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ABSTRACT 

Mass-customization has forced manufacturing companies 
to put significant efforts to digitize and automate their 
engineering and production processes. When new products are 
to be developed and introduced not only has the production 
processes to be automated but also the application of knowledge 
regarding how the product should be designed and produced 
based on customer requirements. One big academic challenge 
is to help the industry to make sure that the background 
knowledge of the automated engineering processes still can be 
understood by its stakeholders throughout the product life 
cycle. 

The research presented in this paper aims to build an 
infrastructure to support a connectivistic view on knowledge. 
Fundamental concepts in connectivism include network 
formation and contextualization, which here is addressed by the 
utilization of graph theory together with information filtering 
techniques. The paper shows how engineering content in 
spreadsheets, knowledge-bases and CAD-models can be 
penetrated and represented as filtered graphs to support a 
connectivistic working approach. Three software demonstrators 
developed to extract graphs and applying filters to such 
engineering content are presented and discussed in the paper. 

Keywords: Connectivism, knowledge management, 
knowledge-based engineering, graph theory 

1 Introduction 

Engineering knowledge refers to the knowledge engineers 
apply when they are involved in developing products and 
corresponding production systems. This is a broad definition 
with emphasis on applying, which means that the knowledge is 
part of decision-making processes and hence excludes 
curiosities. Engineering knowledge further refers to any reason 
for why, how, when, where, what, by whom something is to be 
done or be constituted. The sum of engineering knowledge 
formally represented for one product is referred to as product 
knowledge and may reside in all available representations of the 
product. 

Mass customization has been a steady driving force to 
capture and automatically utilize such engineering knowledge. 
Many companies have, for instance, put significant efforts to 
parametrize (to nearly “automate”) CAD-models to quick and 
accurately respond to changes in product requirements and 
specifications. This has caused engineers to not only focus on 
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developing single products but product families with wide and 
flexible design spaces. Parallel to parametrized CAD-models, 
knowledge management and knowledge-based engineering 
(KBE) have for decades strived to capture, digitize, and 
automate the application of this kind of knowledge within 
product and production development. Even if KBE-systems 
have gained much attention through the last three decades, 
industries still found them hard to develop and even harder to 
maintain over time. Here it is suggested to take a connectivistic 
view on knowledge to contribute on how it may help industries 
to maintain their product knowledge continuously.  

The paper is organized as follows. First, a frame of 
reference is presented where we shortly review how product 
knowledge is formalized, introduce connectivism, graph 
theory, and information filtering. After that, we include a 
detailed description of how three of the most common 
knowledge carriers in manufacturing companies are constituted 
and how their constituents are connected. Then three examples 
are described, two where product knowledge was penetrated to 
gain understanding of how relations in parametric CAD-models 
connected to KBE-systems or spreadsheets and one where a 
CAD-model was penetrated to evaluate its modelling quality. 
Finally, the results are discussed followed by conclusions. 

2 Frame of reference 

In this section, we will briefly review how product 
knowledge is commonly represented, followed by a study on 
connectivism that is a perspective on knowledge that has served 
as guidance through the development of the proposed working 
approach that is supported by tools and methods, which are also 
presented in this paper. The connectivistic perspective is 
described in the context of knowledge and learning in general. 
Finally, short introductions to graph theory and filtering are 
given as support for subsequent sections.  

2.1 Formalized product knowledge 
Engineering design problems are solved through iterations 

between synthesis and analysis phases. Design proposals 
developed through creative processes are evaluated against 
requirements. During new product development processes, 
much of the trial and error loops occur as a part of the learning 
of how to solve the problems connected with the product. The 
knowledge developed and formalized during these trials is 
referred to as product knowledge [1]. When the product 
matures, a set of tested solutions will emerge, a set that is 
reviewed when customer demands the product for a different 
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set of requirements. When such a set of solutions exists the 
synthesis phase gradually turns into a search for existing 
solutions that can be combined to solve new problems. Also, 
when the product matures the way of testing the product to 
requirements is formalized and can sometimes be skipped based 
on an inductive way of reasoning, i.e., based on experience it 
can be concluded that the new solution will fit. Proven and 
formalized knowledge can be handled as a design platform as 
described in [2]. In the most mature state of a mass-configured 
product, the processes for developing a variant are well defined 
and based on user requirements. In such state, computer 
supports can be utilized in synthesis and analysis phases to a 
great extent, which is referred to as knowledge-based 
engineering (KBE). 

KBE is a method to synthesize design proposals and has 
been defined as a technology based on the use of dedicated 
software able to capture and systematically reuse product and 
process engineering knowledge, with the final goal of reducing 
time and costs of product development by automation of 
repetitive and non-creative design tasks, and support for 
multidisciplinary design optimization in all the phases of the 
design process [3]. Engineering problems are typically ill-
structured [4] because they lack clear ways of testing any 
suggested solution, the states of the problem are hard to 
represent, and the knowledge of the problems is hard to capture 
and represent. This fundamental property of engineering 
problems has compelled the use of artificial intelligence to 
automate engineering design processes. Traditionally KBE is 
based on knowledge-based-system from artificial intelligence 
where production rules are the primary carriers of the captured 
knowledge. 

KBE can be seen as an interdisciplinary joint mixture of 
disciplines, as long as it can be said to be the integration 
between artificial intelligence and computer-aided engineering, 
see Figure 1. Artificial intelligence is a set of methods and 
models from the computer science research field that support 
flexible modelling of concepts and techniques for logical 
reasoning, while computer-aided design includes methods and 
models to model geometry and product structures. 

