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Abstract— Objective: Insulin pump therapy and accurate 
monitoring of glucose levels in diabetic patients are current 
research trends in diabetology. Both problems have a wide 
margin for improvement and promising applications in the 
control of parameters and levels involved. Methods: We have 
registered data for the levels of glucose in diabetic patients 
throughout a day with a temporal resolution of five minutes, the 
amount and time of insulin administered and time of ingestion. 
The estimated quantity of carbohydrates is also monitored. A 
mathematical model for Type 1 patients was fitted piecewise to 
this data and the evolution of the parameters was analyzed. 
Conclusion: We have found that the parameters for the model 
change abruptly throughout a day for the same patient, but this 
set of parameters account with precision for the evolution of the 
glucose levels in the test patients. This fitting technique could be 
used to personalize treatments for specific patients and predict 
the glucose levels variations in terms of hours or even shorter 
periods of time. This way more effective insulin pump therapies 
could be developed. Significance: The proposed model could 
allow for the development of improved schedules on 
insulin pumps therapies. 
 

Index Terms—Glucose mathematical model, glucose 
monitoring, insulin pump therapy, piecewise fitting, swarm 
optimization 
 
 
INTRODUCTION 
Glucose real-time continuous monitoring (GRTCM) has 
proven a valid procedure to achieve metabolic control in Type 
1 diabetic patients (DM1), both for multiple insulin dose 
treatment (MDI) and for continuous subcutaneous insulin 
infusion pump (ISCI) [1,2]. Using a combination of GRTCM 
and ISCI, with automated insulin suspension  in response to 
hypoglycemia, the frequency and seriousness of hypoglycemia 
is greatly reduced [3-6].  
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The main inconvenient of present GRTCM systems are their 
insufficient precision and reliability because these condition 
decision-making and they demand regular calibration with 
capillary glycemia  autoanalysis  [7].  
 
On the other hand, the GRTCM patient must be instructed 
about continuous decision-making concerning the insulin 
doses to be administered in order to keep glycemic level 
within his/her therapeutic objectives, but for that the patient 
must take into account not only the present value of glycemic 
level but also the trend in the last few hours. 
 
The magnitude of glycemic decrease after administering one 
unit of insulin (insulin sensitivity) is one of the key factors to 
be taken into account by professionals and patients to decide 
the insulin doses to be administered. Insulin sensitivity suffers 
from large inter and intraindividual variability, being 
conditioned by many factors such as: age, sex, weight, 
exercise, metabolic stress, meals, time of the day, etc, in such 
a way that it is very difficult for the patient to make correct 
decisions. All these factors give us a sufficient reason to 
improve the application of current mathematical models to 
diabetic patients. 
 
For these reasons it would be interesting to develop a 
mathematical model capable of fitting the data for glucose 
levels in a patient and to make predictions under certain 
conditions that could gauge the risk of hypoglycaemia and the 
necessity of insulin administration along the day. This model 
should be applied and calibrated for every patient in particular 
because the physiological response can be very different from 
one patient to another. 
 
Mathematical modelling of diabetes has focused in different 
aspects of the disease and it is already an active field of 
research [8-10]. Glucose metabolism coupled to insulin 
secretion has also been simulated with several models [11] as 
well as the pathogenesis of the disease [12]. Other authors 
have modelled the intravenous glucose tolerance test and the 
glycemic index as markers characterizing the response of the 
patient to the ingestion of food and sugar metabolism [13-16]. 
The progression of the disease and the deterioration of beta-
cells’ function has also been the topic of several models [17-
19]. 
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Here we will use a mathematical model based upon 
differential equations as proposed by Prud`homme et al. [20]. 
This model was developed with the objective of achieving 
control of postprandial glucose levels and it contains six 
unknown parameters related to the bioavailability of the meal, 
the insulin absorption and sensitivity, and the endogenous 
glucose production and effectiveness at zero insulin. Instead of 
using the system in Ref. [20] we will rewrite it in terms of 
difference equations with the objective of implementing it in a 
numerical scheme. 
 
Our objective is to apply this model to obtain and accurate 
fitting of the evolution of glucose concentrations in particular 
individuals. This is achieved by a piecewise fitting with the 
temporal resolution of the measurements performed by the 
sensor. We will use a hybrid optimization technique which 
merges heuristic (Particle Swarm Optimization, PSO) [22] and 
deterministic methods (Nelder-Mead optimization) [23]. This 
way a very precise fitting is obtained and information about 
the fast evolution of the model parameters is also obtained. 
Another alternative is to use global parameters for the whole 
period of time of interest (one day in the case of diabetic 
patients) but this is usually very ineffective for complex 
biological signals. As an example of this drawback, we have 
recently shown that the epidemiological data for varicella can 
only be fitted piecewise by obtaining a time-dependent 
seasonal forcing [21].   
 
