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Novel Planar and Waveguide Implementations of Impedance

Matching Networks Based on Tapered Lines

Using Generalized Superellipses

Santiago Cogollos, Member, IEEE, Joaquin Vague, Vicente E. Boria Member, IEEE,

Jorge D. Martı́nez Member, IEEE,

Abstract—For the practical implementation of RF and
microwave impedance matching networks, a widely employed
solution –alternative to the use of classical impedance
transformers– is based on tapered lines. This paper shows
a simple method to design smooth tapers, that take into
account the dispersion of the line and the required design
bandwidth simultaneously. A planar taper has been designed in
microstrip technology with the same length of classical ones but
improving their performances. A waveguide prototype has been
also designed with similar performance to a commercial one but
with one third of its length. Both tapered structures have been
obtained through optimization of very few parameters using the
same design strategy. As a result, the reflection coefficient of the
tapers can be optimally adapted to a given specific mask using
the prescribed value of physical length. Experimental results for
both tapers are included for validation of the proposed topologies
and the related design method.

Index Terms—Impedance matching, nonuniform transmission
lines, microwave circuits, planar circuits, waveguides.

I. INTRODUCTION

IMPEDANCE MATCHING is an old problem in RF

and microwave technology, arising when two sections of

different transmission lines have to be connected properly (i.e.

minimizing potential return losses due to the mismatch of

associated characteristic impedances). The first approach and

the simplest one is the single- or multi-section transformer

consisting of quarter-wavelength sections of transmission

lines [1]. Here, the goal is usually an equirriple reflection

coefficient over a certain bandwidth, which is directly related

to the considered number of sections. However, soon appeared

some reasons to avoid this solution. As a first reason, the

higher the bandwidth the higher the number of required

matching sections, therefore the total length is the number

of sections multiplied by λg/4 (being λg the wavelength on

each transmission line section). These methods do not allow

to fix a certain length as a design parameter. Another reason

to avoid the multi-section transformer is the inconvenience

of the impedance steps. Adding edges, corners or abrupt

changes inside the structure, avoiding a smooth profile of the

involved transmission line or waveguide, is a challenge in

the manufacturing process at high frequencies. Additionally,

the impedance steps introduce reactances which may be
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Fig. 1. Top: Klopfenstein (Dolph-Chebyshev) taper of length L used to match
lines with different widths w1 and w2. The steps at the input and output,
inherent to this taper, are clearly shown. Bottom: Detail of a prototype of a
Klopfenstein taper where the input step is shown.

compensated, but complicating the design. Moreover, these

sharp corners produce the excitation of higher order modes

hard to predict at the design stage.

In the quest for the optimal solution, tapered lines were

designed using simple curve approximations only for planar

designs. Linear, triangular and exponential tapers provided a

simple profile for a given length [2], [3]. The clear advantage

of a typical taper is the matching, not in a given bandwidth

but from a certain minimum frequency fmin.

Finally, the Klopfenstein (Dolph-Chebyshev) taper appeared

giving the optimal solution (in terms of equirriple response)

for planar realizations [4]. The same solution, but using a

different approach was obtained in the same year [5], pointing

to a slight flaw in Klopfenstein’s solution that was definitely

corrected in [6]. However, this optimal solution shows certain

limitations and drawbacks. The first drawback is the lack of
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smoothness because there are two steps (at the input and at the

output) inherent to this design (see top of Fig. 1). When this

ideal design is built, the steps cannot be easily manufactured

as shown at the bottom of Fig. 1. Steps are not desired if

excitation of spurious modes must be avoided. The second

issue is the final design formula in terms of impedances. This

is very convenient if the relationship impedance-frequency

is constant. However, one of the main assumptions in [5]

is that the characteristic impedance is fixed with frequency,

and the impedance formula is given for fmin. These facts can

be tolerable for microstrip designs [7], but unacceptable for

waveguide structures where characteristic impedance depends

on the height-width ratio b/a (see [5] and [8]).

In [9], the degradation at high frequencies was handled,

focusing on the fact that, in practice, an infinite bandwidth

is never needed. Therefore, from certain frequency upwards,

the degradation is unimportant. Using this line of thought, a

shorter taper than the optimum one can be designed for the

same performance within a required bandwidth.

In the line of avoiding inconveniences due to the steps of the

Klopfenstein’s taper, near-optimum designs were developed. A

smooth solution was given in [10], whose only drawback was

related to the loss of the equirriple behavior.

