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Abstract: Water supply utilities need to properly manage their systems to guarantee a 16 

quality supply. One way to manage large systems is through division into district metered areas 17 

(DMAs). Graph clustering with an unknown number of subdivisions, as in social network theory, 18 

has proven highly efficient in this sectorization problem. Several physical and hydraulic features 19 

may easily be used as criteria to suitably divide the network. In this work, we use social network 20 

community detection algorithms to define several DMA scenarios. Configurations mainly depend 21 

on nodal demand and elevation, but adaptations may be needed to guarantee full supply in future 22 

scenarios related to system growth – and rehabilitation actions may also be required. The problem 23 

associated with pipes and valves is first solved with three optimization methods. The best 24 

solutions then enter a new optimization process, where tank dimensions and valve set points are 25 

defined. This complex optimization-segregation approach enables an improvement in the 26 



hydraulic efficiency of the E-town network at an affordable cost, and this approach also 27 

determines the measures needed to meet the dry season requirements. 28 

Key-words: water distribution networks, DMA definition, rehabilitation, PSO, GA, soccer 29 

league competition 30 

 31 

INTRODUCTION 32 

Water supply systems (WSSs) have a fundamental function in urban design: guaranteeing 33 

citizens access to safe drinking water (Di Nardo et al. 2013). Management of WSSs becomes more 34 

complex when future demand challenges are taken into account. Segregating water distribution 35 

networks into district metered areas (DMAs) enables better management by improving efficiency 36 

and safety through strategic rule implementations. 37 

To establish a suitable DMA configuration, several aspects must be considered 38 

simultaneously, including: topology; elevation; size; loop configuration; costs; and resilience – 39 

and this makes any manual/empirical approach unfeasible (Diao et al. 2012). Several automatic 40 

approaches, such as the graph decomposition theory applied to DMA divisions (Swamee and 41 

Sharma, 2008), or multiple source decomposition with pre-located influence zones (Tzatchkov et 42 

al. 2008) have been implemented in the last decade and demonstrated better performances than 43 

empirical approaches. Following in the wake of neural networks and other machine learning tool 44 

applications, Herrera et al. (2010) propose the use of semi-supervised learning methods with 45 

information on different supply constraints and gathering the reality of hydraulic zones in a single 46 

matrix. Accordingly, spectral clustering is applied to obtain the DMA configuration. Diao et al. 47 

(2012) present an automatic DMA boundary selection method based on a social network 48 



community detection algorithm. In a similar line, Di Nardo et al. (2013) present a social network 49 

analysis based on complex system decomposition.  50 

However, division into DMAs is not the end of the story. The status of the boundary valves 51 

and their location at DMA entrances must be optimized to eventually achieve a reliable 52 

configuration. The main constraint is supplying the required quality and quantity, as well as the 53 

satisfaction of service pressure (nominal pressure) and the control of tank levels. Meta-heuristic 54 

optimization methods have been broadly used to find the optimal solution for several water supply 55 

network problems (Montalvo et al., 2014, Marchi et al., 2014). The problem of optimal valve 56 

placement and optimal operation has been highlighted (Nicolini et al., 2009, Brentan et al., 2017).   57 

A fully automatic water network partitioning algorithm requires the use of a method to 58 

identify the DMAs and an optimization procedure to identify the boundaries and entrances of each 59 

DMA. Di Nardo et al. (2014) present a hybrid algorithm that links graph partition methods with 60 

genetic algorithms (GAs) to create an automatic method for DMA design. De Paola et al. (2014) 61 

define DMAs using the shortest path concept from the graph theory domain in a combination with 62 

the NSGA-II algorithm to carry out an optimization procedure in which topological and 63 

operational aspects are considered. Brentan et al. (2017) present a set of hydraulic criteria 64 

implemented in a hybrid algorithm compound by a social network community detection algorithm 65 

and particle swarm optimization (PSO). 66 

For the task using the Battle of Water Network District Metered Areas (BWNDMA) 67 

considered in this work, we present an alternative to achieve a solution for the DMA configuration 68 

problem of the E-Town network that takes into account future demands and pipe rehabilitation. 69 

