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ABSTRACT 11 

Over decades safety performance functions (SPF) have been developed as a tool for traffic safety in order to 12 

estimate the number of crashes in a specific road section. Despite the steady progression of methodological 13 

innovations in the crash analysis field, many fundamental issues have not been completely addressed. For 14 

instance: Is it better to use parsimonious or fully specified models? How should the goodness-of-fit of the 15 

models be assessed? Is it better to use a general model for the entire sample or specific models based on 16 

sample stratifications? This paper investigates the above issues by means of several SPFs developed using 17 

negative binomial regression models for two-lane rural highways in Spain. The models were based on crash 18 

data gathered over a 5-year period, using a broad number of explanatory variables related to exposure, 19 

geometry, design consistency and roadside features. Results show that the principle of parsimony could be 20 

too restrictive and that it provided simplistic models. Most previous studies apply conventional 21 

measurements (i.e., R2, BIC, AIC, etc.) to assess the goodness-of-fit of models. Seldom do studies apply 22 

cumulative residual (CURE) analysis as a tool for model evaluation. This paper shows that CURE plots are 23 

essential tools for calibrating SPF, while also providing information for possible sample stratification. 24 

Previous authors suggest that sample segmentation increases the model accuracy. The results presented here 25 

confirm that finding, and show that the number of significant variables in the final models increases with 26 

sample stratification. This paper point out that fully models based on sample segmentation and on CURE 27 

may provide more useful insights about traffic crashes than general parsimonious models when developing 28 

SPF.  29 

 30 

Keywords: Cumulative residuals; Safety Performance Functions; two-lane rural highways; flat terrain; 31 

parsimonious models; fully models 32 

 33 

1. INTRODUCTION  34 

According to the World Health Organization, approximately 1.24 million people are killed every year on the 35 

world’s roads, and another 20 to 50 million sustain nonfatal injuries as a result of road crashes (WHO, 2013). 36 

All efforts to reduce traffic crashes are therefore well justified. In Europe, approximately 60% of road 37 

accident fatalities occur on two-lane rural roads (Cafiso et al., 2010). Two major factors usually play an 38 
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important role in traffic accident occurrence: the first is related to the driver; and the second is related to the 39 

roadway design (Abdel-Aty and Radwan, 2000).  40 

Safety Performance Functions (SPF) make it possible to predict the number of crashes that may take place on 41 

a given stretch of roadway with certain characteristics. For many years this type of model was developed 42 

using simple or multiple linear regression techniques. However, Miaou (1994) showed that Poisson 43 

regression models —or, in the case of overly dispersed data, Negative Binomial (NB) regression models— 44 

are more appropriate. Later research showed that, in general, the number of crashes used when calibrating 45 

the prediction models presents over-dispersion, with a greater dispersion than would be consistent under a 46 

Poisson model (Hauer et al., 2002). Most studies nowadays therefore assume that the number of crashes 47 

follows an NB distribution (Persaud et al., 1999; Cheng and Washington, 2008; Montella et al., 2008; Cafiso 48 

et al., 2010; FHWA, 2010; Montella, 2010; Camacho-Torregrosa et al., 2013).  49 

Although substantial research has been conducted on the development of crash models, there are issues still 50 

on the forefront regarding: generalized models; unobserved heterogeneity; confounding variables; variables 51 

to be considered in models and how to add them (parsimonious vs. fully specified models); overfitting of 52 

models; measures used in assessing the goodness of fit; and the appropriateness of stratifying a sample to get 53 

better models. 54 

The generalized models are used by authorities to study the safety of other locations in a given region that 55 

have characteristics similar to those of the location used to build the model. Thus, models containing 56 

variables with highly significant parameters can predict accident frequencies at new locations not used in the 57 

model development. In addition, because explanatory variables that have statistically significant model 58 

parameters help explain the variability of the accident data, their inclusion in the model improves its fit with 59 

the data (Sawalha and Sayed, 2006).  60 

As for the unobserved heterogeneity, the fact that crashes involve complex interactions among human, 61 

vehicle, roadway, traffic and environmental elements makes it impossible to take into account all factors 62 

influencing the likelihood of highway crashes. Crash databases contain a lot of information about road, 63 

vehicle and environment characteristics, yet many other elements remain unobserved, such as human 64 

behaviour, friction measurements, etc. These factors constitute unobserved heterogeneity and can introduce 65 

variation in the impact of the effect of observed variables on accident likelihood (Mannering et al., 2016). 66 
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Unobserved heterogeneity can be defined as variations in the effect of variables across the sample population 67 

that are unknown to the researcher. If this issue is ignored and the effects of observable variables is held to 68 

be the same across all observations, the model may be misspecified and the estimated parameters might be 69 

biased, leading to erroneous predictions (Mannering et al., 2016). Although relatively recent research has 70 

explored unobserved heterogeneity, allowing new insights to be extracted from crash databases, the model-71 

estimation process involved becomes considerably more complex; the result obtained from methods such as 72 

random parameter models may not be easily transferable to other datasets or different locations since the 73 

individual parameter vector associated with each observation is unique to that observation (Lord and 74 

Mannering, 2010; Mannering et al., 2016). 75 

A further issue that concerns researchers is that of confounding variables. In general, confounding variables 76 

are those that are not controlled in the model but may have a latent effect. A confounding factor can be 77 

defined as any variable —other than the cause of principal interest in a study— that can either (a) generate 78 

effects that may be mixed up with the effects of the causal variable, (b) distort the effects attributed to the 79 

causal variable, e.g. modifying their direction or strength, or (c) hide the effects of the causal variable (Elvik, 80 

2011). Controlling for confounding factors is important in establishing causality, and poor control of 81 

confounding factors can seriously distort the findings of road safety studies and make them completely 82 

worthless (Elvik, 2008). However, the number of potentially confounding factors that are successfully 83 

controlled for is always limited due to the fact that most are unknown. Moreover, it is a fallacy to believe 84 

that if a model fits the data very neatly, this demonstrates that it includes all important factors and that 85 

factors not included in the model cannot have major effects (Elvik, 2011). Hence, this matter may be a 86 

limitation in most crash-frequency studies. In the models applied to all accidents, there is slight confounding 87 

owing to the mixture of different levels of accident severity (Elvik, 2011). 88 

SPF are used for a variety of purposes. Most frequently they serve to estimate the expected crash frequencies 89 

from various roadway entities (highways, intersections, interstates, etc.) and to identify geometric, 90 

environmental, and operational factors that are associated with crashes. With respect to the selection of 91 

variables, the explanatory variables that are potentially relevant in SPF can be grouped in two main 92 

categories: (a) Variables describing exposure to crash risk; (b) Risk factors that influence the number of 93 

crashes expected to occur in a road.  94 
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In the first category, most studies include Annual Average Daily Traffic (AADT) and section length as 95 

exposure variables (Hadi et al., 1995; Anderson et al., 1999; Persaud et al., 1999; Pardillo and Llamas, 2003; 96 

Ng and Sayed, 2004; Pardillo et al., 2006; Dell’Acqua and Russo, 2008; Cafiso et al., 2010; Park and Abdel-97 