 

Figure 1: KBE systems from a technical perspective: 
computer programs containing knowledge and reasoning 

mechanisms augmented by geometry handling 
capabilities to provide engineering design solutions. 

Adapted from [3] 

Finally, knowledge-based engineering can be seen in the 
context of knowledge management further and that KBE is a 
subset of knowledge engineering which is a subset of 
knowledge management [3], see Figure 2. 

 

Figure 2: Components of knowledge management 
including knowledge-based engineering. Adapted from [3]. 

As can be concluded from these definitions, CAD-models 
are part of the represented engineering knowledge. They result 
from applying the engineering knowledge, and define how the 
product is to be constituted and embodied. The logic and rules 
can be embedded into CAD-models but also stored in 
spreadsheets or knowledge-bases with facts and rules.  

2.2 Connectivism 
Connectivism is a philosophy of knowledge described by 

Siemens [5]. It has been defined as “the thesis that knowledge 
is distributed across a network of connections” [6], and address 
learning that is located within technology and organizations, a 
learning that KBE ultimately is intended to support. 
Connectivism is based on nine principles (described but not 
numbered by Siemens [5]): 

1. Learning and knowledge require a diversity of opinions 
to present the whole…and to permit selection of best 
approach. 

2. Learning is a network formation process of connecting 
specialized nodes or information sources. 

3. Knowledge rests in networks. 
4. Knowledge may reside in non-human appliances, and 

learning is enabled/facilitated by technology. 
5. Capacity to know more is more critical than what is 

currently known. 
6. Learning and knowing are constant, on-going processes 

(not end states or products).  
7. Ability to see connections and recognize patterns and 

make sense between fields, ideas, and concepts is the 
core skill for individuals today.  

8. Currency (accurate, up-to-date knowledge) is the intent 
of all connectivistic learning activities.  

9. Decision-making is learning. Choosing what to learn 
and the meaning of incoming information is seen 
through the lens of a shifting reality. While there is a 
right answer now, it may be wrong tomorrow due to 
alterations in the information climate affecting the 
decision. 

Five components are identified within connectivism. 
Networks are where knowledge resides. Conduit, context, and 
content together shape the meaning of knowledge and 
individualized filters to help to focus. These components are 
briefed in the following subsections.  

AI

CAD

KBE

 Rules
 Frames
 Objects

 Assemblies
 Components
 Geometry
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2.2.1 Networks 
Central in the connectivistic view on knowledge is that 

learning is a network formation process [5]. In the knowledge 
technologies, as seen in Figure 2, this is realized through the 
community of practices, systems for computer-supported 
collaborative work, ontologies and knowledge webs. 
Interestingly, these technologies are not considered to be a part 
of knowledge-based engineering system.  

2.2.2 Context 
Context in the connectivistic view includes elements like 

emotions, recent experiences, beliefs, and the surrounding 
environment. Each element possesses attributes, which when 
considered in a certain light, inform what is possible in the 
discussion. The object is tied to the nature of the discussion, 
framework or network of thought. The context-game is the 
formulation and negotiation of what will be permissible and 
valued, and the standards to which we will appeal in situations 
of dispute. The context-game of implementing a new corporate 
strategy involves individuals, politics, permissible ways of 
seeing and perceiving, recent events, corporate history, and a 
multitude of other factors [5]. Context in this broad definition 
is not typically considered in theories for knowledge 
management, knowledge engineering, and KBE. However, 
context influences how the knowledge is implemented in KBE 
and how it can be understood by stakeholders.  

2.2.3 Conduit 
Conduits are the mediums through which knower (i.e., 

experts) and seeker (i.e., knowledge consumers) communicate 
and through which the known entity finds expression [5]. 
Conduits are the facilities making the knowledge relevant, 
current, and available. In manufacturing companies, these 
conduits today include PLM-systems, intranet, wikis, and 
shared file servers.  

2.2.4 Filters 
Siemens [5] briefly reviews the history of how information 

has been consumed and concludes that we used to go to one 
source of information to get a thousand points of information 
(for instance newspapers). Now, we go to a thousand sources of 
information to create our own view. He continues by saying that 
we have become the filter, mediator, and the weaver of the 
networks. A statement that indicates how intervened the 
concepts in connectivism are.  

Since we as humans have a limited possibility to focus our 
attention (we can only do one or a few things at a time, and we 
just have a limited time per day) and since the amount of 
information and knowledge is ever increasing there is a great 
need for filter the content based on individualized filters and 
current context (as defined previously).  

2.2.5 Content 
Content is of course of central importance (even if it is told 

that the capacity of learning is more important than what we 
already know). Relevance, however, is not only about the 
nature of the content. The process of ensuring currency of 
content/information is critical to managing knowledge growth 
and function effectively. Content has to blend with conduit and 
context [5] which means that content should be perceived to be 

very close. Engineers today put much time to seek for content, 
but rather the content should seek for the engineers. 

2.3 Introduction to graphs and filtering 
A graph G(N, E) is a set of nodes (N) and edges (E). The 

nodes represent entities of interest, and the edges represent how 
they are connected as tuples of two nodes, where the first one is 
the source node, and the last one is the target node [7]. When 
two nodes are connected through an edge, they are said to be 
neighbors. The degree of one node is defined as the number of 
neighbors it has, i.e., how many edges are pointing in and out 
from it. In-degree refers to how many neighbors a node depends 
on (parent), and out-degree how many neighbors are depending 
on it (child). Nodes and edges can be labeled indicating what 
type of entity a node represents and what kind of relation an 
edge represents. Further, attributes can be assigned to nodes and 
edges. For nodes, attributes indicate what state the represented 
entity has, and for edges, the attributes indicate what state the 
relation between two nodes has.  

