higher glucose variability metrics and LBGI and IGC indices.
This is coincident with the results obtained with the percentage of times in ranges
and the approximately 0% of time in hypoglycaemia of NCC-A. However, the CC
presents better features related to the NCC con�gurations.

These behaviours con�rmed the positive bene�t of the intrinsic coordination in
hormones delivery of the CC con�guration; it was able to deal with the overlapping
between glucagon and carbs and with the severe hypoglycaemia. Nevertheless,
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CC NNC-A NNC-B
CC vs
NCC-A

CC vs
NCC-B

MG
(mg/dL)

123.26(5.72)
121.93[119.27;126.80]

136.75(18.28)
132.06[129.88;133.96]

120.04(6.84)
119.39[115.62;120.30]

P-value
<0.01

P-value
<0.01

TIR(%)
91.56(3.42)

91.53[89.19;94.10]
89.26(15.21)

94.12[92.08;96.01]
93.15(4.32)

94.42[90.61;96.34]
P-value
<0.01

P-value=
0.126

>180(%)
5.04(3.11)

4.24[2.47;6.88]
10.32(15.36)
5.43[3.15;7.56]

4.54(4.44)
2.91[1.65;5.28]

P-value
<0.01

P-value=
0.623

<70(%)
3.40(2.92)

2.89[0.95;4.84]
0.42(0.65)

0.15[0.00;0.42]
2.31(1.65)

2.12[0.84;3.52]
P-value
<0.01

P-value
<0.01

<54(%)
0.73(1.29)

0.15[0.00;0.72]
0.02(0.07)

0.00[0.00;0.00]
0.36(1.43)

0.24[0.00;0.58]
P-value
<0.01

P-value=
0.603

INS
(U/day)

46.53(11.22)
44.02[39.26;52.23]

51.48(12.13)
50.61[43.44;56.77]

48.67(11.70)
46.38[41.27;54.15]

P-value
<0.01

P-value=
0.194

GGON
(mg/day)

0.96(0.79)
0.69[0.36;1.71]

2.64(3.11)
1.47[0.78;3.52]

1.38(1.39)
0.83[0.43;2.37]

P-value
<0.01

P-value
<0.01

MAG
(mg/dL)

1.35(0.21)
1.35[1.17;1.46]

1.47(0.39)
1.39[1.25;1.51]

1.44(0.25)
1.41[1.28;1.55]

<0.01 <0.01

GVP
(%)

15.64(3.74)
14.75[12.59;17.74]

17(6.69)
14.91[13.29;17.95]

17.00(4.67)
15.88[13.66;18.65]

0.005 <0.01

LBGI
0.84(0.57)

0.73[0.43;1.04]
0.20(0.16)

0.19[0.08;0.25]
0.75(0.33)

0.75[0.53;0.93]
<0.01 0.186

IGC
0.82(0.62)

0.62[0.42;0.94]
0.60(0.71)

0.37[0.30;0.50]
0.59(0.30)

0.55[0.33;0.80]
<0.01 0.001

Table 7.5: Statistical analysis for comparison CC vs NCC, Scenario C.

the time in hypoglycaemia during physical activity could be further improved.
The hypoglycaemia should not be solved with an over-delivery of glucagon since
it could provoke side e�ects, like nausea, to the patient besides, a higher risk
of hyperglycaemic rebounds. For this reason, glucagon must be delivered in an
optimal amount and the avoidance of hypoglycaemia during exercise must be
addressed with the addition of an insulin limitation block to the coordinated
control structure. This proposal is discussed in the subsequent section.
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Figure 7.9: Block diagram of the closed-loop system for glucose coordinated control based
on Habituating Control strategy with glucagon factorization and SMRC block (CC-SMRC).

7.6 Limitation of insulin on board

The novel dual hormone closed-loop system based on a parallel control structure
with intrinsic coordination among insulin and glucagon delivery (CC) presented
in previous section demonstrated acceptable values of time in ranges besides a re-
duction in glycaemic variability. Nevertheless, the hypoglycaemia during exercise
can be even more improved.

For this reason, the above coordinated controller (CC) was extended with insulin
on board (IOB) limitation through Sliding Mode Reference Conditioning (CC-
SMRC), successfully tested in the context of single-hormone systems previously
(Revert et al. 2013; Rossetti et al. 2017). The purpose of the incorporation of
mechanisms to restrict the IOB is to minimize the insulin to deliver in order to
reduce the impact of hypoglycaemia, especially in exercise scenarios where it has
been demonstrated that some additional measure is required. The implementation
of the Sliding Mode Reference Conditioning (SMRC) is proposed for dual-hormone
systems according to the scheme shown in Figure 7.9.

The SMRC block acts on the glucose reference but it does not modify the stability
of the closed loop system. It implies the addition of an external loop that imposes
limits on the IOB, which is represented by two subcutaneous compartments, S1(t)
and S2(t). The IOB de�nition is taken from the pharmacokinetics insulin model

155



Chapter 7. Dual-hormone coordinated control

suggested in (Hovorka et al. 2004). That is,

Ṡ1(t) = uSC(t)− S1(t)

tmax I
(7.63)

Ṡ2(t) =
S1(t)

tmax I
− S2(t)

tmax I
(7.64)

IOB(t) = S1(t) + S2(t). (7.65)

where tmax I is the time constant that determines the insulin transport, and uSC
(mU·kg−1 ·min−1) is the subcutaneous insulin infusion.

Given an upper limit of IOB, IOBmax(t), and the system state denoted by x(t),
the set σ := {x(t)|IOB(t) ≤ IOBmax(t)} is invariant for the discontinuous signal
ω:

ω(t) =

{
ω+ if σSM > 0
0 otherwise

(7.66)

σSM (t) := IOB(t)− IOBmax(t) +
l−1∑
i=1

τi

(
IOB(i)(t)− IOB(i)

max(t)
)
, (7.67)

where ω+ > 0 and l is the relative degree between the output IOB(t) and the
input ω(t), (i) is the i-th derivative, and τi are gains to tune.

The �rst order �lter de�ned by:

dGF−ref (t)

dt
= λGF−ref (t) + λ (Gref (t) + ω(t)) , (7.68)

allows to smooth the signal. Gref (t) is the original glucose reference (mainly
constant), GF -ref is the conditionned reference, and λ de�nes the cut-o� frequency
of the �lter. Based on the relative degree l = 2, determinated by the relative degree
of the �lter (7.68) and the relative degree of the IOB predictor (7.65), the switch
function is de�ned as follows:

σSM (t) := IOB(t)− IOBmax(t) + τ

(
dIOB(t)

dt
− dIOBmax(t)

dt

)
. (7.69)

After the incorporation of the insulin-on-board limitation block to the control
loop, equations (7.44)-(7.45) are modi�ed as follow:

C(s) =
µ(s)

GF -ref (s)−G(s)
= kp (1 + Tds) , (7.70)

µ(s) = kp (1 + Tds) (GF -ref (s)−G(s)) . (7.71)
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7.6.1 Tuning of the coordinated controller with IOB limitation
(CC-SMRC) proposed.

The starting point for tuning the controller was the previous adjustments of the
CC controller. That is, both structures (CC and CC-SMRC) share the tuning of
the master controller parameters, thus, the parameters Kp, Td, Gref , α, and uth
had the same values as in CC.

About the parameters strictly related to the added SMRC block, for all evaluated
subjects, parameters were �xed to the same value except the parameter IOBmax.
IOBmax was time invariant and de�ned as a constant multiplied by the basal
IOB value (IOBbasal) of the corresponding patient. ω, λ, and τ were manually
tuned to achieve the best possible glycaemic outcomes (i.e. percentage of time
in range [70, 180]mg/dL and percentage below target). Table 7.6 summarizes the
parameters value of the CC-SMRC controller.

Kp
Td

(min)
Gref

(mg/dL)
α uth

τ
(min)

ω
(min)

IOBmin

(U)
IOBmax

(U)

3.1350×10−4 90 100 (*)
0.75 · u∗

(*)
10 200 0 1.3 · IOBbasal (*)

Table 7.6: Values of the parameters for CC-SMRC.

7.6.2 In silico evaluation

The CC con�guration was compared to CC-SMRC proposal in order to assess
the bene�t of the incorporation of the IOB limitation. The scenarios assessed
were the same that were used previously with the CC comparison with the NCC
con�guration: scenario A (meal disturbance), B (meal and snack disturbances),
and C (meal and exercise disturbance). Both CC and CC-SMRC performances
are illustrated in Figure 7.10, and the quantitative results are presented in Table
7.7.