Our approach has two main phases. In the first phase, the distribution network is decoupled 70 

from the trunk network through a process based on the shortest path concept derived from graph 71 



theory. DMAs are then defined over the distribution network by means of a community detection 72 

algorithm and a herein proposed community recursive merging process. Once the DMAs are 73 

defined, a set of entrances and boundary valves, and the set points of the pressure reducing valves 74 

(PRV) located at the entrance(s) of each DMA, are defined using a multilevel optimization 75 

approach. In this phase, the rehabilitation of the network, including pipe duplication and/or 76 

replacement and installation of new tanks, is also considered. Such a process is based on three 77 

algorithms: GAs, PSO, and soccer league competition (SLC). 78 

Our approach relies on several advantages, the first being the use of a community detection 79 

algorithm that can efficiently deal with extremely large networks (even of millions of nodes). A 80 

second advantage is the optimization process itself, which is conducted using a multi-level 81 

approach, splitting the problem into smaller and better manageable subproblems. 82 

 83 

PROBLEM AND APPROACH DESCRIPTION 84 

 BWNDMA description 85 

The BWNDMA was a water distribution analysis competition proposed by the Water 86 

Distribution System Analysis Congress 2016. The main objective of the challenge was to improve 87 

the management of the system of the E-town network for a future scenario, creating DMAs in a 88 

water network with more than 11,000 nodes and about 14,000 pipes. E-town is supplied by three 89 

water sources (Cuzca, Bochica and Bachue) which can cope with the supply during the rainy 90 

season (from March to May and from September to November). However, for the dry season 91 

(December to February and June to August) the capacity of the sources is reduced and the use of 92 

aquifer sources is necessary.  93 



The problem should be solved for the rainy season and the operational changes (valve 94 

closures) must be defined to reach a feasible scenario for the dry season. For the rainy solution, the 95 

number of DMAs, pressure uniformity (PU), demand similarity (DS), implementation costs, and 96 

water quality are used as parameters to evaluate the quality of the solutions. To find feasible 97 

solutions, some structural improvements are allowed, namely: pipe replacements or duplication; 98 

PRV installations; and the construction of new tanks. 99 

 Algorithm’s overview 100 

The proposed methodology can be divided into two phases: the DMA design phase and the 101 

optimization phase. Firstly, the hydraulic and topological data should be prepared. The water 102 

network model is built and then the trunk network is identified. The trunk network transports 103 

water from the sources to distribution networks. This identification is important to facilitate pipe 104 

replacement and duplication. Once the trunk network is identified, the DMA design core searches 105 

for the best configuration of node clusters when considering hydraulic and topological criteria. In 106 

this step, the Walktrap community detection algorithm (Pons and Latapy, 2006) is applied to 107 

identify the nodes with similar features, which will eventually integrate the communities. During 108 

this process, several communities are fused to generate new communities until a set of criteria is 109 

met. Data preparation and DMA configuration correspond to the step of defining DMAs in the 110 

distribution network. Together with the DMAs, the boundary pipes are also identified. With this 111 

information, it is possible to start the optimization steps. 112 

The optimization core is responsible for achieving a feasible scenario, taking into account 113 

the constraints of the problem. The methodology used for the optimization core divides the 114 

problem into three levels to reduce the dimensionality of the problem. The first level 115 

(Optimization level 1) uses GAs, PSO, and SCL to find the best implementation of PRVs and new 116 

pipes, minimizing the cost and the PU parameter. To guarantee the water supply for the future 117 



scenario with the increase of consumption, the optimal installation of new tanks is tackled in the 118 

second level (Optimization level 2). Finally, the operational points of PRVs and flow control 119 

valves (FCV) are adjusted to improve the operation of the system, thus minimizing the PU. For 120 

each level of the optimization process, a solution vector must be defined (Optimization level 3) 121 

Figure 1 presents a flowchart of the full algorithm, which considers both the sectorization and the 122 

multi-level optimization processes.  123 

 124 

SECTORIZATION PROCEDURE 125 

In the computer domain, social networks are graphs intended to represent relations among 126 

social actors through a set of dyadic ties. Topologically speaking, a social network and a water 127 

supply network are equivalent (both are formed by nodes connected by links), the latter can be 128 

represented as a social network, and all the algorithms/concepts derived from the social network 129 

theory field of study can be implemented over water supply networks. In this work, we use the 130 

