

DEPARTAMENTO DE INFORMÁTICA DE SISTEMAS Y COMPUTADORES

ESCUELA TÉCNICA SUEPERIOR DE INGENIERÍA DEL DISEÑO

UNIVERSIDAD POLITÉCNICA DE VALENCIA

TRABAJO DE FIN DE GRADO:

Grado en Ingeniería Electrónica Industrial y Automática

VALENCIA, ABRIL 2019

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR

THE NAVIGATION OF AN UNMANNED SUBMARINE

WITH ARDUINO

Autor: Fco. Javier Pérez Villaplana

Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

Development of the control electronics for the navigation of an unmanned submarine with Arduino

RESUM
__

L’objectiu principal d’aquest projecte és el disseny dels sistemes electrònics involucrats en el
control d’un Vehicle Autònom Subaquàtic (VAS) fent ús del microcontrolador Arduino MEGA 2560

com a plataforma de desenvolupament, assegurant la fiabilitat i el baix cost dels sistemes

mencionats. Com es habitual en la forma de treballar amb Arduino, el projecte estarà organitzat en

diferents mòduls cadascú amb una funció específica dins del conjunt de sistemes de control.

Dintre del projecte, es trobarà la caracterització de sensors i actuadors, el estudi del diferents

mòduls Arduino, la integració d’aquests mòduls, el disseny de l’estructura de control del VAS, així

com la implementació y muntatge del mòduls al xassís del vehicle.

Els principals sistemes a controlar i integrar son: control de rumb, sistemes de visualització i

comunicació, emmagatzemament de informació i sistemes de representació de resultats. Com es

tracta d’un projecte multidisciplinari, diversos estudiantes de l’ETSID i l’ETSINF estaran al càrrec del
disseny d’altres sistemes fonamentals del VAS que s’uniran als sistemes inclosos en aquest projecte.

El codi de control desenvolupat permetrà un correcte funcionament del VAS mitjançant la toma

de autònoma de decisions, en qualsevol situació, gràcies a les lectures provinents del diferents

sensors. La monitorització d’aquests sistemes es de gran importància ja que permet assegurar que
tot està sota control i que el vehicle està navegant dins del seu règim normal de funcionament.

Paraules Clau: VAS, Arduino, Sistemes de Control, Control de Rumb

Development of the control electronics for the navigation of an unmanned submarine with Arduino

RESUMEN
__

El objetivo principal de este proyecto es el diseño de los sistemas electrónicos involucrados en

el control de un Vehículo Autónomo Subacuático (VAS) mediante el uso del microcontrolador

Arduino MEGA 2560 como plataforma de desarrollo, primando el bajo coste y la fiabilidad de dichos

sistemas. Como es habitual a la hora de trabajar con Arduino, el proyecto se organizará de manera

modular, donde cada módulo realiza una función diferenciada dentro del conjunto de sistemas de

control.

Dentro de este proyecto, se encontrará la caracterización de sensores y actuadores, el estudio

de los diferentes módulos Arduino, la integración de dichos módulos, el diseño de la estructura de

control del VAS, así como la implementación y montaje de dichos sistemas en el chasis del vehículo.

Los sistemas principales a controlar e integrar son: control de rumbo, sistemas de visualización

y comunicación, almacenamiento de datos y sistemas de representación de resultados. Dado que

se trata de un proyecto multidisciplinar, varios estudiantes de la ETSID y la ETSINF se encargarán de

diseñar otros sistemas fundamentales del VAS que se unirán a los sistemas incluidos en este

proyecto.

El código de control desarrollado permitirá el correcto funcionamiento del VAS mediante la

toma autónoma de decisiones, en cualquier situación, gracias a la interpretación de las lecturas

provenientes de los sensores. La monitorización de todos estos sistemas es de gran importancia

dado que permite asegurar que todo está bajo control y que el vehículo está navegando dentro de

su régimen normal de funcionamiento.

Palabras Clave: VAS, Arduino, Sistemas de Control, Control de Rumbo

Development of the control electronics for the navigation of an unmanned submarine with Arduino

ABSTRACT
__

The main goal of this project is to provide a low-cost and reliable design for the electronics

systems involved in the control of an Autonomous Underwater Vehicle (AUV) using Arduino Mega

2560 as a development platform. The project will be organized in a modular fashion as it is the usual

way of working with Arduino, where each module performs a different task.

The project’s scope encompasses the characterization of the actuators and sensors, the study
of the different modules, the integrations of all the modules, the design of the control structure

and the implementation of the systems, including the mounting on the AUV chassis.

The main systems to be controlled and integrated are: attitude control systems, visualization

systems, communications, data storage and representation systems. As this is a multidisciplinary

project, several students from the ETSID and ETSINF schools will be in charge of designing other

vital systems of the AUV that will also be merged with the ones explained in this project.

The control code written will allow for the proper operation of the AUV vehicle by combining

every trace of data coming from the sensors into useful information in order to actuate

appropriately in every situation. Monitoring every subsystem is vital to ensure everything is under

control and working in a normal regime.

Keywords: AUV, Arduino, Control Systems, Attitude Control

Development of the control electronics for the navigation of an unmanned submarine with Arduino

Agradecimientos

Quiero agradecer, en primer lugar, a mis

padres por su apoyo incondicional a lo largo

de lo todos los años de carrera y por

permitirme la gran oportunidad de cursar mis

estudios fuera de casa sin privarme de

ninguno de los aspectos que han hecho de

vida estudiantil una etapa inolvidable.

En segundo lugar, quiero dar las gracias a

mi pareja, Marlene, por ayudarme y

animarme en todo momento, impidiendo que

me rindiera en la realización de este proyecto

hasta el último minuto. Sin ella, este trabajo

no sería más que una ilusión esperando a ser

redactada.

Finalmente, quiero agradecer a todos mis

amigos y compañeros de carrera por hacer de

esta etapa algo especial.