In this paper we show how to obtain model parameters for 
diabetic patients that could be used to assess the insulin dosing 
and to perform better control of their disease.  
 

I. METHODS 
In order to control the glucose, diabetics need to decide the 
insulin dose to be injected  having into consideration food 
intakes, exercise done, etc, and try to predict the blood glucose 
level to avoid hypoglycemia (which can be a very dangerous 
situation).  To help with this task, some models to measure 
and predict the levels of glucose in the human body have been 
presented, most of them are averaged models [8]. 
 
One of the main issues on the identification of models is the 
high variability of the glucose profiles from one patient to 
another. Thus, nowadays, the mainstream consists of 
customizing the treatments to every patient. With this aim, we 
use the model presented in [20] to be applied to a real patient. 
Although [20] presents a minimal model, we can characterize 
it for each patient, and the parameters of the model can be 
associated to values used in the daily therapy. We can take 
advantage of modern handy devices Continues Glucose 
Monitoring Systems (CGMS) that provides glucose measures 
(with some errors) every 5 minutes. 
 
In this work we performed measurements with a CGMS every 
five minutes for a selected patient. A particular example, to be 
used in our model, is plotted in Fig. 1. 

The intake of carbohydrates has been done at 08:10 and 14:22 
in quantities of 50 grams and 60 grams, respectively. The 
levels of insulin injected can be seen in Fig. 2. 

 

A. Mathematical Model 
We are going to consider a discrete and adapted version of the 
model presented in [20], given by the following system of 
non-linear difference equations (some details concerning the 
rewriting of Eq. (3) are given at the Appendix): 
 
𝑈𝑈𝑡𝑡+1 = 𝑈𝑈𝑡𝑡 + 𝑉𝑉𝑡𝑡  ,                                                               (1) 
𝑉𝑉𝑡𝑡+1 = 𝑉𝑉𝑡𝑡 − 2𝑎𝑎𝑔𝑔𝑉𝑉𝑡𝑡 − 𝑎𝑎𝑔𝑔2𝑈𝑈𝑡𝑡 + 𝐾𝐾𝑔𝑔𝑎𝑎𝑔𝑔2𝐶𝐶ℎ𝑡𝑡  ,                         (2) 
𝐺𝐺𝑡𝑡+1 = 𝐺𝐺𝑡𝑡 − 𝑋𝑋𝑡𝑡𝐺𝐺𝑡𝑡 − 𝑆𝑆𝑔𝑔0𝐺𝐺𝑡𝑡 + 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐶𝐶 𝑈𝑈𝑡𝑡

𝑀𝑀
 ,                     (3) 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 − 𝑎𝑎𝑥𝑥𝑋𝑋𝑡𝑡 + 𝑎𝑎𝑥𝑥𝑋𝑋𝑡𝑡1 ,                                              (4) 
𝑋𝑋𝑡𝑡+11 = 𝑋𝑋𝑡𝑡1 − 𝑎𝑎𝑥𝑥𝑋𝑋𝑡𝑡1 + 𝐾𝐾𝑥𝑥𝑎𝑎𝑥𝑥

𝐼𝐼𝑡𝑡
𝑀𝑀

 ,                                          (5) 
 

where the variable parameters are defined as follows: 
• 𝑈𝑈𝑡𝑡 is the gut glucose absorption at minute 𝑡𝑡 measured 

in g/min, 
• 𝑉𝑉𝑡𝑡 is the variation rate of the gut glucose absorption 

measured in g/min2, 
• 𝐺𝐺𝑡𝑡 is the level of glucose at minute 𝑡𝑡 measured in 

mg/dl, 
• 𝑋𝑋𝑡𝑡 is the insulin action in 1/min, 
• 𝑋𝑋𝑡𝑡1 is the intermediate insulin action measured also in 

1/min, 
• 𝐶𝐶ℎ𝑡𝑡 is the level of ingested carbohydrates at minute 𝑡𝑡 

in g/min, 
• 𝐼𝐼𝑡𝑡 is the level of insulin injected at time 𝑡𝑡 measured in 

mU/min, 
• 𝐶𝐶 is a constant given by 50/9 mg Kg/(dl g), 
• 𝑎𝑎𝑔𝑔 is the inverse of the meal time constant measured 

in 1/min, 
• 𝐾𝐾𝑔𝑔 is the unitless bioavailability of the meal of 

interest, 
• 𝑎𝑎𝑥𝑥 is the inverse of the insulin absorption/action time 

constant measured in 1/min, 
• 𝐾𝐾𝑥𝑥 is the insulin sensitivity measured in kg/mU, 
• 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the insulin independent endogenous glucose 

production measured in mg/(dl min), 
• 𝑆𝑆𝑔𝑔0 is the glucose effectiveness at zero insulin 

measured in 1/min, 
• 𝑀𝑀 is the weight of the patient in kg, (M=70 for the 

current patient). 