“shortest path” concept and a “community detection” algorithm. 131 

Depending on the network topology, the sectorization is conducted in one of two ways: if 132 

the network has many sources (and these sources are located within the meshing space) the DMAs 133 

can be established around these sources; in contrast, when the number of sources is limited and/or 134 

are located outside the meshing area, the network must be supplied by a main conduction system 135 

(or trunk network) and, therefore, the DMAs must be established around the latter. Once the trunk 136 

network is defined, it is uncoupled from the distribution network, and communities of nodes are 137 

detected in this distribution network. Such communities are recursively merged in a fusion process 138 

herein proposed until a partition is found, in which each DMA satisfies the predefined set of 139 

constraints. 140 



Trunk Network Detection Algorithm  141 

As described above, in a WSS, the trunk network corresponds to a group of continuously 142 

connected pipes (a stem) that transports water from the sources to the pipes in the distribution 143 

network. The appropriate distinction of the latter from the distribution network is a key aspect in a 144 

sectorization design, as the closure of at least one pipe of the trunk network could dramatically 145 

affect the resilience of the entire system. There are several general criteria to distinguish the trunk 146 

network from the distribution network, such as: diameters, connections, and locations. In general, 147 

the connection to the trunk network is restricted to medium and large diameter pipes. However, in 148 

some cases, especially in the case of WSSs with multiple sources, the span of the trunk network is 149 

not so clear. Therefore, graph theory concepts can be used to distinguish the level of importance of 150 

each pipe in the supply of the network. 151 

The core idea is to generate a ranking of pipes. Such ranking is based on the role of each 152 

pipe in the supply of the entire network. To assess the role of each pipe, a hydraulic simulation is 153 

conducted with EPANET (Rossman, 2000) for the most critical scenario (the instant of highest 154 

demand). The direction of the flow in each pipe is then retrieved and stored in a square matrix (see 155 

Equation 1). This matrix enables calculating the number of nodes/pipes that can be reached from 156 

each node, this being the accumulated shortest path value (ASPV).  157 

 158 
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൲         (1) 159 

The entries of this matrix are calculated as follows, where ܰܫ	stands for initial node and ܰܧ stands 160 

for end node: 161 

 If 162 0 → ܰܧ = ܰܫ 

 If ܰܫ cannot reach 163 ∞ → ܰܧ 

ଶ݁݀݋ܰ	 ଵ݁݀݋ܰ  ௡݁݀݋ܰ     ⋯						



 In any other case → nodes in the shortest path 164 

The flow in each pipe is then multiplied by its corresponding ASPV (the result is 165 

represented by ASPV*). The trunk network is expected to be formed by pipes with high and less 166 

frequent AVSP* values, whereas the pipes in the distribution network are expected to have low 167 

and highly frequent AVSP* values (Campbell et al., 2016).  168 

Community detection algorithm 169 

Community detection algorithms based on the social network theory are aimed at revealing 170 

structural network modules based on a modularity index proposed by Newman (2006). One of 171 

these algorithms corresponds to the Walktrap algorithm, which is based on the mathematical 172 

concept known as a random walk. In comparative terms, with respect to other community 173 

detection algorithms, the tests performed by Kesiban Orman et al. (2011) classify this algorithm as 174 

the second best algorithm for graph community detection, just after the Infomap algorithm 175 

(Rosvall & Bergstrom, 2008). In contrast, results obtained by Savić et al. (Newman & Girvan, 176 

2004) when comparing the Walktrap algorithm with other algorithms, namely propagation 177 

