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1 Introduction14

To find the solution x∗ of a nonlinear equation f (x) = 0, f : I ⊆ R → R, or a15

nonlinear system F(x) = 0, F : D ⊆ R
n → R

n , is a classical and difficult problem16

with many applications in Science, specifically in Chemistry, and Engineering. The17

design and analysis of the stability properties of fixed point iterative schemes for18

solving equations and systems of nonlinear equations is an important and challenging19

task in the field of Numerical Analysis. Many problems from Chemistry consist in20

finding chemical potentials that are basic for studying other thermodynamic properties:21

the modeling of such potential leads to nonlinear integral equations that can be reduced22

to a set of nonlinear algebraic equations (see [16] for example). In the reaction-diffusion23

equations that arise in autocatalytic chemical reactions (see [15]), iterative methods24

can be applied; also in the analysis of electronic structure of the hydrogen atom inside25

strong magnetic fields (see [12]). Moreover, numerical performance of some chemical26

problems allows us to check the models of observable phenomena [13].27

Recently, many researchers have dedicated their effort to design iterative methods28

for solving these type of problems, see for example [1] and [18] and the references29

therein. However, when a whole family of iterative procedures have similar numerical30

characteristics, as the order of convergence, optimality, …, one important aspect to be31

taken into account is the stability of the involved schemes, that is, their dependence32

on the initial estimations and their tendency to be “attracted” by false solutions. These33

aims can be managed by analyzing the dynamical behavior of the rational operator34

associated to the iterative method on low degree polynomials, as have been done by35

other authors in, for example [2–5,8,14,17].36

Our goal in this paper is to carry out a dynamical study of a parametric family37

of iterative methods designed for solving nonlinear systems of equations F(x) = 0,38

where F : D ⊆ R
n → R

n , n ≥ 1. The idea for constructing this class appears39

in [9] where by using the method of undetermined parameters, a method of order 540

with three steps is presented. Also a general extension of order p + 3, where p ≥ 541

is demonstrated when successive steps are added with the same structure. In this42

manuscript, we present a parametric family including that fifth-order scheme and a43

class of order of convergence seven including the family of order eighth from [9]. By44

using tools of complex dynamics, we analyze the stability of the fixed points of the45

rational operator that appears when our families are applied on an arbitrary second46

degree polynomial. The parameter plane associated to each critical point gives us47

important information about the stability of the elements of the family and which of48

them have unstable behavior.49

Many problems in chemical engineering are described by means of ordinary dif-50

ferential equations or partial differential equations with initial or boundary conditions51

[19,20]. In the numerical section, we transform, by means of divided differences, a52

nonlinear boundary value problem with non-Dirichlet conditions in a nonlinear sys-53

tem, whose solution is an approximation of the solution of the boundary value problem54

in a set of discrete points of the domain. This problem allows us to predict the diffusion55

and reaction in a porous catalyst pellet.56

In this manuscript we separate the analysis of the stability of two high-order fami-57

lies of iterative methods in two distinct sections: in Sect. 2, the behavior of the rational58
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function related to the fourth-order family is made, by calculating their fixed and crit-59

ical points, studying the stability of these fixed points, calculating the parameter plane60

associated to the family and representing some dynamical planes describing different61

behavior: stability, periodic orbits, …. In Sect. 3, a seventh-order parametric family62

with one element of order eight is proposed and their stability properties are analyzed63

in a analogous way. All this information will allows us to select those members of64

both classes with better stability properties, in order to be checked with a chemical65

problem on a porous catalyst pellet. Finally, some conclusions are stated.66

2 Fourth-order class: convergence and stability67

By adding a new step to Newton’s method, we construct the following two-step scheme68

y(k) = x (k) − [F ′(x (k))]−1 F(x (k)), k = 0, 1, . . . ,69

x (k+1) = y(k) −
(

α1 I + α2[F ′(y(k))]−1 F ′(x (k))70

+α3

(

[F ′(y(k))]−1 F ′(x (k))

)2
)

[F ′(y(k))]−1 F(y(k)), (1)71

where α1, α2 and α3 are free parameters.72

The following result establishes the convergence of family (1), whose proof is73

similar to that presented in [9].74

Theorem 1 Let F : D ⊆ R
n → R

n , n ≥ 1 be a sufficiently differentiable function in75

a convex set D and x∗ ∈ D a root of F(x) = 0. Choosing an initial approximation x (0)
76

close enough to x∗, the iterative scheme defined by (1) has fourth-order convergence77

when α2 = 2 − 2α1 and α3 = α1 − 1, being α1 a free parameter. In particular, if78

α1 = 5
4 , then method (1) has order five.79

Proof In Theorem 1 of [9] it is proved that the error equation of this class is, under80

the hypothesis of the system and by using Taylor expansion of the involved functional81

evaluations around x∗,82

e(k+1) = ey
(k) −

[

α1 I + α2[F ′(y(k))]−1 F ′(x (k))83

+α3

(

[F ′(y(k))]−1 F ′(x (k))

)2
]

[F ′(y(k))]−1 F(y(k))84

= +(1 − α1 − α2 − α3)C2e(k)2 +
[

2(−1 + α1 − α3)C
2
285

+ 2(1 − α1 − α2 − α3)C3

]

e(k)3 + [4(−1 + α1 − α3)C2C386

+ 3(−1 + α1 − α3)C3C2 + (4 − 3α1 + 3α2 + 5α3)C
3
287

+ 3(1 − α1 − α2 − α3)C4] e(k)4 + O
(

e(k)5
)

