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Abstract: 

Railway curve squeal is an intense tonal and annoying type of noise commonly attributed to 

self-excited vibrations during curving. The mechanisms for its generation remain unclear and it 

is still a subject of discussion among researchers. Most of them have considered the falling 

behaviour of the friction coefficient with the slip velocity essential for reenergising the system. 

Recently, some authors have found that squeal can also appear even for constant friction 

coefficient through the wheel modal coupling between the normal and tangential directions 

caused by the wheel/rail contact. This paper particularly evaluates whether the latter 

mechanism is sufficient to find squeal in curving conditions. 

The introduction of flexibility in the railway subsystems is required to widen the domain to the 

high-frequency range in which squeal occurs. One single flexible and rotatory wheelset is 

considered and suitable forces are prescribed at the primary suspension seats in the current 

investigation. The rails are modelled through the Moving Element Method (MEM), permitting 

to extend the range of validity of beam models usually utilised in the literature. This work 

extends the formulation to rails supported by a viscoelastic Winkler bedding. Both wheelset 

and track models are coupled by means of a non-linear and unsteady wheel/rail contact model 

based on Kalker’s Variational Theory. Simulation results for different track curvatures and 

friction coefficients are presented and discussed, showing tonal peaks in the tangential contact 

forces of the inner wheel. These results can be associated with squeal according to the 

characterisation of this phenomenon, indicating that squeal can be found in curving conditions 

using advanced dynamic interaction models even with constant friction coefficient. 

Keywords: 

Curve squeal; wheel/rail contact; rotating wheelset; Moving Element Method; railway 

high-frequency dynamics. 
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1. INTRODUCTION. 

Noise appears as one of the most important environmental drawbacks of the railway 

transportation [1]. Railway tracks are frequently located in the vicinity of urban zones, thus 

being a source of considerable annoyance for residents [2]. Three categories of wheel/rail noise 

can be distinguished: rolling noise, impact noise and squeal noise [3]. The present work is 

focused on the latter, known as curve squeal when the train negotiates sharp curves. This 

phenomenon is characterised by an intense tonal noise generated in the most sensitive human 

ear frequency band between 2 and 8 kHz [4], and sometimes even up to 10 kHz according to 

field measurements in metro and tramway systems [5]. 

The likelihood of squeal occurrence widely differs on apparently similar conditions and the 

physical mechanisms responsible for this phenomenon remain unclear. The falling friction 

mechanism proposed by Rudd [6] has been the most accepted instability mechanism to explain 

squeal as self-excited vibrations. Rudd also identified three possible excitation mechanisms due 

to stick/slip cycles in the contact region: (1) lateral creepage at the contact between the wheel 

tread and the top of the railhead, (2) wheel flange rubbing on the rail gauge face, and (3) 

longitudinal creepage at the contact on the wheel tread due to differential slip. The first one, 

closely linked to the curving behaviour of the vehicle, has received the major attention in the 

literature.  

Some recent works [7,8] presented a mechanism called modal coupling through which it is 

possible to reproduce the curve squeal even with a constant friction coefficient. Although the 

latter friction coefficient decays with slip velocity, the negative slope of the creep curves 

(creepage vs. total transmitted forces) in the transversal directions (crucial for squeal [4,8]) can 

be considered negligible. This assumption is supported by experimental tests [9] favourably 

contrasted in a recent work on contact mechanics [10], which concluded that the difference 

between the maximum and the saturated tangential creep forces shown in standard curves due 
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to falling friction is clearly overrated. This lesser influence leads to adopt a constant-µ 

hypothesis for dynamic simulations. 

The present work develops an advanced vehicle/track interaction model that adopts a 

non-steady state wheel/rail contact model with a constant friction coefficient. The flexibility of 

the solids is implemented in order to extend the interaction model to the high-frequency domain 

in which squeal occurs. The vehicle model is simplified through one single flexible wheelset 

and the corresponding primary suspension instead of one complete vehicle [11]. In order to 

implement the effect of the vehicle dynamics, a multibody model for the complete vehicle 

negotiating a constant radius curve is used to calculate the forces in the primary suspensions, 

which are implemented as external forces in the wheelset model. The wheelset model accounts 

the flexibility and the inertial effects associated with its rotation. Since the angle of attack and 

the creepages are more demanding for the leading wheelset when negotiating a curve, this is 

more prone to squeal than the rear ones and thus the leading wheelset is the one selected for the 

simulation. Section 2 of this paper summarises the wheelset model adopted in the present work. 

This paper develops a model of the railway track that permits to study the track dynamics 

extending the frequency range up to 9 kHz, covering the frequency range where squeal takes 

place. The track model consists of two solid rails supported on a Winkler foundation. The 

Moving Element Method [12] has been adopted in this work by implementing cyclic boundary 

conditions and a viscoelastic Winkler foundation. The technique and its benefits are presented 

in Section 3. 

The wheelset and the track models are coupled by means of a wheel/rail contact theory that 

adopts an incremental algorithm described in Section 4. The wheel/rail contact position is 

obtained from a low frequency commercial package that provides the whole vehicle position on 

the curve, and a non-linear and non-steady state wheel/rail contact model based on Kalker’s 

Variational Theory [13] is implemented by the authors for obtaining the contact forces. Section 
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5 presents simulation results of the squeal phenomenon for different curve radius and friction 

coefficients. The paper closes with conclusive remarks in Section 6. 

