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Abstract 

Soil erosion is a big concern in bare soils from burnt areas and agricultural lands that lack a vegetation cover. In 

those unprotected soils, intense rain episodes, typical in Mediterranean climate, cause severe soil erosion 

processes that have been well studied previously using a number of procedures, such as the Geomorphic Change 

Detection (GCD) method. This method uses Digital Elevation Models (DEMs) of the soil surface and determines 

the morphological changes in terms of both erosion and deposition by DEMs of Difference (DoDs). However, some 

types of soil erosion, such as diffuse and sheet erosion, may have a small magnitude, at a millimetre scale, and 

their determination requires methods adapted to that scale. In this paper we analyse the suitability of the GCD 

method to account for small magnitude soil erosion. We present a laboratory procedure and setup to represent and 

quantify sediment budget in small experimental soil plots through differences of DEMs obtained from images using 

photogrammetric Structure from Motion (SfM). This study explores several key aspects of the technique: 

establishment of a common reference system for DEMs; determination of errors in the generation of DEMs; 

selection of appropriate criteria to obtain reliable changes in DoDs; error propagation using Monte Carlo simulation; 

and validation of the procedure by comparing the results with actual sediments collected during the experiment. 

Results showed an overestimation of 13% in accumulated soil loss and confirmed that GCD approach with SfM-

based DoDs is a suitable method to quantify small-magnitude erosion events. 
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1. Introduction

Soil erosion has been identified as one of the most serious threats to agriculture sustainability. According to the 

‘State of the World's Soil Resources’ report (FAO, 2015), erosion processes remove 25 to 40 billion tonnes of 

arable land per year worldwide, and projections indicate a yield reduction of more than 253 million tonnes by 2050. 

The immediate consequence of this scene is the significant decline of crop yields and soil capacity to complete the 

carbon, nutrient, and water cycles. 

The negative impacts of soil erosion on food security and land degradation have long been a concern for 

government organisations. The first attempts to establish the magnitude of the problem were posed in 1977 during 

the United Nations Conference on Desertification (UNCOD), in Nairobi. A pioneering world map of desertification 

was prepared for that event, and afterwards, UNEP developed a methodology for evaluating and mapping 

desertification in response to requests for more precise data on desertification and its evolution 

(FAO/UNEP/UNESCO, 1979; FAO, 1980; UN, 1978). From then on, FAO, USDA and CEE periodically distribute 

monitoring and evaluation reports on the evolution of land degradation and implement programmes to support 

environmentally related decision making. However, despite the urgent need for monitoring and predicting soil 

changes, most countries and states lack national soil information systems, such as those created for economic, 

climate, or water resources management. Policies for the recovery of degraded soils, the implementation of soil 

conservation measures, and technological advances may reduce or prevent most of the negative impacts of 

agriculture, but it is essential to evaluate the effectiveness of soil erosion control practices in a reliable and 

continuous way over time. However, despite the important technological advances and the continuous efforts 

carried out during the last 40 years, there is not yet an effective tool able to achieve this neat aim, which is precise 

soil loss quantification. An important number of methods to quantify soil loss exist (Morgan, 2005), although in most 

of cases, they are difficult to implement at wide-scale owing to conflicts between public and private interests, the 

great variety of organisations involved in soil management policies (from national to local), and other economic 

constraints (FAO, 2015). 

All of these circumstances led to a new approach to conduct land and soil degradation mapping projects when 

compared to classical methods. Because the problem of soil erosion is primarily found at discrete locations 

(Bruinsma, 2003), the workflow might be more efficient with a bottom to top approach, that is, from small areas 

(plot, slope) to wide areas (watershed, regional). In the last decade, land degradation maps are aimed at 

representing land degradation at three different spatial scales, namely local, national and global (CDE/WOCAT 

FAO/LADA ISRIC, 2008). Within this trend, the focus is on local scale studies, because it is the first step towards 

global mapping. Current methodologies include land management systematic surveys, together with the use of 

maps and satellite images to document either the success or failure of the implemented techniques. 
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It is in this framework that new, cost effective soil erosion measuring techniques achieve relevance and interest, 

and thereby, novel approaches may contribute to better understanding the complexity of erosion processes. In this 

line, we present a rigorous laboratory method, based on the Geomorphic Change Detection (GCD) concept and 

convergent photogrammetry, that may be used in conjunction with (and with support of) other methods to calculate 

soil erosion at different scales. 

