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Weighted G-Drazin inverses and a new pre-order on

rectangular matrices

C. Coll∗ M. Lattanzi† N. Thome‡

Abstract

This paper deals with weighted G-Drazin inverses, which is a new class of ma-

trices introduced to extend (to the rectangular case) G-Drazin inverses recently

considered by Wang and Liu for square matrices. First, we define and characterize

weighted G-Drazin inverses. Next, we consider a new pre-order defined on complex

rectangular matrices based on weighted G-Drazin inverses. Finally, we characterize

this pre-order and relate it to the minus partial order and to the weighted Drazin

pre-order.
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Keywords: G-Drazin inverse; weighted Drazin inverse; G-Drazin partial order; minus
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1 Introduction and background

Equivalence relations and partial orders are well-known types of relations defined over

a set. Their usefulness is indisputable in the whole Mathematics. However, it does not
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occur the same with pre-orders which are also important tools but their usefulness in not

so known. We recall that a pre-order over a nonempty set is a binary relation that is

reflexive and transitive. Pre-orders are more general relations than equivalence relations

and partial orders. Equivalence relations and partial orders are special cases of pre-orders

which satisfy, moreover, the symmetric or the anti-symmetric property, respectively. We

highlight their importance by mentioning only a few examples of pre-orders. For instance,

the reachability relationship in any directed graph (x � y if and only if x is reachable from

y) gives rise to a pre-order [23]. Every finite topological space gives rise to a pre-order on

its points; for example a finite space is an Alexandroff space (that is, the set of all the

open sets is closed under arbitrary intersections) and on an Alexandroff space it can be

defined a pre-order in a natural way (x � y if and only if Ux ⊆ Uy, where Ux denotes

the intersection of all open sets containing the point x) [16]. In Computer Science, for

example, many-one and Turing reductions are pre-orders on complexity classes; the binary

relation considered on the set of terms, defined by t1 � t2 if and only if a subterm of t2 is

a substitution instance of t1, is called the encompassment pre-order [9, 11].

Another important kind of binary relations are defined on matrices and known as

matrix partial orders and matrix pre-orders [17]. Our interest will be concentrated on

this last class of relations. For instance, mathematical morphology used in digital image

processing requires the concepts of the supremum and infimum of a set of matrices, which

is given by the Löwner partial order on the set of symmetric matrices [5]. The invariance

properties that this matrix partial order satisfies allow the authors to define morphological

operators which are crucial in the analysis of noise suppression, edge detection, shape

analysis, etc. with a wide range of applications in the study of medical imaging, geological

sciences, among others, as mentioned in [5].

Let Cm×n be the set ofm×n complex matrices. For a given A ∈ C
m×n, the symbols A∗,

R(A), and r(A) denote the conjugate transpose, the range, and the rank of A, respectively.

As usual, when m = n, A−1, ind(A), and In denote the inverse of A, the index of A, and

the identity matrix of size n × n, respectively. The subscript will be omitted when no

confusion is caused. The direct sum of two matrices A and B will be written as A⊕ B.

Let A ∈ C
m×n. A matrix X ∈ C

n×m is called a {1}−inverse of A if AXA = A. The

set of all {1}−inverses of A is denoted by A{1} (see [6]).

Throughout this paper, a nonzero matrix W ∈ C
n×m will be fixed and used as a
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weight.

Definition 1.1 Let A ∈ C
m×n. A matrix X ∈ C

m×n is a weighted Drazin inverse of A if

AWX = XWA, X = XWAWX, and (AW )k+1XW = (AW )k with k = ind(AW ).

This matrix X always exists, is unique, and will be denoted by X = AD,W (see [8]).

When m = n and W = In then X = AD,In = AD, the Drazin inverse of A. Moreover, the

equalities AD,WW = (AW )D and WAD,W = (WA)D hold (see [8]).

Definition 1.2 Let A ∈ C
n×n. A matrix X ∈ C

n×n is called a G-Drazin inverse of A if

AXA = A, Ak+1X = Ak, and XAk+1 = Ak with k = ind(A).

This matrix X always exists, but in general it is not unique. The set of all G-Drazin

inverses of A is denoted by A{GD}; an element of this set is denoted by AGD (see [25]).

The following binary relations are well known [17, 15, 25].

Definition 1.3 Let A,B ∈ C
m×n.

• The minus partial order is defined by A ≤− B if and only if r(B−A) = r(B)−r(A),

for A,B ∈ C
m×n. It is known that A ≤− B if and only if there exists A− ∈ A{1}

such that A−A = A−B and AA− = BA− [17].

• The weighted Drazin pre-order, denoted by �D,W , was defined in [15] by A �D,W B

if and only if (AW )AD,W = (BW )AD,W and AD,W (WA) = AD,W (WB) (see also

[14]). If m = n and W = In then �D,W is called the Drazin pre-order and is denoted

by �d (see [17]).

Definition 1.4 For A,B ∈ C
n×n, the G-Drazin partial order was defined in [25] as

follows: A �GD B if and only if there exists a G-Drazin inverse AGD of A such that

AGDA = AGDB and AAGD = BAGD.

For a most extensive study on generalized inverses, matrix partial orders, and pre-orders

the authors refer the reader to [1, 2, 3, 6, 7, 10, 12, 13, 14, 18, 19, 20, 21, 22, 24, 26].