Aty, 2015). Among the exposure variables, some authors moreover take into account the percentage of heavy 98 

vehicles (Fitzpatrick et al., 2000; Elvik, 2007; Ramírez et al., 2009; Montella, 2010; Hosseinpour et al., 99 

2014).  100 

In the second category, among risk factors that influence the number of crashes expected to occur on a 101 

highway, most authors consider explanatory variables included in one of the three following groups: 102 

geometric variables, consistency variables or context variables. A number of studies have attempted to 103 

quantify the effects of road geometric design variables and exposure variables on accident frequencies (Hadi 104 

et al., 1995; Persaud et al., 1999; Fitzpatrick et al., 2000; Anastasopoulos et al., 2008; Dell’Acqua and Russo, 105 

2008; Cafiso et al., 2013; Park and Abdel-Aty, 2015). Some authors have looked into the influence of 106 

consistency variables —or a combination of geometric, environment and consistency variables— in SPF 107 

development for two-lane rural highways (Anderson et al., 1999; Ng and Sayed, 2004; Cafiso et al., 2010; 108 

De Oña et al., 2014). Others have developed consistency indexes that may be used as independent variables 109 

in SPF (Polus and Mattar-Habib, 2004; Camacho-Torregrosa, 2014; Garach et al., 2014). Some studies have 110 

attempted to relate crash frequency with environmental variables such as driveway density (Pardillo and 111 

Llamas, 2003; Pardillo et al., 2006; Cafiso et al., 2010).  112 

Within this substantial body of research on SPF development, the vast majority of SPF studies include some 113 

kind of measure of exposure, such as AADT or segment length. Still, there is a lack of consensus regarding 114 

the number of variables that should be added in the model, and questions relating to parsimonious vs. fully 115 

specified models.  116 

According to Sawalha and Sayed (2006), model generality requires that a model be developed in accordance 117 

with the principle of parsimony, which calls for explaining as much variability of the data as possible using 118 

the least number of explanatory variables. The notion behind the principle of parsimony is to avoid 119 

overfitting. If many variables are included in a model, a perfect fit could be obtained; but the developed 120 

model would not produce reliable predictions when applied to a different set of locations. In addition, as the 121 

data available to researchers is often limited, and many variables known to significantly affect the frequency 122 
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of crashes may not be available, there is also a need to develop relatively simplistic models using only 123 

explanatory variables than can, in practice, be gathered and projected for use. Given these data limitations 124 

and the need to specify models with a few simplistic explanatory variables, parsimonious models are often 125 

estimated.  126 

However, other authors disagree with the concept of parsimonious models. According to Mannering and 127 

Bhat (2014), the real problem with them is that models having a few simplistic explanatory variables might 128 

exclude significant explanatory variables; and the model-estimated parameter for the basic variables (like 129 

traffic volume) might be estimated with bias (omitted variables bias). The application of the model would be 130 

fundamentally flawed, because changes in the omitted variables cannot be captured and predicted crash 131 

frequencies will be incorrect. Mannering et al. (2016) indicated that if factors affecting the likelihood of an 132 

accident are not included (unobserved heterogeneity), these factors could introduce variation in the impact of 133 

the effect of observed variables on accident likelihood. Omission of important variables introduces bias in 134 

model parameters, and will lead to incorrect inference (Washington et al., 2010; Mitra and Washington, 135 

2012).  136 

Regarding model evaluation, many studies use statistical measures such as Akaike Information Criterion 137 

(AIC) or Pearson Chi-square statistics, among others. Few use cumulative residual analysis as a method to 138 

evaluate the calibrated prediction models. Hauer (2015) recommends analysing residual plots as an essential 139 

tool to calibrate crash models. Lord and Persaud (2000) applied cumulative residual analysis to evaluate 140 

prediction models showing the variation in the accident rate in consecutive years; and they ruled out the use 141 

of the conventional R2.  142 

Another issue to consider is that when a study uses data from highways covering a broad region, there may 143 

be very different characteristics in roadway sections of the same overall type. For instance, in the studies 144 

cited above, the models calibrated included a wide range of AADTs, from as little as 166 veh/day (Anderson 145 

et al., 1999) up to 25,000 veh/day (Park and Abdel-Aty, 2015). In such a situation, even if the models 146 

obtained are valid, they may leave room for improvement. This point was brought out by Vogt and Bared 147 

(1998): they concluded that their model could be improved if the sample had been divided on the basis of 148 

ranges of some of the explanatory variables. Vogt and Bared (1998) came to this conclusion after analysing 149 

models through a comparison of cumulative residuals plotted against leading variables, so as to check for 150 
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systematic trends that might contradict the assumed model form or suggest model refinements. Pardillo et al. 151 

(2006) showed that the stratification of the model oriented by the results of the cumulative residuals analysis 152 

is a valid method to refine crash prediction models. According to Hauer (2004), when a model is used for 153 

prediction, it is important that it fit well throughout the range of each variable. He suggested the possibility 154 

of stratifying the models to overcome the lack of flexibility of the most common exponential functional 155 

forms. 156 

The aim of this paper is to develop SPF analysing cumulative residuals for two-lane rural highways, using a 157 

high number of explanatory variables related to exposure, geometric design, design consistency and roadside 158 

features. In the process of adding variables to the model, two types of models are compared: parsimonious 159 

models vs. fully specified models. The paper is organized in four main sections. The first section has 160 

presented an introduction to the main concepts and previous crash models. In the second section, we describe 161 

the database and the methodology. The third section presents the results and discussion. Finally, in the last 162 

section the main conclusions of this study are given. 163 

2. DATA AND METHODOLOGY 164 

2.1. Road and accident data 165 

This study was conducted on 972 km of two-lane rural highways over flat terrain in Andalusia (Spain). The 166 

roadway data were obtained from the General Direction of Roads under the Andalusian Regional 167 

Government and included roadway inventories with characteristics of the road and traffic volume. Urban 168 

segments, intersections1 and passing or climbing lanes were removed because of their characteristics, as SPF 169 

used to predict crashes in these cases are very different from the SPF that would be obtained on conventional 170 

two-lane rural highways. Moreover, only those sections in which AADT was higher than 500 veh/day were 171 

included in the study, as it was assumed that when traffic volumes are lower, traffic conditions and safety 172 

problems are not representative of regular two-lane rural roads. Segments undergoing significant changes 173 

during the study period were excluded from the sample. As a result, 606 km of two-lane rural highways were 174 

involved in the analysis.  175 

                                                           
1 A portion of the road was considered intersection if it had a stop and left turn lane on the main road. 
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Accident data were obtained from Spain´s “General Traffic-accident Directorate” (DGT) for a five-year 176 

period (2006-2010). The total number of crashes on the studied roads was 1,443. 177 

2.2. Methodology 178 

Initially, each road was divided into horizontal curves and tangents. The next step was to subdivide the 179 

sample into homogeneous road segments. The explanatory variables were then selected. Some of these could 180 

be obtained directly from the database, while others, related with the design consistency, were obtained from 181 

operating speed profiles in each homogeneous road segment. Once the variables had been selected, the 182 

prediction models were calibrated and evaluated by means of several statistical measures. 183 