Development of the control electronics for the navigation of an unmanned submarine with Arduino

DOCUMENTS
__

1. Report

2. Requirements

3. Budget

4. Diagrams & Schematics

5. Annexes

DEPARTAMENTO DE INFORMÁTICA DE SISTEMAS Y COMPUTADORES

ESCUELA TÉCNICA SUEPERIOR DE INGENIERÍA DEL DISEÑO

UNIVERSIDAD POLITÉCNICA DE VALENCIA

1. REPORT

TRABAJO DE FIN DE GRADO:

Grado en Ingeniería Electrónica Industrial y Automática

VALENCIA, ABRIL 2019

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR

THE NAVIGATION OF AN UNMANNED SUBMARINE

WITH ARDUINO

Autor: Fco. Javier Pérez Villaplana

Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 2 of 58

Index

1.- Introduction ... 6

1.1.- Contextualization .. 6

1.2.- Motivation ... 7

1.3.- Objectives .. 7

2.- Planning ... 8

3.- Attitude control subsystems ... 10

3.1.- Introduction .. 10

3.2.- Previous work .. 10

3.3.- Hardware Selection ... 11

3.3.1.- Stepper Motor .. 11

3.3.2.- Motor Controller .. 11

DRV8825 Arduino Shield PCB Design ... 13

3.3.3.- Accelerometer .. 17

3.4.- Pitch Axis ... 20

3.4.1.- Motor and Electronics Housing ... 21

3.4.2.- Control Strategy .. 22

3.4.3.- Control Implementation ... 22

3.5.- Roll Axis ... 26

3.5.1.- Motor and Mass Housing .. 26

3.5.2.- Transfer Function Obtention... 27

4.- Communications systems .. 28

4.1.- Introduction ... 28

4.2.- Previous work ... 28

4.3.- Bluetooth (BT) communication system ... 29

4.3.1.- Hardware Design ... 29

4.3.2.- BT Module Configuration and Code .. 30

4.3.3.- Real Time Data and Android Control App ... 32

4.4.- SPI Communication System ... 35

4.4.1.- Introduction .. 35

4.4.2.- Hardware Design ... 36

4.5.- I2C Communication System ... 38

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 3 of 58

4.5.1.- Introduction .. 38

4.5.2.- Hardware Design ... 38

5.- Vehicle Status Display Screen .. 40

5.1.- Introduction ... 40

5.2.- Hardware selection .. 40

5.3.- GUI Design Code .. 41

5.4.- I2C Channel Configuration and Variables .. 44

5.4.1.- I2C Communication Between Arduino Boards ... 44

5.4.2.- Screen Real Time Data Update ... 45

6.- CTD Sensor Module .. 47

6.1.- Introduction ... 47

6.2.- I2C Communication Procedure .. 47

6.3.- CTD Data Log .. 49

6.4.- Honeywell Depth Sensor .. 49

7.- SD Card Data Log .. 50

7.1.- Introduction ... 50

7.2.- Data Storage Libraries and Code .. 50

7.3.- Database File Structure .. 52

7.3.1.- Stepper Motor Log File ... 52

7.3.2.- CTD Sensors Log File.. 52

7.3.3.- Honeywell Depth Sensor Log File .. 53

7.4.- Data Analysis .. 54

8.- Conclusion & Results .. 55

8.1.- Results .. 55

8.2.- Conclusions .. 56

9.- References .. 57

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 4 of 58

Figure Index

Fig. 1: ALBA 14 HGL Glider 3D modelling ... 6

Fig. 1.1: Project Planning Diagram ... 9

Fig. 4: Stepper Motor Datasheet .. 11

Fig. 3: Stepping Sequence .. 11

Fig. 2: NEMA 17 Stepper Motor ... 11

Fig. 5: Adafruit Motor Controller ... 12

Fig. 6: “AFMotor.h” library motor control instructions ... 12

Fig. 7: DRV8825 Polulu’s Breakout Board .. 13

Fig. 8: DRV8825 Basic Connections .. 13

Fig. 9: PCB Electric Schematics ... 14

Fig. 11: J6-J7 Jumper PCB Footprint ... 15

Fig. 12: H1-H2 Jumper PCB Footprint .. 15

Fig. 13: 3 DIP Switch PCB Footprint .. 15

Fig. 10: J1-J5 Jumper PCB Footprint ... 15

Fig. 14: Decoupling Capacitors PCB Footprint.. 15

Fig. 15: DRV8825 PCB Footprint ... 15

Fig. 16: Arduino shield measurements (inches) ... 15

Fig. 17: PCB Layout and Routing ... 16

Fig. 18: Gerber Files for fabrication ... 16

Fig. 19: Fabricated Shield PCB .. 17

Fig. 21: Implementation of PCB after Component Soldering... 17

Fig. 20: PCB 3D Model .. 17

Fig. 22: GY-80 Accel Module ... 17

Fig. 23: Kalman Filter code ... 18

Fig. 24: EKF Filtering measurements obtained with Glider 1 ... 19

Fig. 25: Kalman Filter Equations .. 19

Fig. 26: Example of AUV’s characteristic sawtooth movement ... 20

Fig. 27: Transmission principle used for the Glider ... 20

Fig. 28: Attitude control system mechanical 3D design ... 21

Fig. 29: Detail of the inertial mass tray .. 21

Fig. 31: Upper Side of the Moving Mass Tray .. 21

Fig. 30: Bottom Side of the Moving Mass Tray .. 21

Fig. 32: Stepper Motor Initialization ... 22

Fig. 33: Motor electric consumption table ... 23

Fig. 34: Sensor and control variables declaration ... 23

Fig. 35: AUV trimming control system diagram .. 24

Fig. 36: Controller algorithm .. 24

Fig. 37: Attitude control system flow chart ... 25

Fig. 38: Sawtooth angle change algorithm ... 26

Fig. 39: Complete trimming system 3D design .. 27

Fig. 40: Circular gear simplification for calculus... 27

Fig. 41: Glider 1 Bluetooth receive event with commands .. 28

Fig. 42: HC-06 Bluetooth Module ... 29

Fig. 43: Graphic representation of HC-06 module wiring .. 29

Fig. 44: HC-06 Module Wiring Table .. 30

file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996901
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996901
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996902
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996902
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996903
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996903
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996904
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996904
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996905
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996905
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996906
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996906
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996907
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996907
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996908
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996908
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996909
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996909
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996910
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996910
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996911
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996911
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996912
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996912
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996913
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996913
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996914
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996914
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996915
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996915
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996916
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996916
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996917
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996917
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996918
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996918
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996919
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996919
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996920
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996920
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996921
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996921
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996922
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996922
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996923
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996923
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996924
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996924
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996925
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996925
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996926
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996926
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996927
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996927
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996928
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996928
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996929
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996929
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996930
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996930
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996931
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996931
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996932
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996932
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996933
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996933
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996935
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996935
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996936
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996936
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996937
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996937
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996938
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996938
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996939
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996939
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996940
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996940
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996941
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996941
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996942
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996942
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996943
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996943
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996944
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996944
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996945
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996945