In the context of this paper, filtering means retrieving 
graphs by reducing or combing datasets, which is achieved by 
the application of set theory. The fundamental set of Boolean 
operations (union, difference, and section) can be applied to 
nodes and edges and combined so as to produce queries. If the 
underlying data is stored in a relational database, it is possible 
to use SQL for filtering. However, a growing number of graph 
databases and graph querying languages under development 
support extensive ways of managing and filtering large graphs 
applying graph theory. The latter method of storing data has 
proven to outperform relational databases when the data is 
highly connected [8]. Graph databases are applicable when the 
connections between the stored entities are equally or more 
important than the entities themselves. In the examples 
presented in this paper, Neo4j was used to store the graphs, 
Cypher [9] was used as querying language, and Gephi [10] was 
used for visualization (due to the need to cope with big graphs).  

3 Dissecting the constituents of 
engineering knowledge in parametric 
design 

In this study, we focus on parametric CAD-models as such, 
and parametric CAD-models controlled by spreadsheet 
applications or by KBE-systems (or both). There are three ways 
in which a parametric CAD-model (further on it is assumed 
CAD-models to be parametric) can be controlled. First, 
spreadsheets can be connected to CAD-models to define family 
tables, i.e., sets of similar components derived from a single 
parametric CAD-model. That is an efficient way of handling 
parametric design of, for instance, fasteners, washers or other 
standard components. Second, KBE-systems can be connected 
to CAD-models to execute rules that update the CAD-models. 
This is useful when handling components and assemblies that 
are free to change based on customer requirements. A third way 
is to add formulas into spreadsheets and add them to the 
geometry rebuild process. In this latter case, the spreadsheet 
application turns into a KBE-system.  

We will take a close look at three types of engineering 
content, CAD-models, spreadsheets, and KBE-systems to find 
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their fundamental constituents and to see how they are 
connected. Then we apply graph theory and filters to make a 
foundation to further studies in knowledge and complexity 
management. 

3.1 CAD-models 
The information model of a CAD-model can be constituted 

in many ways and differs between CAD-systems (therefore 
neutral CAD-formats are needed). Still, in Figure 3 a schematic 
information model shows the commonly agreed fundamental 
constituents. An assembly is, as seen in the figure, composed 
of instances of parts which can either be components or 
assemblies (the terminology used in the literature differs 
somewhat between what is a part and what is a component, here 
a component is a piece made from one material, a part can be 
either one component or a composition of components). 
Components are made up from at least one feature while 
assemblies may contain features or not. Components and 
assemblies may comprise parameters which are carriers of 
base type data such as Booleans, integers, doubles or text values 
packed with a name. Assemblies and components may 
comprise equations, which are mathematical expressions 
involving parameters. The most common type of feature in 
CAD-models is geometrical features. Geometrical features 
are the composition of entities which may be one-, two- or 
three-dimensional geometrical elements, such as points, lines, 
curves, planes, and surfaces. Geometrical dimension or 
constraints are a particular type of parameters that make 
reference to geometrical entities to control their definitions. 

 
 

Figure 3: Information model of CAD-model. 

There are several types of relations in a CAD-model. As 
seen from Figure 3, components are related to assemblies as 
“part-of” relations. Features, parameters, and equations are also 
“part-of” components, and entities are “part-of” features. These 
easy-to-understand relationships are often visualized in the 
CAD-system through a “model tree”. A typical model tree is 
shown in Figure 4, which contains a top assembly (Assembly1) 
having three instances of parts (2 SubAssembly1 and 1 
SubAssembly2). SubAssembly1, in turn, is constituted by two 
instances of Component1, which is made up from Feature1 and 
Feature2 (Note that not all CAD-systems show the instance-
level in the model tree, i.e., the nodes SubAssembly1 (1), 
SubAssembly1 (2), and SubAssembly2 (1)).  

 

Figure 4: A typical model tree in CAD-systems only show 
“part-of” relations. 

Other than “part-of” relations exist in CAD-models which 
are not that obvious but are interesting to engineers when 
developing and maintaining the models. An example of such 
type of relationship is the references between geometrical 
entities conveyed through geometrical dimensions or 
constraints. The geometrical engines efficiently manage local 
references but crossed references between entities belonging to 
different features result in hierarchical dependencies named as 
parent/child relations (where, for instance, deleting the parent 
feature will cancel the child one). Another example of 
relationships important to engineers involves the intent of the 
CAD-model. Most CAD-systems allow adding logic to the 
CAD-model through equations, which may govern the 
parameters (like the number of instances of a repetitive pattern), 
the geometrical dimensions (that govern the size or even the 
topology of the CAD-model), or other geometrical relationships 
(like Boolean flags that may govern the parallelism or 
perpendicularity between two entities). We name them as 
mathematical relations. These relations could also be viewed as 
parent/child relations if they are unary expressions. The 
relationships are modeled as edges in the graphs per Table 2. 

3.2 Spreadsheets 
Spreadsheets are frequently used within engineering design 

to store and manage information regarding the product and are 
a part of the product model. Spreadsheets may, as mentioned, 
be connected to CAD-models as design tables or as a part of the 
geometrical build process as an “analysis” feature. The reason 
for adding spreadsheets as a part of the product model is the 
flexibility to model information. The central concept in 
spreadsheet applications is the cell. In Figure 5 a schematic 
information model of a spreadsheet is drawn. Cells reside, as 
seen in Figure 5, in worksheets and worksheets reside in 
workbooks. A cell may contain a formula that refers to other 
cells. Formulas act as functions with several possible input cells 
but with one output only, which is displayed in the cell to which 
it belongs. 