As determined before, the CC proposal was su�cient to prevent the hypoglycaemia
(0.14% considering glucose <70 mg/dL, 0.00% considering glucose <54 mg/dL) in
scenario A with only meal disturbance. The incorporation of the IOB limitation
(CC-SMRC) had a similar performance to CC in terms of glucose mean, time
in range, and time in hypoglycaemia (p = 0.195, p = 0.806, and p = 0.180,
respectively). Nevertheless, the di�erence between the percentages of time under
54mg/dL was statistically signi�cant. This might be due to the few hypoglycaemia
events in the CC performance compared to the zero hypoglycaemia events with
the CC-SMRC con�guration.
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CC CC-SMRC P-value

MG
(mg/dL)

129.04 (5.55)
129 [126.19; 131.63]

131.31 (5.53)
131.84 [128.31;133.78]

0.195

TIR(%)
94.13 (3.27)

94.49 [92.11; 96.78]
93.80 (3.47)

94.05 [91.78;96.85]
0.803

>180(%)
5.73 (3.35)

5.43 [2.90;7.89]
6.20 (3.47)

5.95 [3.15; 8.22]
0.268

<70(%)
0.14 (0.30)

0.00 [0.00;0.00]
0.00 (0.06)

0.00 [0.00;0.00]
0.180

<54(%)
0.00 (0.02)

0.00 [0.00;0.00]
0.00 (0.00)

0.00 [0.00; 0.00]
<0.001

INS
(U/day)

47.43 (11.52)
44.41 [40.23;53.25]

47.10 (11.48)
44.16 [39.91;53.00]

<0.001

GGON
(mg/day)

0.64 (0.54)
0.44 [0.25;0.92]

0.67 (0.56)
0.46 [0.27; 0.97]

<0.001

MAG
(mg/dL)

1.20(0.21)
1.19[1.01;1.39]

1.18(0.21)
1.18[0.99;1.38]

0.086

GVP
(%)

12.84(3.62)
11.78[9.73;19.96]

12.67(3.66)
11.57[9.49;16.84]

<0.01

LBGI
0.13(0.11)

0.09(0.05;0.16)
0.07(0.07)

0.04[0.03;0.09]
<0.01

IGC
0.32(0.12)

0.31[0.23;0.39]
0.33(0.14)

0.33[0.21;0.41]
0.124

Table 7.7: Statistical analysis for comparison CC vs CC-SMRC, Scenario A.

When a snack was included in the meal daily pattern (Table 7.8 and Figure 7.10),
the glucose mean increased from the previous scenario as it was expected. Like-
wise, the glucose mean was slightly higher in CC-SMRC con�guration, but not
statistically signi�cant (p = 0.091). This di�erence is mainly because of the dif-
ferent increase of glucose concentration when disturbance is produced, which is
possibly due to the slightly higher glucagon delivery. It can be observed in Figure
7.10 at time=39h (i.e., 3pm of the second day) that the median is higher in CC-
SMRC. Nevertheless, this detail did not mean that time in hyperglycaemia was
higher in CC-SMRC (p = 0.124). Hence, both con�gurations were able to deal
with the carbohydrates of the snack without triggering an undesired glycaemic
rebound.

The improvement of the CC-SMRC proposal was clearly observed during exercise
disturbance (Scenario C). Numerical results are shown in Table 7.9. Time in
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CC CC-SMRC P-value

MG
(mg/dL)

130.53 (5.53)
130.41 [128.03; 132.95]

132.67 (5.53)
132.32 [130.66; 134.95]

0.091

TIR(%)
94.32 (3.12)

94.92 [92.97;96.49]
93.97 (3.31)

94.61 (92.53;93.30)
0.356

>180(%)
5.57 (3.13)

5.02 [3.39;7.03]
6.02 (3.31)

5.39 [3.70; 7.42]
0.124

<70(%)
0.11 (0.27)

0.00 [0.00;0.11]
0.01(0.04)

0.00 [0.00; 0.00]
0.179

<54(%)
0.00 (0.01)

0.00 [0.00;0.00]
0.00 (0.00)

0.00 [0.00; 0.00]
<0.001

INS
(U/day)

48.77 (11.87)
45.31 [41.98;54.94]

48.45 (11.79)
45.02 [41.66;54.60]

<0.001

GGON
(mg/day)

0.61 (0.51)
0.47 [0.23;0.94]

0.63 (0.52)
0.49 [0.25;0.99]

<0.001

MAG
(mg/dL)

1.21(0.20)
1.21[1.02;1.38]

1.20(0.20)
1.19[1.01;1.38]

0.576

GVP
(%)

12.54(3.44)
11.84[9.56;16.00]

12.37(3.44)
11.50[9.39;15.88]

<0.01

LBGI
0.11(0.11)

0.08[0.04;0.14]
0.06(0.07)

0.04[0.03;0.07]
<0.01

IGC
0.33(0.14)

0.31[0.24;0.38]
0.34(0.15)

0.33[0.25;0.39]
0.478

Table 7.8: Statistical analysis for comparison CC vs CC-SMRC, Scenario B.

hypoglycaemia was signi�cantly reduced (1.45% vs 3.40%, p > 0.001, considering
glucose <70 mg/dL, 0.18% vs 0.73%, p < 0.001, considering glucose <54mg/dL).
This meant an increase in the time in range (92.98% vs 91.56%, p = 0.023) instead
of an increment of the time in hyperglycaemia (5.57% vs 5.04%, p = 0.115).
Moreover, insulin delivery was lower in CC-SMRC (45.91 U/day vs 46.53 U/day,
p = 0.001) at the expense of higher glucagon delivery to reduce hypoglycaemia
(1.03 mg/day vs 0.96 mg/day, p = 0.001). The improvements in glycaemic pro�le
due to the CC-SMRC con�guration are illustrated in Figure 7.10.

The glycaemic variability assessment of the CC and CC-SMRC con�gurations
shows that the percentage of glycaemic variability (GVP) is improved in scenario
A with the CC-SMRC con�guration; besides, LBGI is also reduced in all scenarios.
Nevertheless, MAG in CC-SMRC is not statistically di�erent from CC since CC is
able to reduce successfully the within day variability. On the other hand, IGC is
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CC CC-SMRC P-value

MG
(mg/dL)

123.26 (5.72)
121.93 [119.27;126.80]

127.47 (5.87)
126.25 [123.43;130.73]

<0.001

TIR(%)
91.56 (3.42)

91.53 [89.19;94.10]
92.98 (3.24)

93.04 [90.00;95.92]
0.023

>180(%)
5.04 (3.11)

4.24 [2.47;6.88]
5.57 (3.21)

4.94 [2.72;7.53]
0.115

<70(%)
3.40 (2.92)

2.89 [0.95;4.84]
1.45 (2.01)

0.61 [0.09;1.75]
<0.001

<54(%)
0.73 (1.29)

0.15 [0.00;0.72]
0.18 (0.50)

0.00 [0.00; 0.05]
<0.001

INS
(U/day)

46.53 (11.22)
44.02 [39.26;52.23]

45.91 (11.16)
43.50 [38.68;51.75]

<0.001

GGON
(mg/day)

0.96 (0.79)
0.69 [0.36;1.71]

1.03 (0.83)
0.75 [0.40;1.83]

<0.001

MAG
(mg/dL)

1.35(0.21)
1.35[1.17;1.46]

1.33(0.21)
1.34[1.15;1.44]

0.065

GVP
(%)

15.64(3.74)
14.75[12.59;17.74]

15.30(3.81)
14.44[12.14;17.50]

0.750

LBGI
0.84(0.57)

0.73[0.43;1.04]
0.44(0.36)

0.32[0.19;0.55]
<0.01

IGC
0.82(0.62)

0.62[0.42;0.94]
0.50(0.32)

0.39[0.28;0.58]
<0.01

Table 7.9: Statistical analysis for comparison CC vs CC-SMRC, Scenario C.

lower in scenario C. It means that the SMRC reduces the time in hypoglycaemia
and then, provides better results faced with physical activity.