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 5 of 58

Fig. 45: HC-06 Module Configuration Code ... 30

Fig. 46: Bluetooth Command Table.. 31

Fig. 47: Example of Command Code Structure .. 31

Fig. 48: Real Time Data Sending Through Serial Bus Procedure .. 32

Fig. 50: APP Trim Control Menu ... 33

Fig. 49: APP Main Menu ... 33

Fig. 51: APP Parameter Setting Menu I .. 34

Fig. 52: APP Parameter Setting Menu II ... 34

Fig. 53: RTD Reception and Display Block Algorithm ... 35

Fig. 54: BT Command Sending Block Algorithm Example .. 35

Fig. 56: SPI Bus Lines Description ... 36

Fig. 55: SPI Communication Example ... 36

Fig. 57: SD Card Adapter .. 36

Fig. 58: SD Card Adapter Module Wiring Schematics and Table ... 37

Fig. 59: SPI Bus Configuration Code ... 37

Fig. 60: Example of I2C wiring .. 38

Fig. 61: I2C Bus wiring configuration for the Glider ... 39

Fig. 62: I2C Bus unique device addresses ... 39

Fig. 64: Arduino UNO Board ... 41

Fig. 63: LCD Screen Arduino Shield .. 41

Fig. 65: LCD Touch Screen libraries and Pin Declaration.. 41

Fig. 66: Screen Parameter Definition and Set Up .. 42

Fig. 67: Glider’s Welcome Screen Code ... 42

Fig. 68: Glider’s Welcome Screen on Display ... 43

Fig. 69: RTD Glider Screen Design Code ... 43

Fig. 70: RTD Glider Screen Display Working ... 43

Fig. 71: I2C Bus Configuration on Arduino MEGA (Master) ... 44

Fig. 72: I2C Bus Configuration on Arduino UNO (Screen) .. 44

Fig. 73: Screen Module Update Routine Code ... 45

Fig. 74: Screen Module Data Update Function .. 46

Fig. 75: Arduino MEGA I2C Data Update and Send Code .. 46

Fig. 76: CTD Module Controller and Sensors Setup ... 47

Fig. 77: Nose Hull for CTD and Optical Comm System Housing ... 47

Fig. 78: I2C Bus Configuration for Arduino MEGA (left) and CTD Module (right) 48

Fig. 79: Arduino MEGA Data Reception (left) and CTD Variables Update & Sending Code (right) .. 48

Fig. 80: Honeywell Pressure Sensor Data Adquisition and Handling Code 49

Fig. 81: SD Card Module User Defined Functions .. 50

Fig. 82: SD Card Setup Function Code .. 51

Fig. 83: File Creation Function Code .. 51

Fig. 84: Data Write Function Code ... 51

Fig 85: Motor Database Significance Table .. 52

Fig. 86: CTD Sensor Database Structure Definition and Creation .. 53

Fig. 87: Honeywell Sensor Database Structure Definition and Creation ... 53

Fig. 88: SD Card Honeywell Sensor Log Function ... 53

Fig. 89: Database Records displayed in Columns in Excel .. 54

Fig. 90: Motor Activation Excel Graph ... 54

file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996946
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996946
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996947
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996947
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996948
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996948
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996949
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996949
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996950
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996950
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996951
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996951
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996952
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996952
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996953
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996953
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996954
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996954
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996955
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996955
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996956
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996956
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996957
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996957
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996958
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996958
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996959
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996959
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996960
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996960
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996961
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996961
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996962
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996962
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996963
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996963
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996964
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996964
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996965
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996965
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996966
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996966
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996967
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996967
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996968
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996968
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996969
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996969
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996970
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996970
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996971
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996971
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996972
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996972
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996973
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996973
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996974
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996974
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996975
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996975
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996976
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996976
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996977
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996977
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996978
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996978
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996979
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996979
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996980
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996980
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996981
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996981
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996982
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996982
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996983
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996983
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996984
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996984
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996985
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996985
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996986
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996986
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996987
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996987
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996988
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996988
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996989
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996989
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996990
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996990
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996991
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996991

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 6 of 58

1.- Introduction

1.1.- Contextualization

The idea of Autonomous Underwater Vehicles (AUV) has been around since 1989, when H.

Stommel first proposed the design, and later prototype, of an unmanned underwater vehicle

based on the variable buoyancy principle. This way, AUV convert part of their buoyancy force

into surge velocity, thus taking advantage of the Archimedes principle. To do so, they must

follow a sawtooth navigation pattern and should be provided with systems that are able to

produce an increase/decrease of the vehicles’ volume (water-air ballast, oil-air buoyancy

control) to induce a change in its net buoyancy.

As AUV are only propelled by this principle and not via motors, it could be said that they

glide through the water as much as their aviation counterpart glide through the air. For this

reason, some of these AUV are also called Gliders. Through the years, many different versions

of AUV have been proposed which included electric propellers [1], lube-oil filled bladders [2] or

jet pump propulsion [3]. Besides, different strategies, such as taking advantage of the ocean’s
temperature [4] or underwater currents [5] have been studied in order to reduce energy

consumption and increase the range of the Gliders. Some these designs have been a commercial

success and have been used in several oceanographic explorations and missions, including a

successful trip across the Atlantic [6].

Given the success of these vehicles, from

the UPV, a new design, intended to reduce

the cost of fabrication of the Glider while

increasing its range and navigation

capabilities, was proposed. These series of

low-cost AUV was called ALBA Gliders and it

has been in continuous development for

several years by UPV students and professors.

The last version of the ALBA Glider, which this

project is focused on improving, is the ALBA-

14 HGL Glider [7]. This vehicle (Fig. 11) is

designed in a modular fashion, using Arduino

as a developing platform, and it includes a hybrid buoyancy system which combines compressed

air and oil to fill the Glider’s bladders.

1 Busquets J., Busquets D.., Busquets J.V., “Combined Gas-Fluid Buoyancy System for Improved Attitude and

Maneuverability Control for Application in Underwater Gliders”, IFAC-PapersOnLine, 48-2 (2015) 281–287

Fig. 1: ALBA 14 HGL Glider 3D modelling

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 7 of 58

1.2.- Motivation

Given the unstoppable increase of chemical spills and other contaminants that end up in

our seas and oceans, underwater exploration and sampling has become increasingly more

important. It helps predict biological disasters or disturbances in the natural balance of the sea

fauna and flora such as plagues or water contamination. The main motivation for this project is

to provide sea scientist and marine biologist with a low-cost, highly efficient underwater glider

that reduces the cost of these explorations.

Personally, I find this project very interesting as its main goal is to combine different control,

visualization and data recording systems into one control structure. Fulfilling this task allows me

to characterize sensors and actuators, design control strategies and interface different modules

and systems together. Besides, it helps me to further develop my coding abilities as the control

is implemented using an Arduino Mega board. For these reasons, I think that this project is the

perfect combinations of every skill learned in the degree I studied: electronics, control

engineering and IT. Thus, I want to prove my knowledge and skills in my field of study through

this project.