2. VEHICLE MODEL. 

A flexible rotatory wheelset model negotiating a curved track was previously developed in Ref. 

[11]. In order to model the wheelset travelling on a curved track, two reference frames are 

considered: a frame X0Y0Z0 fixed at an arbitrary point and a trajectory coordinate frame 

XTYTZT that follows the motion of the wheelset on the track (see Fig. 1). The system XTYTZT is 

centred in the undeformed configuration of the wheelset, with the XT-axis parallel to the 

forward speed, the YT-axis parallel to wheelset axis and the ZT-axis pointing upwards. 

Eulerian coordinates are defined from the trajectory reference frame, through which the 

properties of the spatial points of the non-deformed configuration domain are obtained. These 

coordinates do not follow the material points of the solid, nonetheless they are associated with 

spatial points. Due to the axisymmetric geometry of the wheelset, this methodology permits to 

represent the displacements in the spatial points from the non-deformed configuration using the 

vibration modes as basis in the trajectory reference frame, which is: 

 ,qΦr =  (1) 

being r  the vector that contains the displacements from the undeformed to the deformed 

configuration, Φ  is the modal matrix computed through a FE model for the frame XTYTZT, and 

q  contains the modal coordinates. The resulting modal equation of motion for the selected 

wheelset is [11]: 

 ( ) ( )2 2+ +  +  =   ,c sΩ Ω Ω Ω Ω+ + + + + +q A B q D E K q α β γ Q Q   (2) 
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where Ω is the angular velocity of the wheelset (the wheelset speed divided by the wheel 

radius); the matrices A , B , D , E , and vectors α , β  and γ  account for the inertial effects 

associated with the wheelset rotation around the curve and of itself; K  is the modal stiffness 

matrix (diagonal matrix with the square of the natural frequencies); finally, cQ  and sQ  are the 

vectors of the generalised forces acting on the flexible wheelset resulting respectively from the 

wheel/rail contact forces and the forces applied through the primary suspension. The previous 

matrices are independent of time if the radius of the curve remains constant. A complete 

description of the wheelset formulation can be found in Ref. [11]. 

 

3. TRACK MODEL. 

The track model consists of two solid rails supported by a viscoelastic Winkler foundation. It is 

used a reference frame that is attached to the contact patch, hence moving with the vehicle. The 

associated coordinate vectors point spatial positions while the mass of the rail flows through the 

fixed spatial mesh with the vehicle speed V, which is considered constant along the simulation. 

A cyclic approach is also followed, introducing cyclic boundary conditions at the ends of the 

model (the displacements at both ends of the track coincide) that can be interpreted as an 

infinite track negotiated by an infinite set of identical vehicles uniformly distributed in such a 

way that each vehicle is set at a constant distance L apart from the adjacent ones. Due to the 

periodicity of the structure and the loading conditions, the study is reduced to a single section 

having finite length L, whose value is set large enough to avoid interaction between the 

vehicles. This interaction appears as reflection waves in the receptance function of the rail 

between 500 Hz and 2 kHz, which are mitigated when increasing the length; from 40 m, those 

can be considered negligible [14]. The method allows positioning the wheel/rail contact area at 

a fixed railhead element avoiding the vehicle exceeding the ‘downstream’ boundary ends since; 
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it also permits to implement a mesh with greater refinement around this region, where forces 

and displacements are higher, contributing to reduce the computational cost. 

3.1. Rail model. 

Fig. 2 presents a 3D track resulting from the extrusion of a UIC60 profile. An inertial 

coordinate system XYZ is defined, with the X-axis parallel to the rail extrusion direction, the 

XY-plane parallel to the rail base and the Z-axis pointing upwards. The rail material is 

supposed to flow with velocity V opposite to the X direction (as can be seen in Fig. 2). An 

Eulerian position vector u , associated with the coordinate system, defines the fixed position of 

a spatial point of the mesh (undeformed configuration). Vector ( ), t=w w u  is the displacement 

of a material point that occupies the position u  at the instant t with respect to the undeformed 

configuration. The position vector R  of the material point is hence 

 ( )., tuwuR +=  (3) 

Cyclic boundary conditions set same displacements and derivatives at the model edges of the 

finite rail. The velocity and acceleration of the material point are computed through the material 

derivative as follows 

 ( )TD ,0,0
D

V V V
t t x x

∂ ∂ ∂
= = − = − + −

∂ ∂ ∂
R R R wv w , (4) 

 
2

2
2

D 2 ,
D

V V V
t t x x x

∂ ∂ ∂ ∂
= = − = − +

∂ ∂ ∂ ∂
v v v w wa w



  (5) 

where 1DD xVtt ∂∂−∂∂=  refers to the material (or total) derivative. The virtual work 

associated with the inertial forces is evaluated through Eq. (5): 



8 
 

 
2

T T T 2 T
2δ  δ  d  δ  d 2  δ  d  δ  d ,

Vol Vol Vol Vol

W V V
x x

ρ υ ρ υ ρ υ ρ υ∂ ∂
= = − +

∂ ∂∫ ∫ ∫ ∫
w ww a w w w w


  (6) 

where ( ), ,x y zρ ρ≡  is the density of the material (considered constant as the wheelset). 