,88

where Cq = (1/q!)[F ′(x∗)]−1 F (q)(x∗), q ≥ 2, e(k+1) = x (k+1) − x∗ and ey
(k) =89

y(k) − x∗. We observe that Cq hq ∈ R
n since F (q)(x∗) ∈ L(Rn × · · · × R

n, R
n) and90
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[F ′(x∗)]−1 ∈ L(Rn). In order to achieve order of convergence four, the coefficients91

of e(k)2
and e(k)3

must be simultaneously null and then parameters α1, α2 and α3 must92

satisfy93
{

1 − α1 − α2 − α3 = 0,

−1 + α1 − α3 = 0.
94

From this system, it is straightforward that α2 = 2 − 2α1 and α3 = α1 − 1 and the95

thesis is proved. ⊓⊔96

Once we know that all the methods of these class have, at least, order of convergence97

four, we want to analyze which is the relation between the values of the free parameter98

α1 and the stability of the corresponding iterative method? By using the tools of99

complex discrete dynamics, we are going to study the general convergence of the100

families on quadratic polynomials. To get this aim, we firstly recall some dynamical101

concepts (a wider revision of these aspects can be found in [6,11]). Given a rational102

function R : Ĉ → Ĉ, where Ĉ is the Riemann sphere, the orbit of a point z0 ∈ Ĉ is103

defined as:104

{z0, R (z0) , R2 (z0) , . . . , Rn (z0) , . . .}.105

We analyze the phase plane of the map R by classifying the starting points from the106

asymptotic behavior of their orbits. A z0 ∈ Ĉ is called a fixed point if R (z0) = z0. It is107

a particular case of a periodic point z0 of period p > 1 is a point such that R p (z0) = z0108

and Rk (z0) 
= z0, for k < p. However, a pre-periodic point is a point z0 that is not109

periodic but there exists a k > 0 such that Rk (z0) is periodic. Also a critical point z0 is110

a point where the derivative of the rational function vanishes, R′ (z0) = 0. Moreover,111

a fixed point z0 is called attractor if |R′(z0)| < 1, superattractor if |R′(z0)| = 0,112

repulsor if |R′(z0)| > 1 and parabolic if |R′(z0)| = 1.113

The basin of attraction of an attractor z∗ is defined as:114

A (α) = {z0 ∈ Ĉ : Rn (z0)→z∗, n→∞}.115

The immediate basin of attraction of an attractor is the connected component of its116

basin of attraction that holds the attractor.117

The Fatou set of the rational function R, F (R), is the set of points z ∈ Ĉ whose118

orbits tend to an attractor (fixed point, periodic orbit or infinity). Its complement in119

Ĉ is the Julia set, J (R). That means that the basin of attraction of any fixed point120

belongs to the Fatou set and the boundaries of these basins of attraction belong to the121

Julia set.122

The following theorem establishes a classical result of Fatou and Julia that we use123

in the study of parameter space associated to the family.124

Theorem 2 Let R be a rational function. The immediate basin of attraction of an125

attracting fixed or periodic point holds, at least, a critical point.126

By using this result, one can be sure to find all the stable behavior associated to a127

rational function R, by analyzing the performance of R on the set of critical points.128

123

Journal: 10910-JOMC Article No.: 0814 MS Code: JOMC-D-17-00191.0 TYPESET DISK LE CP Disp.:2017/9/26 Pages: 22 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

J Math Chem

It is known that, if the iterative method satisfies the Scaling Theorem (and family (1)129

does, as it used first-order derivatives [2]), the roots of a polynomial can be transformed130

by an affine map with no qualitative changes on the dynamics of the family. So, we131

can use a generic quadratic polynomial p(z) = (z − a)(z − b). The rational operator132

obtained when family (1) is applied on p(z) has the expression:133

Tp,α1,a,b(z) = (a − z)(b − z)

a + b − 2z
+ z + (a − z)2(b − z)2

134

×
[

(a4 + b4 − 4a3z − 4b3z + 4(1 + α1)b
2z2 − 8α1bz3

(a + b − 2z)(a2 + b2 − 2az − 2bz + 2z2)3135

+ 4α1z4 − 4az((−1 + 2α1)b
2 + (2 − 4α1)bz + 2α1z2)

(a + b − 2z)(a2 + b2 − 2az − 2bz + 2z2)3
136

+ a2((−2 + 4α1)b
2 + (4 − 8α1)bz + 4(1 + α1)z

2))

(a + b − 2z)(a2 + b2 − 2az − 2bz + 2z2)3

]

,137

depending on parameter α1 and also on the roots of the polynomial a and b.138

Blanchard in [6] considered the conjugacy map h (z) = z − a

z − b
, (a Möbius trans-139

formation) with the following properties:140

i) h (∞) = 1, ii) h (a) = 0, iii) h (b) = ∞,141

and proved that, for quadratic polynomials, Newton’s operator is conjugate to the142

rational map z2, that is it satisfies Cayley’s test (see [5]). In an analogous way, operator143

Tp,α1,a,b(z) on quadratic polynomials is conjugated to operator Oα1 (z),144

Oα1 (z) =
(

h ◦ Tp,α1,a,b ◦ h−1
)

