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Abstract  

This paper presents a feasibility study of applying a fluid energy recovery system by 

means of wind turbines for charging batteries of electric vehicles. This is because the 

main disadvantage of electric vehicles with regard to conventional fuel automobiles 

is the scarce capacity of storing sufficient energy to run long distances. This can be 

carried out by recovering a percentage of the energy used to overcome the 

aerodynamic drag of the vehicle. This work analysis different case studies, with 

different driving modes, to quantify the theoretical energy recovered from the vehicle 

aerodynamics. Results have shown the theoretical possibility to implement this 

technology in actual electric vehicles. 
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1. Introduction.  

A wind turbine can operate as an energy recovery system (ERS) similar to the brakes, i.e., 

regenerative braking (Valero et al., 2017). When a car changes its speed in any sense or direction, 

its amount of energy varies (Bangi et al., 2017; Ferdous et al., 2011). When it loses speed, that 

energy tends to dissipate. Traditionally the dissipated energy has been wasted. That is, the kinetic 

energy of the vehicle is transformed into heat during braking. In recent years, due to greater 

awareness of society about environmental issues, pollution and climate change, there is a great 

interest in developing energy recovery systems. One of the best known is the regenerative braking 

systems, which is based on the kinetic energy recovery system (KERS) during vehicle braking. This 

allows reductions in consumption (efficiency increases) of up to 45%.  

In this article we analyze the feasibility of using a wind turbine as an energy recovery 

system, quantifying the savings that can be made in its two possible uses: as an energy recovery 

system and as a system using the aerodynamic drag, i.e., the force acting opposite to the relative 

motion of the vehicle moving with respect to the surrounding air (Wen-Long Yao and Chiu., 2015; 

Valero et al., 2019). The recovered energy can be used for electric vehicle charging, thus reducing 

costs (Llopis-Albert et al., 2015; 2018; 2019). This can play a major role since electric vehicles sales 

have increased significantly during last years (Zheng et al., 2018). In addition, a procedure for 

shape optimization of the wind turbine should be performed to increase the energy recovered 

(Llopis-Albert et al., 2018a). There are many optimization procedures in the literature in different 

research areas (Rubio et al., 2015; 2016; 2019; Llopis-Albert and Pulido-Velazquez, 2015; Llopis-

Albert and Capilla, 2010; Llopis-Albert et al., 2016).   
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2. Case studies. 

This work uses a wind turbine with a horizontal axis and 50 cm of diameter installed in the frontal 

part of a vehicle. This vehicle will be subjected to three different driving scenarios that will be 

characterized by speeds, accelerations and time of circulation. 

2.1 First scenario: corresponds to a Worldwide Harmonized Vehicle Test Procedure (WLTP). 

In this cycle, the vehicle undergoes a 30-minute ride with certain characteristics of speeds and 

accelerations and routes (Table 1). Accelerations from 0 to 50 km/h must be made between 5 and 

10 seconds and a distance of 27 km is travelled. It is intended to measure the power used to get 

the vehicle to move under the stipulated driving conditions. 

More specifically, the WLTP cycle lasts 30 minutes and consists of 4 phases: 

- Phase 1: low speed (589 s-9.18 min); maximum velocity (Vmax) = 56.5 km/h. 

- Phase 2: average speed (433 s.-7.22 min); V maximum velocity (Vmax)  = 76.6 km/h. 

- Phase 3: high speed (455 s-7.58 min); maximum velocity (Vmax)  = 97.4 km/h. 

- Phase 4: very high speed (323 s.-5.38 min); maximum velocity (Vmax) = 131.3 km/h. 

 

Different driving modes (Rubio et al., 2019) are simulated covering city (urban), secondary 

road, autonomous or national road and freeway. In the freeway the maximum speed will 

be 131 km/h and the average protocol speed of 46.5 km/h. 
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Table 1: Circulation characteristics for scenario 1 (WLTP cycle). 
V: velocity, A: acceleration 

 

Phase 
Time 

(s) 
Stop 
(s) 

Distance 
(m) 

% stop 
V_max 
(km/h) 

A_min 
(m/s2) 

A_max 
(m/s2) 

Low 589 156 3095 26.5 56.5 -1.47 1.47 

Medium 433 48 4756 11.1 76.6 -1.49 1.57 

High 455 31 7158 6.8 97.4 -1.49 1.58 

Super 

high 
323 7 8254 2.2 131.3 -1.21 1.03 

Total 1800 242 23262     

 

2.2 Second scenario:  It corresponds to a purely urban driving (in city) with the following 

characteristics: 

Cycle time: 20.25 min. 

Time in circulation: 15.55 min 

Stop time: 4.7 min 

Distance travelled: 8.84 km 

Maximum speed: 50 km/h 

 

During the journey there are ups, downs, accelerations, decelerations and stops. 

2.3 Third scenario: It corresponds to an interurban driving (highway) with the following 

characteristics: 

Cycle time: 1.7 h 

Time in circulation: 1.7 h 

Stop time: 0 min 

Distance travelled: 198.79 km 
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Maximum speed: 120 km/h 

 

During the journey we have considered ups, downs, accelerations and decelerations. 

3. Driving modes and acting forces. 

Table 2 shows the driving modes of the vehicle and the braking or driving force that must be 

provided for the vehicle to move under the conditions set by the corresponding driving mode. 

