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ABSTRACT8

The new environmental paradigms imposed by climate change and urbanization processes are9

leading cities to re-think urban management services. Propelled by technological development10

and the internet of things, an increasingly smart management of cities has favored the emergence11

of a new research field, namely the smart city. Included in this new way of considering cities,12

smart water systems are emerging for the planning, operating, and managing of water distribution13

networks (WDNs) with maximum efficiency derived from the application of data analysis and other14

information technology tools. Considering the possibility of improving WDN operation using15

available demand data, this work proposes a hybrid and near real-time optimization algorithm to16

jointly manage pumps and pressure reducing valves for maximum operational efficiency. A near17

real-time demand forecasting model is coupled with an optimization algorithm that updates in real18

time the water demand of the hydraulic model and can be used to define optimal operations. The19

D-town WDN is used to validate the proposal. The number of control devices in this WDN makes20

real-time control especially complex. To cope with this feature, computational methods must be21

carefully selected and tuned. In addition to energy savings of around 50%, the methodology22

proposed in this paper enables an efficient system pressure management, leading to significant23

leakage reduction.24
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List of Symbols, Variables, and Acronyms25

ANN - Artificial neural network;26

DMA - District metered area;27

NARX - Non-linear autoregressive neural network with exogenous input;28

NSGA II - Non-dominated sorting genetic algorithm II;29

PRV - Pressure reducing valve;30

PSO - Particle swarm optimization;31

VSD - Variable speed drive;32

WDN - Water distribution network;33

UKF - Unscented Kalman filter;34

bh - Bias of hidden layer;35

bo - Bias of output layer;36

C - Pump operational costs;37

ct - Energy cost at time step t;38

c1 - Cognitive parameter;39

c2 - Social parameter;40

dx - Index for number of exogenous components;41

dy - Index for number of delay elements;42

F(·) - State function;43

fh(·) - Activation function for hidden layer;44

fo(·) - Activation function for output layer;45

g(s) - Constraint function calculated for a solution vector s;46

H(·) - UKF function;47

H(αp,t) - Hydraulic head added by pump p at time step t;48

Kv,t - Setpoint of the valve v at the time step t;49

Lk,max - Maximum tank level of tank k;50

Lk,min - Minimum tank level of tank k;51
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Lk,t - Tank level of tank k at time step t;52

mmax - Maximum number of switches allowed during the operational horizon;53

mp - Number of switches during the operational horizon for pump p;54

Nn - Number of nodes in the network;55

nt - Measurement noise;56

Pe - Operational horizon;57

Pj,t - Pressure at node j at time step t;58

Pmin - Minimum operational pressure allowed;59

Q(αp,t) - Flow pumped by pump p at time step t;60

r1 and r2 - Random numbers.61

vt - Process noise;62

w - Inertia weight;63

wo
h - Weight h for output layer;64

wh
i - Weight i for exogenous data in hidden layer;65

wh
j - Weight j for delay data in hidden layer;66

x(i) - Component of exogenous input vector;67

xt - exogenous input for time step t;68

y(k) - Output value at time k;69

yt - Output value for time step t;70

αp,t - Speed of pump p at time step t;71

Γt - Global best position at iteration t;72

γ - Specific weight of water;73

∆t - Duration of the time step;74

δt - State vector at time step t;75

ζ t
i - Position of particle i at iteration t;76

η(αp,t) - Efficiency of pump p at time step t;77

λt
i - Local best position at iteration t;78
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νt
i - Velocity of particle i at iteration t;79

ρ(s) - Penalty function calculated for a solution vector s;80

INTRODUCTION81

Operational decisions in water distribution systems should be made to supply consumers under82

safe conditions, and address growing environmental challenges. It is critical to develop consistent83

methods for decision-making in water distribution systems to reduce operating costs and energy84

consumption, while maintaining sufficient quality of service and also recovering energy when85

possible. Operational rules for pumps and valves can bring significant improvements to the hydro-86

energetic efficiency of water distribution networks (WDNs) (Abkenar et al., 2013; Bene et al., 2013;87

Skworcow et al., 2014; Brentan et al., 2015; Lima et al., 2017).88

Several works have been proposed in the literature as solutions for optimal pump scheduling.89

These proposed techniques include: linear programming (Jowitt and Xu, 1990); dynamic program-90

ming (Jowitt and Germanopoulos, 1992); and evolutionary algorithms, such as genetic algorithms91

(GAs) (Farmani et al., 2007) and particle swarm optimization (PSO) (Brentan and Luvizotto Jr,92