The quantities with the subscript t are model functions for 
which we need initial conditions that should be known to 
integrate the model. In practice, only 𝐺𝐺𝑡𝑡 is measured at t=0 but 
we will show how to obtain the rest of parameters by fitting. 

 



B. Piecewise fitting 
For the records shown in Fig. 1 we can denote by 𝑔𝑔5𝑡𝑡, 𝑡𝑡 =
1, … ,96, being the patient’s glucose data every five minutes. 
With similar notation we have that  𝐼𝐼𝑡𝑡, 𝐶𝐶𝑡𝑡,  𝑡𝑡 = 1, … ,480, are 
the injected insulin and ingested carbohydrates every minute, 
respectively. For our record we have  𝐶𝐶ℎ1 = 50, 𝐶𝐶ℎ373 = 60, 
and 𝐶𝐶ℎ𝑡𝑡 = 0 for other time 𝑡𝑡. 
 
The initial glucose level measured at 08:05 am is denoted by 
𝑔𝑔0 = 102 and this will be used as one of the initial conditions. 
It is convenient to cast the system of Eqs. (1)-(5) in a compact 
form: 

𝕐𝕐𝑡𝑡+1 = 𝕄𝕄(𝛼𝛼;𝕐𝕐𝑡𝑡) ,                                                    (6) 
 

where 𝕐𝕐𝑡𝑡 = (𝑈𝑈𝑡𝑡 ,𝑉𝑉𝑡𝑡 ,𝐺𝐺𝑡𝑡 ,𝑋𝑋𝑡𝑡 ,𝑋𝑋𝑡𝑡1) are the time-dependent 
quantities of the model and 𝛼𝛼 stands for the unknown model 
parameters (𝑎𝑎𝑥𝑥 ,𝐾𝐾𝑥𝑥 , 𝑎𝑎𝑔𝑔,𝐾𝐾𝑔𝑔, 𝑆𝑆𝑔𝑔0,𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒). The fitting process to 
be developed must cope with the problem arising from the fact 
that the only available data are the levels of glucose, 𝐺𝐺𝑡𝑡, 
measured every five minutes. The rest of quantities 
𝑈𝑈𝑡𝑡 ,𝑉𝑉𝑡𝑡 ,𝑋𝑋𝑡𝑡 ,𝑋𝑋𝑡𝑡1 and the model parameters are unknowns. So, as 
our initial condition we will take: 
 

𝕐𝕐0 = (𝐴𝐴1,𝐴𝐴2,𝑔𝑔0,𝐴𝐴3,𝐴𝐴4),                                           (7) 
 

where 𝐴𝐴1, … ,𝐴𝐴4 are constants to be fitted and 𝑔𝑔0 = 102. 
An issue with the selection of these initial parameters is that, 
for some combination of them, the model predicts strong 
oscillations of the glucose levels. As we assume that in 
between of two subsequent measurements the behaviour of 
glucose dynamics is relatively smooth we will impose this 
smoothness as a condition in the initial parameter fitting. 
The fitting procedure for the first iteration is then outlined as 
follows: 
 

• STEP A:  We perform a linear interpolation for the 
glucose levels at instants t=1 minute, 2 minutes, 3 
minutes and 4 minutes starting with the known data 
for the instants t=0 and t=5 minutes. This way we 
obtain the values: 𝑓𝑓1(𝑡𝑡 = 0) = 𝑔𝑔0,   𝑓𝑓1(𝑡𝑡 =
1),   𝑓𝑓1(𝑡𝑡 = 2),  𝑓𝑓1(𝑡𝑡 = 3),   𝑓𝑓1(𝑡𝑡 = 4),   𝑓𝑓1(𝑡𝑡 = 5) =
𝑔𝑔5. 
 

• STEP B: for a set of initial conditions as given in Eq. 
(7) we calculate the iterations: 
 
  𝕐𝕐1 = 𝕄𝕄(𝛼𝛼;𝕐𝕐0), …  𝕐𝕐5 = 𝕄𝕄(𝛼𝛼;𝕐𝕐4),                   (8) 
 
and from the third component of these vectors we get 
the prediction for the glucose levels: 
𝐺𝐺1,𝐺𝐺2,𝐺𝐺3,𝐺𝐺4,𝐺𝐺5. 
 