Another remarkable work, based on a solution in series

form similar to [5] but with a controllable equirriple response,

was given in [11]. Its final aim was to place the reflection

zeros in desired locations to control the ripple according to

the designers’ criteria.

However, theoretical designs like [4], [5], [10] and

[11] were developed with some assumptions: TEM mode

propagation and characteristic impedance constant with

frequency. Empirically, it is well-known that this fact is

not seen in practice. Here, the dispersion starts to play an

important role in several aspects:

• Spatial dispersion: permittivity ǫ or conductivity σ have

dependence on the wavenumber [12] (in guided signals

β takes the role of the wavenumber k). In general, any

guided signal varies with the term ej(ωt−βz). If ǫ = ǫ(β)
and σ = σ(β) this phenomenon can be an issue.

• Frequency dispersion: phase velocity have dependence

on the signal frequency. It can be either monomode or

multimode.

Controlling the value of the permittivity of the material

along the length of the taper, a matching is also possible

even with classical techniques [5]. It is remarkable that

new advances controlling the dispersion (mainly in planar

technologies) based on metamaterials are still in the early

stages. These structures are based on cells with quasi-periodic

arrangements, where losses may be still high enough, but

promising results are recently shown in [13], [14].

In general, the main objective of this work is to consider in a

simple manner any type of dispersion and practical issues that

can be included in a EM simulator. For instance, it is widely

known that the characteristic impedance of a microstrip line

is frequency dependent, and shows a positive increase with an

increase in frequency [15]. Inclusion of dispersion starts to be

important in microwave designs [16], with the main goal of

Fig. 2. 3D-view schematic of a classical four-section transformer in
waveguide technology.

approximating the real behavior and EM simulations as much

as possible.

Further advances have been carried out in this field. In the

synthesis framework, [17] included loss and dispersion, but

the response is computed solving the approximate Ricatti’s

equation instead of using EM solvers. Additionally, specific

tapers have been analyzed by solving numerically the Ricatti’s

equation including realistic modelling (e.g. fin-line tapers

[18]). Very recently, an efficient method has been developed

to analyze tapers using circuit models at the expense of

complicating the related theory [19].

Another strong motivation of our work was the potential

implementation of taper solutions in [4], [5], [10] and [11]

with waveguide technology, which is not easy since the

characteristic impedance in such technology involves one

additional degree of freedom (when compared with planar

technologies). The width a and the height b of the waveguide

simultaneously affect the waveguide characteristic impedance

[20], and although the previous methods are extensible

in terms of impedances, there is no clue about the best

relationship between a and b to achieve both a smooth profile

and the best performance in terms of frequency at the same

time.

Therefore, the aim of this paper is to provide an

alternative smooth taper profile (in both planar and waveguide

technologies) accounting for the dispersion, the bandwidth and

a flexible reflection requirement (not necessarily equirriple)

using a simple optimization algorithm. The algorithm provides

the parameters (usually two for planar and four for waveguide

designs) of a generalized superelliptic curve that will be the

profile of the proposed novel taper.

This new design method can be applied not only to

planar topologies, as it was successfully shown in [21], but

also to waveguide technology where modal dispersion is an

issue. In fact, it is for waveguide technology where this

method provides a higher performance, using the same design

procedure with only subtle changes in its implementation that

are fully described in this paper.

Traditionally, waveguide multi-section transformers (see

Fig. 2) are designed using several methods. Among them, it is

worth to mention the most popular ones: i.e. classical methods
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Fig. 3. Superellipses with semi-axes a = 4, b = 2 and different values of r.

[22], optimization for multi-band responses [23], iterative

methods [24] for short-step transformers, and transformed

variable methods using Richards’ variable [25] and [26].

Of course, all of them have to deal with the problems of

the involved impedance steps using full-wave electromagnetic

(EM) simulations. All these responses can be easily translated

to tapered waveguides using the technique shown in this paper,

with the only change of using a different specification mask.

The advantage is that a tapered line can achieve a similar

performance as a multi-section transformer with a substantially

shorter device. An additional advantage of the design method

proposed in this work is that there is no need of performing

any EM optimization, since there is always a circuital model

accounting for the modal dispersion and the change of the

waveguide shape.

Our approach tries to find the optimum performance using

simpler methodology than the previous works. Moreover, the

shortest possible length can be easily found according to

specifications. Finally, easier fabrication is achieved because

the proposed profile is a simple curve.