1.3.- Objectives

The objective of the project is to design a solution for the attitude systems of the AUV in

charge of keeping the vehicles pitch and roll angles within the user’s specifications as well as
designing the visualization, communication and data storage systems that help the user know

the status of the vehicle in real time. The integration and mounting of all the different

subsystems will also be assessed together with explanations on the Arduino control code

written.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 8 of 58

2.- Planning

The approach chosen for the completion of this project, given the fact that it is Arduino based,

is a modular approach. Thus, each different sensor and module will be coded and tested

independently and then merged into the main design.

First, an initial study of the previous Glider was performed to detect the main flaws of the mass

trimming systems which is one of the main points of this project. Then, a hardware selection for

the new system is carried out including motors, sensor, controller and mounting boards.

With the new stepper motors selected, it was found that the controller needed to operate them

was not manufactured as an Arduino shield and thus a custom PCB was designed to accommodate

the new controllers.

Once the hardware and control strategy for the mass trimming system were defined, Bluetooth

communication (BT) was next. In order to keep the vehicle monitored and under control, new

commands for the control system were coded and then included in a custom APP designed for the

exchange of data between the Glider and the mobile device.

Then, a screen display module was added to the project which allowed for the display of Real

Time Data (RTD) when setting up the Glider on the water surface. The I2C communication between

different Arduino board was also assessed at this point.

Following this, another Arduino board, in charge of collecting sensor data coming from a CTD

module, was added to the I2C bus. The proper communication between boards was tested

separately and then together with the rest of the I2C devices (accelerometer, RTC, etc…).

Next, an SD Card module using SPI communication is tested and added to the final design

together with an RTC module connected via I2C. The combination of these two, together with the

sensor data coming from the different sensors in the Glider, allow for the creation of a real time

data log which was also tested and validated.

Finally, every module was mounted on the back of the mass trimming system structure and

proper function of the different modules was tested when working together.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 9 of 58

Fig. 1.1: Project Planning Diagram

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 10 of 58

3.- Attitude control subsystems

3.1.- Introduction

The aim of this part is to explain the design, implementation and testing of the attitude

control subsystems incorporated in the Alba glider. Working together with the oil-air buoyancy

control and the water-air ballasts, these attitude control systems ensure that the pitch and roll

angles of the Glider follow the ones selected by the user within a certain margin.

To do so, these systems are in charge of moving two inertial masses big enough to change

the centre of mass (CM) of the vehicle and create a positive or negative torque depending on

the direction of movement of these masses. Thus, this part will be divided in two subparts

related to each of the vehicle’s axes:

a) Pitch axis: The control of the pitch angle is performed by the back or forth

movements of the mass in a lineal motion along the longitudinal axis of the vehicle.

b) Roll axis: The control of the roll angle is performed in a rotational fashion where the

mass revolves around the longitudinal axis of the vehicle.

The use of stepper motors is common to both systems. This allows for a precise control of

the position of the masses in open loop. The motors are connected to an endless screw, which

is then mashed with a gear suited for each application, whether it is lineal or rotational motion.

Further explanations about the design and implementation of these systems will be provided

within this section.

3.2.- Previous work

In previous versions of the Alba Glider, the attitude control system was implemented using

DC motors which tend to be bulky, heavy and imprecise. These characteristics are not desirable

in an underwater vehicle as the weight and instability are increased with no apparent upside on

torque or power from the motor. Furthermore, after testing, it was found that these DC motors

were short on torque when the mass was pulled against gravity and compensation for this

phenomenon had to be taken into account.

To avoid this problem and improve the overall performance of the vehicle, stepper motors

will be used. The program created to run the vehicle with the DC motors (Glider 1) will be used

and modified so as to control the new motors.

This first part focuses on the modifications performed on the “Glider 1” code and the
measurements, test and calculations done in order to control the stepper motors properly while

improving the performance of the trimming systems and the code.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 11 of 58

Fig. 2: NEMA 17 Stepper Motor Fig. 3: Stepping Sequence Fig. 4: Stepper Motor Datasheet

3.3.- Hardware Selection

The very first part in order to design a control system is to know all the technical details about

the systems to be controlled. For this attitude control subsystems, two main hardware

components will be used: the stepper motor and the motor controller. These will be explained

in this section.

3.3.1.- Stepper Motor

The main concern when choosing the right motor is to fulfil the torque and power demands

required to move the masses along the Glider. After comparing technical data of several

stepper motors, the NEMA 17HS15 was chosen (Fig. 2). This motor includes a planetary

gearbox which helps deliver a higher torque at a slower speed as seen in the datasheet of the

motor (Fig. 4). This feature allows the motor to move the mass for and against gravity without

losing any step and thus keeping a precise control of the mass position.

After testing the motor thoroughly with the right controller, it was proved that the motor

can fulfil the task without any losses. Furthermore, using a heavier load does not affect the

performance. This is important in order to ensure proper function in a real-world scenario.

3.3.2.- Motor Controller

Due to the size and characteristics of these motors, it is impossible to drive it using directly

the Arduino Mega controller as it needs an external power source and a control circuit that

will provide power to each of the phases in the right order for the motor to step (Fig. 3).

Performing this operation via coding would consume a lot of processing power from the

Arduino Mega, slowing the process down.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 12 of 58

Fig. 5: Adafruit Motor Controller

Fig. 6: “AFMotor.h” library motor control instructions

However, choosing the right controller is a

daunting task. The first option tested was to use

the Adafruit Motor Shield [8] based on the L293

IC (Fig. 5). This controller is intended for the

control of 4 DC motors simultaneously, or 2

stepper motors with a 4-phase configuration

such as the NEMA 17. In order to test this

controller, the motor was hooked up according

to the data sheet and tested with a simple

Arduino program using the “AFMotor.h” library

main instructions (Fig. 6).

As it can be seen, using the library makes the code simple. The only input values used to

control the motor are the motor speed, the direction, the stepping mode and the number of

steps to be performed. The controller will provide power to the motor and perform the

stepping on its own. Despite all of this, several problems were found during the test of this

controller:

• Overheating of the IC for the demanded current (1 A max output current).

• Step control not precise enough.

• Large amount of vibrations when the motor was operating.

Two options were tested as a solution for these problems:

• Soldering an additional IC on the top of the first one to increase the current output

(Piggyback).

• Search for a controller designed specifically for stepper motors of these

characteristics.

The first option was discarded as the overheating problem persisted after soldering the

additional IC. Besides, the solution looked clumsy, fragile and prone to fail at any moment.

Thus, the second solution was adopted.

To do so, different stepper motor controllers were compared in order to choose the most

appropriate one. The main concern was to avoid the overheating of the IC while providing

enough current to the motor. The controller chosen and used for both motors is a breakout

board based on the DRV8825 IC from Polulu [9] (Fig. 7).