(z) = −z4 5 − 4α1 + 2z2 + z4

−1 − 2z2 + −5z4 + 4α1z4
. (2)145

We observe that parameters a and b have been obviated in Oα1(z).146

2.1 Analysis of the fixed and critical points147

Firstly, we study the fixed points of the rational function Oα1(z) that are not related148

with the original roots of the polynomial p(z) (called strange fixed points), and the149

free critical points, that is, the critical points of Oα1(z) different from 0 and ∞, which150

are associated to the roots of p(z).151

Fixed points of Oα1(z) are the roots of equation Oα1(z) = z, that is, z = 0, z = ∞152

and the strange fixed points ex1(α1) = 1 and the roots of the polynomial153

r(α1, z) = 1 + z + 3z2 + (−2 + 4α1)z
3 + 3z4 + z5 + z6,154

that are denoted by exi (α1), i = 2, 3, . . . , 7. By analyzing the common roots of the155

polynomials involved in numerator and denominator of rational function Oα1(z), it156

can be also stated which are the values of parameter α1 such that the number of fixed157
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points decreases, as these are possible elements of the family with better stability, to158

be analyzed later deeply. These results are summarized in the following result.159

Proposition 1 Rational function Oα1(z) has seven strange fixed points, ex1(α1) =160

1 (if α1 
= 2) and the roots of the polynomial r(α1, z), denoted by exi (α1), i =161

2, 3, . . . , 7, except in the following cases:162

(i) If α1 = 1, then the operator is O1(z) = z4, so there are no strange fixed points,163

and the corresponding element of family (1) satisfies Cayley test.164

(ii) If α1 = 2, then the operator is O2(z) = −z4 3+z2

1+3z2 . There are only five strange165

fixed points as fixed point equation is reduced to z(z+1)(1−z+4z2−z3+z4) = 0.166

(iii) If α1 = −2, O−2(z) = z4 13+2z2+z4

1+2z2+13z4 and there are only five strange fixed point167

(as ex2(α1) = ex3(α1) = 1), that correspond to the roots of polynomial 1+3z +168

8z2 + 3z3 + z4.169

Of course, as the order of the iterative method is greater than two, z = 0 and z = ∞170

are superattracting fixed points but, which is the character of the rest of fixed points?171

To answer this question, O ′
α1

(exi (α1)), i = 1, 2, . . . , 7 must be analyzed. In case of172

ex1(α1), it is easy to check that O ′
α1

(1) = − 4
α1−2 , so the following result can be stated.173

Theorem 3 The character of the strange fixed point ex1(α1) = 1 of the rational174

function Oα1(z), α1 
= 2, is as follows:175

(i) If |α1 − 2| > 4 , then ex1(α1) = 1 is an attractor.176

(ii) When |α1 − 2| = 4, ex1(α1) = 1 is a parabolic point.177

(iii) If |α1 − 2| < 4, then ex1(α1) = 1 is a repulsor.178

In Fig. 1, the stability function |O ′
α1

(1)| is represented in the complex plane, showing179

a circle where this strange fixed point is repulsive, that is, where the original methods180

will not diverge. Moreover, it can be checked that strange fixed points exi (α1), i =181

2, 3, 4, 5 are repulsive for all complex values of α1 and ex6(α1) and ex7(α1) are182

simultaneously attracting in a region close to the origin. The analysis of the stability183

of strange fixed points exi (α1), i = 2, 3, 4, 5 shows that they are repulsive for any184

value of the parameter. As they have not explicit expressions, we plot in Fig. 2, their3 185

stability regions of all strange fixed points exi (α1), i = 1, 2, . . . , 7 (Fig. 3).186

As we have stated previously, a classical result from Julia and Fatou establishes that187

there is, at least, one critical point associated with each invariant Fatou component.188

Due to the order of convergence of the methods under study, it is clear that z = 0 and189

z = ∞ (related to the roots of the polynomial by means of Möbius map) are critical190

points and give rise to their respective Fatou components, but there exist in the family191

some free critical points, some of them depending on the value of the parameter, that192

can be held in other components of Fatou set and give rise to other attracting behavior.193

By analyzing the equation O ′
α1

(z) = 0, we obtain that it can be reduced to194

z3
(

1 + z2
)2 (

−5 + 2z2 − 5z4 + 4α1

(

1 − z2 + z4
))

= 0.195

Then, z = i and z = −i are always free critical points but they must not be taken into196

account to analyze the quantity of possible stable behaviors, in terms of Fatou–Julia197
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Fig. 1 |O ′
α1

(1)|

Fig. 2 Stability regions of some strange fixed points. a |O ′
α1

(exi (α1))|, i = 6, 7, b |O ′
α1

(exi (α1))|, i =
2, 3, 4, 5

Theorem, as both are pre-images of z = 1, that is a strange fixed point. As both critical198

points “converge” to z = 1, they will be the responsible of its attractive behavior, when199

it happens (see Theorem 3).200

On the other hand, other four free critical points appear as roots of polynomial201