The morphological approach (Ashmore & Church, 1998) allows for the assessment of sediment balances from 

geomorphological changes in the terrain surface. GCD (James et al., 2012) can be conducted using differences 

between DEMs that represent topographic surfaces at different time (Brasington & Smart, 2003; Lane et al., 2003). 

The DEM of Difference (DoD) technique (Wheaton et al., 2010) is fairly simple and can be easily implemented 

within a Geographic Information System (GIS) environment. We can find many application examples of GCD and 

DoD to assess sediment budgets in fluvial geomorphology, most of them based on the work carried out by Wheaton 

et al. (2010) and subsequents. We will focus on the use of GCD in soil water erosion studies at microscale.  

DEMs used in geomorphological studies are built from 3D data collected with a variety of surveying techniques and 

instruments (Carrivick et al., 2016): total stations (TS), differential Global Navigation Satellite Systems (GNNS), 

aerial laser scanning (ALS), terrestrial laser scanning (TLS), classical photogrammetry and, more recently, 

Structure from Motion (SfM) photogrammetry. In the last years, the applications of SfM with Multi-View Stereo 

(MVS) at different scales has considerably increased in the geosciences (Eltner et al., 2016; Fonstad et al., 2013; 

James & Robson, 2012; Micheletti et al., 2015; Westoby et al., 2012). SfM photogrammetry has been evaluated at 

micro-scale, confirming that this technique can provide high precision DEMs (e.g. Kasprak et al., 2015; Micheletti 

et al., 2014; Nouwakpo et al., 2014) and, indeed, it is being used in recent GCD-based soil erosion research (e.g. 

Balaguer-Puig et al., 2017; Guo et al., 2016; Hänsel et al., 2016; Prosdocimi et al., 2017; Vinci et al., 2017). 

Validation of the erosion estimates obtained with the morphologic method is done by comparison with the actual 

sediments collected during the experiment. 

A key aspect of the technique is the determination of the DEM errors. Carrivick et al. (2016) and Eltner et al. (2016) 

published detailed bibliographic surveys and analysed the main photogrammetric factors affecting the error in SfM-

MVS generated point clouds, including scale/distance, camera calibration, image network geometry, image 

matching performance, surface texture, lighting conditions and Ground Control Point (GCP) characteristics. Other 

experimental approaches rely on Monte Carlo methods to find out the effects of errors in SfM factors, e.g. camera 

parameters (Nouwakpo et al., 2014), number and quality of GCPs, or precision in image measurements (James et 

al., 2017a, 2017b) on the output DEMs. DEM errors themselves also affect the final outcomes of the GCD 

computations due to error propagation through GIS spatial operations on DEMs (Heuvelink, 1998; Wechsler & 

Kroll, 2006). It is thus necessary to distinguish true morphologic changes from noise associated to DEM errors, 

usually establishing a minimum Level of Detection (LODMIN) (Brasington et al., 2003; Milan et al., 2011; Wheaton 
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et al., 2010; Williams, 2012). A common approach to computing the error propagation in GIS analytical functions 

is based on the Monte Carlo method, which adds random error components to input layers (parameters) and 

repeats calculations a number of times (Wechsler & Kroll, 2006). This sample of outputs allows users to compute 

statistics and find out the effects of error propagation on the final results (Hengl et al., 2010). In this paper we used 

the Monte Carlo method to determine uncertainties in the sediment budget obtained with the GCD method in 

erosion laboratory experiments. 

Based on the above previous research and bearing in mind their results, we seek to establish a working procedure 

to determine soil loss with the GCD method in laboratory experiments at micro-scale. We specifically focus on 

finding rigorous strategies to create high precision DEMs from images with the aim of detecting millimetric changes. 

Those DEMs and their uncertainties determined with the Monte Carlo method will be used to test the efficiency and 

validity of the GCD method. This procedure should be regarded as the first step in converting the well stablished 

SfM-based DoD technique into a valid field tool for monitoring and mapping purposes in soil erosion research. 