This paper is organized as follows. Section 2 defines and characterizes the weighted

G-Drazin inverse of a rectangular matrix. Moreover, a new characterization for (ordinary)

G-Drazin inverses is given in Corollary 2.1. Section 3 introduces and characterizes the
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weigthed G-Drazin pre-order �GD
W on rectangular matrices. This relation is based on the

weighted G-Drazin inverse and extends to the rectangular case the G-Drazin partial order

defined in [25]. In addition, some properties of this pre-order and connections with the

minus order and the weigthed Drazin pre-order are given. Theorem 3.4 provides several

equivalent conditions to characterize the weigthed G-Drazin pre-order, and condition (VI)

leads up to a new characterization of the G-Drazin pre-order.

2 Weighted G-Drazin inverses

The G-Drazin inverse of a square matrix was defined in [25]. In this section, we generalize

this concept to rectangular matrices. Since G-Drazin inverse can be only computed for

square matrices, we are going to consider a weight matrix W of adequate size in such a

way the involved powers can be performed. In this manner, the products AW and WA

corresponds to square matrices, their powers are well-defined; and we can proceed with

the generalization of G-Drazin inverses to rectangular matrices.

Let A ∈ C
m×n and W ∈ C

n×m. The following fact can be easily shown by induction:

(AW )kA = A(WA)k for any nonnegative integer k.

Since the case W = O will give only trivial results, throughout this paper we will

assume W 6= O not being explicitly mentioned.

Definition 2.1 Let A ∈ C
m×n, W ∈ C

n×m, k1 = ind(AW ), k2 = ind(WA), and k =

max{k1, k2}. A matrix X ∈ C
m×n is a W -weighted G-Drazin inverse of A if the following

conditions are satisfied:

(1w) WAWXWAW = WAW ,

(2rw) (AW )k+1(XW ) = (AW )k,

(2lw) (WX)(WA)k+1 = (WA)k.

The set of all W -weighted G-Drazin inverses of A will be denoted by A{W − GD}.

Sometimes a fixed or a general element of the set A{W−GD} will be denoted by AW−GD.

Notice that if we set m = n and W = In then Definition 2.1 recovers Definition 1.1

given in [25].
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Remark 2.1 Let A ∈ C
m×n and W ∈ C

n×m.

(a) If A = O then any matrix of suitable size is a W -weighted G-Drazin inverse of A.

(b) A{W −GD} ⊆ WAW{1}.

(c) If AW and WA are nilpotent matrices then WAW{1} ⊆ A{W −GD}.

The following Theorem proves that for a given matrix A, a W -weighted G-Drazin

inverse of A always exists and, in general, it is not unique. The first part of this theorem

is well known (see [27, 28]). We include its proof here for the sake of completeness.

Theorem 2.1 Let A ∈ C
m×n, W ∈ C

n×m, k1 = ind(AW ), and k2 = ind(WA). Then

there exist nonsingular matrices P ∈ C
m×m and Q ∈ C

n×n such that

A = P (A1 ⊕ A2)Q
−1 and W = Q(W1 ⊕W2)P

−1, (1)

where A1 and W1 are t × t nonsingular matrices, and A2W2 and W2A2 are nilpotent

matrices of indices k1 and k2, respectively.

Moreover, X ∈ A{W −GD} if and only if

X = P

[
(W1A1W1)

−1 X12

X21 X2

]
Q−1, (2)

with X12W2 = O, W2X21 = O, and X2 ∈ W2A2W2{1}.

In particular, if m = n and AW = WA then Q = P . In this case, if W = In then

W1 = It and W2 = In−t.

Proof. Suppose that one of the following two disjoint situations m 6= n or m = n

with AW 6= WA holds. If we consider the core-nilpotent decomposition of AW and WA

(see [6]) we have that there exists nonsingular matrices P ∈ C
m×m and Q ∈ C

n×n such

that

AW = P (C ⊕N)P−1 and WA = Q(R⊕ T )Q−1

where C and R are nonsingular matrices of the same order (since the number of nonzero

eigenvalues of AW and WA (counting multiplicities) are coincide) and N and T are
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nilpotent matrices of indices k1 = ind(AW ) and k2 = ind(WA), respectively. Let k =

max{k1, k2}. By the above observation, (AW )kA = A(WA)k holds.

Partitioning

A = P

[
A1 A12

A21 A2

]
Q−1 and W = Q

[
W1 W12

W21 W2

]
P−1

with appropriate sizes, we have that

(AW )kA = P

[
CkA1 CkA12

O O

]
Q−1 and A(WA)k = P

[
A1R

k O

A21R
k O

]
Q−1

and then A12 = O and A21 = O. Hence,

AW = P

[
C O

O N

]
P−1 = P

[
A1W1 A1W12

A2W21 A2W2

]
P−1

from where we have C = A1W1, W12 = O, and N = A2W2. Analogously, we obtain

R = W1A1, W21 = O, and T = W2A2. Thus,

A = P (A1 ⊕ A2)Q
−1 and W = Q(W1 ⊕W2)P

−1,

where A1 and W1 are nonsingular matrices, and A2W2 and W2A2 are nilpotent matrices

of indices k1 = ind(AW ) and k2 = ind(WA), respectively.

In order to find formula (2), let X ∈ A{W −GD} and suppose that

X = P

[
X1 X12

X21 X2

]
Q−1.

Then, it is easy to see that

WAWXWAW = Q

[
W1CX1RW1 W1CX12TW2

W2NX21RW1 W2NX2TW2

]
P−1.

Since the equalityWAWXWAW = WAW holds, it then follows thatX1 = (W1A1W1)
−1,

X12W2A2W2 = O, W2A2W2X21 = O, and X2 ∈ W2A2W2{1}.