−5 + 4α1 + (2 − 4α1)z
2 + (−5 + 4α1)z

4 that can be immediately obtained by the202

change of variables t = z2, as203

t1 = 1 + 2
√

3
√

−(−2 + α1)(−1 + α1) − 2α1

5 − 4α1
and204

t2 = −1 + 2
√

3
√

−(−2 + α1)(−1 + α1) + 2α1

−5 + 4α1
,205

resulting the rest of free critical points z = ±√
t1 and z = ±√

t2. These results have206

been summarized in the following proposition.207

Proposition 2 The number of free critical points of rational function Oα1(z) corre-208

sponding to family (1) is:209
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IRe{α}
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0

1

2
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4
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Fig. 3 Parameter plane P1 associated to cri (α1), i = 3, 4, 5, 6

(a) None, if α1 = 1, as there is no free critical points of operator Oα1 (z).210

(b) Two, if α1 = 2 or α1 = 5
4 , as in this case z = −i and z = i are the only free211

critical points. Moreover, the order of convergence of the method corresponding212

to α1 = 5
4 increases to six as O 5

4
(z) = z6

(

2+z2
)

1+2z2 .213

(c) In any other case, the free critical points are:214

cr1(α1) = −i,215

cr2(α1) = i,216

cr3(α1) = −

√

√

√

√

1 − 2α1 + 2
√

3
√

−2 + 3α1 − α2
1

5 − 4α1
= −cr4(α1) = 1

cr5(α1)
,217

cr6(α1) =

√

√

√

√

−1 + 2α1 + 2
√

3
√

−2 + 3α1 − α2
1

−5 + 4α1
= −cr5(α1) = 1

cr4(α1)
.218

Let us remark that cr1(α1) and cr2(α1) are pre-images of z = 1 and cr3(α1)219

and cr5(α1) are conjugated, as well as cr4(α1) and cr6(α1). Moreover, the rational220

function Oα1(z) has only even powers and it is satisfied cr6(α1) = −cr5(α1) and221

cr3(α1) = −cr4(α1). So, we only have one independent free critical point, whose222
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asymptotic behavior will determine if can be some attracting elements in the phase223

space, apart from those coming from the roots of the polynomial.224

2.2 The parameter and dynamical planes225

The parameter space associated with an independent free critical point of operator is226

obtained by associating each point of the complex plane with a value of α1, i.e., with227

an element of family. Every value of the parameter belonging to the same connected228

component of the parameter space gives rise to subsets of schemes of the family with229

similar dynamical behavior. So, it is interesting to find regions of the parameter plane230

as much stable as possible, because these values of the parameter will give us the best231

members of the family in terms of numerical stability.232

When we consider the independent free critical point of operator Oα1 (z) as a starting233

point of the iterative scheme of the family associated to each complex value of α1, we234

paint this point of the complex plane in red if the method converges to any of the roots235

(zero and infinity) and they are black in other cases. The color used is brighter when236

the number of iterations is lower. Then, the parameter plane P1 is obtained. A mesh of237

1000 × 1000 points has been used, 500 has been the maximum number of iterations238

involved and 10−3 the tolerance used as a stopping criterium (see [7]).239

We obtain an only parameter plane due to the fact that cr4(α1) is equal in module240

to cr6(α1) and the operator’s powers are even numbers. We can observe that the best241

real values of the parameter α1 are between 1 and 2, as the only allowed convergence242

of the methods is to the roots of the original polynomial (to 0 and ∞ after Möbius243

transformation), and a complex region of values of the parameter associated to stable244

elements of the family (in red in the parameter plane) is identified.245

Now we show, by means of dynamical planes, the qualitative behavior of the differ-246

ent elements of the family. We select these elements by using the conclusions obtained247

by analyzing the parameter plane and the stability analysis made on fixed points.248

The dynamical plane associated to a value of the parameter, that is, obtained by249

iterating an element of family, is generated by using each point of the complex plane250

as initial estimation (we have used a mesh of 400 × 400 points). We paint in blue251

the points whose orbit converges to infinity, in orange the points converging to zero252

(with a tolerance of 10−3), in other colors (green, red, etc.) those points whose orbit253

converges to one of the strange fixed points (all fixed points appear marked as a white254

star in the figures) and in black if it reaches the maximum number of 40 iterations255

without converging to any of the fixed points. In Fig. 4 (obtained by using the software 4256

in [7]), we show the dynamical planes corresponding to stable values of the parameter,257

specifically α1 = 1, α1 = 2 and α1 = 0.5.258

On the other hand, unstable behavior is found when we choose values of α1 in the259

black region of parameter plane. In Fig. 5, dynamical planes corresponding to values260

of parameter α1 = 3, α1 = 3.5 and α1 = −1.5 are presented. In Fig. 5a, b we can261

observe periodic orbits of period two, while in Fig. 5c four basins of attraction appear,262

two of them corresponding to 0 and ∞ (associated to the roots of p(z)) and the other263

ones are the basins of attraction of the strange fixed points exi (α1), i = 5, 6, that are264

attracting for this value of the parameter, as α1 = 0.5 has been selecting in size of the265

disk defined by the stability function of these fixed points (see Fig. 2a).266
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Fig. 4 Some dynamical planes with stable behavior. a α1 = 1, b α1 = 2, c α1 = 0.5

z=0.87744+i0.47979
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Fig. 5 Dynamical planes with unstable behavior. a α1 = 3, b α1 = 3.5, c α1 = −1.5