II. TAPER PROFILE USING SUPERELLIPSES

The idea of using superellipses is not new in engineering

since it was used in architecture, typography and furniture

design [27] among others. A superellipse is also known as

a Lam curve after Gabriel Lam (well known for his general

theory of curvilinear coordinates, and his notation and study

of classes of ellipse-like curves). The superellipse is a general

curve (see Fig. 3) with only one parameter r ranging from

r → 0 (curve approaches the cartesian axes), and r → ∞ (a

rectangle). The general equation of a superellipse is
(x

a

)r

+
(y

b

)r

= 1 (1)

where a and b are the semi-axes of the superellipse, and r is

the parameter controlling the roundness of the ellipse. r = 1
provides the rhombus (linear curve) and r = 2 a true elliptic

profile. Fig. 3 shows the shape of the superellipses for a = 2b
and several values of r.

However, the curvature controlled with the only parameter

r does not give enough freedom to generate a profile with

competitive behavior. Further generalizations are used in

x

y

(

x
a

)m
+
(

y
b

)n
= 1

a

b

Fig. 4. Generalized superellipse with semi-axes a = 3 and b = 1.5 and
exponents m = 2.5 and n = 0.5. The shadowed quadrant will be used for
the taper profile.

w1

w2

L

Fig. 5. Taper profile formed mirroring and offsetting the generalized
superellipse quadrant of Fig. 4.

several fields like modeling in botany or metamaterials (see

[28], [29] and [30]). The equation we are going to use for

tapers is a quadrant of a generalized superellipse, whose

expression is
(x

a

)m

+
(y

b

)n

= 1 (2)

where m,n ∈ R+ are constants controlling the curvature of

each dimension. The advantage of using the quadrant of a

superellipse is twofold: matching the curve at both ends is

automatic, and secondly the curve does not change the sign

of its tangent (true tapers are monotonic). A typical example

of generalized superelliptic profile is shown in Fig. 4 where

m = 2.5 and n = 0.5. The shadowed quadrant will be the

profile of the taper. Mirroring and offsetting this quadrant we

obtain the required taper as shown in Fig. 5. Extreme values

for m (i.e. m = 0 or m → ∞) lead to a sharp transition

in the input side of the taper. The same occurs with n and

the output of the taper. Additionally, values of m greater than

one produce an outwards-curved (convex) junction with the y-

axis. Values of m lesser than one produce an inwards-curved

(concave) junction with the y-axis. The same applies to n and

the x-axis junction. Therefore, the generalized superellipse can

deal with impedance matching at least as well as a linear taper

(generalized superellipse with m = n = 1).

Curves like generalized superellipses with real-valued

exponents provide a better fitting features than polynomials.

This is because polynomials have integer order by definition.
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Fig. 6. Multi-section transformer and its equivalent transmission-line circuit
representation.

Additionally, using polynomial approximations, it is quite

difficult to avoid derivative changes that would produce a

wiggly tapered line. The typical approach of dividing the curve

in splines will increase the unknowns of the problem as the

number of the splines increases. Therefore, the use of just two

parameters for the whole profile provides a simple solution

with excellent performance.

III. DESIGN STRATEGY FOR PLANAR TAPERS

Let us assume that the taper profile is given. The physical

geometry of a taper is continuous, like the one shown in Fig. 5,

but it can be studied as a discrete multi-section transformer

where the number of sections N tends to infinity (see Fig. 6).

This structure can be simulated with available EM tools.

However, the solver has to be harnessed to an optimizer to

obtain the optimal parameters of the superelliptic profile. Many

simulations need to be performed during the optimization and

a fast equivalent circuit simulator is required. Therefore, a

segmentation strategy is chosen, being quite accurate and fast

enough for our purpose.

Let be Li = L/N the length of each section, where L is

the total length of the taper and N the number of sections. For

the sake of simplicity, the sections will have the same length

L1 = L2 = · · ·LN . The number of sections N has to be high

enough to neglect the steps between sections, namely, each

i-th section has width wi, and N is chosen so that

|wi − wi+1| < ǫ ∀i = 1, . . . , N − 1 (3)

where ǫ is the maximum allowed step that can be neglected

in the analysis (e.g. ǫ < λg/100 being λg is the guided

wavelength at the minimum frequency of interest). This can

be done because the effect of a change in width is very small

for planar structures. The physical model can be analyzed

using the electrical model shown at the bottom of Fig. 6.

This model is a cascade of N sections of transmission lines,

where each section has a characteristic impedance Zi given

by the relationship between the width and the impedance for

the considered substrate [7], [31]. Here, the dispersion can

be taken into account since εeff (and therefore Zi) is not

constant with frequency in applications with wide bandwidth.