2014).93

With the development of computational hydraulic models, many optimization algorithms may94

be coupled with various hydraulic models. As an example, Sakarya and Mays (2000) presents a95

non-linear optimization method coupled with EPANET (Rossman, 2000) to determine the optimal96

operation of pumps, while considering water quality. The authors, using an hourly discretization97

of time, find the pump statuses (switch operations) for each time step. Pump optimization using98

suitable switch operation has been exploited to reduce energy consumption and reduce the number99

of pump switches, as presented by Tang et al. (2014). The authors render the pump optimization100

process into a general optimal control (GOC) procedure and use PSO to solve the optimization101

problem.102

The use of bio-inspired algorithms can also be highlighted for pump scheduling problems.103

(Wegley et al., 2000) presents pump scheduling optimization with variable speed drives (VSDs).104

The authors highlight the efficiency of the method to control pressure and reduce energy costs105
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for WDN operation. López-Ibáñez et al. (2008) propose the ant colony optimization algorithm to106

define optimal maneuvers of pumps, comparing the results for two networks, and concluding that107

computational efficiency is improved. Brentan and Luvizotto Jr (2014) apply a modified version of108

PSO, with two levels, to define the optimal pump scheduling for pump stations with VSDs. In the109

first level, the algorithm determines the pumps that will operate at each time-step, and in the second110

level, the method finds the optimal speed for each pump. Recently, the optimal control of pumps111

working with VSDs was exploited from the control theory viewpoint, as presented by (Page et al.,112

2017). The authors highlight the benefits of a hybrid approach (hydraulic and control theories) for113

optimal pump control.114

In addition to pumps, optimal operation can be applied to pressure reducing valves (PRVs),115

which, if well operated, enable the reduction of water loss through pressure management. Some116

works are proposed in the literature to define the optimal location and operational point of control117

valves, with the focus on PRVs (Araujo et al., 2006; Dai and Li, 2014; Brentan et al., 2017c; Fontana118

et al., 2017).119

The optimal placement of valves using GAs is addressed by Reis et al. (1997). In this work, the120

authors define the number of PRVs and the location of each. Nazif et al. (2010) propose a hybrid121

model using GAs and artificial neural networks (ANNs) to estimate the hydraulic state of a WDN.122

The authors aim to improve pressure management. Dai and Li (2014) present an optimal valve123

placement by mixed integer and non-linear programming, addressing the physical and operational124

constraints of the hydraulic problem using penalty functions. De Paola et al. (2017) present an125

effective methodology for PRV placement and control solved with the harmony search algorithm.126

Leakage is minimized as a result of the improved operation of PRVs.127

Most recently, interest in dividing WDNs into district metered areas (DMAs) has gained space128

in WDN analysis. Such a division enables not only a better management of the system, but129

also the determination of specific rules that can improve the hydraulic and energetic efficiency of130

systems (Abraham et al., 2017; Campbell et al., 2016). Aiming to improve pressure management,131

Brentan et al. (2017c) present a network community detection algorithm coupled with a multi-level132

5 Brentan, December 2, 2017



optimization technique for the optimal placement and definition of operational set-points for PRVs.133

According to the authors, the multi-level optimization process reduces computational effort during134

optimization. In the first level, the optimal placement of the valves work with integer variables,135

while in the second level, that is to say, for the optimal operational point, the process works with136

continuous variables.137

Although optimal operation of WDNs has been approached with different techniques, the joint138

optimal rule definition for valves and pumps has not yet been fully exploited. AbdelMeguid (2011)139

presents the modulation of PRVs and the optimal operation of pumps for reducing leakage and140

improving the energetic efficiency of the WDN. Gao et al. (2014) present an algorithm to reduce141

energy costs and water loss through the optimal control of pumps and valves. The authors added the142

costs related to the lost water volume on top of the energy cost in the worse pressure management143

scenario. Tricarico et al. (2014) propose a joint operation of pumps and valves and also pumps144

as turbines (PATs) for the optimal management of water systems. A multi-objective analysis was145

conducted, minimizing the energy costs, the difference between the minimal allowed pressure and146

the operational pressure, and maximizing the energy recovered by the PATs. In this case, the Pareto147

front must be analyzed by the operators, who, using their practical skills, can identify the best148

operational solution.149

In addition to this joint control, an analysis during a suitable operational horizon must be taken150

into account to find overall optimal control rules. This horizon is paramount because water demand151

oscillates during the day, and optimal control rules can rapidly become outdated for a new set of152

demands. Near real-time control can bring improvements to WDN management. Kang (2014)153

presents a joint pump and valve control in near real-time. The authors define the statuses of the154

pumps (ON/OFF) controlling the maximum and minimum pressures with feedback of the hydraulic155

state from a supervisory control and data acquisition (SCADA) system. A GA coupled with156

EPANET was used to update the demand data by means of a demand forecaster model. Skworcow157

et al. (2010) present a predictive control approach to operate pumps and valves at near real-time158

by processing on-line SCADA data and finding operational rules to minimize energy costs and159
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leakage. The authors highlight the benefits of on-line predictive control when compared with the160

off-line control.161

Following the line of optimal control in near real-time, Eker and Kara (2003) consider pump162

control for distribution tanks. The model also receives feedback from the hydraulic state and163

generates the action rules for the control devices. The approach presented by Shamir and Salomons164