Quadratic shape function elements are used for the mesh, the continuity at element interfaces 

being C0. Consequently, the integration can only be evaluated properly if the maximum order of 

differentiation is 1. Note that, as detailed in Section 3.2, page 59 of Ref. [15] as convergence 

requirement, if the integrand has derivatives up to order n, then the interpolation has to 

guarantee that its n-1 derivatives are continuous (Cn-1 continuity). From this requirement, the 

virtual work needs to be computed through an integration by parts to obtain lower order 

derivatives for the third term of Eq. (6): 

 
( )T2

T T
2

δ
 δ  d d d  δ  d d   d d d .

Vol S Vol

x y z y z x y z
x x x x

ρ ρ ρ
∂∂ ∂ ∂

= −
∂ ∂ ∂ ∂∫ ∫ ∫

ww w ww w  (7) 

Since the rail length is selected long enough to have negligible displacements at the model 

edges, the integrand of the surface integral (only computed over the lateral surfaces 

corresponding to the rail edges) is close to zero. Therefore, the influence of the surface integral 

can be neglected from a numerical point of view and the convergence of Eq. (7) is guaranteed, 

resulting as: 

 ( ) .d δ d δ 2d δ δ
T

2TT υρυρυρ
xx

V
x

VW
VolVolVol ∂

∂
∂

∂
−

∂
∂

−= ∫∫∫
wwwwww



  (8) 

FE interpolation is adopted at this point. The displacements in the volume of the e -th element 

eVol  are computed by means of the shape functions as follows: 

 ( ) ( ) ( ) eee Voltt    if         , ∈= uwuNuw , (9) 
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ew  being the nodal displacements and eN  the basis (or form) functions matrix. If Eq. (9) is 

implemented for the e-th element in Eq. (8), the following expression is obtained: 

 . d   d  2 d  δδ
T

2TTT












∂
∂

∂
∂

−
∂
∂

−= ∫∫∫ e
ee

VolVol

e
e

eeee

Vol

ee

xx
V

x
VW

eee

wNNwNNwNNw υρυρυρ   (10) 

The last expression can be compacted in the following formula: 

 ( ). ˆ~ δδ 2T eeeeeeee VVW wMwMwMw −−=   (11) 

Following the FEM assembling technique for calculating the global matrices from the element 

matrices, the equation of motion of the rail is obtained: 

 ,ˆ~ 2
KWc

FEFEFE VV FFFwMwMwM ++=−−   (12) 

being FEw  one vector that contains the nodal displacements of the whole FE mesh; M , M~  and 

M̂  are the global matrices that are obtained from the element matrices eM , eM~  and eM̂ ; and 

cF , WF  and KF  are the generalised force vectors associated with the wheel/rail contact, 

Winkler foundation and elastic forces, respectively. It must be highlighted that FE
K wKF −= , 

and M  and K  are the standard FEM mass and stiffness matrices. 

3.2. Rail support model. 

A continuous support is modelled under the rail through a viscoelastic Winkler foundation with 

a uniform distribution of vertical stiffness and damping equivalent to discrete rail supports 

(railpads + ballast). The dynamics associated with the model is similar compared to the beam 

resting on discrete supports in the high-frequency band [14] in which squeal phenomenon takes 

place. In this section, the generalised force associated with the Winkler foundation WF  is 
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obtained through the formulation of the virtual work for the elastic and viscous forces. The 

virtual work of the Winkler forces acting on the e-th element located on the bottom surface of 

the rail is: 

 ,d
D
Dδdδδ TT ∫∫ −−=

ee S
W

S
W

e
W S

t
SW wcwwkw  (13) 

being eS  the botton surface of the e-th element, and Wk  and Wc  are 3×3 diagonal matrices 

that include respectively the stiffness and damping per unit surface in the X, Y and Z directions. 

By expanding the material derivative, it is obtained: 

 .dδdδdδδ TTT∫ ∫∫ ∂
∂

+−−=
e eeS S

W
S

WW
e

W S
x

VSSW wcwwcwwkw   (14) 

If the basis presented in Eq. (9) is implemented in the last equation, the following expression is 

found: 

.dδdδdδδ TTTTTT e

S S

e

W
eee

S

e
W

eeee
W

eee
W

e ee

S
x

VSSW wNcNwwNcNwwNkNw ∫ ∫∫ ∂
∂

+−−=   (15) 

Following the same procedure than the one in Section 3.1, the expression of the generalised 

force is 

 ,~ FE
W

FE
W

FE
WW V wCwCwKF +−−=   (16) 

where the global matrices WK , WC  and WC~  are assembled from the element matrices e
WK , 

e
WC  and e

WC~ , and deduced from Eq. (15): 

 ,dT

∫=
eS

e
W

ee
W SNkNK  (17) 

 ,dT

∫=
eS

e
W

ee
W SNcNC  (18) 
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 .d~ T

∫ ∂
∂

=
eS

e

W
ee

W S
x

NcNC  (19) 

3.3. Eulerian modal approach. 

By combining Eqs. (12) and (16), the equation motion of the rail on a Winkler foundation is: 