The procedure to obtain the reflection coefficient starts with
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Fig. 7. Reflection coefficient computed varying the number of sections chosen
to divide the geometrical shape of the taper. These curves correspond to the
superelliptic example considered in subsection VI-A.

the computation of the input impedance of the first line Zin1

as

Zin1 = Z1
ZL + jZ1 tanφ1

Z1 + jZL tanφ1
(4)

and the result is stored for each frequency point. Needless to

say that the electrical length φ1 = β1L1 is computed assuming

dispersion, that is included in the computation of β1.

Now, Zin1 becomes the load impedance when Zin2 is

computed and in general, at the step i-th the input impedance

of section i is computed as

Zini = Zi
Zini−1 + jZi tanφi

Zi + jZini−1 tanφi
(5)

and the process is repeated up to section N where ZinN is

obtained.

Finally, the reflection coefficient can be computed as

Γin =
ZinN − Z0

ZinN + Z0
(6)

A typical set of curves obtained to check the convergence of

the proposed analysis method against the number of sections

is shown in Fig. 7.

IV. OPTIMIZATION ALGORITHM

Once the number of steps N has been properly chosen, the

width for each section can be obtained using a superelliptic

profile with parameters m and n using a simple function. The

input parameters of the function are (N,m, n,wN , w1). The

length of the taper is L = a (a being the semi-major axis of the

generalized superellipse), and b = (wN − w1)/2 (b being the

semi-minor axis), as can be deduced from Fig. 5 and Fig. 6.

In order to avoid any step at the beginning or at the end of the

taper, we assume that wN = w0, w0 being the width of the

line with Z0 we are trying to match to the line with ZL. For

the same reason, the width of the first section w1 = wL, where

wL is the width of the line with characteristic impedance ZL.

Therefore, the taper starts with wN and smoothly changes its

width to finally reach w1. If we assume wN > w1 as it is

drawn in Fig. 6, the function giving the width of i-th section

is

wi = w1 + (wN − w1)

[

1−
(

i

N

)m]1/n

(7)
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where we have assumed all sections having the same length

for the sake of simplicity.

Once the curve is chosen, two things are required. First, an

EM simulator capable of dealing with such profile with a fair

accuracy, and secondly an optimization algorithm providing a

good convergence. The former is the main problem. However,

for microstrip structures, a transmission-line approach can be

used with intensive segmentation, and neglecting the small

steps in the structure as explained in the previous section.

If the number of segments is high, the simulated structure

behaves as an smooth and continuous device. Therefore, the

designer has to choose the maximum impedance step that can

be neglected, and enforce a partition with such small steps.

After a convergence study, the number of segments needed for

accurate simulations can be safely fixed. A typical convergence

study was shown in Fig. 7, where a number of steps higher

than 100 (i.e. N ≥ 100) does not produce a high impact on

the response for this particular case.

The optimization part of the problem has a wide range

of possibilities. Since the number of involved optimization

parameters is small, the authors chose a non-linear least-

squares method

min
m,n

‖E‖22 = min
m,n

Nfreq
∑

i=1

e2i (8)

where E is the error function with Nfreq components ei (the

number of points in the frequency sweep), and each component

is defined as

ei =

{

S11(fi)−M(fi), if S11(fi)−M(fi) > 0,
0 otherwise.

(9)

where M(fi) and S11(fi) are the values of the mask and

of the reflection coefficient (in logarithmic units) at the i-th
frequency point, respectively. The reflection coefficient S11

changes not only with frequency but with the shape of the

taper, that ultimately depends on m and n.

The algorithm used to solve the minimization problem is

quasi-Newton, and the Jacobian matrix can be obtained both

numerically or analytically (if a segmentation of the problem

with uniform transmission lines is used). The auxiliary matrix

needed as the Jacobian in this algorithm is the Jacobian of the

reflection coefficient

J =

(

∂S11

∂m

∂S11

∂n

)

(10)

The computation of J for each frequency point speeds up the

optimization algorithm if it is computed efficiently. Obviously

it will depend on the approach used for the analysis of

the structure, but in any case it can be used as a good

estimation if computed using approximate formulas. Applying

wise approximations in the EM simulation, the computation

of S11 and its Jacobian can be performed at very high speed

as follows.