(2008) uses on-line control for optimal management of the real network in Haifa. The optimal165

rule algorithm, developed with GAs, is coupled with a SCADA system that updates the hydraulic166

information each time step. Despite the high quality results, the real-time approach is impaired by167

the computational time burden.168

Multi-objective algorithms have also been applied for the optimal control of pumps. Odan et al.169

(2015) develop a model with two calculation cores. The first is responsible for estimating the water170

demand in real-time. This demand is communicated to the second core for optimization, where171

the Pareto front is determined for two objectives: minimum energy consumption and maximum172

operational reliability.173

Recently, a systematic literature review about optimal operations in WDNs presented by Mala-174

Jetmarova et al. (2017) highlighted efforts (during the last decade) to address the joint control of175

pumps and valves with near real-time optimization algorithms. More than one hundred published176

papers on the optimal operation of WDNs were revised. The authors pinpoint that only 15% of177

optimal operation papers take into account pumps and valves jointly. Furthermore, only 5.5% of178

the published papers use meta-heuristic algorithms to solve operational problems. The authors179

conclude their review on the future of the operational optimization by highlighting the need to180

incorporate uncertainty parameters (such as water demand and pipe roughness), as well as the181

need to develop efficient computational models to solve genuine real-time problems. The real-time182

control of various devices (pumps and valves) using the predictive approach is a research field still183

to be explored.184

Considering the need to invest in optimal operation research, this work presents a near real-185

time methodology to find optimal joint operations for pumps working with VSD and PRVs. The186
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methodology is a compound of two main cores: the water demand forecasting core and the optimal187

operation core. In the former, the algorithm estimates thewater demand based on climatic and social188

information, together with past hydraulic states. Taking this estimated demand, the optimization189

core is triggered to define new operational rules to minimize energy consumption and water losses.190

A study on warm solutions that reduces the computational effort for finding new optimal solutions191

is also presented.192

The proposed methodology is applied to the D-town network (Marchi et al., 2012), presented in193

the Battle of Networks II. This network exposes the optimization algorithm to a large problem, thus194

enabling a robust performance evaluation. Furthermore, as this network has been widely studied195

by different works, a comparison of control performance is also conducted.196

The remainder of the paper is organized as follows. The next section presents the tools proposed197

to tackle near real-time demand forecasting. A new section then develops the optimization process,198

including the concept of warm solutions. The D-town network and the results obtained are then199

presented. Finally, an insightful discussion together with conclusions is provided. The References200

section closes the paper.201

NEAR REAL-TIME DEMAND FORECASTING202

A central element in near real-time control of WDNs must be the highly accurate estimation203

of water demand. Accurate demand estimation is essential for building a computer routine able to204

produce control strategies to meet demand.205

Several works are found in the literature for short-term water demand forecasting. Frequently,206

time-series are used for this task (Jain et al., 2001). Maidment et al. (1985) present a development of207

temporal series based on rain and temperature data, including a Box-Jenkins type transfer function208

(Box et al., 2015). Seasonal autoregressive integrated moving average (SARIMA) models also are209

applied for demand forecasting, as found in (Cutore et al., 2008; Mombeni et al., 2013). However,210

according to Voitcu and Wong (2006), average models are not always able to estimate demand,211

mainly because of the linear modelling associated with the mean value.212

With the increase of machine learning tools, new models for short-term water demand fore-213
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casting have flourished in the literature (Bougadis et al., 2005; Adamowski and Karapataki, 2010;214

Herrera et al., 2010; Xu et al., 2011; Brentan et al., 2017d). The possibility of processing highly non-215

linear correlations of the demand variable has situated machine learning methods in an outstanding216

position within the state estimation research field.217

However, the usual (static) approaches of machine learning tools have difficulties considering218

new data arriving from real-time measurements and network monitoring, and, as a result, new219

information must be stored until new training and tuning of the obsolete tool is performed. The use220

of this information frequently requires the re-training from scratch of the forecaster model. As a221

result, these types of static models lose valuable time training to avoid becoming outdated, mainly222

when the data structure changes, thus impairing the forecasting process (Brentan et al., 2017d).223

Transforming static into dynamic models, thus allowing quick decision-making (Montalvo224

and Deuerlein, 2014), is a growing research field. Dynamic models emerge as a link between225

acquisition systems and static models, and can improve the final results of demand forecasting226

(Herrera et al., 2014). The development of dynamic models requires high computational efficiency.227