Component

Geometrical Feature

Parameter

Entity

0..*

Part Instance

Feature

0..*

0..*

Geometrical Dimension or 
Constraint

0..*

0..*

Assembly0..*0..*

Equation
0..*

0..*

0..* 0..*

Assembly1

SubAssembly1 (1)

SubAssembly1

Component1 (1)

Component1

Feature1

Feature2

Component1 (2)

SubAssembly1 (2)

SubAssembly2 (1)
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Figure 5: Information model of spreadsheets. 

 

When connected to a CAD-model we can view cell values 
as facts, and formulas as rules in a KBE-system according to 
the definition of KBE in [3], where the inference engine is then 
realized by the spreadsheet application (which automatically 
updates the cell and displays the result when the linked cells are 
modified). 

3.3 Knowledge-bases 

 

Figure 6: Information model of knowledge-bases. 

KBE-systems gained attention during the last decade and 
have been integrated to several CAD-system. Standalone KBE-
systems also exist. The most interesting class in a KBE-system 
is the Rule class. Rules reside, as seen in Figure 6, in rulesets, 
while rulesets reside in KnowledgeBase. Rules consist of 
parameters and act as functions with one or several input 
parameters and one or several output parameters. Note that 
the parameters in Figure 3 are a subclass of parameters in Figure 
6 since the parameter class in a knowledge-base tends to be 
more general than in a CAD-model. 

3.4 Graphs and filters 
The constituents of CAD-models, spreadsheets, and 

knowledge-bases; and their relations together form networks 
that can be represented as graphs. These graphs can be filtered, 
and visualized to gain insight to the model. They can also be 
used as a foundation for navigating rationale as described in 
[11]. To achieve all that, it is useful to add attributes to nodes 
and edges, to make the graph meaningful. Attributes attached 
to the nodes and edges in this paper are listed in Table 1. 

The EdgeType attribute is what distinguishes the graphs 
presented in the paper from the usual model-trees in CAD-
systems, as it makes it possible to model how the entities are 
connected. When reviewing the class diagrams in Figure 3, 
Figure 5, and Figure 6 five different types of couplings are 
found, these are listed in Table 2.  

The values in the first column of that table are used as valid 
values for the EdgeType attribute, as much as labels for the 
edges. 

Table 1: Four attributes were added to develop the graphs 
in this paper.  

 
Name Applies to Description 
URI Nodes Unique Resource Identifier. 

Includes file path and the internal 
path to the represented entity. 

Label Nodes, Edges Text to show in the graph.  
EntityType Nodes Type of entity  
EdgeType Edges Type of relation as in Table 2 

 

 

Table 2: Five types of relations are identified within CAD-
models (the two marked by * are the only relation types 

that are undirected). Connected constituents are defined 
in Figure 3 and Figure 5. 

 
Filtering of information in the graphs is what realizes the 

contextualization of knowledge, and—due to the innovative 
nature of design—there will never be a set of universal filters; 
however, some filters may be more general or more frequently 
used than others. Here we suggest three sets filters. The first set 
of filters is the combination of retrieving nodes of types 
Geometrical Dimension, Parameter and Cell (i.e., nodes 
representing entities that control the design) and that are of 
degree 1. The entities represented by the retrieved node of such 
filters are the entry points for the CAD-, model: changing any 
of their values impacts the design. In everyday language, we 
call these entities design parameters. 

The second suggested set of filters involves filtering on 
Part-Of, and Kind-Of edges which yields the model tree as 
represented in the CAD-systems (it is a combination of the 
“Assembly-tree” and “Part-tree”) which can be used as a 
support to evaluate the complexity of CAD-models.  

The third set of filters involves filtering edges on External 
connections yields the interfaces between the CAD-model and 
design tables. Adding edges of types “Mathematical” gives the 
entire set of logic for the CAD-model, which is the third 
suggested set of filters. The nodes resulting from that filter 
represents the logical part of the product model. 

3.5 Rendering graphs  
To get a seamless overview of the engineering content of 

CAD-models and their connected spreadsheets and knowledge-
bases, they can be analyzed using the theory in the previous 

Workbook

Worksheet

Cell

1

1..*

1

1..*

Formula0..* 0..*

1 0..1

KnowledgeBase RuleSet

Parameter

1 1..*

1

1..*

Rule

1

1..*

**
Input

**
Output

1

0..*

Relation type Connected constituents Realized by 
Part-of Entity → Feature Feature entities 
Part-of Feature → Component Component features 
Part-of Component → Assembly Assembly instances 
Kind-of Instance → Part Instance 
Connection   Entity → Feature References in feature 
Mathematical Parameter → Parameter,  

Cell → Cell 
Expressions in 
equation, Formula 

Connection* Entity ↔ Entity, Part ↔ Part Geometrical 
constraints 

Spatial* Entity ↔ Entity Location 
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sections to render graphs. In our implementation, there are three 
algorithms used to do the analysis, the first one traverses the 
CAD-model, and its sub-models to extract the nodes and edges. 
The second algorithm analyses any spreadsheet connected to 
the CAD-models to extract nodes and edges within them and in 
connection to the CAD-model. The third one loops through all 
rules and connected parameters to extract nodes and edges.  