Let be Γin = S11 the reflection coefficient of the taper. If

the goal is to obtain an approximation of the Jacobian with

respect to m and n, we first notice that there is a dependence

of the width with m and n, namely w(m,n) given by (7) for

each section. The next step is to obtain the electrical length φ,

R2 R C3 C C

m

n
w(m,n)

φ(w)
Z0(w)
ZL(w)

Zin(φ ,Z0,ZL) Γin(Zin)

Γin(m,n)

Fig. 8. Dependence among different variables used to apply the multivariate
chain’s rule to obtain the Jacobian matrix.

the characteristic impedance Z0 and the load impedance ZL

from w using the classical formulas applied to each uniform

i-th section [7], [31]; and recalling that the load impedance of

the i-th section is the input inpedance of the (i−1)-th section

as explained before. In our case, we used formulas accounting

for finite thickness of the microstrip conductor and dispersion

effects, with the aim of obtaining the highest accuracy.

It is clear that from the electrical length and the

characteristic impedance of the i-th section φi, Zi and the

input impedance of the (i − 1)-th section Zini−1, the input

impedance i-th section Zini can be obtained using (5) and Γini

using (6). Therefore, the whole chain is established and its

diagram is shown in Fig. 8. Applying the chain’s rule and

dropping the subindex i to avoid cumbersome notation we

have:

J =

(

∂Γin

∂m

∂Γin

∂n

)

=

∂Γin

∂Zin

·
(

∂Zin

∂φ

∂Zin

∂Z0

∂Zin

∂ZL

)

·









∂φ
∂w

∂Z0

∂w

∂ZL

∂w









·
(

∂w

∂m

∂w

∂n

)

(11)

where each term can be computed analytically for each section

and for each frequency point.

Now, we are ready to write the direction v of the maximum

variation of the error function [32] to seek the extremum using

(8) and (9):

v = ∇‖E‖22 =
(

∂‖E‖22
∂m

∂‖E‖22
∂n

)

= 2

Nfreq
∑

i=1

Jiei (12)

Namely, the direction of maximum variation is proportional

to Ji (Jacobian at i-th frequency point) given by (11) as

expected. It is important to notice that all functions involved

(e.g. Zin, φ, etc.) have to be computed for each section and

for each frequency point. Therefore, if the functions are stored,

the memory needed for each function is Nfreq × N complex

numbers in general.

V. STRATEGY FOR WAVEGUIDE TAPERS

Usually, an adaptation between two standard rectangular

waveguides is needed for certain applications. Here, we cannot

apply the typical planar approaches, since the waveguide

geometry depends on the two dimensions (width and height)

of the waveguide. There are several typical definitions of

the characteristic impedance (power-voltage, power-current

and voltage-current), all of them depending on a and b and

the modal impedance [20]. However, using the optimization
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technique for planar tapers to both dimensions separately,

waveguide tapers can be designed without further difficulty

choosing any of the aforementioned waveguide impedance

definitions.

The optimization problem is formally the same as the one

described for planar tapers, with the only difference that there

are two variables (m, n) for each rectangular waveguide

dimension (four in total). This sole difference does not mean

a great problem, since a 4-variable optimization problem

can be handled comfortably using the same optimization

technique used for planar tapers. In order to avoid complex

analytical expressions for the Jacobian matrix, in this case the

computation has been carried out numerically.

The main problem arises in the analysis part of the proposed

waveguide taper. Here, we cannot neglect the steps when the

taper is divided in a multi-section structure, each one having a

different rectangular cross section. The solution is to take into

account such transitions involving a change in terms of height

and width. Applying the superposition principle, we are going

to assume that a waveguide step in height and width can be

decomposed into two simpler steps (one in width and one in

height). Since the partition provides small steps, we can use

the asymptotic expressions given in [8]. Let be a step from a

waveguide with dimensions a (width) and b (height), guided

wavelength λg and characteristic impedance Z0 to a waveguide

with parameters a′, b′, λ′

g and Z ′

0. The change in width leads

to a change in the impedance following the expression

Z ′

0

Z0
≈

λ′

ga
′

λga

(

1 + γ +
γ2

2

)

∀γ ≪ 1 (13)

where

γ = 1− a′

a
(14)

The step itself can be modeled as a parallel reactance Zstep =
jX whose asymptotic expression for γ ≪ 1 is

Z0

X
≈ λg

2a

γ2(1 + γ) ln 2
γ

1− γ
2

(

1− 27

8

Q+Q′

1 + 8 ln 2
γ

)