2.2.1. Homogeneous road sections 184 

Several authors have pointed out the need to study segments with homogeneous characteristics to ensure 185 

coherent road safety studies (Resende and Benekohal, 1997; Fitzpatrick et al., 2000; Pardillo and Llamas, 186 

2003; Cafiso et al., 2010, Garach et al., 2014). Following previous studies (Cafiso et al., 2010, Garach et al., 187 

2014), in order to work with such homogeneous road segments, the following parameters were used: AADT, 188 

average paved width (Pw) and curvature change rate (CCR). 189 

 190 

[Insert Table 1 here] 191 

 192 

For AADT, a new segment was identified when there was a change of the intervals specified in Table 1 193 

(AASHTO, 2010; Garach et al., 2014). For roadway width, the distribution of road widths was analysed and 194 

the ranges defined in Table 1 were used. The sections with constant CCR were identified on the basis of the 195 

section curvature change rate (CCRsect), defined as follows:  196 

 197 

 CCRsect =
∑ |γi|i

L𝐻𝑆
 (1) 198 

where CCRsect = section curvature change rate (gon=km); γi = deflection angle for a continuous element i 199 

(curve or tangent) (gon: centesimal degree); LHS = road segment length (km).  200 

For each road segment, a diagram was drawn. The sum of the γi was represented in the y-axis and the 201 

distance in the x-axis. Road sections with homogeneous horizontal alignment were identified in this diagram 202 
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by sections where the slope of the cumulative angle deviation curve (CCRsect) was relatively constant. Based 203 

on the German procedure (RAS-L, 1995), a minimum section length of 2 km was adopted. A section was 204 

considered homogeneous when the three parameters discussed (AADT, road width, and CCR) were constant. 205 

Applying these criteria to all roads under study, 456 sections with homogeneous characteristics were 206 

identified. 207 

2.2.2. Explanatory variables 208 

Once the homogeneous sections had been defined, the variables considered for the model development were 209 

selected. Explanatory variables related to traffic volume, geometric characteristics, design consistency and 210 

roadside context were considered. A single value for each variable was assigned to every homogeneous road 211 

section. 212 

Table 2 shows the variables initially considered, grouped by categories (exposure, geometry, consistency and 213 

context), along with the main statistics regarding the variables (mean, minimum, maximum and standard 214 

deviation). 215 

Exposure and geometric variables 216 

AADT and percentage of heavy vehicles were obtained directly from the road database. The length of the 217 

section is equivalent to the length of the homogeneous road segment as established above.  218 

The variables lane width, shoulder width, platform width, longitudinal grade and radius were also taken 219 

directly from the road database. Thus, a value for each one of these variables was obtained for each 220 

homogeneous road section. 221 

Other geometric and operational variables, such as the Curvature Ratio (CR) and Tangent Ratio (TR), were 222 

computed using the following equations:  223 

 CR =
∑ LCj

k
j=1

LHS
 (2) 224 

 TR =
∑ LTj

k
j=1

LHS
 (3) 225 

where LHS is the total length of the homogeneous section (km); LCj is the length of jth curve in the 226 

homogeneous section composed by k curves (km); and LTj is the length of jth tangent in the homogeneous 227 

section composed by k tangents (km). 228 
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 229 

[Insert Table 2 here] 230 

 231 

Consistency variables 232 

To obtain the consistency variables, it is necessary to know the operating speed (V85) for each road element. 233 

To this end, the respective operating speed profiles were built using the criteria established by De Oña et al. 234 

(2014). To construct the speed profile, one must first define an operating speed on curves, an operating speed 235 

on tangents and an acceleration or deceleration between the two elements. Given the importance of using 236 

speed prediction models calibrated according to local conditions (Misaghi and Hassan 2005), the model of 237 

Camacho-Torregrosa et al. (2013) was applied in this study, adjusted for horizontal curves on two-way rural 238 

highways in Spain (Eq. 4-5). 239 

 𝑉85 = 97.4254 − 3,310.94/R for 400 m <  𝑅 ≤ 950 𝑚 (4) 240 

 𝑉85 = 102.048 − 3,990.26/R for 70 m <  𝑅 ≤ 400 𝑚 (5) 241 

where R = radius of curvature (m).  242 

To build the speed profile, a constant curve speed was considered. The tangent speed value considered was 243 

110 km/h (desired speed according to Camacho-Torregrosa et al., 2013). Otherwise, the acceleration and 244 

deceleration rates proposed by Fitzpatrick and Collins (2000) for horizontal curves were taken into account. 245 

 246 

The average operating speed from the speed profile (V85avg) was computed on the basis of the operating 247 

speed profile as follows:  248 

 V85avg =
∑ V85iLi

n
i=1

LHS
 (km/h) (6) 249 

where V85i is the operating speed of the ith geometric element (km/h) computed using the operating speed 250 

profile; Li the ith element length of the homogeneous section (km); and n is the number of geometric 251 

elements along a section.  252 

The relative area bounded by the speed profile (Ra) and the average operating speed from speed profile 253 

(V85avg) were also considered as design consistency variables, as well as the standard deviation (σ) of the 254 
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operating speed profile. They were calculated by means of the following equations (Polus and Mattar-Habib, 255 

2004): 256 

 Ra =
∑ ai

n
i=1

LHS
 (m/s) (7) 257 

 σ = √
∑ (V85i−V85avg)2n

i=1

n
 (km/h) (8) 258 

where ai is the area bounded by the operating speed profile and the average operating speed line (m2/s); V85i 259 

is the operating speed of the ith geometric element (km/h); V85avg is the average operating speed along the 260 

entire homogeneous section of length LHS (km/h); and n is the number of geometric elements in the 261 

homogeneous section. 262 

Considering the operating speed profiles, two more indicators were derived: 263 

 Ea10 (m/s) is a measurement of speed dispersion. Similar to Ra, it is the area bounded by the 264 

operating speed profile and the average operating speed profile plus and minus 10 km/h. The length 265 

of the road segment finally divides that area. 266 

 Ea20 (m/s) is similar to the previous indicator, but considering 20 km/h. 267 

Two other consistency indicators were also selected in light of the speed differentials between contiguous 268 

elements in the homogeneous section, using the following equations:  269 

 ∆V10 =
N(∆V>10)

LHS
 (km/h) (9) 270 

 ∆V20 =
N(∆V>20)

LHS
 (km/h) (10) 271 

where N(ΔV>10) is the number of speed differentials (ΔVs) higher than 10 km/h in the homogeneous 272 

section; and N(ΔV>20) is the number of speed differentials (ΔVs) higher than 20 km/h in the homogeneous 273 

section. 274 

One more consistency indicator was obtained with regard to speed differentials between contiguous elements 275 

in a homogeneous segment. The variable average speed reduction ∆(V85i − V851+1)avg was calculated as 276 

follows: 277 

 ∆(V85i − V851+1)avg =
∑ |V85i −V85i+1|n

s=1

n∆V
 (km/h) (11) 278 
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where nΔV is the number of speed differentials in the homogeneous section and V85i is the operating speed of 279 

the ith geometric element (km/h). Road segments are expected to be more inconsistent as this variable 280 

increases, because of the higher speed reductions.  281 

The consistency variable ∆(V85i − Vd)avg was calculated as the difference between the operating speed from 282 

the speed profile and the design speed of the road.  283 

 ∆(V85i − Vd)avg =
∑ |V85i −Vd|n

s=1

n∆V
 (km/h) (12) 284 

Using Ra and σ, Polus and Mattar-Habib (2004) developed a consistency index (Cp) based on a negative 285 

exponential function. 286 

 Cp = 2,808 ∗ e
−0,278[Ra∗(

σ

3,6
)]