Looking at the above results, the proposed coordinated glucose control strategy
demonstrates the bene�ts of timely glucagon delivery when the system starts to
reduce insulin infusion below basal values, besides that, an optimized usage of
both hormones achieves the best possible performance. Moreover, the improve-
ments seen in percentage of time in target and in percentage of time under target
with CC-SMRC suggest that the limitation of IOB is capable to avoid the hy-
poglycaemia. It advocates that an optimal glucagon delivery without an insulin
on board limitation is not enough to prevent hypoglycaemia events during more
demanding scenarios, such as physical activity.
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Hence, the novel parallel control structure with intrinsic coordination among in-
sulin and glucagon delivery and with IOB limitation that have been proposed in
this work is able to meet the features of an acceptable Arti�cial Pancreas control
algorithm: important decrease of hypoglycaemia events and reduction of glucose
variability.

7.7 Conclusions

A closed-loop glucose control system with automatic insulin and glucagon delivery
has the potential to reduce the self-management and the risk of hypo- and hyper-
glycaemia in type 1 diabetes subjects. A new dual-hormone closed-loop system
based on a parallel control structure with intrinsic coordination among insulin and
glucagon delivery has been presented in this chapter as a suitable proposal for the
arti�cial pancreas control algorithm.

The bene�ts of the coordination between both hormones delivery have been proven
by the comparison of our coordinated controller with the non-coordinated coun-
terpart based on independent loops for the insulin and glucagon controllers, as
currently done in dual-hormone systems. This analysis showed that the coor-
dination distributes di�erently the hormones delivery such that it is able to re-
duce the percentage of time in hypoglycaemia and the glycamic variability. It
was tested in three scenarios with di�erent disturbances (meal, meal+snack, and
meal+scenario). The performance of the coordinated dual-hormone controller was
acceptable with the snack and meal disturbances. However, the time in hypogly-
caemia during exercise scenario could be further improved. This might be because
the fast drop in glucose concentration during exercise cannot be compensated for
the glucagon delivery due to the still circulating insulin.

For this reason, a limitation of the insulin-on-board was included in the coordi-
nated control scheme by means of the sliding mode reference conditioning (SMRC)
strategy. The results with this additional insulin limitation were similar to the
coordinated controller without insulin limitations during scenarios with meal and
snack, although it is worth to mention that the glycaemic variability was even
more reduced with the SMRC block incorporation. Nevertheless, the important
bene�t of the IOB limitation lied in exercise periods since it was able to improve
the glycaemic control and, then, diminish the percentage of time in hypoglycaemia
and the glycaemic variability. Other strong point of the coordinated controller pro-
posed is the total daily glucagon delivered since it is below the acceptable healthy
limits.
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7.7 Conclusions

Simulations were carried out considering the uncertainty between the real model
and the linearized one, besides of uncertainty due to the glucose variability, which
was included to the simulations as it is explain in Section 7.5.3. The designed
controllers handled these conditions, and the glucose levels were successfully con-
trolled. Hence, the designed systems presented robustness against the considered
model uncertainty.

The main limitation of this work is the population assumption of some controller
parameters, such as IOBmax. That is, IOBmax is obtained from the basal IOB
value of each patient multiplied by a general factor (1.5). Therefore, in the same
way improvements were found in the controllers performance when individual
values for insulin and glucagon sensitivity were considered, the multiplying factor
of IOBmax could be obtained independently for each subject or even study the
existence (or not) of certain relationship between this parameter and the insulin
sensitivity. Moreover, other line to explore would be the study of the extra degree
of freedom o�ered by the uth con�guration along with the tuning of the IOBmax

in order to optimize the performance of the controller.

In addition, it is known that the large glucose intra- and intersubject variability
along with physical factors like physical activity or illness among others have
an important e�ect on the glycaemic control. Therefore, the adaptation of the
controller parameters would make our system more robust to challenges in a daily
life scenario.

On the other hand, it is worth pointing out that despite the limitations of using
a linearized plant for the controller design, the performance of the controller was
satisfactory, such/as the results showed. However, a future work line could be
to explore several techniques to taking into account the nonlinearities and the
time-varying dynamics (e.g. LPV controllers or adaptive control).

Finally, the complete validation of our parallel control-based coordinated dual-
hormone arti�cial pancreas with insulin on board limitation is required to assure
its good performance demonstrated in silico. To this end, clinical trials will be
carried out in the near future in the scope of the mSAFE-AP project.
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Chapter 8

Conclusions

In this thesis, several aspects related to the Arti�cial pancreas were addressed.
It is known that patients with type 1 diabetes have a lack of endogenous insulin
secretion so they need an exogenous contribution of insulin to regulate the glucose
levels and keep them in an euglycaemic range. The automated insulin delivery
system, or Arti�cial pancreas, releases the patient from the current burden of
self-control and improves its glycaemic and metabolic control. Nevertheless, the
incidence of hypoglycaemia is a problem that still concerns most researchers work-
ing in this �eld because it is not yet solved in the current systems. Therefore, the
e�ort is focused on reducing hypoglycaemia. Likewise, a good control also im-
plies a decrease in glycaemic variability, which is closely related to the long-term
complications of diabetes.

This thesis addressed the problem of hypoglycaemia from an analysis in depth of
which are the mechanisms involved in it and which physiological changes char-
acterizes it. This allowed to get a hypoglycaemia model as compared to current
approaches based on functional black-box models, if even considered. The physio-
logical approach of the model allows to know and better understand the physiology
associated with hypoglycaemia phenomenon.

Regarding glycaemic variability, there are multiple metrics to evaluate such phe-
nomenon in the glycaemic pro�les. Thus, it is necessary a consensus or a de�nition
of a metrics set to facilitate the assessment of the controllers in terms of improve-
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ments in glycaemic variability. In the thesis, a chapter was dedicated to the
analysis of them.

Finally, an improvement of the control algorithms that allow to correct an over-
acting of the controller well in advance is necessary in order to avoid the hypo-
glycaemia and reduce the glycaemic variability. To achieve this, a dual-hormone
con�guration of the controller was proposed and assessed in several possible sce-
narios.

A summary of the thesis contributions addressing the aforementioned problems
follows:

• Study of the physiological response in hypoglycaemia and the development of a
hypoglycaemia model which includes the counterregulatory response (chapter
5).

An exhaustive study of physiology was carried out and the better understanding
of counterregulatory mechanisms were achieved. From that study, adrenaline was
found as the main counterregulatory hormone during hypoglycaemia events due
to glucagon delivery is practically suppressed in T1D patients. The assessment
of the adrenaline secretion and action were also conducted in order to extend the
Bergman Minimal Model.

From the adrenaline action model, a paradoxical increment of glucose utilization
during hypoglycaemia was observed. This led to �nd some physiological expla-
nation to the phenomenon. Finally, the consideration of FFA mechanisms, which
are involved also in the hypoglycaemia avoidance, provided a suitable model ap-
proach. Therefore, an extension of Bergman Minimal Model was proposed based
on Adrenaline response as the main counterregulation line. The e�ect of adrenaline
was included as a direct e�ect on glucose concentration and indirectly through the
in�uence on FFA secretion. In addition, the adrenaline secretion model was also
incorporate to the model extension presented.

The goodness of �t of the model showed an acceptable performance and an im-
provement in hypoglycaemia reproduction compared to the Minimal Model. Fur-
thermore, the features of the physiological approach of this model were compared
with the functional approach and both worked similarly. Hence, our proposal
is able to associate the mathematical terms with physiological mechanisms and
interactions.

The main limitation of this work is the reduced number of subjects and the du-
ration of the clamp. Besides, the variability that presents the counterregulatory
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response across the subjects is another limiting factor. For this reason, exper-
imental data from clinical studies with longer duration and greater number of
participants would provide subjects with a broader range of adrenaline response
variation and a better representation of T1D population so that could reinforce
our results.

• Assessment of the multiple variability metrics and control quality indices
(chapter 6).

Several measures of glycaemic variability are described in literature. These can be
subdivided into measures to evaluate glycaemic variability (e.g. SD, CV, MAGE,
CONGA, MODD, LI, J-Index, M-Value, and MAG), and measures to evaluate glu-
cose control quality that are also sensitive to glycaemic variability (e.g. GRADE,
pTIR, ADRR, RI, LBGI, and HBGI). The interrelationship analysis between them
suggested that simple metrics such as times in ranges were correlated and could
be as informative and useful as the risk indices are, providing that they were good
discriminators of glucose variability.

The data presented did not de�ne an absolute gold standard for glycaemic vari-
ability measurement but strongly supported the use of MAG as an important
glucose variability outcome for people with type 1 diabetes that may be used,
alongside HbA1c and a measure of hypoglycaemia, to assess glucose and the im-
pact of interventions in a meaningful way. The most robust time in range was
70 to 180 mg/dL and we advocate standardization of this as the primary time in
range metric whereas LBGI and IGC should be considered the optimal glucose
quality metrics. LBGI is recommended particularly in performances where the
hypoglycaemia assessment is one of the object of study.