 ( ) ( ) .ˆ~~ 2
c

FE
WW

FE
W

FE VVV FwMCKKwMCwM =−−++−+   (20) 

In order to reduce the dimension of the problem, the mass-normalised mode shapes of the 

undamped rail are adopted as basis of the rail displacements. Consequently, the FE nodal 

displacements are obtained from the modal matrix θ  as follows: 

 ,pθw =FE  (21) 

being p  the modal coordinates. The modal matrix verifies: 

 ( ) ,
0

0
)(diag 22T
















==+





rrW ωωθKKθ  (22) 

being rω  the undamped natural frequencies, and 

 ,T IθMθ =  (23) 

where I is the unit matrix. The equation of motion for the rail through this modal approach is 

 ( ) ( )[ ] .ˆ~)(diag~ T2T2T
cWrW VVV FθpθMCθpθMCθp =+−+−+ ω  (24) 
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4. MODEL OF WHEEL/RAIL CONTACT FORCES. 

Eqs. (2) and (24) are coupled through the wheel/rail contact forces in modal coordinates, 

identified as cQ  and T
cθ F  for the wheelset and track equations of motion, respectively. The 

position and velocity of the contact points on the surfaces of both inner and outer wheels and 

rails are determined in each time step to calculate the relative wheel/rail motion required for the 

computation of the normal and tangential contact force. This force expressed in Eulerian modal 

coordinates is applied on the wheel and the rail surfaces at the contact point. 

4.1 Normal contact model. 

The normal contact problem is solved using an incremental approach. For the wheelset and rail 

profiles, friction and curving conditions considered, the quasi-static solution of the railway 

interaction model is computed through a pre-processor of a commercial vehicle/track 

interaction software based on multibody techniques. The software considers elastic contact, 

permitting to determine a single contact point on each wheel/rail pair assuming both wheel and 

rail undeformable and computing the relative lateral displacement of the wheel on the rail; the 

quasi-static contact force applied to the contact point is also provided. The lateral displacement 

will be considered as mean value around which the contact point will oscillate during the 

numerical integration assuming small variations. The contact displacements associated with the 

wheel and the rail, cw  and cr , respectively, are calculated through the modal superposition 

principle. 

The wheel/rail incremental distance vector is computed assuming that both surfaces are 

undeformable: 

 .cc wrΔ −=  (25) 
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The quasi-static normal contact force permits to estimate the corresponding approach δ  

through Hertzian theory [16]: 

 ,
32

3








=

HK
Fδ  (26) 

where HK  is a contact stiffness estimated from the material properties and curvatures in the 

contact point [17], and 3F  is the quasi-static normal contact force. The incremental approach is 

obtained by projecting the distance Δ  along the direction normal to the contact plane: 

 ,3
TxΔ=δ∆  (27) 

where 3x  is the unit normal vector. The total normal force in the contact area 3F  at each time 

step for the numerical integration can finally be estimated using again Eq. (26) after adding the 

incremental approach to the quasi-static one: 

 ( ) ( )
( )





≤∆+
>∆+∆+=∆+=

.0 if                        0
,0 if   23

333
δδ
δδδδHKFFF  (28) 

The contact area and the normal traction distribution are obtained by means of the Hertzian 

contact model [16] from the normal force 3F . 

4.2 Tangential contact model. 

The tangential contact problem is solved by implementing Kalker’s algorithm CONTACT [13]. 

Again, an incremental approach is adopted assuming small variations of the creepages around 

the quasi-static longitudinal 1ξ , lateral 2ξ  and spin spξ  values provided by the multibody 

software: 

 ,1
11

T
1 ξξ += xΔ

V
 (29) 
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 ,1
22

T
2 ξξ += xΔ

V
 (30) 

 ,spsp ξξ =  (31) 

where 1x  and 2x  are unit vectors in the rolling and lateral direction, respectively. Following 

the non-steady CONTACT algorithm, the computation of the tangential traction distribution 

also depends on the displacements produced in the present mesh by the computed traction in the 

previous instant of the numerical integration. The longitudinal and lateral contact forces, 1F  

and 2F  respectively, are estimated and, together with the normal one 3F , projected along the 

trajectory frame XTYTZT for the wheelset and the inertial coordinate system XYZ for the track, 

accounting for the inclination of the wheel/rail contact plane. Finally, the resulting projections 

are applied in both wheels and the rails (with opposite sign) in the corresponding contact points 

as external actions, providing the generalised force vectors in modal coordinates associated 

with the contact forces, cQ  and T
cθ F , included in Eqs. (2) and (24), respectively. 

5. SIMULATION RESULTS. 

The formulations described in Sections 2, 3 and 4 are implemented in a complete 

high-frequency wheelset/track interaction model. This section is divided in three subsections: 

Section 5.1 gathers the parameters used in each simulation in curve computed, Section 5.2 

presents the time response of the lateral contact forces and Section 5.3 analyses the 

corresponding frequency spectrum in order to characterise the curving response of the railway 

system modelled. 
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5.1 Simulation parameters. 