Now, (AW )k = P (Ck ⊕O)P−1, while

(AW )k+1XW = P

[
Ck+1X1W1 Ck+1X12W2

O O

]
P−1,
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then by (2rw) we obtain X12W2 = O. Analogously, from (2lw),

(WA)k = Q

[
Rk O

O O

]
Q−1, and WX(WA)k+1 = Q

[
W1X1R

k+1 O

W2X21R
k+1 O

]
Q−1.

We arrive at W2X21 = O. Hence,

X = P

[
(W1A1W1)

−1 X12

X21 X2

]
Q−1,

with X12W2 = O, W2X21 = O, and X2 ∈ W2A2W2{1} as required. The converse is a

simple computation.

On the other hand, if m = n and WA = AW , this last matrix can be represented

with only one core-nilpotent decomposition. In this case, the proof is analogous to the

previous one with Q = P . If, moreover, W = In then W1 = It and W2 = In−t. �

Notice that if m = n and W = In, from Theorem 2.1 we recover the form (3.2) in [25].

Example 2.1 Les us consider the matrices A =
[
1 1

]
and W =

[
1

0

]
.

Then AW = [1] andWA =

[
1 1

0 0

]
= Q

[
1 0

0 0

]
Q−1, with Q =

[
1 −1

0 1

]
. Hence,

A = [1]
[
1 0

] [ 1 1

0 1

]
, W =

[
1 −1

0 1

][
1

0

]
[1]

and

AW−GD = [1]
[
1 X12

] [ 1 1

0 1

]
=
[
1 1 +X12

]
,

with X12 ∈ C.

Theorem 2.2 Let A,X ∈ C
m×n, W ∈ C

n×m, k1 = ind(AW ), k2 = ind(WA), and

k = max{k1, k2}. Then, the following conditions are equivalent:

(a) X ∈ A{W −GD}.

(b) WAWXWAW = WAW and W (AW )kXW = WXW (AW )k.
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Proof. Let A,X ∈ C
m×n, W ∈ C

n×m, and k = max{k1, k2} and suppose that A and W

are written as in (1).

(a) =⇒ (b) By Theorem 2.1 we have that X ∈ A{W −GD} if and only if

X = P

[
(W1A1W1)

−1 X12

X21 X2

]
Q−1,

with X12W2 = O, W2X21 = O, and X2 ∈ W2A2W2{1}.

By induction on k, it is easy to prove the equality W1(A1W1)
k−1 = A−1

1 (A1W1)
k for

k ≥ 0. Hence, by making some computations we have

W (AW )kXW = Q(W1(A1W1)
k−1 ⊕O)P−1

and

WXW (AW )k = Q(A−1

1 (A1W1)
k ⊕O)P−1,

which gives the required equality.

(b) =⇒ (a) Consider the partition

X = P

[
X1 X12

X21 X2

]
Q−1.

Then,

W (AW )kXW = Q

[
W1(A1W1)

kX1W1 W1(A1W1)
kX12W2

O O

]
P−1 and

WXW (AW )k = Q

[
W1X1W1(A1W1)

k O

W2X21W1(A1W1)
k O

]
P−1.

Since W (AW )kXW = WXW (AW )k, we obtain X12W2 = O and W2X21 = O.

On the other hand, WAW = Q(W1A1W1 ⊕W2A2W2)P
−1 and

WAWXWAW = Q(W1A1W1X1W1A1W1 ⊕W2A2W2X2W2A2W2)P
−1.

Thus, from WAWXWAW = WAW we have X1 = (W1A1W1)
−1 and X2 ∈ W2A2W2{1}.

Therefore, by Theorem 2.1 we conclude X ∈ A{W −GD}. �
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From Theorem 2.2 we can give an easier condition for the Definition 1.1 given in [25].

Observe that we only need to check two conditions instead of three as in [25, Definition

1.1].

Corollary 2.1 Let A,X ∈ C
n×n and k = ind(A). Then, the following conditions are

equivalent:

(a) X ∈ A{GD}.

(b) AXA = A and AkX = XAk,

(c) AXA = A, XAk+1 = Ak, and Ak+1X = Ak.

3 A new weighted matrix pre-order

In order to introduce a new binary relation that extends the G-Drazin partial order to

the rectangular case, we consider the following definition.

Definition 3.1 Let W ∈ C
n×m and A,B ∈ C

m×n. It is said that A �GD
W B if there exist

X1, X2 ∈ A{W −GD} such that WAWX1 = WBWX1 and X2WAW = X2WBW .

Setting n = m and W = In, our Definition 3.1 becomes Definition 3.1 in [25].

Theorem 3.1 Let W ∈ C
n×m and A,B ∈ C

m×n. Then the following conditions are

equivalent:

(a) A �GD
W B.

(b) there exists X ∈ A{W − GD} such that WAWX = WBWX and XWAW =

XWBW .

Proof. For (a) ⇒ (b), let X1, X2 ∈ A{W − GD} such that WAWX1 = WBWX1

and X2WAW = X2WBW . Then X1 ∈ WAW{1} and X2 ∈ WAW{1}, therefore

X1WAWX2 ∈ WAW{1}. Set X = X1WAWX2. By Definition 2.1, it is easy to see

that X ∈ A{W −GD}. Moreover, WAWX = WBWX and XWAW = XWBW .

(b) ⇒ (a) is trivial. �
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Remark 3.1 Let A,B,X ∈ C
m×n, W ∈ C

n×m, P ∈ C
m×m, and Q ∈ C

n×n, with P and

Q nonsingular matrices. Then:

(a) O �GD
W B for every matrix B. In order to check it, it is enough to take OW−GD = O.

(b) X ∈ A{W − GD} if and only if P−1XQ ∈ P−1AQ{(Q−1WP ) − GD}. It follows

directly from Definition 2.1.