• Development of a parallel Control-based coordinated dual-hormone arti�cial
Pancreas with insulin on board limitation (chapter 7).

The bene�ts of the coordination between glucagon and insulin delivery were proven
by the comparison of our coordinated controller with the non-coordinated coun-
terpart based on independent loops for the insulin and glucagon controllers, as
currently done in dual-hormone systems. The analysis showed that the coordi-
nation distributes di�erently the hormones delivery such that it is able to reduce
the percentage of time in hypoglycaemia and the glycamic variability. The perfor-
mance of the coordinated dual-hormone controller was acceptable with snack and
meal disturbances. However, the time in hypoglycaemia during exercise periods
could be further improved. Therefore, limitation of the insulin-on-board was in-
cluded in the coordinated control scheme by means of the sliding mode reference
conditioning (SMRC) strategy. The results with this additional insulin limitation
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were similar to the coordinated controller without insulin limitations during when
meal and snack disturbances were given, the glycaemic variability was even more
reduced with the SMRC block incorporation. The important bene�t of the IOB
limitation was demonstrated during exercise periods since it was able to improve
the glycaemic control and, then, diminish the percentage of time in hypoglycaemia
and the glycaemic variability. This con�guration was able to compensate for the
fast drop in glucose concentration during physical activity. In addition, the aver-
age total daily glucagon delivered is inside of the acceptable healthy limits.

Therefore, our work recommends sets as a good candidate for further clinical evalu-
ation the parallel control-based coordinated dual-hormone arti�cial pancreas with
insulin on board limitation suggesting a signi�cant improvement in hypoglycaemia
mitigation and glycaemic variability, including challenging exercise scenarios.

A word on future work

The future work might follow two di�erent paths:

• From the results of the Bergman Minimal Model extension with the Coun-
terregulatory response:

The main advantage of the proposed extension of the Bergman Minimal Model
is that it allows to understand better the physiology of the hypoglycaemia. Nev-
ertheless, the variability of the adrenaline response requires an individualization
of the model parameters for each subject or studing a greater number of patients
in order to obtain a complete population model. For this reason, a future work
could be a validation with experimental data from clinical studies with longer
duration and greater number of participants. This would provide subjects with a
broader range of adrenaline response variation and a better representation of T1D
population.

Notwithstanding, results obtained with the Minimal Model extended with coun-
terregulatory response are successful and relevant.

• From the Dual-hormone coordinated controller proposed for the Arti�cial
Pancreas:

It is known that the large glucose intra- and inter- variability along with physical
factors like physical activity or illness among others have an important e�ect on
the glycaemic control. Therefore, a future work that would enhance the features of
our dual-hormone controller and would make the system more robust and feasible,
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is the adaptation of the controller parameters. Indeed, the continuity of this work
is focused on the study of the parameters adaptation by means of machine learning
techniques.

On the other hand, the next step in this work will be the complete validation
of our parallel control-based coordinated dual-hormone arti�cial pancreas with
insulin on board limitation by means of clinical trials. Indeed, these studies will
be carried out in the near future. The goal of the clinical trials will be to compare a
single-hormone systems with both a dual-hormone systems presented in this thesis
and an the single-hormone systems with carbohydrate recommendation algorithm
which have been also developed in our research group.
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Appendix A

Glucose Variability metrics

Table A.1: De�nition of the Glycaemic Variability metrics.

GLYCAEMIC VARIABILITY METRICS

SD
(Standard deviation)
(Whitelaw et al. 2011)

SD =

√√√√ N∑
i=1

(
Gi − Ḡ

)2/
(N − 1)

where G is glucose reading; N is the number of ob-
servations; and I is the sample index.

%CV
(Coe�cient
of variation)

(Whitelaw et al. 2011)

%CV = SD
/
Ḡ · 100

MAGE
(Mean amplitude of
glucose excursion)
(Hill et al. 2007)

MAGE =

x∑
i=1

λi/x if λ > v

where λ is the blood glucose changes from peak to
nadir (or nadir to peak); x is the total number of
valid observations; and v is 1SD of mean glucose for
a 24h period.
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CONGAn
(Continuous

overlapping net
glycaemic action

over n-hour period)
(McDonnell et al. 2005)

CONGAn =

√√√√ k∑
t=1

(Dt − D̄)
2
/

(k − 1) ,

Dt = Gt −Gt−m
where k is the number of observations where there
is an observation n × 60 min ago; m is n × 60; Gt
is the glucose reading at time t min after start of
observations.

MODD
(Mean of daily
di�erences)

(Molnar et al. 1972)

MODD =

tk∑
t=t1

|Gt −Gt−24h|/k

where k is the number of observations with an obser-
vation 24h ago.

M-VALUE
(M-value of
Schlichtkrull)
(Service 2013)

M =
N∑
i=1

∣∣∣10 · log10 (Gi/IGV )
3
∣∣∣/N

where G is glucose measured; IGV is the ideal glu-
cose value (default: 100mg/dL); and, N is the total
number of readings

J-INDEX
(Service 2013)

J = 0.001 ·
(
Ḡ+ SD

)2

MAG
(Mean absolute

glucose)
(Service 2013)

MAG =
N−1∑
i=1

(Gi −Gi+1)/T

where Gi is the glucose measured; N is the number
of measurements; and, T is the total time (in hours).
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AARC
(Average absolute
rate of change)

(Whitelaw et al. 2011)

ROCi = (G (ti)−G (ti+1))/(ti+1 − ti) ,

i = 1, 2, 3, . . . , N − 1

where G(t1) and G(t2) are consecutive glucose read-
ings taken at times t1 and t2.

AARC =
N−1∑
i=1

ROCi/(N − 1)

GVP
(Glycaemic variability

percentage)
(Hirsch et al. 2017)

GV P = 100 · (L/L0 − 1)

L =
n∑
i=1

√
dxi

2 + dyi
2

where L0 is the ideal length for a given temporal du-
ration; dx is de decomposition of the temporal line
into horizontal component; dy is de decomposition of
the temporal line into vertical component; and n is
the total number of glucose recordings.

LI
(Lability index)
(Ryan et al. 2004)

LI =
N−1∑
i=1

(Gi+1 −Gi)2
/

(ti+1 − ti)

where G is the glucose measured; N is the total num-
ber of glucose readings in a week; and, t is the time.
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Table A.2: De�nition of the Glucose Control Indices.

GLUCOSE CONTROL INDEXES

GRADE
(Glycaemic risk

assessment diabetes
Equation)

(Hill et al. 2007)
%GRADEhypo

GRADE =
N∑
i=1

min
(50; 425 · log10(log10 (Gi)))

N

GRADEhypo=

Nhypo∑
i=1

min
(50; 425 · log10(log10(Ghypo)))

Nhypo

%GRADEhypo = GRADEhypo/GRADE · 100

where G is the glucose measured; N is the total num-
ber of glucose readings; Ghypo is the glucose value
lower than hypoglycaemic threshold; Nhypo is the
number of lower than hypoglycaemic threshold glu-
cose readings.

IGC
(Index of glycaemic

control)
(Rodbard 2009a)
(Rodbard 2009b)

IGC = Hypo Index+Hyper Index

Hypo Index=

khypo∑
i=1

(LLTR−Ghypoi)
b

/(N · d)

Hyper Index=

khyper∑
i=1

(Ghyperi − ULTR)
a

/(N ·c)

where LLTR is the Lower Limit of Target Range
(default= 80mg/dL); b is an exponent in the range
[1.0, 2.0] (default=2.0); d is a scaling factor to weight
hypoglycaemic and hyperglycaemic values (default=
30); ULTR is the upper Limit of Target Range (de-
fault=140mg/dL); a is an exponent in the range
[1.0, 2.0] (default=1.1); and, c is a scaling factor (de-
fault=30).
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LBGI
(Low blood

glucose index)
HBGI

(High blood
glucose index)

(Kovatchev et al. 2006)

LBGI =

(
N∑
i=1

rl (xi)

)/
N

HBGI =

(
N∑
i=1

rh (xi)

)/
N

rl (xi)= 22.77·f (xi)
2 if f (xi) ≤ 0, and 0 otherwise.

rh(xi)=22.77·f (xi)
2 if f (xi) > 0, and 0 otherwise.

f (xi) = ln (xi)
1.084 − 5.381

where xi is the glucose recording; and, N is the total
number of recordings.