(15)

where

Q = 1−

√

1−
(

2a

3λ

)2

Q′ = 1−

√

1−
(

2a′

3λ

)2

(16)

and λ is the free-space wavelength. The step in height changes

the characteristic admittance as

Y0

Y ′

0

=
b′

b
= 1− δ (17)

and the step itself can be modeled as a parallel susceptance

Ystep = jB, whose asymptotic expression for δ ≪ 1 (small

step) is

B

Y0
≈ 2b

λg

(

δ

2

)2
[

2 ln 2
δ

1 − δ
+ 1 +

17

16

(

b

λg

)2
]

(18)

The formulas are really accurate provided the step is small [8],

and the model is extremely fast because the computation effort

of the previous formulas for each step is negligible. The model

is shown in Fig. 9, where the only difference with the planar

ZL

Z1Z2ZN

Z0

φN φ2 φ1

ZinN

jX1 jB1jX2 jB2jXN−1 jBN−1

Fig. 9. Equivalent transmission-line circuit representation of a multisection
transformer.
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Fig. 10. Linear waveguide taper WR-90 to WR-62. The blue dashed line is
the EM simulation using CST. The dotted red line is the EM simulation using
HFSS. The solid green line shows the simulation using Marcuvitz formulas.

model are the shunt reactances (modeling the corresponding

waveguide steps or transitions).

In order to check the simulator built with Marcuvitz’s

formulas against commercial simulators, a linear taper between

WR-90 and WR-62 standard waveguides has been used as

a benchmark. The taper length chosen for this example is

150 mm, which is the typical length of a commercial taper.

Fig. 10 shows the simulation of the linear taper using HFSS

and CST compared with the results given by Marcuvitz’s

formulas. The results agree very well taking into account that

Marcuvitz’s formulas provide the results in less than 1 s (with

a standard dual-core PC at 2.2 GHz with 4 GB of RAM),

even though a partition with 400 sections has been used. It

should be noted that the way the commercial EM simulators

discretize the volume leads to different solutions, depending

on whether the discretization follows the true shape or not.

Therefore, instead using mesh sizes, a convergence criteria

based on the solution stability is normally used.

VI. DESIGN EXAMPLES

A. Planar Taper

In order to check the performance of the novel impedance

matching structure, a taper based on a generalized superellipse

is designed to provide a return loss level RL > 25 dB in the

range from 1 to 3 GHz between two impedances of Z0 = 50
Ω and ZL = 100 Ω. For this example a RO4003 substrate

is used. The minimum matching provides the minimum value
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Fig. 11. Reflection response of the linear taper compared with the
superelliptical solution. The dotted line shows the analytic equirriple solution
(Klopfenstein) and the dash-dotted line shows the simulation of the near-
optimum solution given in [10].

for the length L of the taper [4]:

Γm = 10−RL/20 (19)

Γ0 =
ZL − Z0

ZL + Z0
≈ 1

2
ln

ZL

Z0
(20)

A = cosh−1 (Γ0/Γm) (21)

L =
Ac0

2πfmin
√
εreff

(22)

where Γm is the maximum reflection coefficient allowed in

the equirriple design, c0 is the speed of light in the vacuum

and fmin is the minimum frequency at which the specification

Γm is met. These equations provide a length of L = 72.6
mm. However, it is expected that the Klopfenstein taper will

not provide |S11| < −25 dB in the EM simulation, because of

all the assumptions in the related design method. The first one

is the non-dispersive media assumed in the calculations, the

second one is the approximations of the equation (Ricatti’s

equation) of the reflection coefficient (see [2], [4]), and the

third one is that the solution is given in terms of an impedance

profile (24) which is synthesized at a given frequency (not

broadband).

The design method proposed in this work requires a mask

(we used a constant mask to obtain a solution close to

Klopfenstein’s), and an initial guess of the variables to be

optimized (we used m = n = 1 giving the linear profile as

the starting point).

Optimizing the superelliptical profile, the method will

provide (in less than 1 second) the optimal parameters: m =
0.94084 and n = 0.76022. Fig. 11 shows the difference in

performance of the linear, the superelliptical and the near-

optimum tapers with the ideal Klopfenstein’s response given

by the analytic formula

Γ(βL) = Γ0
cos
√

(βL)2 −A2

coshA
(23)

As expected, the superelliptical profile provides an

improvement over the linear taper, which is the starting point

of the optimization we have performed. In this example, the

improvement is obtained in the whole frequency range. The

limit for the performance is the equirriple solution given by the

Klopfenstein’s taper. However, (23) is analytical and does not
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Fig. 12. Comparison between the linear profile and the optimized solution.
The dotted line shows the analytic solution showing the impedance steps. The
dash-dotted line shows the near-optimum profile. Only one side of the taper
is plotted. The other side is symmetric with respect to the horizontal axis.

consider more realistic issues. The superelliptic solution has

been obtained after optimization using a real profile segmented

in 2000 sections. In each section, the effective dielectric

constant and the phase constant have been computed using

empirical formulas [7], [31], assuming their true dependence

with the frequency variation to better approximate the final

response.