(c) A �GD
W B if and only if P−1AQ �GD

Q−1WP
P−1BQ.

It follows from Definition 3.1 and the previous item.

Since A{W −GD} ⊆ WAW{1}, we have the following lemma.

Lemma 3.1 Let W ∈ C
n×m and A,B ∈ C

m×n. If A �GD
W B then WAW ≤− WBW .

Theorem 3.2 Let W ∈ C
n×m and A,B ∈ C

m×n. If A and W are written as in (1) then

the following conditions are equivalent:

(a) A �GD
W B.

(b) B = P

[
A1 B3

B4 B2

]
Q−1, for some matrices B2, B3, and B4 such that W2B4 = O,

B3W2 = O, and W2A2W2 ≤
− W2B2W2.

In this case, Z ∈ B{W −GD} if and only if

Z = P

[
(W1A1W1)

−1 Z12

Z21 Z2

]
Q−1

with Z12W2 = O, W2Z21 = O, and Z2 ∈ B2{W2 −GD}.

Proof. Let W ∈ C
n×m and A,B ∈ C

m×n. Suppose that A and W are written as in (1).

(a) =⇒ (b) Since A �GD
W B, there exists X ∈ A{W − GD} such that WAWX =

WBWX and XWAW = XWBW . By Theorem 2.1 we have

X = P

[
(W1A1W1)

−1 X12

X21 X2

]
Q−1,
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where X12W2 = O, W2X21 = O, and

(i) X2 ∈ W2A2W2{1}.

Thus,

WAWX = Q

[
It W1A1W1X12

O W2A2W2X2

]
Q−1.

Let us consider the following partition of B:

B = P

[
B1 B3

B4 B2

]
Q−1.

Hence

WBWX = Q

[
W1B1A

−1

1 W−1

1 W1B1W1X12 +W1B3W2X2

W2B4A
−1

1 W−1

1 W2B4W1X12 +W2B2W2X2

]
Q−1.

Therefore, from WAWX = WBWX we obtain B1 = A1, W2B4 = O, and

(ii) W2A2W2X2 = W2B2W2X2.

Analogously, by using the equality XWAW = XWBW and by making some calculations

we have

XWAW = P

[
It O

X21W1A1W1 X2W2A2W2

]
P−1

and

XWBW = P

[
It W−1

1 A−1

1 B3W2

X21W1A1W1 X21W1B3W2 +X2W2B2W2

]
P−1,

thus B3W2 = O and

(iii) X2W2A2W2 = X2W2B2W2.

From (i), (ii), and (iii) we have W2A2W2 ≤
− W2B2W2.

(b) =⇒ (a) Suppose that there exist matrices B2, B3, and B4 such that

A = P

[
A1 O

O A2

]
Q−1, W = Q

[
W1 O

O W2

]
P−1, and B = P

[
A1 B3

B4 B2

]
Q−1,

with W2B4 = O, B3W2 = O, and W2A2W2 ≤− W2B2W2. Then, there exists X2 ∈

W2A2W2{1} such that W2A2W2X2 = W2B2W2X2 and X2W2A2W2 = X2W2B2W2. Let us

consider the matrix

X = P ((W1A1W1)
−1 ⊕X2)Q

−1.
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By Theorem 2.1, it is clear that X ∈ A{W −GD} (i). Since W2A2W2X2 = W2B2W2X2,

we have WAWX = WBWX (ii). And from X2W2A2W2 = X2W2B2W2, we obtain

XWAW = XWBW . Thus, A �GD
W B follows from (i), (ii), and (iii).

On the other hand, let Z ∈ B{W −GD} and consider

Z = P

[
Z1 Z12

Z21 Z2

]
Q−1.

Since WBWZWBW = WBW we have Z1 = (W1A1W1)
−1 and Z2 ∈ W2B2W2{1}.

Moreover, there exist matrices E and F of appropriate sizes, such that

(BW )h = P

[
(A1W1)

h O

E (B2W2)
h

]
P−1 and (WB)h = Q

[
(W1A1)

h F

O (W2B2)
h

]
Q−1,

where h1 = ind(BW ), h2 = ind(WB), and h = max{h1, h2}. Hence,

(BW )h+1 = P

[
(A1W1)

h+1 O

EA1W1 (B2W2)
h+1

]
P−1

and

(WB)h+1 = Q

[
(W1A1)

h+1 W1A1F

O (W2B2)
h+1

]
Q−1.

Therefore,

(BW )h+1ZW = P

[
(A1W1)

h (A1W1)
h+1Z12W2

E + (B2W2)
h+1Z21W1 E(A1W1)Z12W2 + (B2W2)

h+1Z2W2

]
P−1

and

WZ(WB)h+1 = Q

[
(W1A1)

h F +W1Z12(W2B2)
h+1

W2Z21(W1A1)
h+1 W2Z21W1A1F +W2Z2(W2B2)

h+1

]
Q−1.

By comparing block matrices in the equality (BW )h+1ZW = (BW )h, we have Z12W2 = O

and (B2W2)
h+1Z2W2 = (B2W2)

h. Since A1W1 is nonsingular, it is clear that ind(BW ) =

ind(B2W2). Similarly, by comparing blocks inWZ(WB)h+1 = (WB)h, we obtainW2Z21 =

O, W2Z2(W2B2)
h+1 = (W2B2)

h and ind(WB) = ind(W2B2) as well. Hence, Z2 ∈

B2{W2 −GD}.
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The converse is an easy computation. �

Notice that if we set m = n and W = In, we recover Theorem 3.1 in [25] and the

complete set of G-Drazin inverses of B is provided.