3 Increasing the order: How does the stability changes with the order of267

convergence?268

Now, our aim is to improve the order of convergence of family (1) with a new step269

with a similar structure as the last one of fourth-order. Once its order is stated, we270

analyze its stability and compare with that obtained in the previous section. We take271

α1 = 5
4 in (1) (fifth-order of convergence for any nonlinear function and only two272

critical points in the dynamical analysis that are pre-images of the strange fixed point273

z = 1, on quadratic polynomials) and add one step to increase the order of the method274

to seven or eight, obtaining the following expression275

x (k+1) = t (k) −
(

β1 I + β2[F ′(y(k))]−1 F ′(x (k))276

+β3

(

[F ′(y(k))]−1 F ′(x (k))

)2
)

[F ′(y(k))]−1 F(t (k)), (3)277

for k = 0, 1, . . ., where y(k) = x (k) − [F ′(x (k))]−1 F(x (k)) and t (k) are the first and278

second steps, respectively, of class (1). The following result gives us the values of the279

parameter that highly improve the order of convergence.280
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Theorem 4 Let F : D ⊆ R
n → R

n , n ≥ 1 be a sufficiently differentiable function in281

a convex set D and x∗ ∈ D a root of F(x) = 0. Choosing an initial approximation x (0)
282

close enough to x∗, the iterative scheme defined by (3) has seventh-order convergence283

when β2 = −2(β1 − 1) and β3 = β1 − 1, being β1 a free parameter. Specifically, if284

β1 = 3
2 then method (3) has order eight.285

In a similar way as it was made in Sect. 2, the rational function of the operator on286

p(z) = (z − a)(z − b) is denoted by Tp,β1,a,b(z) and it depends on parameter β1 and287

also on the roots of the polynomial a and b. However, by means of the Möbius map288

h (z) = z − a

z − b
, operator Tp,β1,a,b(z) is conjugated to operator Oβ1 (z) on quadratic289

polynomials, where290

Oβ1 (z) =
(

h ◦ Tp,α1,a,b ◦ h−1
)

(z)291

= −z8 (2+z2)(6+18z2+18z4+15z6+6z8+z10−4β1(1+2z2))

(1+2z2)(−1−6z2−15z4−18z6+2(−9+4β1)z8+(−6+4β1)z10)
,292

where the parameters a and b have been obviated. Let us remark that, although the293

order of convergence of the members of the family is, in general, seven, the eighth-294

power of the rational function shows us that, on quadratic polynomials, the order is295

at least, eight. In an analogous way as it has been done for the fourth-order family in296

the previous section, we analyze in the following the fixed and critical points, in order297

to detect those elements of the class with better stability properties and compare the298

obtained results.299

3.1 Analysis of the fixed and critical points300

In this case, the fixed points of the operator are the roots of equation Oβ1(z) = z, that is,301

z = 0, z = ∞ and the strange fixed points ex1(β1) = 1 and the roots of the polynomial302

r(β1, z) = 1 + z + 9z2 + 9z3 + 36z4 + 36z5 + 84z6 + (72 + 8β1)z
7 + 126z8 + (84 +303

20β1)z
9 +126z10 + (72+8β1)z

11 +84z12 +36z13 +36z14 +9z15 +9z16 + z17 + z18.304

Therefore, there exist nineteen strange fixed points, except if β1 = − 208
9 , the305

rational function is there are sixteen strange fixed points.306

In order to classify them depending on their asymptotic behavior, we calculate the307

first derivative of Oβ1 (z):308

O ′
β1

(z) = −4z7 (1 + z2)8(2β1(8 + 9z2 − 16z4 + 9z6 + 8z8) − 3(8 + 19z2 + 10z4 + 19z6 + 8z8))

(1 + 2z2)2(−1 + z2(2z + z2)(−3 − 6z2 − 6z4 + (−6 + 4β1)z6))2
,309

which has only even powers, as in the fourth-order case.310

As it is proven in the following result, the stability of the first strange fixed point311

of Oβ1 (z) depends on the value of the parameter, existing a disk in the complex plane312

where it is repulsive and, therefore, the original methods will not diverge (see Fig. 6).313

Let us remark that this area is much bigger than that obtained in case of order four.314

Theorem 5 The character of the strange fixed point ex1(β1) = 1, β1 
= 16
3 , is as315

follows:316
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Fig. 6 Stability function |Oβ1 (ex1(β1)) |

(i) When
∣

∣β1 − 32
6

∣

∣ > 256
9 , ex1(β1) = 1 is an attractor.317

(ii) If
∣

∣β1 − 32
6

∣

∣ = 256
9 , ex1(β1) = 1 is a parabolic point.318

(iii) When
∣

∣β1 − 32
6

∣

∣ < 256
9 , then ex1(β1) = 1 is a repulsor.319

Proof It is easy to see that320

O ′
β1

(1) = 256

48 − 9β1
.321

So,322

∣

∣

∣

∣

256

48 − 9β1

∣

∣

∣

∣

≤ 1 is equivalent to 256 ≤ |48 − 9β1| .323

Let us consider β1 = a + ib an arbitrary complex number. Then,324

2562 ≤ 482 − 864a + 81a2 + 81b2.325

By simplifying326

81a2 − 864a + 81b2 − 63232 ≥ 0,327

that is,328

(

a − 32

6

)2

+ b2 ≥ 65536

81
.329

Therefore,330

∣

∣

∣
O ′

β1
(1)