2. Methodology 

In this section we describe the different stages of GCD procedure using DoD in laboratory experiments, and its 

application to a case study. A typical geomorphological study based on DoDs has the following main stages: image 

data acquisition, dense point cloud creation, DEM generation, DoD computation and reclassification, and error 

propagation analysis. In this paper, we extend the usual workflow with some relevant stages such as the accurate 

establishment of the Coordinate Reference System (CRS) with signalled GCPs, the runoff collection and 

processing in each rainfall event, and the comparison of the weight of the collected sediments with the soil loss 

estimates. Figure 1 shows a schematic view of the procedure.  

2.1. Rainfall simulation and data acquisition 

Rainfall simulators are aimed at reproducing the characteristics of rainfall as closely as possible. We can find 

different designs for field or indoor use, or both (Cerdà et al., 1997). In the laboratory, the setup includes a box, 

filled with a soil sample, with a gathering system that allows the collection of runoff and infiltration during the rain 

episode. Both water and suspended sediment collected are then processed by standard laboratory methods of 

filtering, oven-drying at 105ºC and weighting, obtaining the weight of the sediments transported by runoff. The bulk 

density ρb
 of the soil sample in the box is obtained by the standard core method (Hao et al., 2008). 

2.2. Coordinate Reference System (CRS) setup 

A crucial element in the process of detecting morphological changes is the setup of a unique, common CRS, which 

allows users to achieve a perfect relative georeferencing across DEMs (Williams, 2012). The CRS must be set 

through a set of GCPs located in fixed and stable locations, with precise coordinates measured by rigorous 
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surveying methods. GCPs must be distributed throughout the study area, arranged at different depths and not 

aligned. 

2.3. Image acquisition 

The photogrammetric method used to obtain point clouds determines the proper design of the image acquisition 

procedure and the final precision of the computed 3D points. In order to achieve the best precision, the setup must 

include highly redundant convergent images, an adequate camera-object distance, good illumination conditions, 

availability of GCPs and known calibration parameters of the camera, usually determined by self-calibration in a 

bundle adjustment (James & Robson, 2014; Mosbrucker et al., 2017). To obtain redundant convergent images for 

3D modelling, a typical way is to take ring distributed photos around the object, with overlaps between consecutive 

images up to 80% (Wenzel et al., 2013). Besides, a network image geometry suitable for measuring flat objects, 

such as the soil box surface, should have vertical viewing angles of ~45°, producing angles between photos ~90° 

that provide the highest accuracy in photogrammetric point measurement (Luhmann et al., 2013).  

2.4. SfM-MVS point clouds and DEM generation 

The SfM-MVS sequence generates dense 3D point clouds from the set of images. A bundle adjustment estimates 

image positions and 3D point coordinates of tie points, with arbitrary scale and orientation, but they can be 

transformed to a given datum with known GCPs. The identification and measurement of GCPs can be performed 

on the initial images or on the cloud of points obtained, although measurements in the images are more reliable 

(James & Robson, 2012). It is highly recommended to create digital masks to isolate the areas of interest on the 

pictures and to improve the results of MVS algorithm. Self-calibration is usually performed to obtain camera model 

parameters. 

DEMs are created from point clouds using interpolation methods. In geomorphological applications, the choice of 

a particular spatial interpolation method depends on the characteristics of the terrain and the distribution of the 

measured points (Fisher & Tate, 2006). The inverse distance weighting (IDW) method is robust to errors in the 

coordinates, create lesser smoothed DEMs and is precise (Liu et al., 2011). It is a proper solution in the GCD 

approach, because soil surface changes are best determined with lesser smoothed DEMs that keep local variations 

intact. The accuracy of the interpolation method can be determined by split-sample validation, which is appropriate 

when an independent set of sample data is not available (Erdogan, 2009). That is the case in rain simulation studies 

in which it is impossible to place permanent check points on the soil surface without affecting the phenomenon 

under study (Heng et al., 2010). 

An estimate of the error affecting the DEMs can be the quadratic composition of the georeferencing error ET (the 

RMSE of the GCPs used in the bundle block adjustment) and the interpolation error EI, the two main production 

stages of DEM (Li et al., 2005): 
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𝐸𝐷𝐸𝑀 = √𝐸𝑇
2 + 𝐸𝐼

2         [1] 

2.5. DoD and change detection 

The detection and quantification of geomorphological changes over time can be performed through comparison of 

DEMs surfaces at each time point. Two DEMs with the same dimensions are subtracted on a cell-by-cell basis 

giving a DoD or map of differences. Volumes of erosion and deposition correspond to negative and positive 

difference values respectively. Using the bulk density value, weights corresponding to erosion, deposition and net 

soil loss can be determined. 