A simple example demonstrates the output from these 
algorithms. Let say we have a CAD-model containing a box 
with a hole through (see left of Figure 7). The model-tree 
contains merely two extrude features, one for the box and one 
for the hole. The two features are based on their corresponding 
parametrized sketches, which are shown in the model tree (see 
the center of Figure 7). The dimensions of the box are controlled 
by a design table, so that height, width, and length are controlled 
by the cells in a connected spreadsheet. Two configurations (or 
product instances) are defined (Default and Config1). The set 
of values for the first configuration is in turn controlled by a 
“base value” that is a sort of “scale” that applies to all the three 
parameters and is stored in a cell in another spreadsheet (see the 
right side of Figure 7). 

 

    

Figure 7. Simple CAD-model of a box with a hole with a 
corresponding model tree (left and center) and a 

connected spreadsheet, base value controls Default 
configuration (right). 

Applying the algorithms to the simple box-with-hole 
example yields a graph with 22 nodes and 28 edges. The graph 
is visualized in Figure 8 with the Yifan Hu layout algorithm 
[12]. There are seemingly duplicate nodes (for instance two D1) 
this is because of using short names on the nodes (Label 
attribute). The nodes are unique with the URI, thus, displaying 
the full names would solve this apparent duplicity. 

 

Figure 8: Graph illustrating the relations in the CAD-
model, design table and in between. 22 Nodes and 28 

relations. 

Applying a filter to retrieve design parameters results in 7 
design parameters: the nodes D1, D2 and D3 (green) to the left 
and B1, B2, B3 and the other B3 (blue) to the right in Figure 8. 
This is interesting as it indicates that every value in a design 
table is indeed a design parameter. Applying a filter to retrieve 
part-of relations yields two graphs one with the CAD-model 
and one with the spreadsheet. Using a filter to extract the 
mathematical model yields a graph with nodes B2, C2, D2 
(orange) and B3 (blue), which represent the logical part of the 
product model.  

The next two sections describe three case examples where 
product knowledge was elicited using the tools and methods 
presented so far. The first case example illustrates how graph 
representations may help to find where to reduce the complexity 
of parametrized models, thus preventing catastrophic failures 
and/or unacceptable calculation delays. The second case 
example illustrates the complexity of this problem, since even 
an apparently simple part may convey a massive amount of 
design information, which will result in a very complex graph 
that would require powerful yet easy to use filtering 
capabilities. The third case example illustrates the eliciting 
knowledge about the CAD model quality from the complexity 
analysis of the parent/child graph in CAD models. This type of 
graph is representative of one subset of the five types of 
relations identified by our method within CAD-models and was 
used to devise engineers how to develop CAD-models that can 
be efficiently reused and controlled by spreadsheets and KBE-
systems. 

4 Eliciting knowledge about relations in 
parametric design using graphs 

To verify the concepts presented in the previous sections a 
prototype software was developed and applied to two real-life 
examples: hot runners for injection molding, and truss joints in 
earthquake-proof buildings. These cases illustrate how graph 
rendering and filtering can be applied to gain knowledge about 
CAD-models that are complex regarding variants and regarding 
numbers of rules. 

4.1 Hot runners for injection molding 
The first company where the software was tested develops 

and manufactures heated runner systems for injection molding 
of plastic components. The company has automated their 
engineering processes to some extent as described in [13]. One 
reason to analyze the company’s CAD-models was that the 
product is suitable for design automation, in spite that every 
produced hot runner system is unique. The runner systems 
differ in layout. See for instance Figure 9, where an example of 
the H-shaped layout is shown. There are also X-shaped layouts, 
circular layouts, and custom layouts. The runners are connected 
to the tooling cavity through in-gates. The number of in-gates 
is up to 48 for a single system. There are five series of in-gates 
that all can have two different types of bushings (with lengths 
ranging up to 600 mm), and have up to 9 different types of end 
caps. This led to the automation of the CAD-models based on 
parametrized families managed through interconnected 
spreadsheets used as design tables. Due to the combinatorial 
complexity of the product, mathematical equations were added 
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as equations in the CAD-models as well as in the spreadsheets. 
This approach made the CAD-system unstable so that when 
adding several instances of the in-gates (the protruding parts in 
Figure 9 and CAD-model in Figure 10) it eventually crashed 
after a long time (sometimes up to 40 minutes) of number 
crunching. It did not always crash, so the engineers tended to 
wait and hope for it to go through. The crashing problems were 
eliminated when reforming the CAD-models as described in 
[13]. In the subsections, we describe the CAD-models, 
spreadsheets and the results of rendering and filtering graphs.  

 

Figure 9: Hot runner system with 48 gates in X-layout [13]. 

 

 

Figure 10: This seemingly small and easy CAD-model 
caused the CAD-system to crash repeatedly. 

4.1.1 CAD-models 
The CAD-model targeted is created in Solidworks and 

consists of five sub-parts of which only one is an assembly 
(which in turn consist of three components). In total, we are 
talking about seven components in two assemblies, which 
seems very little to make a CAD-system to collapse. The vast 
number of variants for each component is what makes it so 
difficult. Besides, the product is to operate in much higher 
temperature than it is produced, which resulted in several 
temperature configurations for each component (although this 
was not considered in the test reported here). The top-level 
assembly contained 42 equations controlling features on all 
levels and was connected to a spreadsheet as a design table.  