∣

∣

∣
≤ 1 if and only if

∣

∣

∣

∣

β1 − 32

6

∣

∣

∣

∣

≥ 256

9
.331

332

⊓⊔333
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Fig. 7 Stability functions of the different strange fixed points of Oβ1 (z). a |Oβ1 (ex16(β1)) |,
b |Oβ1 (ex17(β1)) |, c |Oβ1 (ex18(β1)) |, d |Oβ1 (ex19(β1)) |, e |Oβ1 (exi (β1)) |, i ∈ {2, 3, . . . , 14, 15},
f union of the stability functions

In Fig. 7, we represent the stability regions of the rest of strange fixed points exi (β1),334

i = 2, 3, . . . , 19. We observe that strange points exi (β1), i = 2, 3, . . . , 14, 15 are335

repulsive for any value of the parameter β1, and only four of them can be attracting336

in an area surrounding β1 = −15, with approximate radius 5. They are shown in337

123

Journal: 10910-JOMC Article No.: 0814 MS Code: JOMC-D-17-00191.0 TYPESET DISK LE CP Disp.:2017/9/26 Pages: 22 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

J Math Chem

different colors (grey for ex16(β1), blue for ex17(β1), orange for ex18(β1) and purple338

for ex19(β1). In this way, it is easy to observe that ex16(β1) is simultaneously attracting339

with only one of the other three points, whose union of their respective stability340

functions coincide with the stability function of ex16(β1).341

On the other hand, it is clear that z = 0 and z = ∞ (related to the roots of the342

polynomial) are critical points. The rest of critical points are found by solving the343

equation O ′
β1

(z) = 0, that is, the roots of (1 + z2)8(2β1(8 + 9z2 − 16z4 + 9z6 +344

8z8) − 3(8 + 19z2 + 10z4 + 19z6 + 8z8)). Some of them coincide with those of the345

fourth-order family, as the roots of (1 + z2), that are again pre-images of z = 1 and346

then do not have independent stability to be considered in the parameter planes. These347

and the rest of critical points are summarized in the following result.348

Proposition 3 For the family of order seven (3), the free critical points are:349

cr1(β1) = −i,350

cr2(β1) = i,351

cr3(β1) = −1

4

√

1

−6 + 4β1

(

57 − γ + 3
√

6ε − 2β1(9 +
√

6ε)

)

352

= −cr4(β1) = − 1

cr5(β1)
= 1

cr6(β1)
,353

cr9(β1) = −1

4

√

1

−6 + 4β1

(

57 + γ − 3
√

6ε + 2β1(−9 +
√

6ε)

)

= 1

cr7(β1)
354

= −cr10(β1) = − 1

cr8(β1)
,355

356

where ε =
√

θ

(3−2β1)
2 , γ =

√

4977 − 9348β1 + 4420β2
1 , θ = −165+108β2

1 −19γ +357

2β1(74 + 3γ ) and δ = −165 + 108β2
1 − 19γ + β1(148 − 6γ ). Moreover,358

(a) If β1 = 1, then cr1(β1) = cr3(β1) = −i and cr2(β1) = cr4(β1) = i . So, there359

are only six free critical points.360

(b) If β1 = 16
3 , cr5(β1) = cr7(β1) = −1 and cr6(β1) = cr8(β1) = 1. Then, there361

are only six free critical points.362

Let us also remark that cr1(β1) and cr2(β1) are pre-images of z = 1 and the363

following pairs are conjugated: cr3(β1) and cr5(β1), cr4(β1) and cr6(β1), cr7(β1) and364

cr9(β1), cr8(β1) and cr10(β1). Therefore, due to the fact that the operator of the family365

has only pair powers, there are only two independent free critical points.366

3.2 The parameter and dynamical planes367

When we consider the free independent critical points of the family, we obtain the368

parameter plane P2 (for cri (β1), i = 3, 4, 5, 6) in Fig. 8a, b and P3 for cri (β1), i =369

7, 8, 9, 10, in Fig. 8c, d. As it has been stated in the previous section, a mesh of370
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Fig. 8 Parameter planes of the family of order seven. a Parameter plane P2, b parameter plane P2 (a detail),
c parameter plane P3, d parameter plane P3 (a detail)

1000 × 1000 points has been used, the maximum number of iterations is 500 and the371

tolerance used has been 10−3 (in the software presented in [7]). Similarly as in the372

fourth-order family, the parameter space has reduced dimension because the operator373

of the family has only pair powers, that is its main advantage. Moreover, it can be374

observed in the detail of Fig. 8b that the region with stable behavior has increased375

its size with the increased order of convergence compared with Fig. 3. So, the best376

(clearest red areas) real values of the parameter β1 are approximately located in [1,6],377

with much wider areas of complex values with stable behavior. As a result, the number378

of best values of the parameter, in terms of the stability of the corresponding iterative379

methods, is bigger with order seven than order four.380

Now, in Fig. 9, we show the dynamical planes with stable numerical behavior,381

corresponding to values of β1 painted in red in the parameter planes. In this figure382
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Fig. 9 Some dynamical planes with stable behavior. a β1 = 16
3 , b β1 = 3