(Raghavan, 2007) and greedy modularity optimization (Clauset et al., 2004), show that the former 178 

has significant advantages in terms of quality and evolutionary stability. 179 

 This algorithm corresponds to a stochastic process where the position of a given particle at 180 

a certain instant relies solely on its position at a previous instant and on a random variable (which 181 

determines its subsequent direction and step length). If random walks of a given length are 182 

performed over a graph, the resulting Markov matrix reflects the probability of going from one 183 

node to another in a given number of steps. These probabilities gather enough information about 184 

the topology of the network, and reveal a multiple arrangement of communities with different 185 

values of modularity. All these arrangements are located in a hierarchy of partitions, from which 186 

any particular partition may be selected. It is noticeable that the partition of maximum modularity 187 



can generate extremely small communities, whose implementation could be economically 188 

unfeasible. This is why a recursive merging process is proposed, to ensure that all the DMAs 189 

comply with a series of pre-established constraints. In this merging process, the total demand of 190 

each DMA is computed (other characteristics can be used, for example, pipe length), and a matrix 191 

containing the results of the sum of the demands for every pair of directly connected communities 192 

is then computed. The pair of communities with the lowest result is merged into one new DMA, 193 

and the new collection of DMAs is re-enumerated. The process continues until no new mergers 194 

are possible (a new merger would exceed the maximum demand per DMA). The matrix in 195 

equation (2) illustrates the merging process. 196 

 197 
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 199 

The entries of this matrix are calculated as follows: 200 

 If ܣܯܦ௫ and ܣܯܦ௬ are connected then d = ܣܯܦ௫ ൅  ௬  201ܣܯܦ

 If	ܣܯܦ௫ =	ܣܯܦ௬, then d = 0.  202 

 203 

NETWORK OPTIMIZATION PROCEDURE 204 

Optimization routine 205 

Due to the complexity of the problem, the optimization procedure is divided into three 206 

levels. In the first, the method searches for the best location for PRVs and their pressure setting, 207 

considering the previous boundary pipes defined in the sectorization procedure. Boundary pipes 208 

correspond to the pipes with start and end nodes not belonging to the same DMA. The method 209 

 ௡ܣܯܦ      ⋯			                 ௬ܣܯܦ              ௫ܣܯܦ  



also evaluates the replacement of pipes with a diameter greater than 152 mm, an imposed 210 

condition in BWNDMA. Considering the possibility of installing parallel pipes, the trunk network 211 

is omitted in this first optimization process.   212 

The initial topology configuration of the E-town network does not fulfill the future demand 213 

scenario, which makes the 168-hour simulation process extremely difficult from the computational 214 

viewpoint. To reduce the processing time, this optimization step was performed with only 215 

maximum and minimum demands, both with 60% water volume in all tanks. With this procedure, 216 

it is expected that minimum and maximum pressure constraints during the entire 168-hour period 217 

almost match desirable pressures. In this first step, pressure uniformity is also considered in the 218 

objective function (Eq. 3) to define the best PRV characteristics. 219 

ଵܨ ൌ 	ቌ෍ܮ௜. ஽೔ܥ

ே௉

௜
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௉௔௥

ே௉

௜

ே௏

௝
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 ଵ- objective function of the initial network design; 220ܨ

ܰܲ - number of new pipes installed; 221 

 ௜; 222ܦ ,஽೔- new pipe replacement cost associated to its diameterܥ

஽೔ܥ
௉௔௥ - new parallel pipe installation cost associated to its diameter, ܦ௜; 223 

 ௜ - length of new pipe; 224ܮ

ܸܰ - number of PRVs installed; 225 

 ௝; 226ܦ ,஽ೕ- PRV cost associated to its diameterܭ

ܲ݁݊௠௜௡- penalty for pressure below 15 m in demand nodes; 227 

ܲ݁݊௡௘௚- penalty for negative pressure in nodes without demand; 228 



ܲ݁݊௠௔௫	- penalty for pressure above 60 m; 229 

ܲ݁݊௏ோ௉	- penalty for exceeding the maximum number of PRVs in a DMA (two in this study); 230 