Corollary 3.1 Let A,B ∈ C
n×n. If A = P (C ⊕ N)P−1, with P and C nonsingular

matrices and N nilpotent of index k = ind(A), then the following conditions are equivalent:

(a) A �GD B.

(b) B = P (C ⊕B2)P
−1, for some matrix B2 such that N ≤− B2.

In this case, Z ∈ B{GD} if and only if

Z = P (C−1 ⊕ Z2)Q
−1,

with Z2 ∈ B2{GD}.

Corollary 3.2 Let W ∈ C
n×m and A,B ∈ C

m×n. If A �GD
W B then B{W − GD} ⊆

A{W −GD}.

Proof. Let A and W be written as in (1). Since A �GD
W B, by Theorem 3.2 we have

B = P

[
A1 B3

B4 B2

]
Q−1,

for some matrices B2, B3, and B4 such that W2B4 = O, B3W2 = O, and W2A2W2 ≤−

W2B2W2. The last inequality implies W2B2W2{1} ⊆ W2A2W2{1} (see [17]).

If Z ∈ B{W −GD} then, by Theorem 3.2,

Z = P

[
(W1A1W1)

−1 Z12

Z21 Z2

]
Q−1,

with Z12W2 = O, W2Z21 = O, and Z2 ∈ B2{W2 − GD}. By Remark 2.1 (b) we have

Z2 ∈ W2B2W2{1}, then Z2 ∈ W2A2W2{1}. Therefore, by Theorem 2.1, Z ∈ A{W−GD}.

�

In general, the relation �GD
W is not antisymmetric as the following example shows.
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Example 3.1 Let us consider the matrices A, B, and W given by

A =




2 0 0 0

0 1 0 0

0 0 0 1


 , W =




1 0 0

0 1 0

0 0 1

0 0 0



, B =




2 0 0 0

0 1 0 0

0 0 0 5


 .

By Theorem 3.2, it is clear that A �GD
W B and B �GD

W A, but A 6= B.

Theorem 3.3 Let W ∈ C
n×m. The binary relation �GD

W defined on C
m×n is a pre-order,

and it will be called the W -weighted G-Drazin pre-order.

Proof. By Definition 3.1, it is immediate that �GD
W satisfies the reflexive property.

Let A,B,C ∈ C
m×n and W ∈ C

n×m such that A ≤GD
W B and B ≤GD

W C.

Since B ≤GD
W C, by Theorem 3.1, there exists Z ∈ B{W −GD} such that

WBWZ = WCWZ, (3)

ZWBW = ZWCW. (4)

Since A ≤GD
W B, by Theorem 3.2 there exist nonsingular matrices P,Q such that

A = P (A1 ⊕ A2)Q
−1, W = Q(W1 ⊕ W2)P

−1, and B = P

[
A1 B3

B4 B2

]
Q−1, with A1,W1

nonsingular matrices, A2W2 and W2A2 nilpotent matrices, W2B4 = O, B3W2 = O, and

W2A2W2 ≤
− W2B2W2.

Moreover,

Z = P

[
(W1A1W1)

−1 Z12

Z21 Z2

]
Q−1,

with Z12W2 = O, W2Z21 = O, and Z2 ∈ B2{W2 −GD} ⊆ W2B2W2{1}.

Suppose that C = P

[
C1 C3

C4 C2

]
Q−1. Some calculations yield to

WBWZ = Q

[
I W1A1W1Z12

O W2B2W2Z2

]
Q−1
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and

WCWZ = Q

[
W1C1W1(W1A1W1)

−1 W1C1W1Z12 +W1C3W2Z2

W2C4(W1A1)
−1 W2C4W1Z12 +W2C2W2Z2

]
Q−1.

From (3) we obtain C1 = A1, W2C4 = 0, and W2B2W2Z2 = W2C2W2Z2.

On the other hand,

ZWBW = P

[
I O

Z21W1A1W1 Z2W2B2W2

]
P−1

and

ZWCW = P

[
I (A1W1)

−1C3W2

Z21W1A1W1 Z21W1C3W2 + Z2W2C2W2

]
P−1.

Now, from (4), we obtain C3W2 = O and Z2W2B2W2 = Z2W2C2W2.

Therefore, C = P

[
A1 C3

C4 C2

]
Q−1, with W2C4 = 0, C3W2 = O, and W2B2W2 ≤−

W2C2W2. Since ≤− is transitive, W2A2W2 ≤− W2C2W2. Hence, by Theorem 3.2,

A ≤GD
W C holds. �

Theorem 3.4 Let W ∈ C
n×m, A,B ∈ C

m×n, k1 = ind(AW ), k2 = ind(WA), and

k = max{k1, k2}. If A and W are written as in (1) then the following conditions are

equivalent:

(I) A �GD
W B.

(II) B = P

[
A1 B3

B4 B2

]
Q−1, for some matrices B2, B3, and B4 such that W2B4 = O,

B3W2 = O, and W2A2W2 ≤
− W2B2W2.

(III) WAW ≤− WBW , R(((AW )kBW )∗) ⊆ R(((AW )k)∗), and R(WB(WA)k) ⊆

R((WA)k).

(IV) WAW ≤− WBW , (AW )kBW = (AW )k+1, and WB(WA)k = (WA)k+1.

(V) The following conditions are assumed to hold simultaneouly
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(V.a) There exists AW−GD ∈ A{W −GD} such that

WAWAW−GDWBW = WBWAW−GDWAW = WAW , and

(V.b) For every X ∈ A{W −GD}, WXW (AW )kBW = WB(WA)kWXW hold.

(VI) WAW ≤− WBW and W (AW )kBW = WB(WA)kW .