2 , c β1 = 2, d β1 = 6, e

β1 = 2 + 10i , f β1 = −15i

different dynamical planes with only two basins of attraction appear: those of z = 0383

and z = ∞, that is, only convergence to the roots happens.384

On the other hand, unstable behavior is found when we choose values of β1 in some385

of the black regions of parameter planes.386

Different kinds of unstable behavior can be found in Fig. 10: in Fig. 10a, two387

strange fixed points (whose basins of attraction appear in red and green, respectively)388

are attracting, meanwhile in Fig. 10e the parameter is inside the area of the complex389

plane where ex1(β1) = 1 is slightly attracting and its basin is shown in green. The390

black color around the green one means that the initial estimations in this area need391

more that 40 iterations to reach the attracting strange fixed point. The rest of figures392

correspond to different periodic orbits painted in yellow color: in Fig. 10b the black393

region corresponds to the basin of attraction of a 2-periodic orbit; in Fig. 10c, d two394

orbits of period 5 and 6, respectively, are shown. In the dynamical plane appearing in395

Fig. 10f a periodic orbit of period 3 appears; by applying Sharkovskii’s Theorem, it is396

proved that there exist orbits of any period.397

4 Numerical performance398

Now, we are going to apply different elements of families (1) and (3) for solving an399

academic nonlinear system of arbitrary size. The values of parameters α1 and β1 are400
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Fig. 10 Dynamical planes with unstable behavior. a β1 = −15, b β1 = 20, c β1 = 8.75, d β1 = −8+23i ,
e β1 = 20 + 25i , f β1 = 19 − 23i

chosen from the dynamical results obtained in the previous sections. The numerical401

results have been obtained by using software Matlab 2015a, with variable precision402

arithmetics of 100 digits of mantissa and stoping criterium ‖F(x (k+1))‖ < 10−50 or403

‖x (k+1) − x (k)‖ < 10−50.404

We show, for each method, the number of iterations, the residual of the function at405

the last iteration, ‖F(x (k+1))‖, the difference in norm between the two last iterations406

‖x (k+1) − x (k)‖ and the approximated computational order of convergence AC OC407

defined in [10] by408

p ≈ AC OC =
ln

(

||x (k+1) − x (k)||/||x (k) − x (k−1)||
)

ln
(

||x (k) − x (k−1)||/||x (k−1) − x (k−2)||
) .409

The value of AC OC that appears in Tables 1 and 2 is the last coordinate of vector410

AC OC when the variation between its values is small. Otherwise, it is marked with411

−.412

Example 1 Let us consider the nonlinear system of size n × n, n = 20,413

{

(xi xi+1)
2 − 3 = 0, i = 1, 2, . . . , n − 1

xn x2
1 − 1 = 0,

414
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Table 1 Numerical tests for Example 1 and family (1)

Parameter Iter ACOC ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖

x(0) = (3, . . . , 3)T

α1 = 5/4 4 4.762 5.55e−104 8.16e−26

α1 = 1 5 3.9996 2.97e−107 1.70e−43

α1 = 2 5 4.0079 1.48e−96 1.50e−24

α1 = −3/2 8 4.0101 5.11e−108 4.79e−46

α1 = 10 – – > 106 –

α1 = −20 – – > 106 –

x(0) = (0.8, . . . , 0.8)T

α1 = 5/4 5 – 1.70e−108 1.36e−39

α1 = 1 5 4.0526 3.41e−108 6.93e−27

α1 = 2 – – > 106 –

α1 = −3/2 – – > 106 –

α1 = 10 – – > 106 –

α1 = −20 – – > 106 –

The solution of this system obtained in any convergent case is x∗ ≈ (0.575, 0.575, . . . ,415

0.575)T .416

In Table 1 we show the numerical results obtained for Example 1 by using some417

members of the fourth-order family (1) that have been presented in Sect. 2 as stable and418

unstable elements. Let us observe the bad numerical behavior for α1 = −3/2, 10,−20.419

Similar results have been obtained for some members of seventh-order family (3)420

that correspond to stable (β1 = 3/2, 2, 6) and unstable (β1 = −15, 40,−20) cases,421

as can be seen in Table 2.422

In the following, we will show the performance of the best element of the fourth-423

order family (1) on a relevant chemical problem.424

Example 2 An important problem in chemical engineering is to predict the diffusion425

and reaction in a porous catalyst pellet. The goal is to predict the overall reaction rate426

of the catalyst pellet. The conservation of mass in a spherical domain gives427

D

[

1

r2

d

dr

(

r2 dc

dr

)]

= k f (c), 0 < r < rp428

where r is the radial coordinate, D the diffusivity, c is the concentration of a given429

chemical, k the rate constant and f (c) the reaction rate function, and the conditions430

dc

dr
(0) = 0 and c(rp) = c0.431

Now consider a sphere (5 mm in diameter) of γ -alumina upon which Pt is dispersed432

in order to catalyze the dehydrogenation of cyclohexane. At 700 K, the rate constant433

123

Journal: 10910-JOMC Article No.: 0814 MS Code: JOMC-D-17-00191.0 TYPESET DISK LE CP Disp.:2017/9/26 Pages: 22 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

J Math Chem

Table 2 Numerical tests for Example 1 and family (3)