ADRR
(Average daily
risk range)

(Kovatchev et al. 2006)

ADRR =

 M∑
j=1

LRj +HRj

/M

LRj = max (rl (x1) , . . . , rl (xn))

HRj = max (rh (x1) , . . . , rh (n))

where j is the day index; M is the total number of
days; xi is the glucose recording; and, n is the total
number of recordings per day.
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PGS
(Personal glycaemic

state)
(Hirsch et al. 2017)

PGS = F (GV P ) + F (MG) + F (PTIR) + F (H)

F (GV P ) = 1 + 9
/(

1 + e−0.049·(GV P−65.47)
)

F (MG) = 1 + 9
/(

1 + e0.1139·(MG−72.08)
)

+ 9
/(

1 + e−0.1139·(MG−157.57)
)

F (PTIR) = 1 + 9
/(

1 + e0.0833·(PTIR−55.04)
)

F (H) = F54(H) + F70(H)

F54(H) = 0.5 + 4.5 ·
(
1− e−0.81093·N54

)
F70(H) =

{
0.5714 ·N70 + 0.625 N70 ≤ 7.65

5 N70 > 7.65

whereMG is the mean glucose; PTIR ies the percent
time in range (70-180mg/dL); N54 is the number of
hypoglycaemia events per week below the low thresh-
old (≤54mg/dL); and, N70 is the number of hypo-
glycaemia events per week below the high threshold
(≤70mg/dL).
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Individual parameters

identi�cation

B.1 Individual parameters

B.1.1 Adrenaline secretion model

Table B.1: Individual estimation of β1, β2, ka1, ka2, and ke.

#
β1

(10−7dL ·min−1)

β2

(10−7dL ·min−1)

ka1

(min−1)

ka2

(10−2 min−1)

ke

(min−1)

1 150.93 1.46 0.52 2.56 0.57

2 197.37 0.01 0.71 8.87 0.49

3 119.41 2.26 5.70 2.33 0.12

4 40.35 0.01 0.09 8.10 0.09

5 376.13 0.02 0.05 1.44 2.35
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6 197.44 2.38 0.22 4.25 0.81

7 47.06 0.01 2.33 2.68 0.10

8 139.45 0.57 0.19 2.94 0.62

9 172.55 5.06 1.10 2.05 0.44

10 101.41 5.02 4.66 15.87 0.13

11 394.85 10.11 0.16 12.30 0.53

12 161.43 0.01 1.37 4.56 0.18

13 197.46 5.06 0.03 9.10 0.20

14 394.78 2.20 1.29 18.15 1.84

15 177.10 0.01 4.66 9.30 0.64

16 355.26 0.01 0.56 10.98 1.25

17 397.01 0.01 16.30 6.82 0.38

18 294.68 12.04 16.30 6.45 0.34

19 89.05 0.40 8.07 2.14 0.02

20 235.34 0.01 16.30 3.20 8.11

21 160.76 10.11 0.75 11.67 6.61

B.1.2 Adrenaline action model

Table B.2: Individual estimation of parameters.

#
p1

(min−1)

p2

(min−1)

p3

(10−5 min−1)

p4

(mg·dL−1·min−1)

pa

(107 min−1)

ph

(min−1)

Gb2

(mg/dL)

1 0.013 0.066 9.49 0.641 0.308 0.062 57.374

2 0.004 0.014 2.46 0.288 0.416 0.100 59.248

3 0.004 0.027 2.47 0.418 0.157 0.037 60.597

4 0.004 0.010 1.73 0.309 0.080 0.038 59.259

184



B.1 Individual parameters

5 0.009 0.008 2.20 0.472 0.370 0.024 64.386

6 0.008 0.030 5.51 0.309 0.068 0.023 64.160

7 0.001 0.030 7.75 0.257 0.497 0.002 83.842

8 0.000 0.029 7.98 0.298 0.181 0.086 56.567

9 0.013 0.036 11.1 1.286 0.055 0.004 72.230

10 0.021 0.075 16.5 2.499 0.031 0.006 70.528

11 0.027 0.027 5.19 2.611 0.053 0.020 55.023

12 0.004 0.009 2.92 0.312 0.295 0.001 46.534

13 0.018 0.385 26.9 1.216 0.326 0.010 49.360

14 0.004 0.015 1.10 0.198 0.277 0.001 77.460

15 0.010 0.046 6.18 0.821 0.192 0.037 61.937

16 0.016 0.010 1.56 1.079 0.001 0.164 61.937

17 0.004 0.049 6.58 0.327 0.155 0.026 57.054

18 0.014 0.024 3.19 0.567 0.001 0.017 74.747

19 0.000 0.014 2.17 0.401 0.500 0.103 69.435

20 0.020 0.031 3.46 1.468 0.064 0.004 66.786

21 0.018 0.026 3.31 1.455 0.001 0.005 72.225

B.1.3 Minimal model extension based on counterregulatory response

Table B.3: Individual estimation of parameters: Part I.

#
p7

(min−1)

pf2

(min−1)

pf3

(10−4min−1)

Fb

(µmol/L)

Gb

(mg/dL)

k1w

(µL·pg−1·min−1)

k2w

(10−3mL/pg)

1 0.048 1.885 6.39 280.000 90.988 0.011 1.940

2 0.067 1.954 7.86 574.276 76.708 0.073 1.242

3 0.069 0.557 8.39 157.889 119.434 0.046 2.047
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4 0.063 1.252 5.22 229.389 88.288 0.151 2.120

5 0.065 1.151 2.08 365.502 54.234 0.079 2.241

6 0.065 1.612 2.17 288.547 86.831 0.173 1.628

7 0.056 1.757 3.00 250.480 89.484 0.030 0.872

8 0.063 1.861 7.48 293.082 78.788 0.046 1.172

9 0.051 0.762 2.97 124.279 99.070 0.023 2.581

10 0.064 1.688 7.27 158.933 96.414 0.022 1.014

11 0.048 1.632 2.89 171.573 97.129 0.165 2.401

12 0.052 0.501 8.16 263.671 89.231 0.108 1.809

13 0.048 0.401 3.71 232.555 87.458 0.102 2.752

14 0.048 1.272 2.53 265.080 84.955 0.023 0.861

15 0.067 2.331 2.95 35.576 97.854 0.131 1.612

16 0.054 1.909 5.75 311.743 65.941 0.116 0.919

17 0.055 1.472 4.65 179.593 93.262 0.063 2.682

18 0.070 0.642 3.72 324.567 40.007 0.095 0.709

19 0.048 1.853 8.40 165.854 68.137 0.073 2.296

20 0.051 0.714 5.51 188.091 79.420 0.010 2.384

21 0.048 1.290 5.24 205.867 80.332 0.042 2.490

Table B.4: Individual parameters estimation: Part II

#
Gth2

(mg/dL)

p1

(min−1)

p2

(min−1)

p3

(10−5 min−1)

VolG

(dL)

pa

(107 min−1)

1 57.374 0.013 0.066 9.486 121.111 0.009

2 49.248 0.012 0.005 1.257 129.604 0.001

3 60.597 0.004 0.027 2.469 156.107 0.003

4 60.259 0.004 0.010 1.733 115.000 0.021
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5 64.386 0.009 0.008 2.197 119.454 0.007

6 64.569 0.147 0.026 5.034 160.404 0.046

7 84.448 0.004 0.031 7.859 105.540 0.015

8 57.703 0.245 0.009 2.466 106.042 0.070

9 82.018 0.013 0.036 11.08 164.371 0.001

10 71.261 0.350 0.034 10.89 153.512 0.048

11 63.789 0.032 0.033 5.979 69.753 0.001

12 46.089 0.004 0.009 2.925 137.254 0.003

13 59.515 0.018 0.385 26.86 149.151 0.011

14 78.386 0.004 0.020 1.666 122.500 0.013

15 63.560 0.350 0.005 6.945 118.742 0.065

16 68.892 0.016 0.010 1.560 115.862 0.014

17 57.054 0.004 0.049 6.581 78.676 0.002

18 74.057 0.015 0.027 3.354 102.118 0.006

19 68.621 0.013 0.007 1.211 120.003 0.004

20 71.723 0.028 0.034 3.664 105.409 0.001

21 72.397 0.018 0.026 3.310 127.409 0.000

B.2 Residual analysis

The assessment of the model residuals is carried out with the study of residuals
autocorrelation by means of the Ljung-Box Q-test for residual autocorrelation.
Besides, the residual independence is tested with the Wald-Wolfowitz Runs tests.
In the Ljung-Bos Q-test, the number of lags used was min (20, T-1) as (Box et al.
1994) suggested.