• STEP C: we obtain the minimum for the absolute 
difference among the data and the prediction: 

                                          
   min{|𝑓𝑓1(1) − 𝐺𝐺1|, … , |𝑓𝑓1(5) − 𝐺𝐺5|}                      (9) 

 
Depending on this value and the best result until this 
iteration we choose another set of parameters 
(𝑎𝑎𝑥𝑥 ,𝐾𝐾𝑥𝑥 , 𝑎𝑎𝑔𝑔,𝐾𝐾𝑔𝑔, 𝑆𝑆𝑔𝑔0,𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) and 𝕐𝕐5 as the new initial 
condition 𝕐𝕐0.  Then we go to STEP B again for a new 
prediction. 

This procedure stops when the error is sufficiently small as 
described in the optimization procedure below. 
 
 

C. Swarm hybrid optimization 
 
Usually model fitting consists of minimizing certain objective 
functions to obtain the best set of parameters capable of 
making a consistent prediction for the experimental data. In 
our case we have in the i-th segment that the following 
quantity: 

                     
min��𝑓𝑓𝑖𝑖(1) − 𝐺𝐺5(𝑖𝑖−1)+1�, … , |𝑓𝑓𝑖𝑖(5) − 𝐺𝐺5𝑖𝑖|�                       (10) 
 
must be minimized. In optimization problems of this kind it is 
customary nowadays to use heuristic methods to perform an 
exploration of the parameter space instead of evaluating, 
systematically, the objective function for a large set of 
combinations of parameters. A widely used approach for 
heuristic optimization is the so-called Particle Swarm 
Optimization, PSO, method [22] in which the flight of a flock 
of birds is simulated to carry out a random exploration of 
parameter space to find the best values. If we are close to a 
good value it is, however, more efficient to use a deterministic 
method that converges faster to the best possible value in that 
region. So we have combined a PSO method with a Nelder-
Mead method  [23] to achieve our optimization objective. Our 
combined optimization method proceeds in three general 
steps: 

• STEP 1: We use a version of the Random Particle 
Swarm Optimization (rPSO) method [20] with 
mutation and random substitution of some birds in 
some steps. We used 40 birds to return the best 
position. In total we ran 1500 iterations for every five 
minutes interval of glucose measurements. 
 

• STEP 2: As a second step we took the best position 
found in the previous step and build a small simplex 
around it as our initial guess for the Nelder-Mead 
algorithm [23]. The algorithm is run until the 
difference between two consecutive iterations is less 
than 10-6. 
 

• STEP 3: We recover the parameter values for the best 
(minor error) result returned by the rPSO and the 
Nelder-Mead method. The result is accepted if its 
error is smaller than 5 %. Otherwise, we will start 
again the optimization until the error is acceptable. 



This upper value for the error is chosen that way 
because CGMS are designed with such maximum 
accuracy. 

In some errors, however, the error is still larger than 5 % after 
fifteen iterations of the hybrid optimization described above. 
This is, in particular, the case for the largest values of glucose 
levels in Fig. 1 around minute 425.  
 

II. RESULTS 
In Fig. 3 we can see that the resulting fitting for the glucose 
levels captures the details of the evolution throughout the 
eighth hours of monitored time. The errors as a function of 
time are depicted in Fig. 4, where we have achieved the 
objective of below 5 % error values except for the interval 
around minute 425. On the other hand, this does not affect the 
overall fitting of the model which is fairly good.  
 
The model parameters are also shown in Fig. 5 for each five 
minutes interval. Notice that they show fast changes in short 
intervals of time pointing to a very volatile physiology of 
glucose and insulin in diabetic patients. 

 
The other functions in the model of Eqs. (1)-(5) are indeed 
very regular and we predict an insulin action and intermediate 
insulin action, Xt and 𝑋𝑋𝑡𝑡1 which increase during the monitoring 
time for this patient.  
 
Notice that the insulin action rises to a plateau at minute 300 
to a value around 0.7 1/min. This rise in insulin action 
approximately correlates with the second injection of insulin  
administered at 14:22 (corresponding to minute 376).  
 

III. CONCLUSIONS 
The combination of sensors and insulin pumps is every day 
more usual, almost standard, for the control of diabetic 
patients. Nevertheless, a poor understanding of the evolution 
of the blood glucose levels for given patients throughout the 
day is a major handicap for predicting the necessary amount of 
insulin to be delivered to the patient.  
  