Parameter Iter ACOC ‖F(x(k+1))‖ ‖x(k+1) − x(k)‖

x(0) = (3, . . . , 3)T

β1 = 3/2 3 6.6805 1.15e−68 7.11e−12

β1 = 2 3 5.5302 2.41e−68 7.17e−12

β1 = 6 4 – 3.41e−108 8.37e−29

β1 = −15 5 6.2807 3.41e−108 5.51e−36

β1 = 40 6 – 3.41e−108 1.74e−34

β1 = −20 5 – 1.70e−108 1.57e−20

x(0) = (0.8, . . . , 0.8)T

β1 = 3/2 4 – 2.97e−107 6.88e−27

β1 = 2 4 – 2.97e−107 2.95e−25

β1 = 6 – – > 106 –

β1 = −15 – – > 106 –

β1 = 40 – – > 106 –

β1 = −20 – – > 106 –

k is 4 s−1, and the diffusivity D is 5 × 10−2 cm2/s. Set up the equations necessary434

to calculate the concentration profile of cyclohexane within the pellet and also the435

effectiveness factor for a general f (c). Next, solve these equations for f (c) = c2.436

We define437

C = concentration of cyclohexane

concentration of cyclohexane at the surface of the sphere
438

and R = dimensionless radial coordinate based on the radius of the sphere (rp = 2.5439

mm).440

Let us assume that the spherical pellet is isothermal. The conservation of mass441

equation for cyclohexane is442

d2C

d R2 + 2

R

dC

d R
= Φ2C2, 0 < R < 1, (4)443

with conditions444

dC

d R
(0) = 0, C(1) = 1,445

where446

Φ = rp

√

k

D
, (Thiele modulus)447

that, in this case is Φ = 2.236.448
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By using central divided differences, we transform the boundary value problem (4)449

in a system of nonlinear equations, which will be solved by applying the methods450

object of this work. We use451

C ′′(R) ≈ C(R + h) − 2C(R) + C(R − h)

h2 , C ′(R) ≈ C(R + h) − C(R − h)

2h
,452

where h = 1
n+1 is the mesh spacing. If we denote by Ci = C(Ri ), with Ri = 0 + ih,453

i = 0, 1, . . . , n+1, the mesh points, the boundary value problem can be approximated454

by the nonlinear system455

(

1 + 1

Ri

)

Ci+1 − 2Ci +
(

1 − 1

Ri

)

Ci−1 = h2Φ2C2
i , i = 1, 2, . . . , n456

with Cn+1 = 1. For R = 0, the second term in the differential equation is evaluating457

taking into account that458

lim
R→0

C ′

R
= C ′′,459

so, the differential equation becomes 3C ′′ −Φ2C2 = 0. Therefore, the corresponding460

difference replacement is461

C1 − 2C0 + C−1 − 1

3
h2Φ2C2

0 = 0.462

Using central divided differences in the boundary condition C ′(0) = 0 we obtain that463

C1 = C−1, so the first equation of our system is C1 − C0 − 1
6 h2Φ2C2

0 = 0.464

Problem (4) has been approximated by the nonlinear system F(C) = 0, where465

F : R
n+1 → R

n+1 is defined by466

F(C) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C1 − C0 − 1
6 h2Φ2C2

0 ,
...

(1 + 1/ i)Ci+1 − 2Ci + (1 − 1/ i)Ci−1 − h2Φ2C2
i , i = 1, 2, . . . , n−1

...

1 + 1/n − 2Cn + (1 − 1/n)Cn−1 − h2Φ2C2
n ,

467

whose Jacobian matrix is468

F ′(C) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a0 d0 0 . . . 0 0
b1 a1 d1 . . . 0 0
0 b2 a2 . . . 0 0
...

...
...

...
...

0 0 0 . . . an−1 dn−1
0 0 0 . . . bn an

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,469
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Table 3 Solution for different
size of the system

R n = 10 n = 20 n = 100

0.0 0.5934 0.5924 0.5921

0.2 0.6053 0.6043 0.6039

0.4 0.6425 0.6415 0.6412

0.6 0.7108 0.7099 0.7096

0.8 0.8223 0.8216 0.8214

1.0 1.0 1.0 1.0

where470

a0 = −1 − (1/3)h2Φ2C0, d0 = 1471

bi = 1 − 1/ i, i = 1, 2, . . . , n472

ai = −2 − 2h2Φ2Ci , i = 1, 2, . . . , n473

di = 1 + 1/ i, i = 1, 2, . . . , n − 1474

475

In Table 3, we show the approximated result for some values of R, using the element476

of family (1) corresponding to α1 = 5/4 and different sizes of the system. We use477

the initial estimation x (0) = (0.5, 0.5, . . . , 0.5)T and in any case the method has478

converged to the presented solution in three iterations.479

5 Conclusions480

A dynamical study on quadratic polynomials of two parametric families of iterative481

methods for solving nonlinear problems has been presented, in order to detect their482

most stable elements or those with bad stability properties. From the parameter planes483

associated to both classes, it has been proved that there are more values of the param-484

eter, that is, elements of the family, with good stability properties when we increase485

the order of this family. About the family of order seven, we have observed in the486

parameter plane that unstable values of the parameter are located in small and sparse487

regions of the complex plane. Except in these small regions of the parameter planes,488

the behavior of schemes in the class is very stable. These results have been numeri-489

cally checked on an academic example and on the chemical problem of predicting the490

diffusion and reaction in a porous catalyst pellet.491
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