This breakout board is designed specifically for stepper motors control and provides a

maximum current output higher than the one demanded by the motor (1.68 A) thus avoiding

the overheating. The main characteristics of this controller are the following:

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 13 of 58

• Simple step and direction control interface (2 pins).

• Six different step resolutions: Full step up to 1/32-step.

• Adjustable current control to set the maximum current

output avoiding any damage to the motor when using

voltages above the motor’s rated voltage.
• 45 V maximum supply voltage.

• Built-in regulator.

• Over-temperature thermal shutdown, over-current

shutdown, and under-voltage lockout.

Due to the fact that this little breakout board was not integrated into an Arduino shield,

compared to the Adafruit L293 controller, and given the necessity to use two controllers, one

per motor, a brand new PCB was designed in order to house both controllers and act like a

shield for the Arduino Mega. The next section will provide in-depth detail of the design and

fabrication processes of the PCB.

DRV8825 Arduino Shield PCB Design

Keeping in mind the concept of modularity and tidiness, it was decided to design a PCB

to integrate both controllers as an Arduino shield thus reducing the number of soldering

points and cables needed. The design was performed using a free development PCB web

site called “CircuitMaker” [10] developed by Altium [11]

The first part in the design is to know the basic connections and control signals needed

to control the motors stepping using the DRV8825 controller (Fig. 8).

As it can be seen, only two pins are necessary to

control the motor’s stepping (STEP & DIR), M0 to M2 are
used to select the stepping mode, an enable pin should

also be used activate the IC and four pins are used for

each of the phases of the bipolar motor.

Based on these connections, the electric layout of the

PCB is designed (Fig. 9) taking into account the following

features of the controller:

• Stepping mode selection through 3 DIP Switches. This way, the connections are

hardwired and no pins of the Arduino Mega are wasted on mode selection.

• Decoupling capacitors close to the breakout boards and on the motor voltage

input.

• Hardwired RESET, SLEEP pins as they should always be connected to Vcc.

• ENABLE pin wired to an Arduino pin to control the activation of the IC.

Fig. 7: DRV8825 Polulu’s Breakout Board

Fig. 8: DRV8825 Basic Connections

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 14 of 58

Fig. 9: PCB Electric Schematics

As seen in the schematics, the Arduino Mega pins will be connected to the jumpers J6,

J7, H1 and H2 named as ‘D8-13’, ‘D0-7’, ‘Power’ and ‘Analog’ respectively. The connections

of both controllers to the Arduino pins are the following:

Controller 1

• ENABLE ->> D13

• M0-M2 ->> Hardwired to DIP Switch

• RESET & SLEEP ->> Hardwired to

Arduino 5V Pin

• STEP ->> D9

• DIR ->> D8

• FAULT ->> D6

Controller 2

• ENABLE ->> D13

• M0-M2 ->> Hardwired to DIP Switch

• RESET & SLEEP ->> Hardwired to

Arduino 5V Pin

• STEP ->> D11

• DIR ->> D10

• FAULT ->> D7

The rest of the connections are the external power source and the phases of the stepper

motors. As these pins carry the highest intensity and voltage in the circuit, the traces of the

PCB will be thicker and the jumpers, J1 to J5, have a small screw in order to secure the

connection thus avoiding damage to the motors or the power supply unit. The decoupling

capacitors are added between the main power lines so as to avoid bouncing and voltage or

current peaks.

Following these electric schematics, the footprint of each of the components is included

(Fig. 10 – 15) as they would appear on the PCB design (Fig. 17). To design the PCB with the

exact dimensions of an Arduino Mega shield, the official measurements and shape for an

Arduino shield was used (Fig. 16). After cutting out the board to the right dimensions and

shape, the components are laid out.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 15 of 58

Fig. 10: J1-J5 Jumper PCB

Fig. 11: J6-J7 Jumper PCB Footprint

Fig. 12: H1-H2 Jumper PCB Footprint Fig. 13: 3 DIP Switch PCB Footprint

Fig. 14: Decoupling Capacitors PCB Footprint
Fig. 15: DRV8825 PCB Footprint

Fig. 16: Arduino shield measurements (inches)

The final disposition of the components (Fig. 17) is achieved after several tries with the

“autoroute” tool in order to ensure that all of the traces were at least 20 mil (inches) thick

and every connection was made without a significant amount traces overlapping.

Once the connections are validated and the routing of the traces is completed

successfully, all of the Gerber Files needed for the fabrication (Fig. 18) of the PCB are

generated using the tool designed for that purpose on ‘CircuitMaker’.

Due to the low cost of fabrication, the quality reports from other users and shipping fees

applied, the PCB was fabricated using the Chinese factory called ‘Seeed Studio’ [12] with

the following fabrication options:

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 16 of 58

Fig. 17: PCB Layout and Routing

Fig. 18: Gerber Files for fabrication

• Surface Finish: HASL

• Minimum Solder Mask Dam:

0.4mm

• Copper Weight: 1 oz.

• Castellated Holes: No

• Minimum Drill Hole Size:

0.3mm

• Colour: Blue

• Base Material: FR-4 TG130

• 2 layers

• Quantity: 10

• Buried Vias: No

• Thickness: 1.6 mm

• Spacing: 6/6 mil

The total cost of the fabrication and shipping was around 15 $ for 10 PCBs and, after 45

days, the final result arrived (Fig. 19). The quality was as good as expected and, after

soldering all the components (Fig. 21), the PCB was tested and validated proving that the

controllers worked as expected and the fabrication and design were not faulty.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 17 of 58

Fig. 19: Fabricated Shield PCB

Fig. 20: PCB 3D Model

Fig. 22: GY-80 Accel Module

Fig. 21: Implementation of PCB after Component Soldering

3.3.3.- Accelerometer

As there is no way to control the motors in closed loop unless an encoder is used, the loop

is closed through the angle reading of an accelerometer sensor that will move solidary to the

body of the Glider. The main control idea is to move the motors a small number of steps each

program period, and then check with the accelerometer measurements if the desired angle

has been reached.

Considering the need of a reliable and versatile sensor, it was decided to use the GY-80

Module [13] (Fig. 22) which merges different sensors such as:

• 3 Axis Gyroscope

• 3 Axis Accelerometer

• 3 Axis Magnetometer

• Barometer + Thermometer

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 18 of 58

Fig. 23: Kalman Filter code

In order to transmit all of this information into the Arduino board, I2C communication is

used. I2C is Master/Slave Bus where any number of devices can be connected, each of them

have a unique address that will help identify which device is sending or receiving data. For this

application, only the Accelerometer sensor will be used, whose address is 0x53, and only the

pitch and roll axis are needed for the control.