4.1.2 Spreadsheet 
The spreadsheet connected to the CAD-model as a design 

table was a Microsoft Excel spreadsheet and included all 
possible combinations of the part components. The 
combinations were added using formulas in the spreadsheet so 
that design table updates when changing certain cell values (this 
method works for engineer-to-order products). In total, the 
design table contained 1248 cells, and there were additionally 
46 cells with formulas to adjust the values in the design table. 

4.1.3 Graph extraction and content filtering 
The prototype software, which was developed in the 

Microsoft .NET platform, took 2 minutes to generate the entire 
graph. The output data was stored in Neo4j graph-database. 
This database was queried using the Cypher querying language 
for graphs. The resulting graphs from the queries (the three 
filters mentioned previously) were exported as Graph 
Modelling Language (.GraphML) which is a general, XML-
based language, to store graphs in a standardized way [14]. To 
visualize the graphs several freely available software 
applications were tested. Due to the size of the graph Gephi [15] 
with the Yifan Hu [12] and Force Atlas 2 [10] layout routines 
proved to work. The graph contains 3932 nodes (47% formula, 
28% geometrical dimension, 17% feature, 2.9% instance, 2.2% 
cell, 0.7% Component, 0.6% Assembly, 0.2% parameter) 
connected in 11321 relations. 

When applying the filters, it showed that there are 1165 
entry points of which the majority are of Geometrical 
Dimension type, further filtering shows that there are 12 
parameters and 86 cells. Although the academic experiment 
proved the usefulness of the approach, for industrial use, these 
entities should be managed, and the information regarding them 
should be made accessible to retrieve to engineers. Filtering for 
product structure made it possible to automatically retrieve a 
product-variant-master [16]. Seven subgraphs occurred when 
filtering for mathematical relations four subgraphs represented 
equations in the CAD-model and three represented formulas in 
the spreadsheet.  

By rendering, visualizing, and filtering graphs from the 
CAD-model, it was possible to identify all entry points, 
simplifying the product structure and structuring the 
represented knowledge in equations in the CAD-model and its 
connected spreadsheet. Thus, the graph proved useful to give a 
clue of why the parametrized model became so difficult to 
handle. 

4.2 Truss joints in earthquake-proof buildings 
Another prototype software was developed and applied to 

an industrial company that develops and manufactures power 
plant solutions. The power plants partially consist of steel 
trusses, which must be earthquake proof. The company tested 
to automate the construction of truss joints to cut lead-time. The 
result of the tests was a set of CAD-models with such a huge 
number of rules embedded into them that it was perceived hard 
to manage their design content. In this study one CATIA CAD-
model consisting of one component was targeted. This seems 
very little and easy to overview. Still, the vast number of rules 
for each component (stored in the CAD-model) makes it 
difficult to manage the CAD-model. The CATIA 
Knowledgeware KBE-rules connected to the CAD-model as 
formulas, checks, and design tables included all possible 
combinations of the component.  

4.2.1 Graph extraction and content 
In total, the knowledge-base consists of 82 formulas, seven 

rules, four checks and three design tables. The prototype 
software, developed in the Microsoft .NET platform, took 469 
seconds to generate the entire graph. The output from the 
routine was stored in Neo4j graph-database. This database was 
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queried using the Cypher querying language for graphs. The 
resulting graphs from the queries (the three filters mentioned 
previously) were exported as Graph Modelling Language 
(.GraphML) which is a general, XML-based language, to store 
graphs in a standardized way [14]. Gephi was used to visualize 
the graphs. 

The graph contains 435 nodes connected in 824 relations. 
When applying the filters, there are 15 entry points of which the 
12 are of Geometrical Dimension type, 2 String parameters and 
1 Integer parameter. Again, although the academic experiment 
proved the usefulness of the approach, for industrial use, these 
entities should be managed, and the information regarding them 
should be made easy to retrieve to engineers. However, the 
problem is challenging, as the logical model consists of 129 
nodes and 125 mathematical connections. However, when 
applying the Force Atlas 2 [10] layout, it was seen that the 
logical model could be grouped into 16 clusters of which 5 
clusters where non-sense since they only contain rules for the 
transition of KBE parameter to CAD dimension. 

By applying the algorithms to render and filter graphs from 
the CAD-model and its connected knowledge-base, it was 
possible to identify its entry points and to restructure the 
knowledge-base to a more intuitive organization and to move 
its central parts out from the CAD-system. 

 

5 Eliciting knowledge about the CAD 
model quality from the parent/child 
graph 

So far in this paper, we have seen how spreadsheets and 
knowledge-bases connected to CAD-models which can be 
penetrated to render graphs that are subsequently filtered to gain 
knowledge regarding the logical models that control the CAD-
model. However, for the logical model rules and formulas to be 
able to control the CAD-model, the CAD-model itself needs to 
be sound and of good quality. In this section, we show by an 
example how the quality of CAD-models can be evaluated 
based on graph theory and filtering.  

5.1.1 CAD-model quality 
The theoretical model of quality is based on the linguistic 

model by Contero et al. [17], which defines three levels. The 
morphological quality level is related to the geometrical and 
topological correctness of the CAD model. The syntactic 
quality level is linked to the proper use of modeling conventions 
such as naming rules for features, datum, part, assembly, 
drawings, and layouts; layer structure and function and 
part/assembly parameters and attributes. The 
semantic/pragmatic quality level takes into account the CAD 
model capability for reuse and modification. CAD users have 
an abundant variety of modeling procedures for shaping their 
designs. However, experience shows that certain procedures 
provide better solutions than others. To provide a score of 
model quality, and approach inspired in the concept of rubrics 
has been applied. 