The computation of morphological changes from DoDs deserves special attention to discriminate true changes 

from noise originated in the input surface errors. The Minimum Level Of Detection (LODMIN) is the error in DoD 

(EDoD) derived from the difference of two DEMs (Williams, 2012), and may be a suitable threshold discriminating 

criterion in small areas and low intensity rainfall (Gessesse et al., 2010; Hänsel et al., 2016):  

𝐿𝑂𝐷𝑀𝐼𝑁 = 𝐸𝐷𝑜𝐷 = √𝐸𝐷𝐸𝑀1

2 + 𝐸𝐷𝐸𝑀2

2       [2] 

where EDEM1 and EDEM2 are the individual errors in the two DEMs, obtained from equation [1]. 

2.6. Error propagation and uncertainty of the estimated soil loss 

The random errors in input DEMs propagate into volume and weight values of soil loss obtained as a result of map 

algebra operations. The Monte Carlo method can be used to assess the uncertainty due to random errors in DEMs. 

This approach considers that a DEM is only one of the possible realisations of the true elevation surface. So, we 

can obtain multiple simulations of DEM –adding some sort of perturbation to the original variable– to create a 

sample distribution and analyse their statistics. This method is commonly used when ground-truth data is not 

available, and when we only have an estimation of RMSE, which does not represent the spatial structure of the 

error (Heuvelink, 1998, 2005; Wechsler & Kroll, 2006).  

In this procedure, the Monte Carlo method is used to obtain simulated DoDs by adding random error fields to the 

two original DEMs, based on DEM errors obtained from [1]. In order to obtain the uncertainty in the weight of soil 

loss calculated from volume, simulated values of bulk density are considered, by adding a random error to the 

measured density based on the accuracy of the core method (Raper & Erbach, 1987). The Monte Carlo method 

needs a significantly large number of realisations to produce a reliable estimate of the distribution function, at least 

100 (Hengl et al., 2010). A set of DoD instances are obtained and basic statistics, essentially mean (μ) and standard 

deviation (σ), of volume and weight variables, are computed. The ultimate outcome of the process is the uncertainty 

associated to soil loss computations. 
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2.7. Case study 

In this section we briefly describe a case study that supports the laboratory procedure proposal. All the pictures 

and data were collected in a previous experiment conducted by Balaguer-Puig et al. (2017), even though the 

pictures were completely reprocessed to obtain the results presented in this paper. 

In the experiment we use a small soil sample box of 0.68 x 0.75 m with a uniform slope of 10%, with sandy loam 

texture without vegetation cover during several simulated rainfall episodes. GCPs were placed on the simulator 

structure and signalled with dot and line shaped targets (Fig. 2). The local CRS was defined using a precision steel 

rule, placed in vertical position, that determined the scale and the vertical axis of the CRS. Two total stations were 

used to collect horizontal and vertical angles to the GCPs. A computer program was specifically written for this 

study to perform a sequence of operations consisting of 3D resections and intersections that gives the XYZ 

coordinates of the observed points. A second rule was used to check the accuracy of the survey by comparing the 

nominal and the observed length values. The difference between the two lengths gave submillimeter values (0.2 

mm), thus showing the high quality of the method. 

Five rainfall simulations of 15, 30 and 60 minutes and 30 mm/h intensity were carried out. During each episode we 

systematically collected all runoff and infiltration generated in the plot. The weight of the sediments transported by 

runoff was obtained by standard laboratory methods. The bulk density was determined twice, before initial and 

after last rain simulations. 

Images of the soil surface were taken before and after rain episodes. We used a Canon EOS 1100D digital camera 

with a fixed focal length of 18 mm. The pictures (between 11 and 15) were taken around the simulation table at 0.5 

m with an approximate vertical angle of 45º, using a tripod to get better results (Fig. 3 and Fig. 4a). In order to 

improve the adjustment geometry, some photographs were taken at different heights. The ground sampling 

distance (GSD) was 0.28 mm at a distance of 0.5 m. 