The leading wheelset selected in this work is meshed with 12340 solid quadratic elements 

(20-nodes) and includes a total of 260145 degrees of freedom in physical coordinates. It is 

equipped with a solid axle wheelset in which the wheels corresponding to S1002 profile and the 

brake discs are meshed as a unique structure. The track is represented by two rails with UIC60 

profile inclined 1/40 and 42 m length are modelled with 8452 solid quadratic elements and 

include a total of 170175 degrees of freedom each in physical coordinates. Both are supported 

by a uniform viscoelastic Winkler bedding of 43.7 MN/m for the vertical stiffness and 

12.6 kNs/m for the vertical damping equivalent to discrete rail supports. According to [18], the 

stiffness and damping in the longitudinal and lateral directions are modelled as 10% and 80% of 

the previous values, respectively. The mesh is longitudinally refined around the centre of the 

rail, with a central element length of 1 cm. From the modal approach adopted, 400 vibration 

modes have been selected for the wheelset and 2000 modes for both rails in order to cover a 

frequency range up to 9 kHz. The time step used in the integration scheme is 5×10-6 s and the 

total time simulated is 1 s. The spatial resolution in the contact area is 0.25 and 1 mm in 

longitudinal and lateral directions, respectively. 

It is intended to evaluate the interaction model in curving conditions with a constant friction 

coefficient in order to see whether the constant coefficient mechanism is sufficient itself to 

generate instabilities in the contact dynamics that can be potentially associated with curve 

squeal. Table 1 presents the relevant input data corresponding to eight simulations carried out 

for two curve radii and four friction coefficients. The vehicle speed V is set for both curve radii 

to make the non-compensated acceleration zero. 

Table 2 gathers the quasi-static solution for the lateral position of the contact point (see Fig. 3) 

and the creepages for both wheels of the leading wheelset corresponding to each simulation 
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case computed through multibody software. The Y-axis points forward the centre of the curve 

as illustrated in Fig. 1. Table 3 contains the quasi-static conditions of the leading wheelset for 

Simulation I (chosen for illustrative purposes), with the lateral and vertical displacements of its 

centre of gravity, the angle of attack and the forces from the carbody. Table 4 lists the lateral 

variations of the position of the contact point for both wheels and rails (again with respect to the 

nominal point), the normal contact angle, creepages and creep forces for Simulation I. All these 

values are used as mean values in the incremental contact algorithm adopted. Fig. 4 shows the 

location of the wheel/rail contact for the inner and the outer pairs corresponding to Simulation I; 

the associated normal traction distributions are also presented. 

5.2 Lateral contact response. 

The insertion of the vehicle in a curve directly depends on the curve radius, which defines the 

angle of attack of the leading wheelset. Since the lateral forces can be estimated from the angle 

of attack [4], the lateral contact dynamic are closely linked to the conditions that characterise 

the curve and, hence, to the curve squeal phenomena. The investigation of the lateral contact 

response appears a good approach to detect the squeal occurrence for the simulation cases run. 

Fig. 5 presents the time response corresponding to Simulation I. The amplitude of the lateral 

oscillations of the inner wheel is shown in Fig. 5(a) while the outer one is depicted in Fig. 5(b). 

The inner wheel shows an oscillating response that converges around a mean value of -12.8 kN 

and high amplitudes around 8.5 kN, ten times higher than the outer wheel. Much higher 

amplitudes for the lateral contact forces in the inner wheel have also been found in the rest of 

the simulations. These results are in agreement with most of the observations that indicate that 

highest squeal noise amplitudes are usually generated by the leading inner wheel of a bogie [4]. 
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Fig. 6 (zoomed views) compares the tangential contact force and the tangential traction limit 

defined by the friction coefficient times the normal contact force for Simulation I. The inner 

wheel (Fig. 6(a)) presents cycles defined by a stick phase when the tangential total force 

(continuous line) is below the traction bound (dashed line) and a slip phase when both curves 

overlap. Step 1 marked in Fig. 6(a) corresponds to the stick phase (partial stick) in which the 

contact area is divided into a stick zone located in the leading edge and a slip zone that 

surrounds the previous one. Step 2 corresponds to the slip phase in which the contact area is in 

full slip. For the outer wheel, Fig. 6(b) shows that the tangential force is continuously below the 

traction bound without reaching full slip at any time. Hence, these stick/slip cycles are only 

observed in the inner wheel and they can be interpreted as self-induced vibrations in curving 

conditions that come from the railway dynamics itself. 

5.3 Frequency spectrum. 

The frequency spectrum corresponding to the tangential contact force of the inner wheel is 

evaluated and shown in Fig. 7. It reveals strongly tonal peaks for particular frequencies in the 

high-frequency domain that correspond to the expected response of curve squeal phenomenon 

according to the literature [4−8]. For the simulations carried out, these peaks arise from the 

complex physical process that governs the contact dynamics throughout the computation. 

These results confirm that the wheelset/track model implemented in this work is able to 

reproduce this high-frequency tonal response even with a constant friction coefficient and, 

hence, this mechanism is revealed as sufficient for the generation of squeal in curving 

conditions. 