The profile of the Klopfenstein’s taper can be computed

using the well-known formulas [3]

lnZ(z) =















lnZ0, z ≤ 0

1
2 ln(Z0ZL) +

A2Γ0

coshAφ
(

2z
L − 1, A

)

, 0 < z < L

lnZL, z ≥ L

where

φ(x,A) = −φ(−x,A) =

∫ x

0

I1

(

A
√

1− y2
)

A
√

1− y2
dy ∀|x| < 1

(24)

where I1(x) is the modified Bessel function. φ(x,A) can be

computed very rapidly, since there is an efficient algorithm

detailed in [33].

The profile of the linear taper (initial point of the

optimization) is compared versus the superelliptic taper in

Fig. 12. In the same figure, the Klopfenstein’s solution shows

the steps inherent to the equirriple solution. As a curiosity,

Hecken’s solution appears in the same plot showing strong

similarity with the superelliptic profile in the second half of

the taper. In the first half of the taper, the superellipse rapidly

approaches the Klopfenstein profile.

It is worth to stress that the optimization algorithm seeks an

m and n values in each iteration, then the profile is simulated

and the error E referred to the mask is computed. In the

following iteration, the new m and n values will be sought in

order to decrease the error function. Therefore, a fast simulator

is strongly recommended. The segmentation technique already

explained before (see section III) gives a good approximation,

and a transmission-line simulator has been implemented for

this purpose.

The code for the analysis of the taper has been written

in the MATLABTMenvironment. For the optimization process,
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Fig. 13. Manufactured prototypes (circuit board at the top) and the TRL
calibration kit (circuits at the bottom). The upper circuit in the board is the
superelliptic taper (near the letter S), the middle one is the linear taper and
the lower circuit is the Klopfenstein taper (near the letter K).

the non-linear least-squares algorithm has been used. Upper

and lower bounds for the values of m,n are set to practical

values (lower bound 0.1 and upper bound 10 will suffice). For

the initial values in the optimization, as explained, m = n = 1
(linear taper) is used as the starting point.

Each taper (linear, superelliptic and Klopfenstein) simulated

in Fig. 11 has been manufactured in a cascaded back-

to-back configuration (see Fig. 13, where the employed

TRL calibration kit is also shown). Using this set-up, the

measurement can be carried out with a 50 Ω calibrated

VNA. This method allows to fairly compare the performances

of the three tapers using the same calibration kit. Ideally,

the performance of a back-to-back configuration provides

a 3 dB higher reflection level. The measured reflection of

manufactured prototypes is shown in Fig. 14. The results show

how the superelliptic taper is clearly superior with respect

to Klopfenstein’s at almost all frequencies. The linear taper

is also worse below 2.1 GHz. It is important to note that

the impedance steps in the Klopfenstein taper has a negative

impact in its performance (at some frequencies, even the linear

taper is better).

B. Waveguide Taper

The proposed solution has been validated with two

manufactured prototypes in waveguide technology. Both are

WR-90 to WR-62 waveguide tapers with length L = 50 mm.

One is manufactured as a single piece using the wire electrical

discharge machining (EDM) technique. The other one has been

manufactured in two equal pieces using milling (see Fig. 15).

The final goal of the design is to find the best possible solution

-50

-40

-30

-20

-10

0

0.5 1.0 1.5 2.0 2.5 3.0

R
efl

ec
ti

o
n

co
ef

fi
ci

en
t

(d
B

)

f (GHz)

Linear
Superellipse

Klopfenstein

Fig. 14. Measured reflection response of the three tapers built in a back-to-
back configuration.