Point clouds were created using the SfM-MVS software Agisoft PhotoScan Professional version 1.3.1 (Table 1 and 

Fig. 4b). We set the coordinate reference system using eight GCPs that were measured on the images (Fig. 3). A 

DEM with 1 mm cell size was created from the dense point clouds using the IDW interpolation method in the ArcGIS 

environment. We determined the height interpolation error by the split-sample technique, using a random selection 

of 5% of the original point cloud as check points.  

DoDs were obtained by difference of two DEMs (Fig. 4c). The LODMIN values were computed with equation (2) and 

used to classify the differences in erosion and deposition categories (Fig. 4d). The counting of cells in each category 

gave the final outcomes: area, volume and sediment weight. 

The uncertainties of those calculated values were obtained from Monte Carlo simulations. Using a simulation 

computer program written in Python for this study, we created raster images containing random values from the 
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DEM error distribution, then added each random raster to its corresponding DEM surface, and computed the DoD 

with the randomised DEMs. Besides surface errors, the uncertainty of the bulk density was also included in the 

simulations. It has been reported that the method used to determine the bulk density (core method) has an 

estimated standard deviation σ=0.04 g/cm3 (Raper & Erbach, 1987); which allowed us to create a random sample 

of bulk density perturbations that were used in the simulation. Several simulations were run with a number of 

realisations ranging from 10 to 500. Finally, we computed basic statistics of the volume and weight variables, 

obtaining the uncertainty as an error interval based on 3σ limits (99.7% confidence). 

3. Results 

The average point density of the photogrammetric point clouds was 140 point/cm2 with an approximate regular 

spacing of 1.2 mm. This high point density allows us to create high resolution DEMs with 1 mm cell size, without 

adding unwanted smoothness to the surface representation. 

The georeferencing error of the five point clouds is estimated with the RMSE of the GCPs (since it represents the 

relative accuracy of the 3D model), with values ranging from 0.525 to 0.960 mm. The interpolation error in the 

creation of the DEMs is ~0.1 mm. The total DEM error is obtained according to Equation (1), and ranges from 0.535 

to 0.976 mm. The LODMIN value is equal to DoD error (Equations 2 and 3), with values from 0.762 to 1.205 mm 

(Table 2). 

Table 3 shows the outcomes of the DoD classifications in terms of erosion, deposition and net change categories. 

All the values were first computed without applying any criterion to discriminate changes (i.e. straight DEM 

differences), and then applying LODMIN as the minimum threshold. The volume estimates considering the LODMIN 

threshold can be up to 78% smaller than those from direct differences. Volume changes obtained from DoDs were 

converted to weight units using the measured bulk density value. 

The collected runoff sediment weight was 388.4 g, and with infiltration (26 g), the total sediment weight collected 

was 414.4 g. The bulk density was determined before the rain experiment and we obtained a value of 1.43 g/cm3; 

after all rain simulations, we made another measurement and obtained a value of 1.45 g/cm3, which shows a slight 

increment of 0.02 g/cm3 (1.4%), which is below the experimental error of the core method (Raper & Erbach, 1987). 

The uncertainty of soil loss values calculated from DoDs was obtained with a series of simulations conducted with 

the Monte Carlo method (Table 4). Table 5 and Figure 5 represent the mean values and error intervals of soil loss 

weight.  

4. Discussion 

The outcomes of the Monte Carlo method show that the GCD method is very accurate, provided that previous 

photogrammetric measurements and the determination of the CRS have been carried out rigorously. It is interesting 

to note that most of the error values related to sediment weight come from the uncertainty in the bulk density, not 
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from the DEMs. In fact, the execution of the Monte Carlo method considering an error free bulk density value gave 

smaller error bounds. 

Figure 5 shows agreement between collected and computed sediments. Morphological estimates from Monte Carlo 

simulations are greater than collected values in the three first episodes, with an overestimation of 13% in 

accumulated soil loss (7% if we consider sediment collected in infiltration). Similar soil loss overestimation has 

been reported in previous laboratory studies which is usually attributed to soil settling within the simulation box 

(Rieke-Zapp & Nearing, 2005), bulk density changes due to raindrop compaction (Armstrong et al., 2011; Gessesse 

et al., 2010; Hänsel et al., 2016; Heng et al., 2010), or both (Gordon et al., 2012). In our study, the soil sample was 

carefully prepared to avoid collapse during the experiment, but even so, a small settling is still possible. The 

morphological sediment estimations with the GCD procedure presented in this paper can be considered 

satisfactory.  