(VII) WAW ≤− WBW and WAD,WWBW = WBWAD,WW .

(VIII) WAW ≤− WBW and (WA)DWBW = WBW (AW )D.

Proof. (I) ⇔ (II) follows from Theorem 3.2.

(II) =⇒ (IV) Suppose that A = P (A1 ⊕ A2)Q
−1, W = Q(W1 ⊕ W2)P

−1, and B =

P

[
A1 B3

B4 B2

]
Q−1, with W2B4 = O, B3W2 = O, and W2A2W2 ≤− W2B2W2. Then,

there exists X2 ∈ W2A2W2{1} such that W2A2W2X2 = W2B2W2X2 and X2W2A2W2 =

X2W2B2W2. Let us consider the matrix X = P ((W1A1W1)
−1 ⊕ X2)Q

−1. It is easy

to see that X ∈ WAW{1}, WAWX = WBWX, and XWAW = XWBW , this is,

WAW ≤− WBW . Moreover, (AW )kBW = (AW )k+1 and WB(WA)k = (WA)k+1 follow

by a simple computation.

(IV) =⇒ (III) From (AW )kBW = (AW )k+1 we have ((AW )kBW )∗ = ((AW )k+1)∗,

and then

R(((AW )kBW )∗) = R(((AW )k+1)∗) = R(((AW )k)∗(AW )∗) ⊆ R(((AW )k)∗).

Similarly, from WB(WA)k = (WA)k+1 we have R(WB(WA)k) = R((WA)k+1) ⊆

R((WA)k).

(III) =⇒ (II) Suppose thatA andW are written as in (1) and letB = P

[
B1 B3

B4 B2

]
Q−1.

It is easy to see that

(AW )kBW = P

[
(A1W1)

kB1W1 (A1W1)
kB3W2

O O

]
P−1,

and, consequently,

((AW )kBW )∗ = (P−1)∗

[
((A1W1)

kB1W1)
∗ O

((A1W1)
kB3W2)

∗ O

]
P ∗
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and

((AW )k)∗ = (P−1)∗(((A1W1)
k)∗ ⊕O)P ∗.

Consider the block matrix

E =
[
((AW )kBW )∗ ((AW )k)∗

]
.

It is clear that

r(E) = r

([
((A1W1)

kB1W1)
∗ ((A1W1)

k)∗

((A1W1)
kB3W2)

∗ O

])
.

Since the block ((A1W1)
k)∗ is nonsingular, it is easy to see that

r(E) = r

([
O ((A1W1)

k)∗

((A1W1)
kB3W2)

∗ O

])

= r
(
((A1W1)

k)∗
)
+ r

(
((A1W1)

kB3W2)
∗
)
.

Since R(((AW )kBW )∗) ⊆ R(((AW )k)∗), each column of ((AW )kBW )∗ is a linear

combination of the columns of ((AW )k)∗. Hence, we have r(E) ≤ r(((AW )k)∗), that

is, r
(
((A1W1)

k)∗
)
+ r

(
((A1W1)

kB3W2)
∗
)
≤ r(((AW )k)∗). Thus, r((A1W1)

kB3W2) = 0,

which implies B3W2 = O.

Additionally,

WB(WA)k = Q

[
W1B1(W1A1)

k O

W2B4(W1A1)
k O

]
Q−1 and (WA)k = Q((W1A1)

k ⊕O)Q−1.

Now, we consider the block matrix

F =
[
WB(WA)k (WA)k

]
.

Following an analogous reasoning to the previous one, the hypothesis R(WB(WA)k) ⊆

R((WA)k) implies W2B4 = O.

On the other hand, from WAW ≤− WBW we have r(WBW −WAW ) = r(WBW )−

r(WAW ). Considering the block forms of WBW and WAW we arrive at

r(WBW −WAW ) = r ((W1(B1 − A1)W1 ⊕W2(B2 − A2)W2)) = a+ c,
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where a = r(B1 − A1) and c = r(W2(B2 − A2)W2).

Moreover, r(WBW ) = r(B1) + r(W2B2W2) and r(WAW ) = r(A1) + r(W2A2W2),

hence r(WBW ) − r(WAW ) = b + d where b = r(B1) − r(A1) and d = r(W2B2W2) −

r(W2A2W2). Summarizing, we have a+ c = b+ d with

b = r(B1)− r(A1) ≤ r(B1 − A1) = a

and

d = r(W2B2W2)− r(W2A2W2) ≤ r(W2(B2 − A2)W2) = c.

Therefore, a = b and d = c, that is, A1 ≤− B1 and W2A2W2 ≤− W2B2W2. In addition,

A1, B1 ∈ C
t×t, A1 is nonsingular, and t = r(A1) ≤ r(B1) imply A1 = B1. Hence, (II)

holds.

(II) =⇒ (V) Suppose that A = P (A1 ⊕ A2)Q
−1, W = Q(W1 ⊕ W2)P

−1, and B =

P

[
A1 B3

B4 B2

]
Q−1, with W2B4 = O, B3W2 = O, and W2A2W2 ≤− W2B2W2. Then,

there exists X2 ∈ W2A2W2{1} such that W2A2W2X2 = W2B2W2X2 and X2W2A2W2 =

X2W2B2W2. Moreover, by Theorem 2.1 the matrix AW−GD = P ((W1A1W1)
−1⊕X2)Q

−1 ∈

A{W −GD}.

By making some computations, it is easy to prove that WAWAW−GDWBW = WAW

and WBWAW−GDWAW = WAW hold. Hence, (V.a) is shown.