The frequencies at which these peaks occur are associated with the oscillating frequencies of 

the stick/slip and the traction bound (corresponding to the normal contact force) cycles 

previously visualised, especially if most of the cycle is in full slip. The stick/slip frequencies are 
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or close to be multiples of the traction bound frequency. As shown in Fig. 6(a), stick/slip cycles 

can be observed in which the frequency associated with the normal contact force (estimated in 

the graph as the inverse of the period – distance between consecutive crests) is about 1.6 kHz 

and the three oscillations observed in each stick phase lead to a frequency about 4.8 kHz for the 

tangential force. As a consequence, these frequencies present marked peaks in the frequency 

spectrum shown in Fig. 7. 

Table 5 summarises the frequency peaks corresponding to the lateral contact force for the inner 

wheel in all the simulations carried out. It is shown that all the cases present a tonal behaviour in 

the high-frequency domain but with no clear tendencies. For the curve radius of 120 m, the 

main peaks are found at high frequencies: 7.4 kHz for =µ 0.20 and 0.60, and 4.5 kHz for 

=µ 0.32 and 0.40. For the curve radius of 500 m, peaks are found however at lower frequencies 

around 1.6 kHz and the maximum amplitudes are associated with higher friction coefficients. 

These results suggest that high friction values favour a more pronounced tonal response in 

curving conditions, which is in agreement with the well-known fact that low friction conditions 

(wet weather, lubrication) reduce the likelihood of squeal [8]. Anyway, the current parameter 

study should be extended to establish consistent relationships between squeal characteristics 

and curve radius and friction coefficient. 

The squeal mechanism for constant friction has been associated in the literature with the wheel 

modal coupling from the measurements that found squeal frequencies close to some natural 

frequencies of the wheel [4]. This coupling is based on at least two degrees of freedom, between 

which an exchange of energy takes place by damping one of the modes while the other is 

energised. The previous simulations reveal that preliminary there is not only a single mode that 

is energised just as simple models predict, but several modes that are energised. Some works 

that model the wheel as an individual substructure have found that the excited natural 
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frequencies of curve squeal correspond to axial wheel modes with zero nodal circles [19,20]. 

Table 6 details the closest wheelset modes associated with the main squeal frequencies gathered 

in Table 5. Their classification has been made by visualising the deformed configuration 

associated with each mode considering the torsional, axial and radial contributions from the 

axle and the brake discs. Only frequencies in bold correspond exactly to a wheelset mode. Axial 

wheel mode (2,0,a) with two nodal diameters and zero nodal circles corresponds to the main 

frequency of 1.6 kHz for Simulation I. Axial wheel modes with zero nodal circles (m=0) are 

associated with squeal frequencies up to 4.5 kHz, which agrees with the literature [4,8]. For 

illustration purposes, Fig. 8 shows the mode shapes associated with the squeal frequencies 1.6 

and 4.8 kHz, both representing axial wheel modes for the monobloc wheelset with m=0 and 

m=1, respectively. Radial wheel modes appear for higher frequencies and axial axle modes also 

intervene in some unstable frequencies. 

The influence of the rotating matrix terms associated with the angular velocity of the wheelset 

in Eq. (2) is evaluated on the previous simulations in curving conditions. Fig. 9 shows the 

comparison using a rotatory and non-rotatory formulation for the wheelset in the interaction 

model, where relevant discrepancies arise in the high-frequency domain for the lateral contact 

forces. For the curve radius of 500 m (Simulation II), the non-rotating simulation (dashed line) 

presents more content in the high-frequency range as seen in Fig. 9(a). The pronounced peaks 

around 3.8 and 6.1 kHz are substantially mitigated for the rotating case (solid line). Another 

interesting observation is that the unstable frequencies are slightly shifted to higher values for 

the rotating case. In the simulation under study, it can be deduced that forward modes especially 

influence the curving dynamics in the occurrence of squeal. For the curve radius of 120 m 

(Simulations III and IV), the frequency content is appreciably higher than the previous one, 

especially in the range of 1−4 kHz as seen in Figs. 9(b) and (c). The attenuation of the rotating 

case with respect to the non-rotating one is not so clear in this range, but the frequency shift of 
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the rotating peaks to the right can be appreciated. Fig. 9(c) shows that the non-rotating case are 

strongly attenuated in the range of 7−9 kHz. 

6. CONCLUSIONS. 

The present work proposes an advanced non-linear time-domain model to evaluate the railway 

vehicle/track interaction in curving conditions. The vehicle is confined in the leading wheelset 

that negotiates a cyclic rail continuously supported by a Winkler bedding. The wheelset model 

includes the effects associated with the rotation and the curved trajectory and the rail is 

formulated through an amended version of the Moving Element Method, which permits to fix 

the contact region in a spatial point of the mesh. Both models are flexible and follow an 

Eulerian-modal approach in order to keep the computational effort as low as possible. An 

incremental methodology based on small displacements is implemented for the contact model. 

The contact conditions are previously estimated from the quasi-static solution given by 

commercial multibody software and used as initial conditions for the time integration. 

Time simulations are run for the wheelset negotiating tight curves in order to evaluate the 

lateral contact and to investigate curve squeal for constant friction parameters during the curve. 

Results give only limited insight into the precise underlying mechanism, showing strong 

unstable lateral contact forces with stick/slip oscillations for the inner wheel. The associated 

frequency spectrum reveals a strong tonal behaviour in the high-frequency domain. The 

proposed model is hence able to reproduce the unstable and tonal response that characterises 

curve squeal even with constant friction. 