There are few studies in the literature that quantify the accuracy of DoD-based sediment estimations in relation to 

actual soil loss. Most laboratory studies that carry out morphological erosion estimations verify their results with 

estimations calculated from sediment concentration sampling. Rieke-Zapp and Nearing (2005) consider that soil 

settling represents 29% of the calculated sediments, but do not provide information on the volumetric estimations 

in the DoD technique nor they include the amounts of sediments transported by runoff. Prosdocimi et al. (2017) 

report that soil loss estimated from DoDs are two orders of magnitude higher than those estimated by runoff 

sampling. Hänsel et al. (2016) also use sediment concentration sampling for soil loss estimation and obtain 

differences of 14.7%, but they previously apply a height correction to the DoD cell values to compensate for 

supposed soil compaction. Guo et al. (2016) report very similar results from photogrammetric observations and 

runoff and sediment collections, although they use bar scales instead of GCPs to define the CRS; they do not 

assess DEM errors, and do not apply any technique for discriminating actual changes in DoDs either. Vinci et al. 

(2017) also conclude that SfM estimates the measured soil loss correctly, but they apply a soil-dependent 

procedure to estimate runoff and soil loss that needs a previous calibration phase, and shows great differences 

between SfM and TLS soil loss estimations. 

As it can be seen in the above discussion, there is not full agreement amongst authors, either in the experimental 

results or in the standard methodology. It seems clear that the application of the GCD method to high precision 

erosion studies is an open question, which actually led us to conduct this study. We believe that our contribution 

focuses on the geometric issues that are not usually discussed in the literature. Therefore, if users pay attention to 

the definition of the CRS and the right image acquisition layout, they can be fairly sure that soil loss uncertainties 

achieved with this approach are due to factors other than photogrammetric or geometric ones. In this sense, the 

results are promising, but future models will have to take into account additional factors. 
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5. Conclusions 

In this paper we present a working procedure aimed at determining sediment volumes of small magnitude using 

DoDs from SfM-derived DEMs. Sediment estimates were compared to actual sediment collected during the rainfall 

simulations in the laboratory. 

Regarding the image-based point cloud generation, a strong network image geometry, with multiple convergent 

and oblique images, provides the best photogrammetric accuracy in case of roughly flat objects such as the soil 

surface. 

A key point was the accurate definition of a set of GCPs which provided a unique CRS for all DEMs and DoDs, and 

increased the precision and consistence of the 3D coordinates of the point clouds. The error propagation analysis 

by Monte Carlo simulations gave very small error bounds, which proves the high potential of the method. 

The outcomes of the procedure showed good agreement with actual data, with a slight overestimation that may be 

due to some edaphic issues (e.g. soil settling or bulk density variations) that deserve further research. Likewise, 

future studies might complement this procedure by adding other factors or variables involved in runoff generation 

such as surface roughness or sediment connectivity. 

In summary, the procedure proved to be suitable to estimate sediments transported by runoff in laboratory 

experiments, even with soft rain simulations, and fits very well in an interdisciplinary framework to gain more insight 

in processes driving soil water erosion. 
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Tables 

Table 1 Parameters used in Agisoft PhotoScan to generate dense point clouds. 

Parameters Value 

Alignment  

Accuracy High 

Generic preselection Yes 

Key point limit 0 

Tie point limit 0 

Optimization  

Parameters f, b1, b2, cx,cy,k1-k3, p1, p2 

Dense point cloud  

Quality High 

Filtering mode Mild 

Mesh  

Surface type Arbitrary 

Source data Dense 

Interpolation Disabled 

Face count High 
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Table 2 DEMs Errors. 

 RMS GCP 
(mm) 

Interpolation 
error (mm) 

EDEM (mm) EDoD (mm) 

DEM0 0.960 0.109 0.966  

DEM1 0.699 0.103 0.707 1.197 

DEM2 0.971 0.101 0.976 1.205 

DEM3 0.530 0.114 0.543 1.117 

DEM4 0.525 0.100 0.535 0.762 

DEM5 0.611 0.107 0.620 0.819 
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Table 3 Volumes of erosion, deposition and net change, and mass of soil loss estimated from DoDs. 