ܷܲ - network pressure uniformity. 231 

Moosavian and Roodsari (2014) and Mora-Meliá et al. (2015) present comparisons among 232 

bio-inspired algorithms, where they observe that their effectiveness depends on the problem 233 

characteristics. Therefore, PSO, GA, and SLC algorithms are used to obtain their best solutions, 234 

merging the results of each to achieve a better solution. 235 

At this level, the problem was codified using mixed binary and discrete variables. Each 236 

solution vector contains information about the status of the boundary pipes and a discrete number 237 

that correspond to available pipe diameters. For the binary positions, if the value of a position is 1, 238 

it means that the corresponding boundary pipe is open and requires the installation of a control 239 

device. A similar procedure is used for the installation of new pipes or for the replacement of 240 

pipes. The position of the solution vector corresponding to an index pipe contains a discrete value 241 

that corresponds to an available diameter for this pipe in the set of candidate diameters. With this 242 

mixed vector of decision variables it is possible to calculate the terms in the objective function ܨଵ 243 

that corresponds to the implementation costs.  244 

Usually, bio-inspired algorithms are unable to treat constrained problems and require the 245 

use of constraint-handling, such as the common approach of penalty functions (Mezura-Montes 246 

and Coelho, 2011; Coelho, 2002) in transforming these problems into unconstrained problems. 247 

Following the general proposal by Parsapoulos and Vrahatis (2002), the penalty function can be 248 

written as: 249 

ܲ݁݊ ൌ෍ߚ௜. หݔ௜
௦ െ ௜ݔ

௟௜௠ห
௞

ே೎

௜ୀଵ

. (4) 



Here ߚ௜ and ݇ are the two penalty factors to adjust the variable ݔ௜
௦ to meet the constraint limit ݔ௜

௟௜௠ 250 

in a problem with ௖ܰ constraints. 251 

Pressure uniformity is used to evaluate the quality of the network partition process, since it 252 

measures the difference between the nodal pressure and both the minimal required value and the 253 

average hourly value, as in (5). Based on an equation by Alhimiary et al. (2007): 254 
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where ௜ܲ,௝ is the nodal pressure at time step ݆ at node ݅ for a network with ܰ demand nodes 255 

simulated during ܯ time steps. ௠ܲ௜௡ is the minimal required pressure for demand nodes (15 m) 256 

and  ௔ܲ௩ೕ is the average network pressure at time step ݆. 257 

At the end of this first step, the results of the three methods are evaluated and the best 258 

method is chosen to feed the following steps. Since the simulation is carried out with PRVs 259 

installed in all boundary pipes, an accurate analysis is necessary to define, from among the open 260 

valves, which will effectively operate. 261 

As a first approach, the PRVs with higher flows in each DMA are selected, and a 262 

simulation is made to evaluate the results. This simulation aims to identify DMAs with high 263 

pressure zones, and where pipes must be closed to achieve the pressure constraints. 264 

While the steady-state simulation helps define PRV locations and the pipes to be replaced 265 

or candidates for parallel installation, this hydraulic approach cannot show the influence of level 266 

oscillations in the tanks, thus hampering a full rehabilitation evaluation. 267 



Therefore, the second optimization level is made on a 24-hour basis, considering the 268 

addition of adjacent tanks, pipe closures, and a new setting for PRVs and FCVs. Since the demand 269 

pattern repeats through the week (168 hours), it is necessary that the initial tank level remains the 270 

same at the end of the simulation. Eq. (6) presents the objective function for this second 271 

optimization level. 272 
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where: 273 

 ଶ- objective function of the final rainy season configuration; 274ܨ

 number of new tanks installed; 275 - ݍݐܰ

 ௏೟೜- cost of new tank tq associated with its volume; 276ܥ

ܲ݁݊௟௩- penalty for the difference between initial and final tank levels; 277 

The new tanks should be considered to enable the full supply of the water network in a 278 

future demand horizon (2022). The need to expand the storage capacity (thus guaranteeing better 279 

quality of water service) is associated with increasing demand and with the daytime oscillation 280 

level. The adjusted result obtained in the first stage is submitted to the second optimization level, 281 

which will define the final modifications of the network topology.   282 

In this step, a mixed approach of discrete and continuous variables is used. The discrete 283 

variables of the solution vector correspond to positions in a list reflecting the available volume for 284 

the new tanks, while the continuous variables correspond to the set points of PRVs and FCVs. To 285 

solve this optimization problem, GA, PSO and SLC are once again applied to achieve the optimal 286 