Van Vaerenbergh et al. (2006) proposes a sliding data window applied to a kernel regression228

algorithm, which updates the model parameters step by step. Brentan et al. (2017d) also present229

a sliding data window for a hybrid model using support vector machines and Fourier series for230

real-time demand estimation.231

Taking into account the need for a highly accurate demand forecasting model to define in near232

real time the optimal maneuvers, this section presents an alternate method based on a hybridization233

process of an ANN, namely a non-linear auto-regressive with exogenous input ANN (NARX), and234

an unscented Kalman filter (UKF). The NARX is able to process the climatic and social information235

in the data, thus estimating the demand with good accuracy, while the UKF assimilates new data236

by adjusting the error of the NARX.237

Non-linear auto-regressive with exogenous input - NARX238

Several ANNs have been proposed in the literature to synthesize dynamic spaces, that is to239

say, spaces considering temporal relationships. The modification of feedforward networks with240
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recurrence features is a common approach to tackle dynamic processes. Recurrence relationships241

are internal loops in the ANN, which enable using the output of a layer as an input for other previous242

layers. Starting from the architecture of amulti-layer perceptron (MLP), several recurrence relations243

can be considered that define various recurrent networks.244

Among these recurrent networks, the NARX (Lin et al., 1996) creates just one loop, using the245

final output, y, as input for the first layer, thus contributing with the temporal trend of (in our case)246

water demand, as observed in figure 1. The number dy + 1, of past output data transformed into247

input is called delay, while the input vector including the last dx + 1 observations, (x(k), x(k −248

1), ..., x(k − dx)) is the so-called vector of exogenous variables (Brentan et al., 2017a).249

The output y(k +1) of a NARX is calculated similarly to the output of an MLP, and corresponds250

to a multi-process with activation functions, fo for the output layer and fh for the hidden layer,251

acting on the products between the input vectors and the weight vectors. However, the NARX adds252

the contribution of the delay data, as shown:253

y(k + 1) = fo
©­«

N∑
h=1

wo
h · fh

©­«
dx∑

i=0
wh

i · x(k − i) +
dy∑
j=0

wh
j · y(k − j) + bhª®¬ + boª®¬ . (1)254

Here N is the number of neurons in the hidden layer; wo
h are the weights of the output layer;255

wh
i and wh

j are the weights of the hidden layer corresponding to exogenous input and delays,256

respectively; and bh and bo are the biases for the hidden and output layers, respectively.257

The weight tuning process (or training) of a NARX can be done using a backpropagation258

algorithm, as in the training of an MLP. However, the convergence time for a NARX is much longer259

than for an MLP (Lin et al., 1996). Consequently, a number of adaptations are implemented in the260

backpropagation algorithm that lead to a gradient descent algorithm which shows good properties261

in the training process (Haykin and Network, 2004).262

Unscented Kalman filter - UKF263

Within the field of non-linear filters, the UKF, proposed by Julier and Uhlmann (1997), presents264

various improvements for the general extended Kalman filters, mainly for the linearization method,265
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which reduce errors and save computational time.266

The main idea of a Kalman filter is to estimate a state from a dataset affected with noise and267

other uncertainties. This state is a compound of unknown variables that tend to be more precise268

than those based on a single measurement. Typically, a nonlinear dynamic system is described as:269

δt+1 = F(δt, xt, vt), (2)270

271

yt = H(δt, nt), (3)272

where δt+1 is the unknown state, the response to an exogenous input xt , yt is the observed signal, vt273

is the process noise, and nt the measurement noise.274

Hybrid online time-series analysis275

The intensive monitoring of systems generates huge amounts of data, requiring advanced tools276

for exploration and information retrieval from these measurements. Online processing of data can277

be useful to improve the control of a system, since the introduction of new information on the278

system state makes control easier. Online water demand forecasting using hybrid models has been279

proposed with the aim of improving quality and accuracy. However, the use of online machine280

learning tools can be difficult, since the continuous tuning of parameters as new data arrives requires281

considerable computation time. The use of hybrid models, as proposed by Brentan et al. (2017d), is282

useful because the underlying robust machine learning method is only retrained for long intervals,283

while much less expensive time-series analysis methods perform real-time updating.284

In this work, the NARX processes the environmental data to estimate the water demand for a285

DMA, and the UKF is responsible for the estimation of the error made by the NARX. The UKF is286

adjusted dynamically, assimilating the new measured values for the demand in the DMA (working287

with a sliding window). In each time-step, the oldest demand data is disregarded, while the new288

measurement is assimilated. With the new window of data, the UKF parameters are adjusted and289

the future value of the error is estimated.290

OPTIMAL MANAGEMENT OF PUMPS AND VALVES291
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Optimization problem statement292

The improvement of the hydro-energetic efficiency of the system can be interpreted in two ways:293

namely, as a reduction of the energy consumption through optimal control of pumps; and as better294

pressure management, thus reducing physical water losses.295

Considering the hydraulic interactions between the set of control devices in the networks and296

the set of hydraulic states, the joint operation of pumps and PRVs can maximize the hydro-energetic297

efficiency of the systems, since the operational point of one device will affect the operational points298

of other devices.299

The operational costs C related to pump operation can be written in terms of the associated300

energy cost. This, in turn, is related to the pump rotational speed α, as shown in equation (4) for a301

number of pumps Np operating during Pe periods of time.302

C =
Np∑
p=1

Pe∑
t=1

Q(αp,t)H(αp,t)γ
η(αp,t)