The Ljung-Box test de�nes:
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H0: The data are independently distributed (i.e. the correlations in the
population from which the sample is taken are 0, so that any observed cor-
relations in the data result from randomness of the sampling process).

H1: The data are not independently distributed; they exhibit serial correla-
tion.

On the other hand, the Wald-Wolfowitz Runs tests determines:

H0: The data are randomly ordered (i.e. the data are independent).

H1: The data are not randomly ordered; they show a non-random relation-
ship.

In below-showed tables, the Null hypothesis, H0, is referred by H = 0 whereas
Alternative Hypothesis, H1 is by H = 1.

B.2.1 Adrenaline secretion model

Table B.5: Residual analysis of the adrenaline secretion model identi�cation.

Residual analysis

#
Ljung-Box Q-test Wald Wolfowitz Run test

H p-value H p-value

1 0 0.117 0 0.755

2 0 0.589 0 0.409

3 0 0.718 0 0.752

4 0 0.174 0 0.140

5 0 0.678 0 0.599

6 0 0.634 0 0.217

7 0 0.694 0 0.392

8 0 0.604 0 0.598

9 0 0.052 0 0.525
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10 0 0.052 0 0.755

11 0 0.668 0 1.000

12 0 0.568 0 0.399

13 0 0.518 0 0.597

14 0 0.255 0 0.291

15 0 0.961 0 0.115

16 0 0.604 0 0.160

17 0 0.965 0 0.922

18 0 0.178 0 0.055

19 0 0.842 0 0.596

20 0 0.447 0 0.199

21 0 0.630 0 0.890

B.2.2 Adrenaline action model

Table B.6: Residual analysis of the adrenaline action model identi�cation.

Residual analysis

#
Ljung-Box Q-test Wald Wolfowitz Run test

H p-value H p-value

1 0 0.838 0 0.606

2 0 0.057 0 0.339

3 0 0.478 0 0.114

4 0 0.576 0 0.345

5 0 0.890 0 0.761

6 0 0.089 0 0.072

7 0 0.453 0 0.755
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8 0 0.733 0 0.836

9 0 0.944 0 0.916

10 0 0.942 0 0.349

11 0 0.795 0 0.249

12 0 0.855 0 0.673

13 0 0.685 0 0.290

14 0 0.992 0 0.590

15 0 0.059 0 0.385

16 0 0.162 0 0.942

17 0 0.851 0 0.665

18 0 0.627 0 0.176

19 0 0.226 0 0.292

20 0 0.306 0 0.833

21 0 0.816 0 0.057

B.2.3 Minimal model extension based on counterregulatory response

Table B.7: Residual analysis of the minimal model extension with counterregulation.

Residual analysis

#
Ljung-Box Q-test Wald Wolfowitz Run test

H p-value H p-value

1 0 0.455 0 0.896

2 0 0.276 0 0.686

3 0 0.240 0 0.292

4 0 0.694 0 0.606

5 0 0.921 0 0.842
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6 0 0.417 0 0.409

7 0 0.989 0 0.125

8 0 0.603 0 0.174

9 0 0.233 0 0.206

10 0 0.058 0 0.058

11 0 0.742 0 0.140

12 0 0.420 0 1.000

13 0 0.067 0 0.746

14 0 0.190 0 0.673

15 0 0.807 0 0.348

16 0 0.059 0 1.000

17 0 0.081 0 0.615

18 0 0.477 0 0.351

19 0 0.560 0 0.916

20 0 0.125 0 0.061

21 0 0.668 0 0.916
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Evaluation of CC and NCC

con�guration

C.1 Assessment of CC and NCC con�guration

Both con�gurations were evaluated in each scenario (A, B, and C) considering the
four threshold switch conditions (uth ∈ {0, 0.25u∗, 0.5u∗, 0.75u∗}). The metrics
are calculated for the performances of each simulation, and results are shown in
the following tables.

Table C.1: Outcomes during scenario A for the four di�erent switch condition in CC.

Uth = 0 Uth = 0.25 Uth = 0.5
Uth = 0.75
(CC)

MG
(mg/dL)

116.21(4.29)
116.60 [112.97;118.89]

118.77(4.26)
119.44[115.72;121.32]

123.00(4.52)
123.18[120.14;125.95]

129.04(5.55)
129[126.19;131.63]

TIR(%)
94.10 (3,11)

94.73[92.50;96.24]
94.95(2.84)

95.65[93.22;97.14]
95.11(2.86)

95.63[93.24;97.62]
94.13(3.27)

94.49[92.11;96.78]

>180(%)
3.67(2.76)

3.21 [1.33;5.85]
3.90(2.81)

3.50[1.59;6.09]
4.50(2.95)

4.24[1.92;6.68]
5.73(3.35)

5.43[2.90;7.89]

<70(%)
2.23(1.60)

1.95[0.89;3.40]
1.15(1.00)

0.83[0.31;1.87]
0.40(0.54)

0.20[0.00;0.53]
0.14(0.30)

0.00[0.00;0.00]

193



Appendix C. Evaluation of CC and NCC con�guration

<54(%)
0.32(0.42)

0.17[0.00;0.51]
0.08(0.14)

0.00[0.00;0.14]
0.02(0.05)

0.00[0.00;0.00]
0.00(0.02)

0.00[0.00;0.00]

INS
(U/day)

48.08(11.76)
45.03[40.50;54.38]

48.35(11.78)
45.28[40.78;54.56]

48.30(11.71)
45.33[40.83;54.37]

47.43(11.52)
44.41[40.23;53.25]

GGON
(mg/day)

0.32(0.30)
0.15[0.09;0.61]

0.45(0.39)
0.24[0.16;0.88]

0.58(0.49)
0.36[0.22;0.91]

0.64(0.54)
0.44[0.25;0.92]

Table C.2: Outcomes during scenario B for the four di�erent switch condition in CC.

Uth = 0 Uth = 0.25 Uth = 0.5
Uth = 0.75
(CC)

MG
(mg/dL)

117.53(4.70)
117.39[114.42;120.23]

120.21(4.49)
120.09[117.53;122.42]

124.51(4.63)
124.54[122.36;126.93]

130.53(5.53)
130.41[128.03;132.95]

TIR(%)
94.22(3.20)

94.79[92.06;96.65]
95.12(2.79)

95.67[93.35;97.14]
95.30(2.72)

95.81[93.95;97.43]
94.32(3.12)

94.92[92.97;96.49]

>180(%)
3.47(2.39)

3.03[1.65;4.66]
3.73(2.47)

3.24[1.76;4.99]
4.32(2.67)

3.82[2.27;5.67]
5.57(3.13)

5.02[3.39;7.03]

<70(%)
2.30(2.15)

1.46[0.53;3.82]
1.15(1.26)

0.61[0.10;1.82]
0.38(0.55)

0.05[0.00;0.67]
0.11(0.27)

0.00[0.00;0.11]

<54(%)
0.47(0.68)

0.14[0.00;0.77]
0.15(0.28)

0.00[0.00;0.20]
0.02(0.07)

0.00[0.00;0.00]
0.00(0.01)

0.00[0.00;0.00]

INS
(U/day)

49.44(12.13)
45.84[42.22;56.20]

49.74(12.15)
46.12[42.55;56.40]

49.68(12.06)
46.10[42.58;56.17]

48.77(11.87)
45.31[41.98;54.94]

GGON
(mg/day)

0.29(0.27)
0.14[0.08;0.53]

0.42(0.36)
0.25[0.14;0.76]

0.55(0.46)
0.39[0.21;0.93]

0.61(0.51)
0.47[0.23;0.94]

Table C.3: Outcomes during scenario C for the four di�erent switch condition in CC.