solution.  287 



After this optimization, the final configuration for the rainy season is achieved. However, 288 

the topology of the network changes from the rainy to the dry season. Water sources reduce their 289 

capacity and two wells are activated to guarantee the water supply. 290 

The final level of the optimization process achieves the new settings for PRVs and FCVs, 291 

and defines opening/closure of pipes for the dry season. The solution vector is programmed with 292 

mixed binary and continuous variables. The binary variables correspond to the status of pipes and 293 

valves, and the continuous variables correspond to the new set points for the valves. The objective 294 

function (7) minimizes the change of pipe statuses and valve settings, allowing easier maneuvers 295 

and thus fulfilling the operational constraints. 296 
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Here 297 

F3 - objective function of the dry season optimization; 298 

 ௟௞ – the operational change at the link ݈݇; 299݌ܱ

 300 

Optimization algorithms 301 

The use of bio-inspired algorithms to solve optimization problems in water distribution 302 

problems has gained space in the scientific literature. For the sake of robustness, this work applies 303 

two classical bio-inspired algorithms from among the many developed: namely, PSO (Eberhart 304 

and Kennedy, 1995), based on the behavior of a flock of birds or a school of fish searching for 305 

food; and GA (Goldberg and Holland, 1988), based on the evolutionary competition of species. 306 

Also applied is a recent proposal by Moosavian and Roodsari (2013), a SLC optimization 307 

methodology based on the competitive environment among teams and players in soccer leagues. 308 



GAs and PSO are widely applied in water distribution problems: and SLC is already highly 309 

promising in this field despite its relative newness. The results produced by the three algorithms 310 

were equivalent in all the cases, what enhances the robustness and reliability of the obtained 311 

results. 312 

The implementation of PSO for the first level is made with 300 particles. This value is 313 

selected considering the number of variables (number of valves and pipes to be replaced). The 314 

second level is developed with 150 particles, since the number of variables is lower than the first 315 

level. Finally, only 50 particles are used to optimize the tank diameters. The maximum number of 316 

iterations is 2000 for the three levels. Regarding GAs, the population size for the first optimization 317 

level is 480 individuals, the second level uses 240 individuals, and the last level uses 80 318 

individuals. For all levels, the algorithm ran 1000 generations with an elitism rate of 10%. The 319 

implementation of SLC for the BWNDMA optimization problem follows the same proportions 320 

shown for PSO and GA. The first level is conducted with 60 teams, the second level with 30 321 

teams, and the last level with 10 teams. For all levels, each team has eight main and eight reserve 322 

players.  323 

 324 

RESULTS AND DISCUSSION 325 

Sectorization and trunk network identification 326 

The uniform distribution of demands among the DMAs and the uniformity of pressure in 327 

the network requirements, elevation, and demand at each node of the DMA are considered in the 328 

sectorization process. As a first approach, the trunk network is defined and uncoupled, thus 329 

disconnecting the pipes which are linked with this network and generating isolated DMAs. This 330 



procedure presents hydraulic and management problems, such as water supply disruption and 331 

micro-DMA creation, given the spatial distribution of the nodes. 332 

However, the importance of the trunk network is linked to the capacity of water transport 333 

from the water source to consumers. This structure has a specific treatment in the first step of the 334 

optimization process, where the possibility of installing parallel pipes is considered. Figure 2a 335 

shows the defined trunk network in red, and Figure 2b presents the nodal elevation for the E-town. 336 

The analysis of these figures enables us to identify a certain trend about the level of the trunk 337 

network. Given the low efficiency of the sectorization without the trunk network, the entire 338 

network is used, reaching the goal of 15 DMAs as defined by the social community method. 339 

Figure 3a presents the DMA configuration results in colors, while Figure 3b shows a block 340 

diagram for DMA interconnection.  341 

With the communities defined through the social community method, the entrance and exit 342 

of each DMA must be defined. Since boundary pipes are considered to have a PRV installed, the 343 

settings of each are optimized to reach the constraints with minimum costs. In addition, an initial 344 

dimensioning of the network pipes is also made. 345 

With this initial solution, the entrances of each DMA are established manually, considering 346 

the flow through each PRV as a decision parameter, and using a 24-hour period to evaluate the 347 

configuration. This procedure shows the necessity to improve the capacity of the Bochica and 348 