Fig. 15. Manufactured tapers in two pieces using milling (left) and in one
single piece using wire EDM (right). Both are 50 mm long tapers matching
WR-90 to WR-62 standard waveguides.

with S11 < −40 dB in the band 11 − 12.5 GHz, which is

common to both standard waveguides. With these goals, the

solution will improve the response of the commercial 150 mm

taper considered in Fig. 10. The optimization procedure gives

as the optimal point the following values

m1 = 0.6587 n1 = 0.5259

m2 = 0.7132 n2 = 0.6845

where m1 and n1 are the parameters of the superellipse

matching the waveguide widths, and m2, n2 are the parameters

related with the height. The response of the taper using the

three simulators (two EM full-wave commercial tools and

one circuit simulator using Marcuvitz’s formulas) is shown in

Fig. 16. All simulations reached S11 < −40 dB. However,

the observed differences rely on the 3D-meshing of the

commercial simulators, that do not exactly follow the profile

due to the employed discretization methods, and to the fact

that the circuit simulator uses the approximations outlined

in section V. Nevertheless, it is important to stress that the

observed difference is small in linear units, since the low level

of reflection is quite extreme.

Once the two prototypes were built (as shown in

Fig. 15), they have been measured. However, the measurement

technique is not unique. If the taper is connected to the vector

network analyzer (VNA) with the WR-90 port, the load has

to be connected to the WR-62 side of the taper. Conversely,

if the VNA is connected to the WR-62 port, the load has to
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Fig. 16. Three simulations of the optimal waveguide taper with L = 5 mm.
CST and HFSS give the same results with 3D meshing. The circuit simulator
using Marcuvitz’s formulas used 400 cascaded lines with the corresponding
steps.
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Fig. 17. Measurements of the reflection coefficient of the waveguide tapers
from the WR-90 port. A WR-62 matching load has been used. EM and circuit
simulations are also shown.

be connected to the WR-90 side of the taper. The loads are

different and the response differs depending on the used loads.

The results in Fig. 17 show a good performance of both

tapers, whose reflection has been measured from the WR-90

port using a WR-62 matching load at the other port of the

tapers. It also shows how the predictions of the simulators

are quite different. The circuit simulator predicts the reflection

zero, whereas the EM simulation approaches the average level.

The difference between the measured tapers and the

simulations are due to two main sources: the frequency

response of the matching load connected to the taper (it

has a response near the level of our goal for the reflection

coefficient) and the mechanization imperfections.

In order to see the out-of-band performance, measurements

of the tapers from the WR-62 port having loaded the WR-90

ports are shown in Fig. 18. The calibration kit used is different

as well as the frequency range. Therefore, the differences with

respect to Fig. 17 are easily justifiable. The reflection level is

clearly maintained.

There are alternative measurement techniques for tapers, as

it has been shown in the microstrip example. If two equal

tapers are available, they can be connected in a back-to-

back configuration and we can remove the load from the

measurements. However, there are two possible configurations:

-55

-50

-45

-40

-35

-30

-25

-20

12 13 14 15 16 17

R
efl

ec
ti

o
n

co
ef

fi
ci

en
t

(d
B

)

f (GHz)

Milling

Wire EDM

Fig. 18. Measurements of the reflection coefficient of the waveguide tapers
from the WR-62 port. A WR-90 matching load has been used.
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Fig. 19. Back-to-back configuration joining the tapers from the WR-62
ports. Commercial tapers with length L = 150 mm are also measured for
comparison purposes.

joining the tapers from the WR-90 ports or from the WR-62

ones. The frequency range will be different and the results

may also vary. We have two tapers with the only difference

of the fabrication technique. Moreover, two equal commercial

tapers with the same ports as our prototypes, but with L = 150
mm each one, are also available. For these measurements in

back-to-back configuration we used a two-port calibration and

measurement setup, thus removing the matching load and its

influence from the measurements themselves.

Figs. 19 and 20 show a comparison of experimental results

for the back-to-back configurations with the commercial

tapers, which are three times as long as the designed tapers
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Fig. 20. Back-to-back configuration joining the tapers from the WR-90
ports. Commercial tapers with length L = 150 mm are also measured for
comparison purposes.
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Fig. 21. Commercial taper (top) compared with one of the manufactured
prototypes (bottom).

(see both sizes in Fig. 21). The reflection level is similar

despite the difference in length.

VII. CONCLUSION

A novel method to design tapered lines based on

superellipses has been proposed. In microstrip technology,

the superelliptic taper has a superior performance in most of

the designed bandwidth, once compared with the equirriple

optimal solution and the traditionally used linear taper. The

enhanced performance and the related short design time

justifies the method proposed in this paper. The measured

responses show the importance of smooth profiles with

optimized behavior in tapered lines. For waveguide tapers,

two prototypes based on the generalized superellipse geometry

have been also manufactured. Their performance is similar

when compared with commercial tapers three times longer.
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