These results are also in good agreement with some observations reported in the literature about 

squeal. The unstable frequencies are associated with stick/slip cycles that arise from the 

non-linearities that govern the contact dynamics [19,20]. The unstable peaks decrease their 
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amplitudes for low friction values, in line with the fact that low friction conditions reduce the 

likelihood of squeal [4]. Curve radius (associated with lateral creepage and lateral contact 

position) and frictional properties are key parameters with significant influence on the intensity 

of curve squeal [4,6]. On other hand, results confirm that the rotation of the wheelset has a 

crucial influence on curve squeal. The inclusion of the terms associated with the rotation shifts 

squeal frequencies and it strongly affects the frequency content (amplitude of the tonal peaks) 

in the high-frequency band, where the precision of the modal approach is less accurate. This 

band comprises most of the resonances associated with the wheelset, and the gyroscopic effects 

due to its rotation cause the splitting of these resonances [21]. Further work is needed, focused 

on a parameter study of these terms in the wheelset equation of motion, to find out why this 

effect is confined to the high frequency range. 
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FIGURE 1 

 

Figure 1: Reference frames and position vectors. The undeformed configuration of the wheelset 

is shown in dashed trace; a generic position of the flexible wheelset is sketched in solid colours. 

 

Authors: J. Giner-Navarro, J. Martínez-Casas, F. D. Denia and L. Baeza. 
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FIGURE 2 

 

 
 

Figure 2: Finite element mesh of the rail (X-axis is out of scale). Deformed and undeformed 

configuration and coordinates. 
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FIGURE 3 

 

 

 

Figure 3: Lateral displacements of the wheel/rail contact point □ with respect to the nominal one ○ 

(for straight conditions). 

Authors: J. Giner-Navarro, J. Martínez-Casas, F. D. Denia and L. Baeza. 
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FIGURE 4 (Monochrome printers) 

 

(a) 

 

(b) 

Figure 4: Three-dimensional view of the wheels (mesh) on the rails (solid colour). The locations of the 

wheel/rail contact (axes in m) are shown by means of their normal traction distributions. The lateral 

displacement of the wheelset is y=-6.2 mm and the yaw angle is =-0.264° (quasi-static position of the 

wheelset during the curve negotiation), corresponding to Simulation I. (a) Inner to the curve 

wheel/rail pair; (b) outer to the curve wheel/rail pair. 
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FIGURE 4 (Online version) 

 

(a) 

 

(b) 

Figure 4: Three-dimensional view of the wheels (mesh) on the rails (solid colour). The locations of the 

wheel/rail contact (axes in m) are shown by means of their normal traction distributions. The lateral 

displacement of the wheelset is y=-6.2 mm and the yaw angle is =-0.264° (quasi-static position of the 

wheelset during the curve negotiation), corresponding to Simulation I. (a) Inner to the curve 

wheel/rail pair; (b) outer to the curve wheel/rail pair. 

Authors: J. Giner-Navarro, J. Martínez-Casas, F. D. Denia and L. Baeza. 



 

 

FIGURE 5 

 

   

                                  (a)                                                                     (b) 

Figure 5: Time series of the tangential contact force 2F  corresponding to Simulation I for the inner 

(a) and outer (b) wheels. 
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FIGURE 6 

 

(a) 

 

(b) 

 

 

Figure 6: Zoom on time series of the contact forces; tangential force F  (──), traction bound 

3F  (- - -); some selected steps are marked with Arabic numerals. Simulation I: inner (a) and 

outer (b) wheels. 

Authors: J. Giner-Navarro, J. Martínez-Casas, F. D. Denia and L. Baeza. 
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FIGURE 7 

 

Figure 7: Frequency spectrum of the tangential contact force corresponding to Simulation I. 

Authors: J. Giner-Navarro, J. Martínez-Casas, F. D. Denia and L. Baeza. 
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FIGURE 8 

(a) 

 

(b) 

 

Figure 8: Mode shapes of the wheelset. (a) Axial (2,0,a) wheel mode corresponding to 1607 Hz; 

(b) axial (5,1,a) wheel mode corresponding to 4819 Hz. 

Authors: J. Giner-Navarro, J. Martínez-Casas, F. D. Denia and L. Baeza. 
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FIGURE 9 

(a) 

 

(b) 

 

Figure9



 

 

(c) 

 

Figure 9: Frequency spectrum of the lateral contact force of the inner wheel using a rotatory 

wheelset model (──), and a non-rotatory one (- - -) for Simulations II (a), III (b), IV (c). 

Authors: J. Giner-Navarro, J. Martínez-Casas, F. D. Denia and L. Baeza. 
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Figure 1: Reference frames and position vectors. The undeformed configuration of the 

wheelset is shown in dashed trace; a generic position of the flexible wheelset is sketched in 

solid colours. 

Figure 2: Finite element mesh of the rail (X-axis is out of scale). Deformed and undeformed 

configuration and coordinates. 

Figure 3: Lateral displacements of the wheel/rail contact point □ with respect to the nominal one ○ 

(for straight conditions). 