  No threshold       LODMIN        

Volumes (cm3) DoD0-1 DoD1-2 DoD2-3 DoD3-4 DoD4-5 DoD0-1 DoD1-2 DoD2-3 DoD3-4 DoD4-5 

Erosion 237.8 124.6 331.3 149.7 172.2 54.2 19.0 140.8 100.0 75.0 

Deposition 25.6 83.2 50.9 101.7 30.6 7.2 5.4 16.0 54.7 8.5 

Net change 212.2 41.4 280.4 48.0 141.6 47.0 13.6 124.8 45.3 66.5 

Calculated 
sediment a (g) 

303.4 59.2 401.0 68.6 202.5 67.2 19.5 178.4 64.8 95.1 

a Bulk density: ρb = 1.43 g/cm3  
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Table 4 Results of Monte Carlo simulations with N=10, 50, 100 and 500 iterations. DEMs are obtained adding a random error 
based in values from Table 1.  

  DoD0-1 DoD1-2 DoD2-3 DoD3-4 DoD4-5 

  
No. Monte 
Carlo 
realizations 

Mean 

μ 

Std. Dev 

σ 

Mean 

μ 

Std. Dev 

σ 

Mean 

μ 

Std. Dev 

σ 

Mean 

μ 

Std. Dev 

σ 

Mean 

μ 

Std. Dev 

σ 

Net change 
(cm3) 

10 53.15 0.55 11.86 0.32 131.28 0.75 45.63 0.42 68.65 0.28 

50 53.01 0.50 11.81 0.36 131.59 0.67 45.75 0.35 68.64 0.30 

100 52.95 0.42 11.81 0.34 131.57 0.66 45.71 0.34 68.63 0.38 

500 52.94 0.48 11.85 0.36 131.44 0.70 45.74 0.37 68.59 0.32 

Mass (g) 

10 75.81 2.72 17.29 0.62 188.84 3.80 64.92 1.72 98.71 1.94 

50 75.48 2.28 16.88 0.75 188.16 4.80 65.34 2.2 98.27 2.77 

100 75.42 2.14 16.92 0.69 188.26 5.53 65.30 2.1 97.57 2.79 

500 75.58 2.29 16.96 0.68 187.87 5.38 65.35 2.01 98.24 2.81 
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Table 5 Statistics of Monte Carlo simulations for soil loss estimation with N=500 iterations. 

  Monte Carlo simulations: Soil loss (g) 

  DoD0-1 DoD1-2 DoD2-3 DoD3-4 DoD4-5 

Mean (μ) 75.58 16.96 187.87 65.35 98.24 

Std. Dev (σ) 2.29 0.68 5.38 2.01 2.81 

μ - 3σ  68.71 14.92 171.73 59.32 89.81 

μ +3σ  82.45 19.00 204.01 71.38 106.67 
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Figure 1 Working scheme: a) Rainfall simulation setup and data acquisition; b) GCPs setup and image acquisition; 

c) SfM image orientation and MVS dense point cloud; d) Raster DEM generation and Monte Carlo simulations; e) 
DoD calculation; f) Estimation of volumetric changes applying LODMIN; g) Comparison of volumetric estimation 
and soil collected. 
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Figure 2 Rainfall simulator used in the experiment, showing the supporting structure, the soil box (bottom) and the 

droplet generator array (top). Note the distribution of GCPs at different heights and depths on the structure and soil 
box. The transparent plastic hose in the front of the box was used to collect runoff. There is another hose to collect 
infliltration which is not visible in the picture. 
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Figure 3 Convergent images oriented in space displaying the layout and the number of GCPs used on the soil box. 
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Figure 4 Results of GCD method for rain episode 5. a) Image of soil box after rain. b) SfM 3D point cloud of soil 

surface after rain. c) DEM of Differences between rain episodes 4 and 5 (DoD4-5). d) Reclassified map after applying 
LODMIN 4-5 (red=erosion, green=deposition). 
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Figure 5 Soil loss collected, and estimated with DoDs and Monte Carlo simulations (error bars based on values of 

Table 5). 

 