On the other hand, let X ∈ A{W −GD}. By Theorem 2.1,

X = P

[
(W1A1W1)

−1 X12

X21 X2

]
Q−1,

with X12W2 = O, W2X21 = O, and X2 ∈ W2A2W2{1}.

Now, it is easy to see that

WXW (AW )kBW = Q(W1(A1W1)
k ⊕O)P−1

and

WB(WA)kWXW = Q(W1(A1W1)
k ⊕O)P−1.

Since W1(A1W1)
k = (W1A1)

kW1 for every integer k ≥ 0. This shows (V.b).
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(V) =⇒ (II) Set X ∈ A{W−GD} such that the equalitiesWAWXWBW = WAW =

WBWXWAW hold. If A and W are written as in (1) then by Theorem 2.1

X = P

[
(W1A1W1)

−1 X12

X21 X2

]
Q−1,

for some X12, X21, and X2 such that X12W2 = O, W2X21 = O, and X2 ∈ W2A2W2{1}.

Let B = P

[
B1 B3

B4 B2

]
Q−1. Some calculations give

WXW (AW )kBW = Q

[
A−1

1 (A1W1)
kB1W1 A−1

1 (A1W1)
kB3W2

O O

]
P−1

and

WB(WA)kWXW = Q

[
W1B1(W1A1)

kA−1

1 O

W2B4(W1A1)
kA−1

1 O

]
P−1.

Since WXW (AW )kBW = WB(WA)kWXW , we obtain B3W2 = O and W2B4 = O.

On the other hand, WAWXWBW = Q(W1B1W1 ⊕ W2A2W2X2W2B2W2)P
−1 and

WAW = Q(W1A1W1 ⊕W2A2W2)P
−1. Since WAWXWBW = WAW we conclude B1 =

A1 and (i1) W2A2W2X2W2B2W2 = W2A2W2.

Analogously, by using the equality WBWXWAW = WAW and by making some calcu-

lations, we get (i2) W2B2W2X2W2A2W2 = W2A2W2. Therefore, from (i1), (i2), and the

fact X2 ∈ W2A2W2{1} we conclude W2A2W2 ≤
− W2B2W2 (see [4, Theorem 2.1]). Hence,

(II) is satisfied.

(IV) =⇒ (VI) It is immediate from W (AW )k+1 = (WA)k+1W .

(VI) =⇒ (II) Suppose that A andW are written as in (1). Let B = P

[
B1 B3

B4 B2

]
Q−1.

It is easy to see that

W (AW )kBW = Q

[
W1(A1W1)

kB1W1 W1(A1W1)
kB3W2

O O

]
P−1

and

WB(WA)kW = Q

[
W1B1(W1A1)

k+1W1 O

W2B4(W1A1)
kW1 O

]
P−1.

Since W (AW )kBW = WB(WA)kW , by equating we obtain B3W2 = O and W2B4 = O.
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Since WAW ≤− WBW , following a similar reasoning as in last part of (III) =⇒ (II),

we obtain A1 = B1 and W2A2W2 ≤
− W2B2W2.

(II) =⇒ (VII) Suppose that A = P (A1 ⊕ A2)Q
−1, W = Q(W1 ⊕ W2)P

−1, and B =

P

[
A1 B3

B4 B2

]
Q−1, with W2B4 = O, B3W2 = O, and W2A2W2 ≤

− W2B2W2. Then, in a

similar way to the first part of the proof of (II) =⇒ (IV), we obtain WAW ≤− WBW .

Moreover, it is easy to check that

WBWAD,WW = WAWAD,WW = WAD,WWBW = Q(W1 ⊕O)P−1.

(VII) =⇒ (II) Suppose thatA andW are written as in (1). LetB = P

[
B1 B3

B4 B2

]
Q−1.

It is easy to see that

WAD,WWBW = Q

[
A−1

1 B1W1 A−1

1 B3W2

O O

]
P−1

and

WBWAD,WW = Q

[
W1B1A

−1

1 O

W2B4A
−1

1 O

]
P−1.

By equating we have B3W2 = O and W2B4 = O. The rest of the proof continues as in

the case (III) =⇒ (II) by using the hypothesis WAW ≤− WBW .

(VII) ⇔ (VIII) It is immediate from the equalities AD,WW = (AW )D and WAD,W =

(WA)D. �

Corollary 3.3 Let A,B ∈ C
n×n and k = ind(A). Then, the following conditions are

equivalent:

(I) A �GD B.

(II) (a) There exists AGD ∈ A{GD} such that AAGDB = BAGDA = A.

(b) For every X ∈ A{GD}, XAkB = BAkX holds.

Note that the relations �GD
W and �D,W are not related to each other, in the sense that

none of them implies the other one, as the following example shows.
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Example 3.2 Let us consider the matrices A, B, and W given by

A =




2 0 0 0

0 1 0 0

0 0 0 1


 , W =




1 0 0

0 1 0

0 0 1

0 0 0



, B =




2 0 0 0

0 1 0 1

0 0 0 5


 .

It is easy to see that ind(AW ) = 1, ind(WA) = 2, and A �GD
W B but A 6�D,W B.

Consider now the matrices Ã, B̃, and W̃ given by

Ã =




1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0



, W̃ =




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, B̃ =




1 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0



.

It is easy to see that ind(ÃW̃ ) = 2, ind(W̃ Ã) = 2, and Ã �D,W̃ B̃ but Ã 6�GD

W̃
B̃.

The following results relate the pre-order �GD
W to the minus partial order and the

weighted Drazin inverse [8].

Lemma 3.2 Let W ∈ C
n×m and A,B ∈ C

m×n. If A �D,W B and WAW ≤− WBW

then A �GD
W B.