· ∆t · ct . (4)303

Here, for the rotational speed, αp,t , of pump p at time step t, Q(αp,t) is the flow through the304

pump, H(αp,t) is the pump head, and η(αp,t) is the pump efficiency; γ is the specific weight of the305

fluid, and ct is the energy cost at time step t.306

In the second case, the benefits related to pressure management in the system derive from the307

reduced volume of water losses. This volume is a function of the operational pressure and can be308

used to calculate the equivalent price of lost water. However, in several countries water is much309

cheaper than energy. As a result, minimizing the global (associated to energy and water losses) cost310

of operation using a single objective approach can lead to scenarios where the electrical energy cost311

is effectively minimized, but overrides the water loss, which is effectively disregarded. However,312

the minimization of pressure also minimizes leakage flow. Usually, a WDN should be operated at313

a minimum pressure for a safe and adequate supply to consumers. Taking the minimum pressure314

as Pmin, a possible way to minimize the water loss is by bringing the operational pressure Pj,t of315

any node j at any time t as close as possible to the minimum pressure. The final objective function316
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can be written as a sum of dimensionless terms of energy and pressure as:317

C
max(C) +

Pe∑
t=1

Nn∑
j=1

|Pj,t − Pmin |
Pmin

, (5)318

where the division by max(C) and Pmin is used to turn the values dimensionless.319

Considering the operational problem in hand, the candidate maneuvers considered in this work320

are changes in the rotational speed of pumps and/or set-points of modulated PRVs. This means321

that, at each time step, each pump and each valve may have its settings updated. A set of constraints322

can be identified to maintain a safe operation. The constraints are linked to the minimum pressure,323

the fluctuation tank levels, the minimum speed for pumps and the maximum number of switches324

of pumps. Thus, the operational constraints may be written as:325

Lk,min < Lk,t < Lk,max, (6)326

Lk,1 ' Lk,Pe, (7)327

Pj,t > Pmin, (8)328

mp < mmax, (9)329

where Lk,min and Lk,max are the minimum and maximum tank levels for tank k, and Lk,t is the tank330

level at time step t in tank k. As this work considers the possibility of turning off the pumps if the331

pump speed is lower than the minimum, it is important to define the maximum number of allowed332

switches during a given period, mmax , to avoid spending financial resources on maintenance. The333

hydraulic simulator EPANET is used to calculate the hydraulic state for the different solutions in the334

optimization process. Additionally, the possibility of turning off the pumps turns the optimization335

process into a non-continuous problem, hampering the use of classical optimization tools.336
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To handle the operational constraints, the use of penalty functions is a common approach for337

single-objective optimization. In general, the penalty methods use functions that increase the value338

of the objective function to beminimized, when any constraint is violated (Yeniay, 2005). Typically,339

for a constraint given by a function g(s) calculated for a solution s, which should be non-negative,340

a penalty function ρ(s) is defined as:341

If g(s) < 0⇒ ρ(s) > 0; (10)342

343

If g(s) ≥ 0⇒ ρ(s) = 0. (11)344

From the mathematical point of view, the use of penalty functions modifies the search space and345

generates deformations along the boundaries between feasible and unfeasible regions corresponding346

to the violated constraints, thus avoiding the optimization method to find solutions in the unfeasible347

region. However, the deformation of the search space produces the side effect of creating local348

minima in the feasible area, so that the use of penalty functions frequently makes the optimization349

process harder.350

Several mathematical approaches have been developed to treat the problems associated with351

penalty functions (Wu and Simpson, 2002; Van Dijk et al., 2008; Vassiljev et al., 2015). Among352

them, (Marchiori et al.) present a broad comparison among various penalty functions applied to353

WDN optimal design. The authors highlight the effects of this approach on various search spaces,354

and the comparison of eight penalty functions pinpoints the need for deeper studies to find the best355

approach to handle the constraints.356

The following penalty function Parsopoulos and Vrahatis (2002) is used in this research:357

ρ(s) = ω | gre f − g(s) | . (12)358

Here ω is the penalty scale factor, adjusted for each optimization problem, and gre f is the359

reference value for the considered variable to be compared with g(s) for a given solution s.360
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Warm solutions361

Optimal management of pumps and valves in near real-time requires the optimization process362

to converge quickly. In general, bio-inspired algorithms use a random initialization of solutions.363

This random initialization can lead to a large and slow optimization process, mainly caused by364

the many unfeasible initial solutions. Furthermore, the WDN simulator, which is usually coupled365

with the bio-inspired optimization algorithm, can also increase the optimization process, due to the366

time needed to solve the hydraulic equations, which makes the simulator unstable for unfeasible367

solutions.368

Among the many alternatives to improve the efficiency of the optimization process, Wu and Zhu369