In order to smooth out any peak that the sensor measurements may produce (Fig. 242), a

Kalman Filter (KF) [14][15] is applied before using the measurement as valid data for the closed

loop control. As the code written in the Glider 1 for the KF works great, the same code will be

used for this version (Fig. 23).

As the code also follows a modular fashion, this piece of code is included as a standalone

module. The main aim of the KF is to deal with uncertainties, mainly white gaussian distributed

noise, in the process as well as in the sensors of the system. To do so, KF match the estimated

output of the observer (mathematical model of the system) with the real output, meaning that

the estimated value of the internal variables will converge to the real value of this internal

variable that cannot be measured directly.

2 Busquets J., Busquets D.., Busquets J.V., “Combined Gas-Fluid Buoyancy System for Improved Attitude and
Maneuverability Control for Application in Underwater Gliders”, IFAC-PapersOnLine, 48-2 (2015) 281–287

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 19 of 58

Fig. 25: Kalman Filter Equations

Fig. 24: EKF Filtering measurements obtained with Glider 1

The KF is an iterative process that works in two steps: the first one computes a prediction

or “a priori Estimate” using the previous value of the estimated variable and the current input
and the second step incorporates the measurements from sensors and updates the value of

the “a posteriori estimate”. The equations that perform this iterative process (Fig. 253) are

implemented into the KF code (Fig. 23).

Using this estimation algorithm and the measures from the sensors, the pitch and roll

angles of the Glider are obtained and fed into the control of the stepper motors in order to

keep the vehicle within user’s specifications.

With the selection of the hardware components, which are common to both attitude

control systems, well defined, the differences between the Pitch and Roll attitude control

systems will be assessed together with explanations about the Arduino code written for that

purpose.

3 Anonymous, “Understanding Kalman Filters”, Video and Webminar Series, (2017),
https://www.mathworks.com/videos/series/understanding-kalman-filters.html, accessed January, 2018

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 20 of 58

Fig. 26: Example of AUV’s characteristic sawtooth movement Fig. 27: Transmission principle used for the Glider

3.4.- Pitch Axis

The pitch attitude control is one of the most vital systems for a Glider as its forward

movement is produce by a sawtooth trajectory (Fig. 264) and this control systems ensures that

the angle of attack changes from negative to positive always within the user’s specifications.

As it has been already specified, this change in the pitch angle is achieved by the movement

of a mass in a longitudinal fashion along the body of the Glider. The mechanical system that

translates the rotational force of the motor into longitudinal displacement was designed by

another ETSID student, whose TFG is aimed at the mechanical design of these systems. The

principle on which this translation works is an endless screw attached to the axis of the stepper

via a pulley (Fig. 27).

In order to execute a precise control on the mass’ position, a transfer function (TF) is obtained
relating how many motor steps produce a 1mm displacement of the mass using a trial and error

method (1). First, the motor was coded to move 200 steps but, due to the reduction produced

by the planetary gearbox and the endless screw, the movement of the motor was too small to

provide a relevant measure. Then, the motor was moved different number of steps until one

complete revolution of the motor was achieved. Finally, the displacement of the moving tray

was measured for one revolution of the motor and the TF was obtained (2). The result of this

testing yielded a ratio of 735 steps/revolution, meaning that the reduction ratio included on the

motor datasheet was not correct and a new ratio was obtained (3). 𝑇𝑒𝑠𝑡 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 → 𝑅𝑎𝑡𝑖𝑜 = 735 𝑆𝑡𝑒𝑝𝑠𝑅𝑒𝑣 𝑇𝑟𝑎𝑦 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ≅ 8 𝑚𝑚 (𝟏)

 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝐹 = 7358 = 91.88 ≅ 92 𝑆𝑡𝑒𝑝𝑠𝑚𝑚 (𝟐)
 𝑅𝑎𝑡𝑖𝑜 𝑤/𝑜 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 200 𝑆𝑡𝑒𝑝𝑅𝑒𝑣 → 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 735200 = 3.675 = 1 ∶ 3.675 (𝟑)

4 Annabel Chadbourne, “Coastal Glider Overview”, Oceanology International, (2014),
https://slideplayer.com/slide/2498065/, accessed March, 2018

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 21 of 58

Fig. 28: Attitude control system mechanical 3D design Fig. 29: Detail of the inertial mass tray

Fig. 30: Bottom Side of the Moving Mass Tray Fig. 31: Upper Side of the Moving Mass Tray

3.4.1.- Motor and Electronics Housing

Due to the limited space inside the Glider, the housing of all the components should be

studied carefully. Thus, every component of the housing has been designed in 3D and

fabricated via a 3D printer. This design has been part of the final project of another colleague

student, Alejandro [16]. All of the designs included belong to his work and are included here

(Fig. 28-295) as a way to illustrate the main structure of the attitude control system housing.

The main idea behind this clever design is to house the batteries that will power the stepper

motor in the violet mountings seen in the images. This way the batteries act as a power source

as well as dead weight for the attitude control system to work. All of the control systems

(Arduino, sensors, electronics) will be housed on the back of the moving mass tray. The real

implementation of this design together with the electronic systems is also included (Fig. 30-

31).

5 Cebrián Abellán, A., “Sistema de desplazamiento de masas para el control de orientación de un Glider submarino”,
DISCA, (2018)

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 22 of 58

Fig. 32: Stepper Motor Initialization

3.4.2.- Control Strategy

Once the preliminary measurements and the hardware design were performed, it was time

to think of a way to control the stepper motor. Due to the fact that stepper motors are digital

systems and there is no direct feedback from the motor, the following was decided:

• The motor will move 92 steps or 1 mm every cycle until the desired angle is

achieved.

• Due to its digital nature, a simple Proportional (P) controller is implemented which

will change the speed of rotation (RPM) of the motor depending on the angle

difference between the desired angle and the measured one.

• The motor will be disabled when the desired angle or one of the ends of the moving

tray are reached so as to reduce energy consumption. Mechanical brake is provided

by the planetary gearbox and the endless screw transmission.

Using this strategy, the position of the mass is tracked at all time as the stepper motor will

not lose any steps and will move the mass exactly 1mm each time, no matter the speed of

rotation.

3.4.3.- Control Implementation

With the strategy well defined, the solution was coded in Arduino. The control code was

implemented using the “Glider 1” code as a common ground. Thus, this section will be focused

on the changes that allowed for the control of the stepper motor.