Cuza pipelines. Therefore, the trunk network obtained in the sectorization study is duplicated so 349 

that all demand nodes can be satisfied with minimal pressure. 350 

This configuration of the entrance and exit of each DMA is achieved only after an analysis 351 

of the hydraulic performance of the system for a 24-hour period. Note that DMA #3 involves the 352 

trunk network. Therefore, this is the main DMA of the system and from where all distribution 353 



occurs. In addition, DMA #3 is the only DMA capable of supplying DMAs #0, #1, #2 and #14. 354 

The other DMAs configure a distribution loop, thus reinforcing water supply reliability. 355 

Table 1 shows the DMA characteristics (demand, average elevation, and entrances) 356 

obtained once the segregation and the first optimization process are finished. The importance of 357 

the DMA#3 as a supplier for eight DMAs is noteworthy. This is produced by the architecture of 358 

DMA#3, which corresponds to the trunk network with a small distribution network (see Figure 359 

3a).  360 

Network optimization for rehabilitation and operation in the rainy season 361 

With the final configuration of DMAs, the tank levels are evaluated for the week horizon. 362 

It is observed that some tanks are emptying while others are overflowing. This happens because 363 

the capacity of the three water sources are not fully used, thus overloading the tanks. To solve this 364 

problem, a third pipeline is created from the Cuza reservoir, and its flow capacity is increased 365 

almost to the maximum allowed (1600 l/s in the rainy season). 366 

The most important tank in this DMA configuration is Tank #1, placed in DMA #3. The 367 

importance of this tank is related to the most elevated end nodes of this sector, which, in turn, 368 

require more capacity from the tank. The periodic oscillation of this tank can improve the water 369 

quality of several DMAs and contribute to the pressure control in the network. Figure 4 shows the 370 

oscillation of the Tank #1 level during the week. 371 

Despite most tanks oscillating during the week and returning to the initial level, with this 372 

configuration, Tanks #2 and #1 drain. Tank #2 recovers its level in low consumption periods, but 373 

not enough to restore its initial level. The most critical situation is in Tank #11. This tank has the 374 

highest elevation and so the network pressure must be high to feed it suitably. Since only 164 375 

nodes (1.5% of the original network) are supplied from this tank, its level control was neglected. 376 



Figure 5 shows the level oscillation for these two tanks (Tank #11 – red line and Tank #2 – green 377 

line) during the week. 378 

The configuration obtained in this second optimization level meets minimum pressure 379 

constraints for the 168-hour period. However, the maximum pressure limit violation remains a 380 

problem. Therefore, a final evaluation for PRV settings and pipe closures was made, thus 381 

achieving a plausible solution for the rainy season. Table 2 shows the evolution in pressure 382 

constraints and pressure uniformity of the network and considering only maximum and minimum 383 

consumption periods. 384 

This table points to the efficiency of the optimization-segregation approach when 385 

compared with the initial configuration of the E-town network. It is important to note the increase 386 

in negative pressure nodes between the original network and the sectorized network. This happens 387 

mainly because of high demand values in a network with many closed pipes, thus guiding the flow 388 

to non-optimized pipes. 389 

The installation of parallel pipes (duplicating the trunk and third Cuza pipeline) 390 

considerably decreases the negative pressure in the network, since this action reduces hydraulic 391 

head loss in the trunk network. However, with this action mainly occurring at low elevation nodes, 392 

the available hydraulic head increases the pressure, thus inducing high pressure values for nodes 393 

above 60 m, despite most of these nodes being placed in the trunk network. 394 

Finally, an aspect regarding pressure uniformity (PU) in the network can be highlighted. 395 

The sectorized network without optimization is unable to deliver all the demands, since some 396 

nodes become disconnected. This prevents PU calculation at this stage. Similar values are found if 397 

the PU value is compared between the original network and the final network with defined PRVs 398 

and pipe closures. However, the final network has a better hydraulic performance. 399 