(2009) present a parallel and distributed computation scheme for the pump scheduling optimization370

and López-Ibáñez et al. (2008) implements a parallel code of the hydraulic simulation of EPANET.371

To reduce the time to obtain the hydraulic state of the system, some authors propose the use372

of machine learning techniques, highlighting ANNs trained with a large set of feasible hydraulic373

scenarios as a surrogate for the hydraulic model during the optimization process (Broad et al., 2005;374

Rao and Alvarruiz, 2007; Nazif et al., 2010; Behandish, 2013; Behandish and Wu, 2014). The375

development of warm solutions is also used by Pasha and Lansey (2014) to minimize convergence376

problems. Warm solutions are nearly optimal solutions. The interesting feature of this type of377

solution is the high probability of being feasible, thus improving the convergence of the optimization378

process. The authors compare three strategies to accelerate the optimization problem, concluding379

that the use of warm solutions is the most efficient, even when compared with the surrogate of a380

hydraulic model by an ANN or the use of parallel computing.381

The proposed methodology to generate warm solutions in this work is based on two scenarios.382

The first scenario considers the nonexistence of previous optimal solutions and is applied at the start383

of the optimization process. In this case, an optimization process to define the optimal maneuvers384

for pumps and valves is performed using the mean demand of a day. For each time step, an initial385

solution vector is created taking the optimal solution found for the mean demand. This vector is386

used to initialize the optimization process in real-time. In this process, the mean demand is changed387
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by the forecasted demand and the optimal operation is found by adjusting the warm solution. The388

second scenario considers the existence of a previous optimized scenario, such as the last day389

values. In this case, the initialization is performed using the optimal solution of a previous and390

corresponding time step.391

In each time-step, the optimal solution should guarantee full water supply to consumers. The392

hydraulic states should be obtained at each time-step optimization to evaluate the operational393

constraints. Simulations are conducted for the entire day by keeping track of the vector containing394

all the operational rules. At the first time step, the operational vector is only composed of warm395

solutions. For the following time steps, this vector is composed of a combination of the previously396

found optimal solutions and warm solutions.397

Figure 2 presents the construction of the solution vectors using the warm solutions and the398

operational vector, which is used to obtain the hydraulic state of the network. Observe that, at each399

time step t, the vectors are composed of the speed of each pump p, αp,t , and the valve set-point Kv,t400

of each valve v.401

Particle swarm optimization - PSO402

Among several bio-inspired algorithms, PSO, initially proposed by Kennedy and Eberhart403

(1995), can be highlighted as one of the most efficient evolutionary algorithms in terms of quasi404

global solution search and processing time. As in the case of other evolutionary algorithms, the405

solutions are improved in each iteration by comparison with other previously obtained solutions.406

For a D-dimensional problem, a particle (candidate solution) i, has an associated position, ζi, which407

is written as a vector with D coordinates, ζi = (ζi1, ζi2, ..., ζiD). The velocity of the particle can also408

be written as a vector with D coordinates, νi = (νi1, νi2, ..., νiD).409

In each time step, particles compare their positions and save the best position of the group, the410

so-called gbest, Γ = (γ1, γ2, ..., γiD). Each particle also saves its best position during iteration, the411

so-called lbest (for local best), λi = (λi1, λi2, ..., λiD).412

The gbest and lbest vectors are used to update the velocity of the particle from an iteration t413

to the next t + 1, taking into account the current velocity of the particle vt
i . Equations 13 and 14414
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represent the updating process of PSO.415

νt+1
i = wνt

i + c1r1
ζ t

i − λ
t
i

∆t
+ c2r2

ζ t
i − Γt

∆t
(13)416

ζ t+1
i = ζ t

i + ν
t+1
i ∆t (14)417

Here i = 1, 2, · · · , M are the particles, w is the inertia weight, c1 = 1.5 and c2 = 1.5 are cognitive418

and social learning coefficients, respectively, and r1 and r2 are random numbers responsible for419

introducing diversity into the optimization process, thus avoiding local optima. The inertia weight420

is calculated at each time step, varying from 1.2 to 0.4, and decreasing linearly. The values of c1 and421

c2 are selected according to the convergence criteria presented by (Eberhart and Shi, 2001). There422

are other approaches in the literature, for example, Montalvo et al. (2010), using self-adaptive values423

for c1 and c2. However, in this paper the authors show that the self-adaptive values, in general,424

approximately converge to the values considered in our paper. Two alternative termination criteria425

are used to stop the PSO algorithm: the number of iterations without improvements (50 iterations);426

or the total number of iterations (5000 iterations).427

CASE STUDY - D-TOWN WATER NETWORK428

The case study presented in this work is the network known as D-town in the literature (Marchi429

et al., 2013), with the topological solution presented by Stokes et al. (2012). The network is430

composed of 388 nodes, 429 pipes, 13 pumps, 4 PRVs, 1 reservoir, and 7 tanks, and is divided into431