The first part of the process is to declare the stepper motor using the “BasicStepperDriver”

library [17] together with the initialization parameters (Fig. 32) such as the Pins where the

controller is connected to the Arduino (STEP, DIR, ENABLE), the number of steps per revolution

(MOTOR_STEPS), the motor rotation speed (stepRPM) and the stepping mode (MICROSTEPS).

This last parameter was selected to be ¼ of a step as it provides more precise movement when

the speed of rotation is changing. Even though micro stepping provides slightly less torque, the

noise and mechanical vibrations of the motor are greatly reduced. This is an important factor

in order to keep the AUV stable. Electric consumption is not a decisive factor as the current

draw in both full step and ¼ step mode is almost the same, being the latter the one with the

least current draw (Fig. 33).

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 23 of 58

Fig. 34: Sensor and control variables declaration

Together with the afore mentioned parameters used to declare the motor (‘stepper’), an

additional parameter regarding the physical environment of the control system is included.

‘MAX_RAIL’ refers to the real length of the endless screw mounting (Fig. 28-29). This is a

constant that acts as a stop point for the motor’s movement. Whenever the internal variable
‘posRail’ reaches the ‘MAX_RAIL’ value, the motor is powered off no matter the actual angle
of the vehicle.

The next part deals with the declaration of the sensor (accelerometer) that closes the loop

and the variables used for the motor’s control (Fig. 34).

The name and task inside the code of each of the variables are the following:

• RPM_a: OUTPUT variable of the control system (motor speed).

• delta_tetha: INPUT variable of the controller. It’s the difference between the user
defined angle (setAngle) and the vehicles’ real angle (inAngle).

• timer, delta_t: variable used by the KF to smooth the accelerometer measurements as

it is a time dependent algorithm.

• accx, accy, accz: variables used to store the readings of the accelerometer module in

3 axes.

• setAngle: USER defined REFERENCE for the control system.

• angleOFF: variable used for trimming the value provided by the accelerometer.

• margin: USER defined value to determine the angle values range that are within

specifications.

• posRail: internal variable used to represent the position of the moving mass inside the

vehicle.

• adxl: object declaration representing the accelerometer module.

To better understand the control system being coded, a block diagram is included (Fig. 35).

Within this diagram, the indirect feedback (via Accelerometer & KF) can be seen and

understood together with all of the system variables already explained.

Stepping
Mode

Electric

consumption (A)

Full Step 1,25

¼ Step 0,8

Fig. 33: Motor electric consumption table

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 24 of 58

Fig. 35: AUV trimming control system diagram

As it has been already stated in section 2.4.2, a trial/error control strategy will be adopted

meaning that the motor will move until the desired angle is reached. Since the vehicle’s
dynamics are way too difficult to model due to the ever-changing sea environment, the vehicle

is included in the diagram (Fig. 35) as a blind subsystem block.

Once the variables and elements of the control system are well defined, the final step is to

explain the controller algorithm (Fig. 36).

Fig. 36: Controller algorithm

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 25 of 58

Fig. 37: Attitude control system flow chart

The first part of the code (Fig. 36) deals with the data acquisition from the accelerometer

and the KF. This reading, multiplied by the P controller gain, will provide the value for the

motor’s RPM. This gain is set to be 0.90 according to empirical measurements of the maximum
angle difference between the user selected value and the real attack angle of the AUV.

Once the RPM value is obtained, the algorithm makes sure that this value is not higher than

200 RPM or lower than 60 RPM. Within this specification values, the motor is initialized with

the calculated RPM value (“stepper.begin”). Finally, the algorithm checks if the input angle

coming from the KF is within user’s specifications. Depending on whether the real angle is
above or below the user specified angle, the motor will perform 92 steps (1mm mass

displacement) in clockwise or counter clockwise direction. Otherwise, the motor will remain

disabled and it will not move. The middle part of the code ensures that the mass will not move

further than the length of the rails according to the variable “posRail”, which is updated every
time the motor rotates.

All the decision process of the controller algorithm is synthesized in a flow chart (Fig. 37).

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 26 of 58

Fig. 38: Sawtooth angle change algorithm

The loop seen in the flow chart (Fig. 37) repeats until the system is powered off or stopped

manually via Bluetooth. Communication systems will be assessed in the next chapter. The final

part of this algorithm performs the sawtooth movement required for the AUV to move

forward. This is achieved by counting the number of loop cycles (numCycle) and, when this

variable reaches a user defined variable (timerChange), the ‘setAngle’ is changed from positive
to negative and vice versa (Fig. 38).

3.5.- Roll Axis

In order to change the course of the ‘Glider’, a roll axis trimming system is also included. As
said before, this system consists of a rotational mass whose displacement is translated into a

change in the roll angle of the vehicle. This system, together with the variable buoyancy systems

placed on the wings of the AUV and the pitch trimming system, will allow the ‘Glider’ to turn in
any direction in order to perform corrections on the course or avoid obstacles.

Despite being a rotational system, the control strategy is the same as in the pitch axis system.

As stated before, the same hardware will be used for both systems and every similarity between

them has already been discussed. For this reason, this section will focus only on the differences,

namely the system TF and physical implementation.

3.5.1.- Motor and Mass Housing

Before explaining how the TF was obtained, it is important to show how the motor is

connected to the rotational mass. As in the previous section, the 3D design implemented (Fig.

396) was designed by my college Alejandro. This time, the stepper motor is also connected to

an endless screw which is then mashed into a round gear that moves solidary to the rotational

mass. This whole system is integrated with the previously explained pitch trimming system

housing. By the time this work is performed, the roll axis housing is not mounted physically,

and no picture is available.

6 Cebrián Abellán, A., “Sistema de desplazamiento de masas para el control de orientación de un Glider submarino”,
DISCA, (2018)

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 27 of 58

Fig. 39: Complete trimming system 3D design

3.5.2.- Transfer Function Obtention

In this system, the stepper motor is also joined with the rotating mass by an endless screw.

However, the screw is directly mashed with a circular gear connected to the rotating mass by

its axis. In order to obtain the TF, the radius and the distance between two consecutive teeth

of the gear (gear step) are measured (4). Knowing that one full rotation of the endless screw

produces a full step linear displacement in the gear, the TF relating the number of steps needed

to rotate the gear by one degree is obtained (5.1, 5.2).