 (m/s) (13) 287 

Garach et al. (2014) developed an enhanced version of the Polus consistency model, indicating that the 288 

original consistency model equation was not ideal for consistency analysis. Thus, they developed the 289 

consistency index Cg, likewise dependent on Ra and σ:  290 

 Cg =
195.073

(
σ

3,6
−5.7933)(4.1712−Ra)−26.6047

+ 6.7823 (m/s) (14) 291 

Polus and Mattar-Habib (2004) established some thresholds for Cp, Ra and σ. Accordingly, consistency 292 

could be considered as good, acceptable or poor (Table 3). The same limits as for the model of Polus and 293 

Mattar-Habib (2004) were proposed for the Cg index (Garach et al. 2014).  294 

 295 

[Insert Table 3 here] 296 

 297 

Camacho-Torregrosa (2014) developed another consistency index (Cc) that was defined as follows: 298 

 Cc = √
V85avg

d85𝑎𝑣𝑔

3
 (s1/3) (15) 299 

where V85avg is the average operating speed from speed profile (m/s), and d85avg is the average deceleration 300 

rate (m/s2) defined as:  301 

 d85 =
(𝑣𝑚𝑎𝑥

2 −𝑣𝑚𝑖𝑛
2 )

2×𝑙
𝑥

1

3.62 (m/s2) (16) 302 
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where, in turn, vmax is the operating speed before the deceleration (km/h), vmin is the operating speed after the 303 

deceleration (km/h) and l is the length of the speed transition (m). 304 

Context variables 305 

As it has been demonstrated that direct accesses to roads can significantly increase crashes (Miaou et al., 306 

1996), driveway density (DD) was considered relevant and gathered from the roadway database. 307 

The percentages of existing shoulder (%SH) and of existing paved shoulder (%SHp) in the homogeneous 308 

section were obtained in view of the shoulder width variable available in the roadway database. For each 309 

homogeneous segment the proportion of existence of shoulder was obtained. Speed limit (Vlimit) was also 310 

taken from the roadway database. 311 

2.2.3. Modelling traffic crashes  312 

SPF are developed using the general linear regression (GLM) approach. The GLM approach has the 313 

advantage of overcoming the limitations associated with the use of conventional linear regression in 314 

modelling traffic collisions (Hauer and Lovell, 1988; Sawalha and Sayed, 2001, 2006). The model form used 315 

is shown below. 316 

SPF form 317 

The relationship between crash frequencies and selected variables related was modelled using loglinear 318 

regression models and Negative Binomial (NB) distribution. The NB and Poisson distributions are an 319 

appropriate choice since accident frequencies are integers, relatively small numbers, and necessarily non-320 

negative. The Poisson distribution was not used because it is appropriate in those cases where mean and 321 

variance are equal. When this basic assumption is substantially violated, the NB distribution may stand to be 322 

an improvement over the Poisson distribution (Lord and Mannering, 2010). 323 

According to Sawalha and Sayed (2006), the mathematical form used for any SPF should satisfy the 324 

following conditions: yield logical results (it must not lead to the prediction of a negative number of 325 

accidents and it must ensure a prediction of zero accident frequency for zero values of the exposure 326 

variables) and there must exist a known link function than can linearize the model for the purpose of 327 

coefficient estimation. The mathematical form generally accepted in the literature (Pardillo and Llamas, 328 

2003; Sawalha and Sayed, 2006; Cafiso et al., 2010; Montella, 2010; De Oña et al., 2014) is:  329 
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 Ê(Y) = 𝑒β0∗ 𝐴𝐴𝐷𝑇β1 ∗ Lβ2 ∗ 𝑒∑(βi∗𝑥i) (17) 330 

where Ê(Y) is the estimated number of crashes; L is the length of the segment (km); AADT is the Average 331 

Annual Daily Traffic (AADT) (veh/day); xi are the explanatory variables; and βi are the model parameters. 332 

Hauer (2015) holds that the number of crashes depends on the amount of traffic and the segment length, 333 

which he considers to be intuitively obvious and empirically substantiated. It is therefore clear that a traffic 334 

variable and a segment length variable should be in the model equation. Intuition is, however, insufficient 335 

regarding other variables. The research perspective offers no consensual statistical procedure for adding or 336 

deleting variables from a model equation; the question of which procedures to use obeys “a great deal of 337 

personal judgment” (Draper and Smith, 1981). In some cases the parameter that accompanies the variables in 338 

the models proves incorrect and it is therefore deleted from the model equation. According to Hauer (2015), 339 

the purpose of adding a variable to the model equation is to increase the accuracy with which the number of 340 

crashes is estimated while reducing the magnitude of the standard deviation. According to Sawalha and 341 

Sayed (2006), inclusion of a large number of explanatory variables may cause model overfitting.  342 

Model Evaluation 343 

Four measurements were used here to assess the goodness-of-fit of the model. They are: the ordinary 344 

multiple correlation coefficient (R2), Akaike´s Information Criterion (AIC), the generalized Pearson  345 

statistic and the Scaled Deviance (SD). The AIC compares different models based on the balance between 346 

the bias and variance explained by them. The Pearson  statistic can be used for null hypothesis significance 347 

testing regarding the equivalence of the variance assumed in the modelling effort and the sample variance. 348 

The SD is useful for comparing the proposed model and the saturated model. However, again according to 349 

Hauer (2015), the goodness-of-fit measures describe only how the model fits overall; hence a single number 350 

is insufficient. The model estimation must be nearly unbiased for all variable values. For this reason, it is 351 

commonly recommended to plot Cumulative Residuals (CURE) to examine model fit in detail (Hauer, 352 

2015). The residuals are equal to the difference between the observed and estimated values of the dependent 353 

variable. 354 

Each variable in the model will have its own CURE plot to be used in examining the goodness-of-fit for each 355 

variable and to examine ways in which the fit for that variable could be improved. These residuals, 356 
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calculated based on each one of the variables, should be within certain limits for the model to be considered 357 

well adjusted. The upper and lower limits, accordingly, would be given by 2 ∗ �̂�′
𝑠(𝑖), where �̂�′

𝑠(𝑖) has the 358 

following expression:  359 

 �̂�′
𝑠(𝑖) =  

+
−

�̂�𝑠(𝑖) ∗ √1 −
�̂�2

𝑠(𝑖)

�̂�2
𝑠(𝑛)

 (18) 360 

where �̂�′
𝑠(𝑖) is the limit of the residuals accumulated for the variable of analysis; �̂�𝑠(𝑖) is the square root of 361 

the variance �̂�2
𝑠(𝑖); �̂�2

𝑠(𝑖) is the variance of the accumulated residuals up to the homogeneous section (i); 362 

and �̂�2
𝑠(𝑛) is the variance of the accumulated residuals in the total homogeneous sections (n). 363 