5 DMAs. In this work, pumps with VSD with a minimum speed of 70% of the nominal speed, and432

undergoing a maximum of four switches per day, together with modulated PRVs, are considered433

to generate the optimal management of the system. The minimum pressure at the demand nodes434

is 25m, and 0m for non-demand nodes. Figure 3a presents the D-town topology and figure 3b435

presents the DMA configuration and the monitoring nodes. The nodes are located exactly in their436

corresponding physical coordinates (latitude and longitude).437

The D-town network was selected as a case study considering the complexity to determine438
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optimal operations due to the number of control elements, namely 13 pumps and 4 PRVs. Further-439

more, the solution presented by Stokes et al. (2012) contains a control scheme for the pumps that440

enables a comparison of results. The electrical tariff varies during a day as presented by Marchi441

et al. (2013).442

The benchmark networks found in the literature generally enable comparisons with other works443

and guarantee manageable scenarios. In these cases, the oscillation of the water demand during444

a day is typically approximated by a quasi-periodical function, mainly in the case of residential445

consumers. However, using these quasi-periodical functions precludes any on-line approach due446

to the absence of real consumer data in the literature networks. Still, it is well known that the447

random feature of some consumers directly affects the water demand pattern. To synthesize the448

real behavior of water demand, the methodology proposed by Brentan et al. (2017b) is applied.449

This methodology takes into account the mean behavior of the water demand and the allocated450

nodal base demand to generate a random noise signal that is summed on top of the standardized451

average demand. The noise is obtained by an analysis of real demand data for a number of DMAs.452

This procedure enables following the original demand trends of a literature hydraulic network,453

while adding the random behavior of consumers, which for near real-time forecasting and optimal454

control is paramount. In our case, the study is based on real data from Franca, a Brazilian city, and455

considers five of its DMAs to evaluate the mean behavior of water demand.456

A two-year water demand dataset was generated for each DMA of D-town. We followed the457

procedure described by considering the mean value of the original pattern of the network and the458

noise created within the normalized range obtained by the analysis of Franca’s DMAs. This dataset459

was complemented with environmental data (temperature, air humidity, presence of rain, and wind460

velocity) from Franca, to build a 1.5-year dataset for training purposes, while another 0.5-year461

dataset was considered to test the NARX ANN.462

Using the trained network made of 30 hidden neurons and trained with a delay of 24 hours,463

it is possible to find the optimal operation for any day, using the estimated demand to surrogate464

the mean demand presented to the model. The time needed to forecast each time step demand is465
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0.085s. Figure 4 presents a comparison between the real (generated) and the forecasted demands.466

The average value of the root mean squared error (RMSE), taking the RMSE for the five DMAs,467

is 1.80m3/h and the correlation coefficient is 0.998, showing the high quality of the demand468

forecasting model. The algorithms are run in a computer running an Intel inside core i7 2.7Ghz.469

To find the optimal solution and to compare the classical approach for the optimal operation,470

the optimal control for pumps and PRVs was found using the PSO algorithm applied to the model471

with the mean demand. In this case, considering the horizon of one day with a time-step of an472

hour, the number of decision variables is 408. Following the literature recommendations, a swarm473

with three times the number of variables was used in the optimization process. The comparison of474

this approach with the scenario without optimized control, that is to say, with all pumps working at475

nominal speed and with all valves open, shows that it is possible to obtain a reduction of 42.55%476

of energy consumption. In terms of pressure management, Figure 5 compares the scenarios for477

minimumandmaximumdemands. It is possible to note some regionswhere the operational pressure478

reaches the minimum values, as expected from the optimal pressure management viewpoint. The479

optimization process to find pump speeds and PRV settings took approximately 18 hours.480

Using the solution of the mean demand to initialize the near real-time optimal control process,481

the optimal point changed from the mean scenario to the real-time scenario, and the energy saving482

increased to 50%, when compared with the uncontrolled scenario. The total energy cost for one483

optimally operated day is 8163 monetary units. To compare with a more realistic scenario, the near484

real-time methodology presented in this work is compared with the control proposed by the original485

network (Stokes et al., 2012), evaluated in the new demand scenario. The proposed methodology486

saves 17% more energy than the original control presented by the authors. Furthermore, the near487

real-time control of the pumps with VSD is compared with the usual approach for pump operations488

(ON/OFF). In terms of energy gains, the use of VSD saves 23% more energy when compared with489

the binary control of pumps.490

In terms of pressure management, Figure 7 shows the comparison between the mean demand491

control applied to the new demand and the near real-time control for the minimum and maximum492
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demands. It is possible to observe the improvement of pressure when near real-time control is used.493

For each time-step, the optimal solution is reached in approximately 15 minutes.494