Uth = 0 Uth = 0.25 Uth = 0.5
Uth = 0.75
(CC)

MG
(mg/dL)

111.18(3.98)
111.61[107.24;114.75]

113.43(4.10)
114.01[109.38;116.97]

117.26(4.50)
117.00[113.23;120.49]

123.26(5.72)
121.93[119.27;126.80]

TIR(%)
89.14(4.24)

89.06[87.21;91.15]
90.31(3.85)

90.18[88.41;92.22]
91.29(3.53)

91.29[89.26;93.76]
91.56(3.42)

91.53[89.19;94.10]

>180(%)
3.17(2.44)

2.60[1.09;4.94]
3.36(2.50)

2.83[1.26;4.99]
3.85(2.69)

3.11[1.60;5.52]
5.04(3.11)

4.24[2.47;6.88]

<70(%)
7.69(3.97)

8.02[4.54;10.23]
6.32(3.73)

6.44[3.00;8.80]
4.87(3.38)

4.64[1.97;6.82]
3.40(2.92)

2.89[0.95;4.84]

<54(%)
2.62(2.23)

2.62[0.61;3.91]
1.90(1.97)

1.59[0.21;2.74]
1.22(1.68)

0.61[0.00;1.43]
0.73(1.29)

0.15[0.00;0.72]
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INS
(U/day)

47.13(11.43)
44.59[39.41;53.26]

47.36(11.45)
44.93[39.66;53.42]

47.32(11.38)
44.98[39.76;53.23]

46.53(11.22)
44.02[39.26;52.23]

GGON
(mg/day)

0.61(0.52)
0.37[0.21;1.20]

0.74(0.62)
0.46[0.27;1.46]

0.87(0.72)
0.60[0.33;1.64]

0.96(0.79)
0.69[0.36;1.71]

Table C.4: Outcomes during scenario A for the four di�erent switch condition in NCC.

Uth = 0
(NCC-B)

Uth = 0.25 Uth = 0.5
Uth = 0.75
(NCC-A)

MG
(mg/dL)

121.60(5.52)
120.71[117.33;124.59]

126.66(7.53)
124.86[121.80;128,87]

133.49(11.66)
130.62[128.32;133.62]

141.47(17.58)
137.32[134.72;139.59]

TIR(%)
94.58(3.62)

95.57[92.37; 97.61]
94.12(5.01)

95.55[92.53;97.88]
91.90(9.06)

94.41[91.54;97.28]
88.18(15.84)

92.83[89.96;96.22]

>180(%)
4.53(3.53)

3.47[1.56;6.78]
5.67(5.03)

4.43[1.98;7.42]
8.06(9.08)

5.59[2.65;8.44]
11.81(15.84)
7.17[3.78;9.98]

<70(%)
0.89(0.95)

0.57[0.25;1.26]
0.21(0.29)

0.10[0.00;0.35]
0.04(0.09)

0.00[0.00;0.01]
0.01(0.04)

0.00[0.00;0.00]

<54(%)
0.06(0.13)

0.00[0.00;0.05]
0.00(0.03)

0.00[0.00;0.00]
0.00(0.00)

0.00[0.00;0.00]
0.00(0.00)

0.00[0.00;0.00]

INS
(U/day)

49.10(12.12)
45.80[41.50;55.00]

49.98(12.27)
46.99[42.31;55.76]

51.15(12.40)
49.11[43.28;56.79]

52.49(12.50)
51.17[44.38;58.14]

GGON
(mg/day)

0.72(0.75)
0.31[0.18;1.11]

1.06(1.12)
0.52[0.30;1.48]

1.52(1.70)
0.86[0.46;1.84]

2.08(2.48)
1.21[0.65;2.16]

Table C.5: Outcomes during scenario B for the four di�erent switch condition in NCC.

Uth = 0
(NCC-B)

Uth = 0.25 Uth = 0.5
Uth = 0.75
(NCC-A)

MG
(mg/dL)

122.60(5.44)
121.42[118.27;126.81]

127.77(7.03)
125.75[123.09;130.95]

134.63(10.89)
131.67[128.99;135.56]

142.52(16.32)
137.99[136.03;141.60]

TIR(%)
94.54(3.67)

95.54[92.61;97.32]
94.21(4.72)

95.78[92.92;97.30]
92.06(8.58)

94.69[92.10;96.55]
88.26(14.66)

92.77[89.93;95.45]

>180(%)
4.40(3.32)

3.44[1.96;5.84]
5.49(4.67)

4.04[2.37;6.86]
7.88(8.57)

5.31[3.31;7.55]
11.73(14.67)

7.23[4.55;10.07]

<70(%)
1.06(1.32)

0.60[0.15;1.38]
0.30(0.46)

0.07[0.00;0.46]
0.06(0.15)

0.00[0.00;0.01]
0.02(0.06)

0.00[0.00;0.00]

<54(%)
0.21(0.43)

0.00[0.00;0.24]
0.03(0.08)

0.00[0.00;0.00]
0.00(0.01)

0.00[0.00;0.00]
0.00(0.00)

0.00[0.00;0.00]

INS
(U/day)

50.42(12.47)
46.67[43.13;56.68]

51.33(12.61)
48.01[43.85;57.41]

52.52(12.72)
49.50[44.94;58.42]

53.85(12.81)
51.96[46.07;59.76]
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GGON
(mg/day)

0.66(0.67)
0.30[0.17;1.12]

1.00(1.03)
0.54[0.31;1.44]

1.47(1.61)
0.88[0.48;1.82]

2.01(2.35)
1.20[0.67;2.18]

Table C.6: Outcomes during scenario C for the four di�erent switch condition in NCC.

Uth = 0
(NCC-B)

Uth = 0.25 Uth = 0.5
Uth = 0.75
(NCC-A)

MG
(mg/dL)

120.04(6.84)
119.39[115.62;120.30]

124.54(9.22)
122.53[119.58;124.16]

130.14(13.01)
127.03[124.13;128.56]

136.75(18.28)
132.06[129.88;133.96]

TIR(%)
93.15(4.32)

94.42[90.61;96.34]
93.22(5.93)

95.26[92.72;96.80]
91.96(9.40)

94.92[93.13;96.75]
89.26(15.21)

94.12[92.08;96.01]

>180(%)
4.54(4.44)

2.91[1.65;5.28]
5.55(6.22)

3.16[1.93;5.49]
7.37(9.61)

4.09[2.42;6.40]
10.32(15.36)
5.43[3.15;7.56]

<70(%)
2.31(1.65)

2.12[0.84;3.52]
1.23(1.06)

0.87[0.32;2.10]
0.67(0.80)

0.35[0.09;1.00]
0.42(0.65)

0.15[0.00;0.42]

<54(%)
0.36(1.43)

0.24[0.00;0.58]
0.11(0.19)

0.00[0.00;0.16]
0.05(0.11)

0.00[0.00;0.05]
0.02(0.07)

0.00[0.00;0.00]

INS
(U/day)

48.67(11.70)
46.38[41.27;54.15]

49.42(11.83)
47.39[41.97;54.87]

50.36(11.97)
48.93[42.73;55.67]

51.48(12.13)
50.61[43.44;56.77]

GGON
(mg/day)

1.38(1.39)
0.83[0.43;2.37]

1.71(1.77)
0.97[0.53;2.82]

2.13(2.34)
1.22[0.64;3.13]

2.64(3.11)
1.47[0.78;3.52]
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C.2 Statistical analysis of CC vs NCC comparisons

The di�erences between the eight con�gurations resulting from the combination
of the type of controller (CC and NCC) and the four threshold switch condi-
tions (uth ∈ {0, 0.25u∗, 0.5u∗, 0.75u∗}), were assessed non-parametrically using
the Kruskal Wallis test with Fisher's LSD post-hoc analysis. This analysis was
repeated for each scenario (A, B, and C). Results are shown below:

C.2.1 Scenario A

� Mean glucose concentration (mg/dL)

CC

0.25 0.04

0.50 <0.01 <0.01

0.75 <0.01 <0.01 <0.01

NCC

0 <0.01 0.023 0.262 <0.01

0.25 <0.01 <0.01 <0.01 0.056 <0.01

0.50 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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� Standard deviation (SD)

CC

0.25 0.241

0.50 0.022 0.262

0.75 <0.01 0.056 0.429

NCC

0 0.776 0.375 0.045 <0.01

0.25 0.356 0.803 0.171 0.031 0.524

0.50 0.222 0.959 0.285 0.063 0.349 0.764

0.75 0.181 0.868 0.340 0.081 0.293 0.678 0.908

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC

� Percentage of time in range

CC

0.25 0.397

0.50 0.316 0.877

0.75 0.976 0.414 0.331

NCC

0 0.630 0.715 0.603 0.652

0.25 0.984 0.408 0.326 0.992 0.645

0.50 0.03 <0.01 <0.01 0.028 <0.01 0.028

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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C.2 Statistical analysis of CC vs NCC comparisons