Selection of model variables 364 

As previously mentioned, the variable selection problem has attracted attention in previous traffic crash 365 

research. If many variables are included in a model, a perfect fit to the data can be achieved. Yet the same 366 

model could be over-fitted and perform poorly when applied to a new sample. Sawalha and Sayed (2006), 367 

applying the principle of parsimony, found that using less but statistically significant explanatory variables 368 

can avoid overfitting and improve the reliability of a model. Still, as noted by Mannering and Bhat (2014), 369 

parsimonious models are not only biased, but are fundamentally flawed, and offer little practical value. To 370 

control the overfitting when fully specified models are developed, Hauer (2015) found that models whose 371 

CURE plot does not go beyond the 0.5σ´ limits are close to being unbiased, and that attempts to further 372 

“improve” such models court the danger of overfitting. With this guideline one can decide whether a model 373 

requires improvement or is good enough to be left alone. In this paper, parsimony models and fully specified 374 

models are developed and compared. The latter are referred to here as best-fit accident prediction models. 375 

The steps followed in the selection of model variables were as follows:  376 

 Step 1: Building a model with the variables AADT and length. The goodness-of-fit criteria shown above 377 

as well as the cumulative residuals of the model are analyzed. This provides the Basic Model. 378 

 Step 2: Developing best-fit accident prediction models. Other predictive variables are subsequently 379 

introduced to the basic model, until all variables (and their combinations) are tested. Models with all 380 

possible combinations of the available variables are developed and analyzed. The decision to keep a 381 

variable in the model is based on four criteria. First, the t-statistic for each parameter had to be 382 

significant at the 95% confidence level. Second, engineering judgment deemed the variables´ sign to be 383 
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logical. Third, the variable exhibited a low correlation (i.e. <0.7) with other independent variables 384 

already in the model (Wei and Lovegrove, 2013). Fourth, it was verified that the cumulative residuals 385 

were within the established limits. In addition, according to Hauer (2015), to avoid model overfitting, it 386 

was verified that the model´s CURE plot did not surpass the 0.5σ´ limits. The order in which variables 387 

are added was based on their t-stat, from highest to lowest. 388 

 Step 3: Verifying which of the models developed in step 2 actually meet the parsimonious criterion. 389 

Thus, in this step parsimonious accident prediction models are developed. A new variable introduced in 390 

the model in step 2 is kept if the addition of this new variable generated a significant drop in the SD for a 391 

95% level (>3.84). Otherwise, the parsimonious criterion dictates that the variable should not be 392 

considered (Sawalha and Sayed, 2006).  393 

Based on Sawalha and Sayed (2006), an outlier analysis was performed for all the models. First, potential 394 

outliers are detected and they are removed one by one. The drop in SD is observed after the removal of each 395 

point. Then, points causing a significant drop in SD are considered influential outliers, and thus they are 396 

eliminated. 397 

Regarding to the correlation between the variables indicated in steps 2 and 3, according to Turner et al. 398 

(2012), identification of variable correlations is required to avoid having two or more significantly correlated 399 

variables in the same prediction model. In such cases the variability within one variable does, to a certain 400 

extent, predict the variability in the correlated variable. The authors further indicate that adding a variable 401 

correlated to those already in an existing model does not improve the fit of the model compared with the 402 

addition of important non-correlated variables. In the case at hand, the correlation matrix was previously 403 

calculated. Some variables, such as paved width and shoulder width were highly correlated (coefficient over 404 

0.70). However, it was decided to keep both variables in the analysis, but imposing that two correlated 405 

variables were never in the same model. 406 

3. RESULTS 407 

Having identified the 456 homogeneous sections by means of the variables AADT, paved width and CCR, 408 

the values of the variables in each one of these sections were calculated (see Table 2). Below the models are 409 

developed. 410 

3.1. Step 1 Results: base model 411 
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Following the process described in the methodology, the base model considers only two variables: AADT 412 

and length (Eq. 19).  413 

 Ê(Y) = 𝑒−12.3248∗ 𝐴𝐴𝐷𝑇0.7512 ∗ L1.0083 (19) 414 

Figure 1 shows the residual analysis for the variables AADT (Fig.1a), length (Fig.1b) and fitted crashes 415 

(Fig.1c). Fig.1b and Fig.1c show satisfactory results.  416 

However, the AADT cumulative residuals plot showed that the fit was not good (Fig 1a). On the one hand, in 417 

a range of AADT between 9,200 and 19,000 veh/day the values of the residuals surpass the limits of ±2σ; 418 

and on the other hand, after an AADT of approximately 4,000 veh/day, the curve begins to rise considerably 419 

and continuously. From an AADT of 5,000 veh/day onward the number of crashes observed is greater than 420 

the crashes estimated with the model (the accumulated sum of the differences between the crashes that 421 

occurred and those expected is positive, and therefore the curve is above the x axis).  422 

This shows, as highlighted Hauer (2004), that usually it is not easy to find a relatively simple function that 423 

suits the data along its entire domain. For this reason, and according to other authors (Vogt and Bared, 1998; 424 

Hauer, 2004; Pardillo et al., 2006), the sample was stratified. A stratification of the sample based on splitting 425 

the sample by AADT ranges was explored. 426 

The "Observed/Fitted" ratio was chosen for examining if fitted values are into line with observed values 427 

(Table 4). 428 

[Insert Table 4 here] 429 

 430 
As Table 4 shows, the AADT ranges in which there are greater differences between fitted and observed 431 

values are the 4,000-5,000 range (ratio 1.20) and the 5,000-6,000 range (ratio 1.27). Different stratifications 432 

of the sample considering the different thresholds for each range were explored:  433 

1. AADT ≤ 4,000 and AADT > 4,000 434 

2. AADT ≤ 5,000 and AADT > 5,000 435 

3. AADT ≤ 6,000 and AADT > 6,000 436 

The first strata (AADT≤4,000 and AADT>4,000) was selected because the models provided better overall 437 

results than the ones developed in the other stratifications. Thus, the sample was divided in two sub-samples 438 

(one in which all the AADT values were less than 4,000 veh/day and another in which all the AADT values 439 
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were greater than 4,000 veh/day), and different models could be derived according to these different ranges 440 

of AADT.  441 

 442 

[Insert Figure 1 here] 443 

 444 

Table 5 (model 1) and Table 6 (model 1) show the basic models obtained for the two different AADT values. 445 

In both models AADT and length are significant. Moreover, their coefficients present the expected signs 446 

(positive): greater volume of traffic and greater section length are associated with more crashes. As for the 447 

overall goodness of fit, the R2 values obtained were similar to those reported by previous authors (Abdel-Aty 448 

and Radwan, 2000; Camacho-Torregrosa et al., 2013).  449 

 450 

[Insert Figure 2 here] 451 

 452 

Figure 2 shows the residual analysis for the models calibrated for AADT<4,000 veh/day and for 453 