For the monitoring nodes and tanks considered, Figure 7 presents pressure and fluctuation levels495

during a day, respectively. The tank levels oscillate to reduce the energy consumption as expected496

for an optimization process. During the period when the energy price is lower, the tanks are filled,497

enabling the pumps to be turned off when the energy price is higher. In terms of pressure, two498

main behaviors of pressure variation during a day can be observed. The nodes with the highest499

elevation (critical nodes for the minimal pressure) have a controlled pressure, with flat oscillation500

during a day. In contrast, nodes near the PRVs exhibit larger pressure oscillations as a response to501

the control on the respective PRV.502

CONCLUSIONS503

Managing WDNs for maximum efficiency of the system requires special attention not only504

because a WDN is an important infrastructure for the city, but also because WDNs are responsible505

for a large consumption of electrical energy, and because of the new environmental challenges, for506

which a reduction of energy consumption is fully required.507

The use of near real-time optimal control in water distribution systems can be a powerful tool508

for operating the systems with maximum efficiency, as observed in the results presented in this509

work. The improvement in energy savings is linked to the possibility of finding the maximum510

efficiency point of the pumps, which is correlated with the hydraulic features of the system, among511

them, the water demand.512

Several methods to forecast water demand can be found in the literature. ANNs as forecasters513

can treat the non-linearity of the demand problem with great accuracy. However, these tools can514

become obsolete because of changing urban conditions. An online forecaster model can be an515

interesting solution to update in real-time the modification of the demand consumption pattern,516

thus increasing the accuracy of the model. Post-processing of errors can significantly improve the517

quality of water forecasting. The UKF has been shown to be powerful for this task and should be518

strongly recommended for real-time water demand forecasting.519
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The coupled model (forecaster-optimizer) can produce better system management, when com-520

pared with the classical approach using the mean demand, because updating demands bring the521

most real field conditions to the model, thus reducing the uncertainty linked to water demand.522

The computational efforts can be reduced by the use of meta-models that surrogate the hydraulic523

simulator, as presented by other authors in the literature. However, the use of warm solutions brings524

significant improvements to the computational problem by reducing the computational time in the525

search process. Nevertheless, a deeper study is recommended into the effect of warm solutions on526

the optimization process, focusing on the possibility of conditioning the optimization process at527

some local optimal points.528

The single-objective approach is interesting for the specific case of near real-time optimization,529

since the optimal solution found can be implemented by the controllers of the systems. However,530

the need to handle the constraints makes optimization harder and convergence slower. The use of531

a multi-objective approach can be an interesting option if an automatic methodology to select the532

optimal solution from the Pareto front is implemented.533

The oscillation of the tank levels is an important issue in near real-time operation since it can534

bring substantial gains from the operational and quality point of view, thus guaranteeing better535

water quality and the avoidance of unneeded water storage. In terms of pressure control and,536

consequently, tank level management, the use of VSDs enables a better control of tank oscillations.537

This occurs thanks to the possibility of controlling the system in a continuous region, thus making538

pressure management smoother. As a result, the control of the tanks is more flexible and can539

guarantee oscillations within the operational limits.540

The near real-time operation of WDNs can bring significant gains to the water industry since541

systems can be made highly efficient permanently by means of an optimized operation. However,542

the computational approach, and the real-time process bottleneck, should be further studied to543

guarantee good results independently of the size of the network.544
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Fig. 1. Typical architecture of a NARX (Brentan et al., 2017a)
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Fig. 2. Warm solution construction and initialization of real-time optimization
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(a) Topology of D-Town network with the solution proposed by (Stokes et al., 2012)

(b) DMAs of the D-town network highlighting the monitored nodes

Fig. 3. Presentation of the case study topology, the monitoring nodes and the DMAs

33 Brentan, December 2, 2017



Fig. 4. Forecasted and synthetically generated water demand in the D-town network

34 Brentan, December 2, 2017



(a) Pressure surface comparison between the uncontrolled and mean demand controlled cases for the mini-
mum demand

(b) Pressure surface comparison between the uncontrolled and mean demand controlled cases for the
maximum demand

Fig. 5. Comparison of pressuremanagement between the uncontrolled andmean demand controlled
cases for the minimum and maximum demands
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(a) Pressure surface comparison between the mean demand and the near real-time control cases for the
minimum new demand

(b) Pressure surface comparison between the mean demand and the near real-time control cases for the
maximum new demand

Fig. 6. Comparison of pressure management between the mean demand and the near real-time
control cases for the new forecasted demand
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(a) Comparison of tank level oscillation for the uncontrolled, mean demand, and near real-time control cases
for the new demand scenario

(b)Comparison of pressure fluctuation for the uncontrolled, mean demand control, and near real-time control
cases for the new demand scenario

Fig. 7. Comparison of pressure management between the mean demand and the near real-time
control cases for the new forecasted demand
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