On one hand, learning rubrics are scoring guides, 
constructed of descriptors or evaluative criteria (usually 

arranged in a table format) to set up the specifications to assess 
[18]. Summative rubrics are useless to determine CAD models’ 
quality, as they produce a final summative or global score (so 
they aim to sort subjects into those who pass and those who fail 
the evaluation), while formative rubrics are worth considering, 
as they provide feedback about the performance [19]. In fact, a 
specific approach to check the quality of CAD models by way 
of suitable formative rubrics was proved helpful to disclose the 
different dimensions of CAD models quality [20], although was 
also proved difficult to apply by using traditional “static” 
rubrics [21]. 

Computer science has been reported helpful to provide e-
rubric forms with enhanced capabilities, including “anchors” 
(written descriptions, examples that illustrate the various levels 
of attainment, or work samples [22]) or the capability to become 
adaptable and provide metadata about the evaluation process. 
This is the case of the Annota e-rubric platform [23] that we 
developed to deal with the management of complex rubrics as 
those used to derive the score used in this study.  

On the other hand, the capability of a model to be reused is 
linked to a proper modeling sequence. Different modeling 
strategies lead to different Parent/Child graph structures (This 
is the same as filtering on product structure “kind-of” and “part-
of” relations). To obtain a complexity metric of these graphs, 
we “reused” in this context, the size and cyclomatic complexity 
(CC) parameters used in software engineering as indicators of 
source code complexity [24] where Size is represented by the 
number of nodes in the model, while CC represents the number 
of independent paths through the graph and is calculated as: 

CC = e + i + u – n 

Where: 
 e is the number of edges, that is, the number of paths 

between nodes.  

 i is the number of inputs, that is, the number of nodes 
without parents.  

 u is the number of outputs, that is, the number of nodes 
without children. 

 n is the total number of nodes. It is the same as “size”. 

The hypothesis was that both size and CC correlate 
inversely with the CAD model quality they decrease when 
model quality grows and vice versa, using as indicator of model 
quality the score obtained using the Annota e-rubrics platform. 

5.1.2 Graph extraction and quality assessment  
An analysis software tool was developed to process in 

batch mode a set of Solidworks CAD models, to extract their 
parent/child dependency graphs, to calculate the complexity 
parameters of these graphs and integrate the quality score of the 
analyzed models from an external spreadsheet. This tool was 
developed using Microsoft Visual Basic .NET and the 
Solidworks application programming interface (API). While in 
batch mode, it can successively process every model contained 
in a folder and its subfolders. The tool extracts the two 
parameters size and cyclomatic complexity (CC) from every 
model.  
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Figure 11: Part used in the experimental study. 

5.1.3 Applying the method 
To test the hypothesis that both size and cyclomatic 

complexity (CC) correlate inversely with the CAD model 
quality, a study involving 47 engineering students that modeled 
the part defined by the drawing presented in Figure 11, was 
conducted. Applying the methodology explained in the 
previous section, the CAD models were scored on a ten-point 
scale (range [0, 10], where 0 means that none valid model was 
produced, while ten means that a good quality model was 
obtained). Then the mean and standard deviation were tabulated 
for the three parameters (Table 3), and their correlations were 
analyzed (Table 4). 

Table 3: Descriptive analysis 

Parameter Mean Standard 
deviation 

Size 16.09 2.59 
CC 21.74 5.44 
Score 6.86 1.84 

 

Table 4: Correlation results (alpha = 0.01) 

 Size Cyclomatic 
complexity 

Spearman 
rho 

-0.418 -0.405 

p-value 0.003 0.005 

 

As displayed in Figure 12 and Figure 13, both size and CC 
parameters show a rough negative slope when plotted against 
the score, as we hypothesized. Before conducting the data 
correlation analysis, a Shapiro-Wilk test was used to ensure that 
studied data set does not follow a normal distribution. Then, a 
non-parametric Spearman correlation test with a significance 
level of 0.01 (alpha = 0.01) was applied. Descriptive statistics 
and correlation results presented in Figure 12 and Figure 13 
validate our hypothesis, as they show that p-values for both 
parameters are less than 0.01, and negative. 

 

 

Figure 12: Size vs. quality score chart 

 

 
Figure 13: CC vs. quality score chart 

The result gives insight into how to analyze the 
performance of CAD-models so that they can be reused and 
controlled by spreadsheets or knowledge-bases.  

6 Discussion 

Product quality is a polysemic concept understood and 
managed in different ways by the distinct stakeholders of a 
designed product. This is why, in our view, the collaborative 
design of a new industrial product must progress from an 
interdisciplinary activity (where interdisciplinarity implies a 
joint mixture of disciplines), passing through multidisciplinary 
until shifting up to transdisciplinary (which implies the fusion 
between the disciplinary knowledge and the know-how of lay 
people). However, the transition stages require consolidation. 
In particular, this paper is a starting point on how to apply the 
connectivistic view of knowledge [5] to the knowledge 
represented in KBE-systems, spreadsheets, and CAD-models. 

The 3D Model definition is one necessary stage in 
collaborative product creation. In fact, CAD models are the 
primary view of the product (at least in the claim of the Model-
Based Enterprise paradigm [25]). Thus, quality of CAD models 
is of capital importance for the quality of products. However, 
sectoral approaches to control and improve quality of CAD 
models have proved incomplete thus far. In the third case 
example, some parameters of the graphs were extracted to gain 
knowledge regarding how to develop CAD-models that can be 
reused and efficiently controlled by KBE-systems and 
spreadsheets. 