Figure 4: Three-dimensional view of the wheels (mesh) on the rails (solid colour). The locations of 

the wheel/rail contact (axes in m) are shown by means of their normal traction distributions. The 

lateral displacement of the wheelset is y=-6.2 mm and the yaw angle is =-0.264° (quasi-static 

position of the wheelset during the curve negotiation), corresponding to Simulation I. (a) Inner to 

the curve wheel/rail pair; (b) outer to the curve wheel/rail pair. 

Figure 5: Time series of the tangential contact force 2F  corresponding to Simulation I for the inner 

(a) and outer (b) wheels. 

Figure 6: Zoom on time series of the contact forces; tangential force F  (──), traction bound 

3F  (- - -); some selected steps are marked with Arabic numerals. Simulation I: inner (a) and 

outer (b) wheels. 

Figure 7: Frequency spectrum of the tangential contact force corresponding to Simulation I. 

Figure 8: Mode shapes of the wheelset. (a) Axial (2,0,a) wheel mode corresponding to 1607 

Hz; (b) axial (5,1,a) wheel mode corresponding to 4819 Hz. 

Figure 9: Frequency spectrum of the lateral contact force of the inner wheel using a rotatory 

wheelset model (──), and a non-rotatory one (- - -) for Simulations II (a), III (b), IV (c). 
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TABLE 1 

Table 1: Study cases simulated by the complete wheelset/track interaction model proposed. 

Simulation Curve radius,  
rR  [m] 

Vehicle speed,  

V  [km/h] 

Friction coefficient,  

  [-] 

V 120 39.13 0.20 

VI   0.32 

III   0.40 

IV   0.60 

VII 500 79.86 0.20 

II   0.32 

I   0.40 

VIII   0.60 

 

Table1



 

TABLE 2 

Table 2: Pseudo-static lateral variations of the position of the contact point (with respect to the 

nominal contact point) and creepages for each simulation case. The Y-axis points forward the 

centre of the curve as illustrated in Fig. 1. 

Simulation Lat. variation contact 

point inner wheel, 
w

inny  [mm] 

Lat. variation contact 

point outer wheel, 
w

outy  [mm] 

Lat. creepage 

inner wheel, 

inn,2  [-] 

Lat. creepage 

outer wheel, 

out,2  [-] 

I 14.3 33.3 0.0046 0.0055 

II 14.3 32.5 0.0048 0.0055 

III 14.5 36.2 0.0171 0.0268 

IV 14.5 38.3 0.0172 0.0437 

V 14.4 32.8 0.0169 0.0194 

VI 14.5 35.1 0.0171 0.0234 

VII 14.0 30.7 0.0052 0.0056 

VIII 14.4 34.6 0.0046 0.0056 

 

Table2



 

TABLE 3 

Table 3: Simulation I: Quasi-static conditions for the leading wheelset. 

Lateral displacement, y  [mm]  -6.2 

Vertical displacement, z  [mm]  0.4 

Angle of attack,   [º] -0.264 

Longitudinal force, X  [N]  162 

Lateral force, Y  [N] -1770 

Vertical force, Z  [N] -109620 

 

Table3



 

TABLE 4 

Table 4: Simulation I: Quasi-static conditions for the inner/outer wheels of the leading 

wheelset. 

Rail lateral displacement, ry  [mm] 4.8/29.8 

Rolling radius, 
11r  [mm] 459.7/465.6 

Normal angle,   [º] 0.56/33.40 

Longitudinal creepage, 
1  [-] 0.0037/0.0059 

Lateral creepage, 2  [-] 0.0046/0.0055 

Spin creepage, 
sp  [-] 0.021/1.185 

Yaw angle,   [º] 0.264 

Longitudinal creep force, 
1F  [N] 13672/-13510 

Lateral creep force, 
2F  [N] 15443/-17213 

Vertical creep force, 
3F  [N] -52072/-57548 
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TABLE 5 

Table 5: Main squeal frequencies in kHz (in bold for the main peak and in brackets for the 

corresponding amplitude in kN) of the lateral contact forces of the inner wheel for the eight 

simulations carried out. 

 20.0  32.0  40.0  60.0  

m 120rR  6.8, 7.4(1.2), 8.0 1.4, 4.5(1.1) 4.5(2.1), 8.0 1.4,1.6, 2.2, 7.4(0.5) 

m 500rR  3.8(1.0), 7.7 1.6(1.4), 3.8, 6.1, 7.7 1.6(1.7), 3.2, 4.8, 6.4 1.6(2.2), 3.2, 4.8, 6.4 
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TABLE 6 

Table 6: Closest wheelset modes associated with the main squeal frequencies for the inner 

wheel. Frequencies in bold corresponds exactly to wheelset modes. 

Frequency [Hz] Closest wheelset modes (n,m,a/r) Simulation 

1361 Axial (0,0,a) wheel mode VI 

1607 Axial (2,0,a) wheel mode  I, II 

3213 Axial (4,0,a) wheel mode I, VIII 

3841 Radial axle mode II, VII 

4518 Axial axle mode (4545 Hz) III, VI 

4819 Axial (5,1,a) wheel mode I, VIII 

6053 Radial (4,0,r) wheel mode (6078 Hz) II 

6425 Axial axle mode I, VIII 

7449 Combined mode (7425 Hz) IIV, V 

7680 Axial axle mode II, VII 

7958 Combined mode (7980 Hz) III 

 

Table6
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