Table 2: Driving modes 
 

Case 1: Acceleration in plain 

             

𝑭𝒎 = −𝑭𝒊 + 𝑭𝒓 + 𝑭𝐚+𝑭𝒘 

Case 2: Deceleration in plain 

                          

𝑭𝒇𝒓𝒆𝒏 = −𝑭𝒊 + 𝑭𝒓 + 𝑭𝐚+𝑭𝒘 

Case 3: Constant velocity 

                                       

𝑭𝒎 = −𝑭𝒊 + 𝑭𝒓 + 𝑭𝐚 + 𝑭𝒘 

 

Fm 

Fi Fr 

Fa 

Ffren 
Fi 

Fr 
Fa 

Fm 

Fr 

Fa 



 
Multidisciplinary Journal for Education,                                             https://doi.org/10.4995/muse.2019.11743 
Social and Technological Sciences                                                                                         ISSN: 2341-2593 

 
 

 
 

                                Rubio and Llopis-Albert (2019) 
http://polipapers.upv.es/index.php/MUSE/  Mult. J. Edu. Soc & Tec. Sci.   Vol. 6 Nº 1 (2019):   115-126 |  120 

 

Table 2: Driving modes (continued) 

 
Case 4: Acceleration upwards 

                     

𝑭𝒎 = −𝑭𝒊 + 𝑭𝒓 + 𝑭𝐚 + 𝑭𝐰 

 
Case 5: Constant velocity upwards 

                     

𝑭𝒎 = −𝑭𝒊 + 𝑭𝒓 + 𝑭𝐚 + 𝑭𝐰 
 

 

 

 

 

 

 

Fm 

Fa 

Fr 
Fi Fw 

Fm 

Fa 

Fr 
Fw 
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Table 2: Driving modes (continued) 

 

Case 6: Deceleration upwards 

                     

𝑭𝒇𝒓𝒆𝒏 = −𝑭𝒊 + 𝑭𝒓 + 𝑭𝐚 + 𝑭𝐰 

Case 7: Deceleration downwards 

                                 

𝑭𝒇𝒓𝒆𝒏 = −𝑭𝒊 − 𝑭𝐰 + 𝑭𝒓 + 𝑭𝐚 

Case 8: Constant velocity downwards 

                                 

𝑭𝒇𝒓𝒆𝒏 = −𝑭𝒊 − 𝑭𝐰 + 𝑭𝒓 + 𝑭𝐚 

 

Fa 

Fr 

Fi 
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Ffren Fa 

Fr 

Fi 

Fw 

Ffren Fa 

Fr 

Fw 
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Table 2: Driving modes (continued) 

 
 

Case 9: Acceleration downwards 

                                 

𝑭𝒇𝒓𝒆𝒏 = −𝑭𝒊 − 𝑭𝐰 + 𝑭𝒓 + 𝑭𝐚 
 

The forces considered in the conduction of the automobile are: 

𝑭𝒎 = driving force F 
𝑭𝒊 = inertia force 
𝑭𝒓 = rolling force 
𝑭𝒂 = dragging force 
𝑭𝒘 = weight 
𝑭𝒇𝒓𝒆𝒏 = braking force 

 

The power is calculated as follows: 𝑷 = 𝑭𝒎/𝒇𝒓𝒆𝒏 ∙ 𝒗. 

 
4. Results. Analysis of the consumed power 

The most important vehicle characteristics and the set of parameters used in the calculation of 

the different forces that act on it are presented in Table 3: 

 

 

Ffren Fa 

Fr 
Fi 

Fw 
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Table 3: Parameters 

A 2,2 m2 

C 0,32 -  

    m 1000 kg 

θ 0 rad 

ρ 1,225 kg/m3 

g 9,81 m/s2 

 

Where A is the front area of the vehicle; C: drag coefficient; m: mass of the vehicle; θ: angle of the 
ramp up or down; ρ: air density; g: acceleration of gravity; 

For the calculation of the rolling force, the coefficient of rolling resistance is 𝒇𝒓 = 𝟎. 𝟎𝟏 ∙

(𝟏 +
𝑽

𝟏𝟔𝟎
), where the velocity (V) is given in km/h. 

The value of the air density has been considered ρ = 1.25 kg/m3 at atmospheric pressure and at 

15 ºC and θ corresponds to the slope of the up and down ramps. The acceleration in each section 

is calculated using the equations of the uniformly accelerated rectilinear movement taking into 

account the initial, final speed and the elapsed time. The values obtained for the different 

scenarios allows to determine the motor power and braking power required to drive according to 

the circulation characteristics described for each scenario. In these scenarios, the different driving 

modes described in Table 2 have been taken into account. The driving power affects the energy 

consumption of the vehicle to maintain the desired circulation characteristics. The braking power 

corresponds to the power dissipated in the form of heat to maintain the vehicle speed. It appears 

when the brakes of the motion regulation intervene. 
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The dissipated power can be converted back into energy recovered by the use of regenerative 

brakes or wind turbines. In this analysis we propose the recovery made by using a wind turbine. 

Table 4 summarizes the results about the recovered power. 

Table 4: Ideal percentage of power that can be recovered 

 Recovery system Recovery syst. + drag force 

 Theoretical % Theoretical % 

Scenario 1 21.9 63.45 

Scenario 2 40.95 52.06 

Scenario 3 19.73 78.34 

 

5. Conclusions 

 
This paper is a first step to investigate the feasibility of implementing a technology for energy 

recovery using wind turbines in electric vehicles. This is carried out by considering the effects of 

the airflow through wind turbines and the vehicle aerodynamic drag during its motion. This allows 

to recover a percentage of the energy supplied by the batteries to the vehicle engine. Dissipative 

forces such as the tyre rolling resistance force are responsible for not being able to recover all the 

energy supplied by those batteries. 

Results have shown the theoretical viability to successfully develop this technology. As important 

fact, this study has shown that the use of wind turbines allows the possibility of recovering an 

important percentage of the energy provided by the batteries, although it strongly depends on 

the assumptions of each case study.  However, further research is needed to verify the data with 

experimental tests. 
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