More than the hydraulic performance of the final network, a quality analysis of the E-town 400 

network is required. This analysis is made considering the water age at nodal demands. The age 401 

map in Figure 6 presents the state at hour 168 (the end of the simulation and the most critical 402 

moment for water age). It is possible to observe that most nodes are under 30 hours, enabling us to 403 

affirm the high performance of the DMA partition and tank use. Only 6% of the water network is 404 

older than 60 hours (the maximum allowed). Furthermore, the comparison between the original 405 

water network and the optimized network points to a substantial improvement in the water quality. 406 

The total costs of rehabilitation for future demand are presented in Table 3. It is very 407 

important to highlight that the main costs are associated with the pipes (implantation and 408 

replacement) while only two tanks should be built. Also the low cost of valve implantation can be 409 

observed, corresponding to the maximal efficiency of the DMA entrance definition (which is able 410 

to satisfy most constraints at a low cost). 411 

 412 

 413 

 414 

Network optimization for rehabilitation and operation in the dry season 415 

The topological changes during the dry season require new statuses for pipes and set points 416 

of valves. Pressure distribution and water age are affected by this new network configuration. 417 

While for the rainy season, the DMA configuration can supply all nodes with pressure above that 418 

required for the dry season (even after the optimization process) a feasible solution that meets 419 

pressure constraints was not achieved. 420 



The reduction in the water source availability induces the network to lower pressures and 421 

the use of two pump stations is required. Even with these two new water sources, DMA #8 is 422 

disconnected from the network for 24 hours. This occurs because the high elevation of this area 423 

prevents guaranteed demand fulfillment by feeding the tanks. Figure 7 shows the level variation of 424 

Tank #1 (the most important supply tank). It can be seen how its draining during 168 hours harms 425 

the supply process during the week. In addition, high pressure in the lower area of the trunk 426 

network harms water pumping, since the pump station near this pipeline cannot work at full 427 

power, thus reducing the water availability. 428 

 429 

GENERAL DISCUSSION 430 

The relation between DMA segregation and the optimal rehabilitation of large water 431 

distribution networks is shown in this work. The high performance of the optimization process is 432 

closely linked to DMA definition. This is because the increase in demand of the existing 433 

infrastructure is unable to supply all nodes, and the disconnection of nodes or links significantly 434 

impairs the hydraulic simulation. 435 

A previous optimization process, using the maximal and minimal demand to determine the 436 

entrance and exit of each DMA and the new diameters for pipe replacement, is an interesting 437 

approach to reduce the computational effort. Furthermore, the previous identification of the trunk 438 

network enables the initialization of the first solution of the optimization methods with larger 439 

diameters, thus facilitating hydraulic simulations. 440 

Despite the steady state defining new diameters or PRV placement, this approach is not 441 

useful to evaluate the tank level behavior and, consequently, is not useful to determine the need 442 

for new tanks. The use of extended period simulation for 24 hours, considering the initial and final 443 



tank levels as a problem constraint, is useful and guarantees high optimization performance. 444 

Moreover, the extended period simulation enables the PRV and FCV set point definition and pipe 445 

statuses to find the topology with the lowest constraint violation. 446 

Finally, changes of season require a new evaluation of the network without diameter 447 

changes. This makes the optimization process difficult because the change of pipe or valve 448 

statuses slows the convergence when compared with the pipe replacement problem. 449 

 450 

CONCLUSIONS 451 

The Battle of Water Networks District Metered Area (BWNDMA) presents a large DMA 452 

creation problem jointly with the rehabilitation of the network to fulfill future demand. The 453 

importance of DMA creation coupled with optimal pipe replacement or new pipe installation, as 454 

well as PRV placement and new tank dimensioning, is evidenced by the reduction in the constraint 455 

violations presented in this work. 456 

The community detection algorithm can congregate nodes by distance, elevation, and 457 

demand criteria. The high performance of this method when applied to DMA creation problems is 458 

the strong point of this work, since network partition using this technique generates important and 459 

not obvious divisions of the network. 460 

While the optimization process presented in this work was unable to satisfy all the 461 

constraints (especially maximum pressure) the complex approach of the optimization-segregation 462 

process enables DMA creation with good indicators for pressure and demand uniformity. 463 
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