AADT>4,000 veh/day with regard to the variables AADT, length and fitted crashes. As can be seen, the 454 

residuals are substantially improved. Hence models will be created for different AADT values, as they will 455 

significantly enhance the base model. 456 

Regarding the outliers, the difference between adjusted and observed values was calculated in the entire 457 

database and the data that had a large difference between the two were considered as possible outliers. 458 

Seventeen points (3.74% of the sample) were detected as potential outliers. None of them caused a 459 

significant drop in scaled deviance and therefore they were kept in the analysis (Sawalha and Sayed, 2006). 460 

The same outlier process was carried out in each of the databases (AADT<4,000 and AADT>4,000) and the 461 

same results were obtained; so all the possible outliers were kept in the analysis. 462 

In addition, according to the outlier ignoring approach (El-Basyouny and Sayed, 2010), if few outliers are 463 

identified, representing a small percentage of the sample size (e.g., less than 5%), it is still acceptable to 464 

include them —especially if the analysts are not certain about whether or not they are outliers. 465 

3.2. Step 2: Results of best-fit models  466 
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At this point the variables of Table 2 are added to the exponent part of the model of Eq. 17. These models are 467 

developed with all possible combinations of the available variables complying with all the criteria listed in 468 

step 2, related to t-statistic, logical sign, no correlation and cumulative residuals. Models are calibrated 469 

considering, separately, the AADT<4,000 veh/day database (Table 5) and the AADT>4,000 veh/day 470 

database (Table 6). Table 5 presents parameter estimates, p-values, and the goodness-of-fit measures for the 471 

models with AADT<4,000 veh/day. 472 

Table 5 only shows models with four variables. Models with more (five and six variables) are included in the 473 

Appendix to simplify reading. These models give increasingly complex models without providing significant 474 

improvements. No model with more than six variables meets the conditions of step 2. 475 

[Insert Table 5 here] 476 

 477 

Table 5 shows that the variables AADT and length are significant and present the expected signs. The 478 

variables participating in the models built with a single variable in the exponent part are: 479 

- The consistency index Cc 480 

- The driveway density (DD). 481 

The variables that participate in the models with two variables in the exponent part are: 482 

- The DD combined with variables: percentage of shoulder; percentage of paved shoulder; consistency 483 

index Cc 484 

- The longitudinal grade (LGr) combined with variables: average operating speed and consistency 485 

index Cg. 486 

All the variables in Table 5 are significant (p<0.05). The two exposure variables AADT and length have 487 

positive signs, indicating that traffic volume and length increase crash occurrence. In the next section the 488 

coefficients obtained for the rest of the variables will be interpreted. 489 

Model 5 in Table 5 presents the best goodness-of-fit values according to three of the four measurements of 490 

fit calculated (R2=0.571; AIC=797.446; 2=263.985) and it includes the variables: AADT, length, percentage 491 

of paved shoulder in the section and driveway density.  492 

Table 6 presents the parameter estimates, p-value, and goodness-of-fit measures for the models with AADT 493 

> 4,000 veh/day.  494 
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Table 6 only shows models with four variables. (Models with five variables are shown in the Appendix.) No 495 

model with more than five variables meets the conditions of step 2.  496 

 497 

[Insert here Table 6] 498 

 499 

All the variables of Table 6 are significant at the 95% confidence level. The variables AADT and length 500 

have, as in Table 6, positive signs. The significance of the rest of the variables is explained below. 501 

In the case of a single variable in the exponent part, the variables that intervene are: 502 

- Percentage of heavy vehicles 503 

- Average operating speed  504 

- Consistency index Cp  505 

- Driveway density.  506 

In the case of two variables in the exponent part, the variables intervening are: 507 

- Percentage of heavy vehicles combined with the variables: CCR; average operating speed; 508 

consistency index Cp; consistency index ΔV10 509 

- The mean longitudinal grade combined with variables: CCR; average operating speed; consistency 510 

index Cp; consistency index  Cg; consistency index ΔV10; and consistency index Cc 511 

The models with variables in the exponent part present very similar values for R2, AIC, SD and 2 .  512 

In the models developed in both databases (AADT<4,000 and AADT>4,000 veh/day), explanatory variables 513 

that have statistically significant model parameters contribute to the explanation of the variability of crash 514 

data and allow predicting crash frequencies at new locations not used in the model development. In addition 515 

it is seen that no model is over-fitted, and therefore the results would be transferable to different locations.  516 

Still, the extrapolation of these results to the same type of roadway in other countries is a matter to be 517 

approached with caution.  518 

 519 

3.3. Step 3: Parsimonious models  520 

At this point it is necessary to confirm the variables that were added in Step 2 (meeting the criteria  related to 521 

t-statistic, logical sign, no correlation and cumulative residuals), moreover generated a significant drop in the 522 
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SD at a 95% level. If a given variable does not generate a significant drop, it is not kept in the model. Models 523 

are calibrated considering, separately, the AADT<4,000 veh/day database and the AADT>4,000 veh/day 524 

database.   525 

If the parsimony criterion is applied in the AADT<4,000 veh/day database, only two models are obtained: 526 

model 1 (basic model) and model 2 in Table 5. The driveway density (DD) variable is the only one that 527 

should be retained in the model. None of the other variables should be added according to the parsimony 528 

criterion because none of them meets the above criteria (t-ratio of its estimated parameter is not significant at 529 

the 95% confidence level, the addition of the variable to the model does not cause a significant drop in the 530 

scaled deviance at the 95% confidence level, or it does not have a logical sign). 531 

If the parsimony criterion is applied in the AADT>4,000 veh/day database, the only resulting model is model 532 

1 (basic model) of Table 6. None of the other variables should be added according to this criterion.  533 

In both databases, the parsimonious models have proved to be quite simplistic. This is a good solution if the 534 

data available to researchers is limited. Moreover, as underlined by Mannering and Bhat (2014), if a model is 535 

developed using only the volume of traffic and length as explanatory variables, it will exclude significant 536 

explanatory variables bias because there are clearly many other factors affect the frequency of crashes. 537 

3.4. Analysis of variables in the models 538 

In order to facilitate interpretation of the models obtained for AADT under and over 4,000 veh/day, 539 

following several authors (Osgood, 2000; Olmstead, 2001; Chin and Quddus, 2003), the coefficients are 540 

transformed to incidence rate ratios (IRR) —i.e., eβ rather than β. IRR can take on different values. If the IRR 541 

of a given variable is much less than 1.0, then an increase in the value of the variable is associated with a 542 

significant improvement in safety. Conversely, if the IRR is much greater than 1.0, an increase in the value 543 

of the variable is associated with a significant decline in safety. Otherwise, the variable has no effect on 544 

safety (Chin and Quddus, 2003).  545 

 546 

[Insert Table 7 here] 547 

 548 

Table 7 shows the final set of all the variables included in the models, their maximum and minimum 549 

coefficients, the models where they appear and the corresponding IRR. To facilitate interpretation, the 550 

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7101621239&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7101621239&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7101621239&zone=
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IRR0.10 is given, indicating the effect that a 10% increase in the independent variable would have on the total 551 

number of crashes. 552 

Models for AADT<4,000 veh/day database 553 

Of all the geometric variables considered in the models calibrated in the AADT<4,000 veh/day database, the 554 

only ones kept in the models are the average longitudinal grade (LGr) and the average operating speed 555 