In this paper we have proposed a sequence of random and 
deterministic fitting methods to infer the model parameters for 
a recently proposed glucose model. We conclude that the 
parameters associated to the best fit of the glucose level for a 
patient monitored in a period of 8 hours fluctuate in short time 
intervals. Sometimes, even in a matter of minutes. This 
volatility is a manifestation of the natural instability of the 
insulin/glucose dynamics in diabetic patients.  
 
Anyhow, we consider that a better statistical analysis of these 
variations could help us in predicting, in a personalized way, 
the amount of insulin necessary at each instant to avoid the 
chance of hypoglycemia and follow the schedules of the 
patient. 
 
Work along this line is in progress and will be published 
elsewhere. 
 

 

 
Fig. 2.  Insulin units (Logarithmic scale) vs time for the 
monitored patient.  

 
Fig. 1.  Glucose levels of a diabetic patient taken every five minutes in a 
period from 8:06 am until 16:05 pm. The unit of concentration is mg/dl, time 
is given in minutes. 
  
 
 
 



 
 
Fig 3. Observed levels of glucose (open circles) and result of 
the best fit (solid line) for the data in Fig. 1.  
 

 
Fig 4. Errors in the fitted values of Fig. 3 as a function of time. 
Notice the high peak around minute 425 roughly 
corresponding to the sharp jump in glucose detected by the 
CGMS.  

 

Fig 5. Parameters for the glucose model obtained for the best 
fit of the glucose levels: from top left to bottom right they are: 
ax , Kx , ag , Kg , sg0 and Uendo. 

 
Fig 6. Insulin action in 1/min vs time in minutes. The line is 
the prediction of the model. 
 

 
Fig 7. The intermediate insulin action in 1/min vs time in 
minutes. The line is the prediction of the model. 

 

APPENDIX 
In this appendix we discuss the derivation of Eq. (3) in the 
discrete model we are using from the corresponding equation 
in the model of Prud’homme et al. [20]. In principle, we have 
in this reference that 
 
 𝑄𝑄𝑡𝑡+1 = 𝑄𝑄𝑡𝑡 − 𝑋𝑋𝑡𝑡𝑄𝑄𝑡𝑡 − 𝑆𝑆𝑔𝑔0𝑄𝑄𝑡𝑡 + 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐶𝐶𝑔𝑔→𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚 

𝑈𝑈𝑡𝑡
𝑀𝑀

 ,                        
(11) 
 
where 𝑄𝑄𝑡𝑡   is the glucose amount in mmol/kg, and 𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is 
measured in mmol/(kg min). But in our comparison with the 
CGMS’s measurements we use instead the function  𝐺𝐺𝑡𝑡 whose 



units are mg/dl, i. e., milligrams of glucose per deciliter. Both 
quantities are related by: 
 
                            𝐺𝐺𝑡𝑡 = 𝑄𝑄𝑡𝑡

𝑉𝑉𝑔𝑔𝑔𝑔
 ,                                                   (12) 

 
where 𝑉𝑉𝑔𝑔𝑔𝑔 is a conversion factor given as follows: 
 
                            1 𝑚𝑚𝑔𝑔

𝑒𝑒𝑚𝑚
= 1

𝑉𝑉𝑔𝑔𝑔𝑔
 𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚
𝑘𝑘𝑔𝑔

,                                        (13) 

 
The conversion factor 𝐶𝐶𝑔𝑔→𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚 from grams of glucose to 
mmol is obtained from the molecular weight of glucose, i.e., 
180 g/mol which implies 𝐶𝐶𝑔𝑔→𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚 = 50

9
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑔𝑔, 

Then, if we divide all terms in Eq. (11) by 𝑉𝑉𝑔𝑔𝑔𝑔 we obtain the 
evolution equation for 𝐺𝐺𝑡𝑡 as follows: 
 
      𝐺𝐺𝑡𝑡+1 = 𝐺𝐺𝑡𝑡 − 𝑋𝑋𝑡𝑡𝐺𝐺𝑡𝑡 − 𝑆𝑆𝑔𝑔0𝐺𝐺𝑡𝑡 + 𝑈𝑈�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐶𝐶 𝑈𝑈𝑡𝑡

𝑀𝑀
 ,                 (14) 

 
where 𝑈𝑈�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the production of endogenous glucose 
measured in mmol/(kg min) and C is a constant: 
 
                                   𝐶𝐶 = 50

9
 𝑚𝑚𝑔𝑔 𝐾𝐾𝑔𝑔
𝑒𝑒𝑚𝑚 𝑔𝑔

.                                       (15)  
 
Eqs. (14) and (15) correspond to Eq. (5) in the form used in 
this paper. 
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