Proof. From A �D,W B, by [15, Theorem 2.3 (c)] we have (AW )(AW )D = (BW )(AW )D

and (WA)D(WA) = (WA)D(WB). By multiplying adequately by W we obtain

WAW (AW )D = WBW (AW )D and (WA)DWAW = (WA)DWBW.

Since (AW )D = AD,WW and (WA)D = WAD,W , we get the equality of item (VII) in

Theorem 3.4. By Theorem 3.4 we arrive at A �GD
W B. �

Example 3.2 shows that the converse in the previous lemma does not hold and that the

hypothesis WAW ≤− WBW can not be dropped.

Theorem 3.5 Let W ∈ C
n×m and A,B ∈ C

m×n. If A �GD
W B then WAD,WW ≤−

WBD,WW .
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Proof. Suppose that A and W are written as in (1). By Theorem 3.2,

B = P

[
A1 B3

B4 B2

]
Q−1,

with W2B4 = O, B3W2 = O, and W2A2W2 ≤− W2B2W2. Then, there exists X2 ∈

W2A2W2{1} such that W2A2W2X2 = W2B2W2X2 and X2W2A2W2 = X2W2B2W2. It

then follows that

(AW )D = P

[
(A1W1)

−1 O

O O

]
P−1 and BW = P

[
A1W1 O

B4W1 B2W2

]
P−1.

By [6, Corollary 7.7.1], we have (BW )D = P

[
(A1W1)

−1 O

L (B2W2)
D

]
P−1, where

L =
(
I − (B2W2)(B2W2)

D
)( m∑

i=0

(B2W2)
iB4W1((A1W1)

−1)i
)
((A1W1)

−1)2−

(B2W2)
DB4W1(A1W1)

−1.

From W2B4 = O we obtain
m∑
i=0

(B2W2)
iB4W1((A1W1)

−1)i = B4W1 and then

L =
(
I − (B2W2)(B2W2)

D
)
B4W1(A1W1)

−2 − (B2W2)
DB4W1(A1W1)

−1.

By applying the distributive property, by using that a matrix commutes with its Drazin

inverse, and the fact that W2B4 = O we obtain

L = B4W1(A1W1)
−2 − (B2W2)

DB4W1(A1W1)
−1 = B4W1(A1W1)

−2.

The last equality follows from the fact that (B2W2)
D is a polynomial in B2W2 without

constant term [6, Theorem 7.5.1].

Thus, W2L = O. Moreover,

W (AW )D = Q

[
A−1

1 O

O O

]
P−1 and W (BW )D = Q

[
A−1

1 O

O W2(B2W2)
D

]
P−1.

Hence,

W (BW )D −W (AW )D = Q

[
O O

O W2(B2W2)
D

]
P−1.

It is immediate that r(W (BW )D − W (AW )D) = r(W2(B2W2)
D) = r(W (BW )D) −

r(W (AW )D) since A−1

1 is nonsingular. Hence, W (AW )D ≤− W (BW )D and this is equiv-

alent to WAD,WW ≤− WBD,WW due to the equality (AW )D = AD,WW . �
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It is well known that, for instance, for the minus partial order we have that A ≤− B

if and only if B − A ≤− B. Our last results analyze this property with respect to the

pre-order �GD
W .

Proposition 3.1 Let W ∈ C
n×m and A,B ∈ C

m×n. If A and W are written as in

(1), A �GD
W B, and B is in the form of Theorem 3.2, then the following conditions are

equivalent:

(a) B − A �GD
W B,

(b) B2 − A2 �
GD
W2

B2.

Proof. By hypothesis and Theorem 3.4 we have WAW ≤− WBW and W2A2W2 ≤−

W2B2W2. On the other hand, it is known that these inequalities are equivalent to

W (B−A)W ≤− WBW andW2(B2−A2)W2 ≤
− W2B2W2 (see [4]). By taking into account

item (VI) in Theorem 3.4, it is enough to proveW ((B−A)W )kBW = WB(W (B−A))kW

if and only if W2((B2 − A2)W2)
kB2W2 = W2B2(W2(B2 − A2))

kW2, which is easy to see

by making some calculations. �

A similar result can be deduced for the G-Drazin partial order on square matrices.

Let A,B ∈ C
n×n such that A �GD B. Recall that there exists a nonsingular matrix

P ∈ C
n×n such that

A = P (C ⊕N)P−1 and B = P (C ⊕ T )P−1, (5)

where C is nonsingular of size a × a, N is nilpotent of index k = ind(A), and N ≤− T

(see [25, Theorem 3.1]).

Corollary 3.4 Let A,B ∈ C
n×n such that A �GD B. If A and B can be written as in

(5) then the following conditions are equivalent:

(a) B − A �GD B,

(b) T −N �GD T .

23



4 Acknowledgements

This paper was partially supported by Universidad Nacional de La Pampa, Facultad de
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[24] M. Tošić, D.S. Cvetković-Ilić, Invertibility of a linear combination of two matrices and

partial orderings, Applied Mathematics and Computation, 218, 9 (2012) 4651–4657.

[25] H. Wang, X. Liu, Partial orders based on core-nilpotent decomposition, Linear Algebra and

its Applications, 488 (2016) 235–248.

[26] G. Wang, Y. Wei, S. Qiao, Generalized Inverses: Theory and Computations, Science Press,

Beijing/New York, (2004).

[27] Y. Wei, Integral representation of the W-weighted Drazin inverse, Applied Mathematics

and Computation, 144 (2003), 3–10.

[28] Y. Wei, C.W. Woo, T. Lei, A note on the perturbation of the W -weighted Drazin inverse,

Applied Mathematics and Computation, 149 (2004) 423–430.

26