(V85avg). LGr presents a negative sign, thus indicating that when the average longitudinal grade increases, the 556 

occurrence of crashes decreases. Several studies (Pardillo and Llamas, 2003; Pardillo et al., 2006; Montella 557 

et al., 2008; Montella, 2010; Cafiso et al., 2013) report similar results. The coefficients for LGr vary between 558 

-0.0171 and -0.0128 (Table 5 and Table 7), indicating that all other things being equal, an increase of 10% in 559 

longitudinal grade is associated with a 0.1%-0.2% reduction in total annual crashes (IRR0.1 between 0.999 560 

and 0.998). This value for IRR indicates that longitudinal grade has little effect on safety. 561 

V85avg shows a negative sign, indicating that if V85avg increases, the occurrence of crashes decreases. This is 562 

logical if one considers (disregarding other factors) that higher speed on flat terrain could be indicative of 563 

good road design, hence fewer crashes. Hauer et al. (2004) found that the higher the speed limit, the fewer 564 

the expected crashes. It is likewise possible that roads where a low speed is posted may be considered to be 565 

of high risk. IRR0.1 for V85avg is 0.998, indicating that all other things being equal, a 10% increase in V85avg is 566 

associated with a 0.2% reduction in total annual crashes. 567 

Cg and Cc present a positive sign, indicating that the worse the section, the greater the number of crashes 568 

expected (Ng and Sayed, 2004; Cafiso et al., 2010; Camacho-Torregrosa et al., 2013; Garach et al., 2014). 569 

IRR for Cc is 1.000, meaning this variable has no effect on safety. The IRR0.1 for Cg is 0.977, so that other 570 

things being equal, an increase of 10% in Cg is associated with a 2.3% reduction in total annual crashes. 571 

Among the context variables, the percentage of shoulder and the driveway density variables are found to 572 

contribute to accident occurrence significantly. The estimated coefficients of the variable percentage of 573 

shoulder (paved or not paved) are highly significant.  574 

The coefficient for the percentage of shoulder is -0.5116, indicating that, all other things being equal, an 575 

increase of 10% in the percentage of shoulder is associated with a 5% (IRR0.1 is 0.950) reduction in total 576 

annual crashes. The variable percentage of paved shoulder has a similar effect, reducing the number of 577 

crashes by 6.3% when there is an increase of 10% for paved shoulder in the segment. The negative sign 578 
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accompanying these variables has also been reported by other authors. Head and Kaestner (1956) concluded 579 

that total crashes increase with increasing shoulder width, except for roadways having AADT between 3,600 580 

and 5,500 veh/day. Perkins (1956) found that all accident types decreased with increased shoulder width for 581 

AADT's between 2,600 and 4,500 veh/day. Stohner (1956) observed reductions in crashes as shoulder width 582 

increased, especially in the 2,000-6,000 AADT range. Hadi et al. (1995) found that increasing lane and 583 

shoulder widths decreased the accident rate. Fitzpatrick et al. (2000) reported that the number of crashes 584 

decreased when shoulder and lane width increased. Dell’Acqua and Russo (2008) concluded that accident 585 

frequency increases with lower roadway paved width. Anastasopoulos et al. (2008) also concluded that the 586 

number of crashes decreases when the shoulder width is greater. 587 

Driveway density has a positive sign, indicating that higher driveway density increases the likelihood of 588 

accident occurrence. Other authors have arrived at similar results (Fitzpatrick et al., 2000, 2010; Pardillo and 589 

Llamas, 2003, Pardillo et al., 2006; Cafiso et al., 2010). This variable intervenes in the four models. In all of 590 

them the coefficient ranges from 0.1121 to 0.1145, thus indicating that a 10% increase in driveway density is 591 

associated with increase of 1.1%-1.2% in the number of crashes (IRR0,1 is between 1.011-1.012).  592 

Models for AADT>4,000 veh/day database 593 

In the models obtained for AADT>4,000 veh/day, among the exposure variables, the percentage of heavy 594 

vehicles has a high influence on crashes (models 2, 6-9 in Table 6). The highest value for β is 2.0429 (Tables 595 

6 and 7), which means that a 10% increase in the percentage of heavy vehicles would result in a 22.7% 596 

greater crash occurrence (IRR10 is 1.227). This variable has a positive sign: a higher number of crashes is 597 

associated with the higher percentage of heavy vehicles. Ramírez et al. (2009) demonstrated, with different 598 

roadway types, that a reduction in the total number of crashes would occur as a result of a drop in the number 599 

of heavy vehicles. Hosseinpour et al. (2014) presented similar findings. 600 

CCR, average longitudinal grade, and average operating speed also contribute to accident occurrence. CCR 601 

has a high influence on crashes. The parameters maximum and minimum estimate for CCR are 2.1633 and 602 

1.9699 (Table 7). These values show that a 10% increase in the percentage of CCR increases the number of 603 

crashes by an average of 24.2% (IRR10 is 1.242) or 21.8% (IRR10 is 1.218). The positive sign by this variable 604 

indicates that the greater the change in curvature, the more the expected crashes. Cafiso et al. (2013) 605 

obtained the same sign for this variable. The average longitudinal grade and the average operating speed 606 
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variables have the same signs as in the models obtained for AADT<4,000 veh/day. The values of IRR are 607 

also similar, although they have a lesser influence on crashes (they are associated with a 0.1%-0.2% 608 

reduction in total annual crashes). 609 

The consistency variables that intervene in all the models are: indexes Cg and Cp, and ΔV10. Index Cg has a 610 

negative sign, as in the AADT<4,000 veh/day database, indicating that the worse the road design, the greater 611 

the number of crashes expected. However, the coefficient that accompanies this variable in the AADT>4,000 612 

database is lower, meaning that the variable is less influential with regard to crashes (IIR10 is 0.986, hence a 613 

1.4% reduction in total annual crashes). Index Cp has a negative sign that leads to the same interpretation as 614 

for Cg. The IRR10 for Cp varies between 0.998 and 0.987, indicating that all other things being equal, an 615 

increase by 10% in Cp is associated with a reduction between 0.2%-1.3% in total annual crashes. ΔV10 616 

presents a positive sign, indicating that more the differences in speed (over 10 km/h) among successive 617 

elements entail a greater probability of crash occurrence. This variable has little effect on safety, given that 618 

the IRR10 varies only from a minimum of 1.007 to a maximum of 1.008; a 10% increase in the variable 619 

ΔV10 is associated with an increase of 0.7%-0.8% in total crashes. 620 

The only context variable that intervenes in the models is driveway density, with the same positive sign as 621 

seen for the models obtained in the AADT<4,000 veh/day database. This variable affects crashes less in the 622 

AADT>4,000 day database than in the AADT<4,000 database. In the latter, as commented earlier, the 623 

coefficients of the order of 0.11 would indicate that a 10% increase in the driveway density variable is 624 

associated with approximately 1% more crashes. In the database with AADT>4,000 the coefficient of 0.0524 625 

implies an increase in crashes of 0.05%.  626 

Comparison of the models obtained for AADT<4,000 veh/day and for AADT>4,000 veh/day  627 