� Percentage of time above target

CC

0.25 0.822

0.50 0.413 0.553

0.75 0.041 0.069 0.221

NCC

0 0.395 0.532 0.974 0.233

0.25 0.048 0.079 0.245 0.952 0.258

0.50 <0.01 <0.01 <0.01 0.021 <0.01 0.018

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC

� Percentage of time under target

CC

0.25 <0.01

0.50 <0.01 <0.01

0.75 <0.01 <0.01 0.023

NCC

0 <0.01 <0.01 <0.01 <0.01

0.25 <0.01 <0.01 0.1 0.524 <0.01

0.50 <0.01 <0.01 <0.01 0.352 <0.01 0.117

0.75 <0.01 <0.01 <0.01 0.232 <0.01 0.067 0.792

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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Appendix C. Evaluation of CC and NCC con�guration

� Percentage of time under 54mg/dL

CC

0.25 <0.01

0.50 <0.01 <0.01

0.75 <0.01 <0.01 0.573

NCC

0 <0.01 0.283 0.066 0.016

0.25 <0.01 <0.01 0.602 0.966 0.018

0.50 <0.01 <0.01 0.510 0.924 0.013 0.890

0.75 <0.01 <0.01 0.510 0.924 0.013 0.890 1.00

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC

� Insulin delivery (U/day)

CC

0.25 0.872

0.50 0.899 0.973

0.75 0.704 0.588 0.611

NCC

0 0.549 0.662 0.637 0.328

0.25 0.263 0.338 0.321 0.134 0.602

0.50 0.071 0.100 0.093 <0.01 0.227 0.491

0.75 0.01 0.015 0.014 <0.01 <0.01 0.140 0.429

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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C.2 Statistical analysis of CC vs NCC comparisons

� Glucagon delivery (mg/day)

CC

0.25 0.443

0.50 0.129 0.453

0.75 0.060 0.264 0.714

NCC

0 <0.01 0.112 0.402 0.638

0.25 <0.01 <0.01 <0.01 0.014 0.047

0.50 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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Appendix C. Evaluation of CC and NCC con�guration

C.2.2 Scenario B

� Mean glucose concentration (mg/dL)

CC

0.25 0.023

0.50 <0.01 <0.01

0.75 <0.01 <0.01 <0.01

NCC

0 <0.01 0.044 0.106 <0.01

0.25 <0.01 <0.01 <0.01 0.019 <0.01

0.50 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC

202



C.2 Statistical analysis of CC vs NCC comparisons

� Standard deviation (SD)

CC

0.25 0.213

0.50 <0.01 0.231

0.75 <0.01 <0.01 0.377

NCC

0 0.823 0.142 <0.01 <0.01

0.25 0.781 0.333 <0.01 <0.01 0.616

0.50 0.684 0.402 <0.01 <0.01 0.528 0.897

0.75 0.513 0.555 0.074 <0.01 0.380 0.706 0.805

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC

� Percentage of time in range

CC

0.25 0.345

0.50 0.255 0.846

0.75 0.922 0.397 0.298

NCC

0 0.739 0.542 0.421 0.814

0.25 0.989 0.339 0.250 0.912 0.729

0.50 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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Appendix C. Evaluation of CC and NCC con�guration

� Percentage of time above target

CC

0.25 0.782

0.50 0.368 0.533

0.75 0.025 H1 0.179

NCC

0 0.321 0.475 0.928 0.210

0.25 0.032 0.061 0.211 0.927 0.246

0.50 <0.01 <0.01 <0.01 0.014 <0.01 0.011

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC

� Percentage of time under target

CC

0.25 <0.01

0.50 <0.01 <0.01

0.75 <0.01 <0.01 0.065

NCC

0 <0.01 0.538 <0.01 <0.01

0.25 <0.01 <0.01 0.588 0.191 <0.01

0.50 <0.01 <0.01 0.030 0.745 <0.01 0.103

0.75 <0.01 <0.01 0.013 0.518 <0.01 0.051 0.748

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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C.2 Statistical analysis of CC vs NCC comparisons

� Percentage of time under 54mg/dL

CC

0.25 <0.01

0.50 <0.01 <0.01

0.75 <0.01 <0.01 0.614

NCC

0 <0.01 0.136 <0.01 <0.01

0.25 <0.01 <0.01 0.958 0.578 <0.01

0.50 <0.01 <0.01 0.622 0.991 <0.01 0.586

0.75 <0.01 <0.01 0.586 0.968 <0.01 0.50 0.958

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC

� Insulin delivery (U/day)

CC

0.25 0.865

0.50 0.891 0.973

0.75 0.701 0.579 0.602

NCC

0 0.577 0.698 0.673 0.346

0.25 0.281 0.364 0.346 0.144 0.603

0.50 0.079 0.113 0.105 <0.01 0.231 0.497

0.75 <0.01 <0.01 <0.01 <0.01 0.050 0.149 0.444

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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Appendix C. Evaluation of CC and NCC con�guration

� Glucagon delivery (mg/day)

CC

0.25 0.411

0.50 0.106 0.428

0.75 <0.01 0.251 0.723

NCC

0 <0.01 0.137 0.487 0.734

0.25 <0.01 <0.01 <0.01 <0.01 <0.01

0.50 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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C.2 Statistical analysis of CC vs NCC comparisons

C.2.3 Scenario C

� Mean glucose concentration (mg/dL)

CC

0.25 0.095

0.50 <0.01 <0.01

0.75 <0.01 <0.01 <0.01

NCC

0 <0.01 <0.01 <0.01 0.017

0.25 <0.01 <0.01 <0.01 0.341 <0.01

0.50 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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Appendix C. Evaluation of CC and NCC con�guration

� Standard deviation (SD)

CC

0.25 0.400

0.50 0.116 0.465

0.75 0.081 0.366 0.863

NCC

0 0.038 0.215 0.611 0.737

0.25 <0.01 0.072 0.286 0.372 0.577

0.50 <0.01 0.043 0.194 0.260 0.42 0.816

0.75 <0.01 0.027 0.139 0.192 0.332 0.680 0.858

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC

� Percentage of time in range

CC

0.25 0.259

0.50 0.039 0.348

0.75 0.020 0.229 0.793

NCC

0 <0.01 <0.01 0.073 0.126

0.25 <0.01 <0.01 0.062 0.109 H1

0.50 <0.01 0.113 0.518 0.702 0.251 0.222

0.75 0.908 0.31 0.051 0.027 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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C.2 Statistical analysis of CC vs NCC comparisons

� Percentage of time above target

CC

0.25 0.848

0.50 0.506 0.637

0.75 0.067 0.100 0.241

NCC

0 0.179 0.249 0.496 0.623

0.25 0.020 0.032 0.095 0.619 0.323

0.50 <0.01 <0.01 <0.01 0.023 <0.01 0.075

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC

� Percentage of time under target

CC

0.25 <0.01

0.50 <0.01 <0.01

0.75 <0.01 <0.01 <0.01

NCC

0 <0.01 <0.01 <0.01 <0.01

0.25 <0.01 <0.01 <0.01 <0.01 <0.01

0.50 <0.01 <0.01 <0.01 <0.01 <0.01 0.136

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 0.029 0.489

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC

209



Appendix C. Evaluation of CC and NCC con�guration

� Percentage of time under 54mg/dL

CC

0.25 <0.01

0.50 <0.01 <0.01

0.75 <0.01 <0.01 <0.01

NCC

0 <0.01 <0.01 <0.01 0.047

0.25 <0.01 <0.01 <0.01 <0.01 0.179

0.50 <0.01 <0.01 <0.01 <0.01 0.091 0.727

0.75 <0.01 <0.01 <0.01 <0.01 0.063 0.603 0.864

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC

� Insulin delivery (U/day)

CC

0.25 0.887

0.50 0.909 0.977

0.75 0.718 0.615 0.635

NCC

0 0.348 0.426 0.410 0.194

0.25 0.165 0.213 0.202 0.080 0.652

0.50 0.050 0.069 0.065 0.020 0.306 0.567

0.75 <0.01 0.013 0.012 <0.01 0.088 0.210 0.495

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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C.2 Statistical analysis of CC vs NCC comparisons

� Glucagon delivery (mg/day)

CC

0.25 0.569

0.50 0.253 0.566

0.75 0.132 0.350 0.718

NCC

0 <0.01 <0.01 0.032 0.075

0.25 <0.01 <0.01 <0.01 <0.01 0.163

0.50 <0.01 <0.01 <0.01 <0.01 <0.01 0.070

0.75 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Uth 0 0.25 0.50 0.75 0 0.25 0.50

CC NCC
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