When reviewing the nine principles of connectivism, it can 
be concluded that they can be implemented at an industrial level 
as follows (same numbering as in the frame of reference): 
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1. Any stakeholder adding geometry, facts, or rules to 
CAD-models, spreadsheets, or knowledge-base 
contributes to the knowledge flow. However, since the 
knowledge is represented in CAD-models, 
spreadsheets, and knowledge-bases, it may be hard to 
understand and should be made more accessible by the 
possibility to add rich comments. 

2. PDM-systems serve as infrastructure to access CAD-
models, spreadsheets, and knowledge-bases. However, 
a PDM-system only manages files and meta-data 
regarding the files. Adding routines to extract graphs 
on check-in events and storing graphs next to the files 
in the PDM system would serve as an infrastructure, to 
connect nodes of information sources. 

3. The digitized knowledge stored in the KBE-system, 
CAD-models, and spreadsheet inherits its network 
from processes in knowledge management and 
knowledge engineering. The visualization of the 
network makes this more apparent.  

4. The KBE-system, CAD-models, and spreadsheets 
facilitate storage of digitized engineering knowledge. 

5. As seen from the second case example it was possible 
to reduce the complexity of the logical model just by 
viewing the filtered graph. One factor that made it easy 
was the lay-outing algorithm that was applied in a real-
time manner so that the nodes and edges were animated 
when applying the layout. This way of creating 
contextual overviews of the product models supports 
the organizational learning.  

6. Viewing knowledge development as a continuously 
ongoing process can be enabled through versioning 
control of the knowledge. This is not considered in this 
paper. It would change the picture in Figure 2 so that 
there would be no barriers between knowledge 
management, knowledge engineering, and knowledge-
based systems; they would be continuously sub-
processes of the organizational learning. 

7. The visualization of network and context through 
graphs makes it possible to see the connections and 
patterns of the knowledge. By filtering the graphs, it is 
possible to see patterns that have been hard to grasp 
before. 

8. Currency has not been targeted in this paper. However, 
by introducing graphs in PDM-system as mentioned in 
bullet two would make it possible to have accurate and 
up-to-date graphs for every CAD-model, KBE-rule, 
and spreadsheet readily available at every moment.   

9. Viewing decision-making as a learning process is in 
line with viewing product development as a learning 
process, in which engineers indeed find themselves in 
a very shifting reality. Through the visualization of the 
network and its context, and the interactive navigation 
of knowledge—with easy to add knowledge content 
forms—an agile KBE development platform is at place 
supporting the flow of information.  

The low amount of knowledge re-use in the industry is 
thought to be caused by the low level of standardization in the 
formalization of knowledge created by the design engineers. 

Report files content varies a lot from engineer to engineer, and 
it is not certain that the enterprise can safely re-use them in new 
projects. A more standardized way to formalize this knowledge 
could result in a higher re-use of the knowledge which could 
both save time and ensure the quality of the produced products 
[26]. This is supported by the rendering and filtering of graphs 
from CAD-models, spreadsheets and knowledge-bases. 

The broad and diffuse, definition of context within the 
connectivism may be surpassed through the development of 
ontologies or domain-specific languages suited to the needs of 
engineers. At this end, stakeholders must agree on a basic 
terminology useful for engineers to develop and share their 
concepts, models, and context. Thus, allowing for other 
engineers to change these models, to adapt to their context or 
needs. It can further be said that the KBE-system treats the 
elements of knowledge stored in the knowledge-based on 
context as well. Sometimes a UDF is treated as a logical 
element, another time it is viewed as a geometrical element 
being part of a drawing, and yet another time it is used in a CNC 
or CMM process. The term polymorphism in computer 
programming reflects this very technical view of context, even 
if the connectivistic term is much broader. 

When reviewing the three case examples presented in this 
paper it can be concluded that taking a connectivistic view on 
the engineering knowledge represented by CAD-models, 
spreadsheets and knowledge-bases made it possible to:  

1. Increase the understanding of the product model by 
identification of entry points (design parameters).  

2. Making it possible to examine the product structure 
and extract a product variant master.  

3. Gain better understanding and possibility to retrace the 
logical model entangled into knowledge-base, CAD-
model, and spreadsheet. 

4. Devise engineers how to develop CAD-models so that 
they can be reused and efficiently controlled by KBE-
systems and spreadsheets. 

 

7 Conclusions 

This paper is a starting point of applying the connectivistic 
view of knowledge to engineering knowledge as it is 
represented in product models. It was shown that by scanning 
the elements within knowledge-bases in KBE-systems, CAD-
models, and spreadsheets, it is possible to render and filter 
graphs to support the connectivistic knowledge philosophy.  
Five areas were covered: network, filters, context, content, and 
conduits. Even if connectivism is an abstract philosophy of 
knowledge, this research proves that it is possible to adopt such 
a mindset to enhance further the way engineering knowledge is 
treated and to keep it alive and up-to-date. The proposed 
methods are far from ready and much work must be done to 
make them readily available to the engineers in global 
companies. However, it is already possible to apply the 
algorithms and methods presented in this paper to increase the 
understanding of product models by identification of entry 
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points (design parameters), making it possible to examine the 
product structure and extract a product variant master, gain 
better understanding and possibility to retrace the logical model 
entangled into knowledge-base, CAD-model and spreadsheet, 
and to devise engineers how to develop CAD-models so that 
they can be reused and efficiently controlled by KBE-systems 
and spreadsheets. This helps manufacturing companies to 
manage and reuse engineering knowledge as valuable assets. 
Which according to Kennedy [1] is critical to stay competitive 
in the long term.  
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