A general comparative analysis of the models obtained in both databases shows that there are variables that 628 

have a great effect in one database but not in the other. For example, the variables percentage of heavy 629 

vehicles and curvature change rate (CCR) are included in the AADT>4,000 veh/day database and not in the 630 

other; whereas the variables percentage of shoulder (paved or not paved) and driveway density are in the 631 

AADT<4,000 veh/day database but not in the other. 632 

A detailed comparison of the models obtained in the two databases points to these noteworthy findings: 633 
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 In five models for AADT>4,000 veh/day there appears the variable percentage of heavy vehicles 634 

(not appearing for AADT<4,000 veh/day). In the AADT>4,000 veh/day database, the percentage of 635 

heavy vehicles has, together with the variable CCR, the greatest relative effect on the crash 636 

frequency among all the independent variables. Thus, a 10% increase in %hv is thought to cause an 637 

increase of up to 22.7% (model 7) in the fatal crashes. It is logical that heavy vehicles influence 638 

crash statistics on roadways with high traffic volume more than they do on roadways with low traffic 639 

volume. A high volume of traffic usually translates as high light vehicle traffic, which could produce 640 

scenarios of even greater traffic conflicts caused by speed differences, resulting in overtaking 641 

maneuvers using the oncoming lane, thereby increasing the risk of crashes. 642 

 CCR is included in roadways with AADT>4,000 veh/day but does not take part in any model when 643 

the database is AADT<4,000 veh/day. This variable has a high effect on the crashes in roadways 644 

having AADT>4,000 veh/day, as a 10% increase in CCR is thought to cause an increase of up to 645 

24.2% (model 10) in the crashes. Therefore, roadways with a volume of traffic over 4,000 veh/day 646 

should take special care regarding curvature changes. The high volume of traffic could produce a 647 

greater number of dangerous maneuvers in which a change in curvature would favor the occurrence 648 

of crashes. 649 

 The percentage of shoulder (paved or not paved) participates in the models based on AADT<4,000 650 

veh/day, but in no model with the database AADT>4,000 veh/day. Roadways with a greater volume 651 

of traffic usually have a shoulder, and it is usually paved; whereas along roadways with less traffic 652 

this is generally not the case. Moreover, the effect of both these variables in the models with 653 

database AADT<4,000 veh/day is considerable. Coefficients between -0.5111 and -0.6464 indicate 654 

that a 10% increase in this variable is associated with a reduction in total crashes between 5% and 655 

6.3%.  656 

 When AADT>4,000 veh/day, the driveway density appears in just one of the models, while this 657 

variable intervenes in four of the models when AADT<4,000 veh/day. The coefficients show that 658 

this variable has more impact on crashes in the AADT<4,000 veh/day database than in the 659 

AADT>4,000 veh/day database. In the former, the regression coefficient of the order of 0.11 660 
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indicates that an increase by 10% in the variable driveway density means an increase in crashes of 661 

1.1%; in turn, in the database of roadway with AADT>4,000 veh/day the regression coefficients 662 

around 0.05 point to an increase of 0.5%. This could be due to the fact that roads with more traffic 663 

volume have more controlled access than roadways with less traffic. In addition, Spanish legislation 664 

allows left turns on roadways with AADT<5,000 veh/day if they have a middle lane for waiting, but 665 

left turns are not permitted on roadways with AADT>5,000 veh/day. 666 

 Cg intervenes in models of both databases and it presents the same effect as CCR: inconsistencies in 667 

the road’s design with high traffic volumes can give rise to a great number of dangerous maneuvers, 668 

with an ensuing greater risk of crash occurrence. 669 

4. CONCLUSIONS 670 

This paper investigates the relationship between crash frequency and several variables related with exposure, 671 

geometry, consistency and context for Spanish two-lane rural highways on flat terrain. Cumulative residual 672 

analysis of the model built with only the variables AADT and length made it possible to identify regions 673 

where the model either under- or over-estimates crashes. The original sample was divided on the basis of 674 

ranges of the explanatory variable AADT. Stratification for AADT under and over 4,000 veh/day led to a 675 

significant improvement of the models generated. 676 

The parsimonious models have proved to be quite simplistic in both databases. This is a good solution if the 677 

data available to researchers as limited. The problem is that the model will be excluding significant 678 

explanatory variables bias because there are clearly many other factors affecting the frequency of crashes.  679 

The fully specified models show appreciable differences for the SPF obtained in each one of the databases. 680 

In the AADT>4,000 veh/day database, the percentage of heavy vehicles has a large effect on the crash 681 

frequency. A 10% increase in the percentage of heavy vehicles is determined to cause a 22% increase in the 682 

occurrence of crashes. The variable CCR is also highly significant for crashes on this roadway type, as a 683 

10% increase in CCR means 24% more crashes. Neither of these variables is included in the models for 684 

AADT<4,000 veh/day.  685 

In the AADT<4,000 veh/day database, the percentage of shoulder (paved or not paved) bears a high 686 

influence on crashes. According to the models generated, an increase of 10% in these variables is associated 687 

with around a 5% reduction in total crashes. Notwithstanding, this variable does not participate in any model 688 
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generated for AADT>4,000 veh/day, as highways with a greater volume of traffic normally have a shoulder, 689 

most often a paved shoulder, whereas roadways with less traffic do not. The driveway density takes part in 690 

four models of the AADT<4,000 veh/day database and in just one model based otherwise. In the first 691 

database an increase of 10% in the variable driveway density would give an increase of 1.1% in the 692 

occurrence of crashes, while in the AADT>4,000 veh/day database, there would be an increase of 0.5%. On 693 

roadways with greater volumes of traffic, the number of driveways is usually regulated and channeled 694 

through service roads. Furthermore, Spain´s regulations allow for left turns on roadways with AADT under 695 

5,000 veh/day as long as there is a middle lane for waiting, whereas this is not allowed for roadways with 696 

AADT>5,000 veh/day.  697 

In view of the results expounded here, Spain´s Highway Administration should pay special attention to the 698 

curvature changes and the percentage of heavy vehicles on two-lane rural highways with a volume of traffic 699 

exceeding 4,000 veh/day, as well as the percentage of shoulder and the driveway density on two-lane rural 700 

highways with a volume of traffic under 4,000 veh/day. Extrapolation of these results to this same type of 701 

roadway in other countries is a matter to be approached with caution. 702 

As future work, different stratifications of the sample according to the different AADT values could be 703 

analysed. 704 

An additional analysis could also be carried out using advanced techniques to deal with variation of the 705 

effectiveness of predictor. Some of these techniques might be: Generalized Additive Models (GAM) which 706 

offer more flexible functional forms than traditional generalized models and allow for more adaptable 707 

variable interactions (Li et al., 2010); or Multivariate Adaptive Regression Splines (MARS) which avoid the 708 

over-estimation problem through consideration of interaction impacts between variables (Park, 2015).  709 

Furthermore, the developed crash prediction models predict crashes for all types of accidents and they do not 710 

distinguish crash severity levels. If enough data were available, it would be interesting to conduct analyses 711 

for different crash types and severity levels in future research efforts. 712 
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