 𝑇𝑒𝑒𝑡ℎ 𝐴𝑟𝑐 𝐿𝑒𝑛𝑔𝑡ℎ = 𝑆 = 6.7 𝑚𝑚 𝐺𝑒𝑎𝑟 𝑅𝑎𝑑𝑖𝑢𝑠 = 𝑅 = 46.2 𝑚𝑚 𝐴𝑟𝑐 𝐴𝑛𝑔𝑙𝑒 = 𝜃 (𝟒)

 𝑆 = 𝑅 ∙ 𝜃 → 𝜃 = 𝑆𝑅 = 6.746.2 𝑟𝑎𝑑
 𝜃(°) = 360° ∙ 6.7 46.2⁄2 ∙ 𝜋 = 8.31 ° (𝟓. 𝟏)

 𝑆𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 735 → 𝑇𝐹 = 7358.31 ≅ 88 𝑆𝑡𝑒𝑝𝑠° (𝟓. 𝟐)

Fig. 40: Circular gear simplification for

calculus

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 28 of 58

4.- Communications systems

4.1.- Introduction

Every vehicle needs a proper communication system in order to report back mission results,

provide real time feedback of its sensors or receive commands from the user. In order to ensure

that the Glider AUV is properly communicated with its environment and the final user, the

following communication systems have been developed and implemented:

a) Bluetooth communication system: used to stablish a link between the user and the

vehicle providing real time sensor date and enabling the user to send different

commands to the glider.

b) SPI communication system: used to read/write data from different devices such as

the SD card storage module.

c) I2C communication system: it is an internal bus that connects different devices in

the vehicle including communication between different Arduino boards.

On a higher level, the Glider is also fitted with GPS and Wi-Fi communication systems for long

distance trips. However, the scope of this work is limited to the low range communication

systems displayed above. This section will focus on all three communication procedures

including code explanations and physical implementation.

4.2.- Previous work

Communication systems were taken into account on the previous version of the Glider code.

However, they solely focused on Bluetooth communication. For this reason, the commands

already designed for the control of the vehicle (Fig. 41) were kept and modified to fit the new

motors’ specifications and a different Bluetooth module was used. SPI and I2C communication

were not very developed as there were fewer devices in the previous versions of the Glider.

ch = miSerial.read();
miSerial.print("Leido ");
miSerial.println(ch);
switch (ch) {
 case '1':relay1on(); break;
 case '2':relay2on(); break;
 case 'S':
 case 's':relayStop(); break;
 case 'I':relayInterval++; break;
 case 'i':relayInterval--; break;
 case 'D':relayDutyOn++; break;
 case 'd':relayDutyOn--; break;
 case 'C':relayCompensate++; break;
 case 'c':relayCompensate--; break;
 case 'A':setAngle++; break;
 case 'a':setAngle--; break;
 case 'M':margin++; break;

case 'm':margin--; break;
case 'T':setAngle = 25; break;
case 't':setAngle = -25; break;
case 'H':
case 'h':setAngle = 0; break;
case 'V':showAccel = 1; break;
case 'v':showAccel = 0; break;
case 'X':timerChange+=1200; numCycle=0;
break;
case 'x':timerChange-=1200; numCycle=0;
break;
case 'Q':storeYes=1; numCycle=0; break;
case 'q':storeYes=0; numCycle=0; break;
case 'W':showrecordAngle();break;
break;

 }

Fig. 41: Glider 1 Bluetooth receive event with commands

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 29 of 58

Fig. 43: Graphic representation of HC-06 module wiring

4.3.- Bluetooth (BT) communication system

4.3.1.- Hardware Design

The first step in designing the BT communication system is the hardware selection, this is,

choosing the right BT module for the work. The two most reliable and used BT modules in the

market are the HC-05 and the HC-06 [18] (Fig. 42). This time, the HC-06 BT module was selected

according to the following:

• Simplicity: HC-06 module has only 4 pins

compared to the 6 pins of the HC-05.

• Duty: As the BT module works only as a slave in

the communication procedure, the master-slave

feature of the HC-05 did not add any value to the

decision.

• Price: HC-05 prices go as low as 4 € whereas HC-

06 prices reach a low of 2.5 €

• Space: Given the reduced functionality of the HC-

06 and the lesser number of pins, the design is

more compact allowing for more space inside the

Glider.

Once the device is selected, the wiring must be assessed (Fig. 43 & 44). Out of the 4 pins, 2

of them are connected to Vcc and GND while the other two are the data transmission pin (TX)

and the data reception pin (RX). These last pins are connected to one of the four Arduino MEGA

serial ports swapping the RX on the BT module with the TX pin on the Arduino and vice versa.

Due to several difficulties in configuring any serial port of the Arduino MEGA other than the

default (which is also used for USB communication with the board), Serial Port 0 was selected

in order to perform the BT communication of the Glider.

Fig. 42: HC-06 Bluetooth Module

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 30 of 58

Fig. 44: HC-06 Module Wiring Table

Fig. 45: HC-06 Module Configuration Code

PIN CONNECTION TABLE

HC-06 Module Arduino MEGA Board

VCC 5V

GND GND

TXD PIN 0 (RX 0)

RXD PIN 1 (TX 0)

4.3.2.- BT Module Configuration and Code

The first time one of these modules are powered up, you need to select the BT device name,

the pairing password and the serial connection speed. This is performed by sending a specially

formatted messages (Fig. 45), called AT commands [19], that can be understood by the BT

module when sent over the Arduino Serial Port. This configuration is performed only once as

the device remembers all the parameters even after alimentation is withdrawn. For the Glider

3, the configuration was as follows:

• Device Name: Glider3

• Pairing Password: 1234

• Connection Speed: 9600 baud

#include <SoftwareSerial.h>
#define miSerial Serial // OJO poner Serial3 para blue (Bluetooth now
connected to Serial Port 0, same as USB)

void initBlue() {
 command("AT",2);// response: OK
 command("AT+VERSION",12);// response: OKlinvorV1.5
 command("AT+NAMEGlider3",9);//response: OKsetname
 command("AT+BAUD4",8);//response: OK9600
 command("AT+PIN1234",1);//response:
}

void startControl()
{
 //Communication
 miSerial.begin(9600);

 // Blue
 //initBlue(); //Uncomment only for configuration of new BT module

As seen (Fig. 45), the first step in configuring the BT module is to stablish the Serial Port

where the communication is happening (Port 0 in this case). Then, a function that sends the

configuration AT command to the module is created (‘initBlue’). Finally, the same
communication speed selected for the BT module is selected for the Arduino board port to

ensure proper function of the system. If a new BT module is to be configured, the next line of

code will be uncommented, and the configuration function shall execute.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 31 of 58

Fig. 46: Bluetooth Command Table

Fig. 47: Example of Command Code Structure

The next piece of code that is related to the BT communication system is the command

table that the AUV is able to interpret and perform. The code structure for this table is the

same as the one shown in point 3.2 (Fig. 41). However, some commands have been modified

in order to properly control the stepper motors and some other new commands have been

introduced (Fig. 46).

Command

Char

Action Command

Char

Action

1 Stepper motor moves 10 mm backwards m Decrease angle margin by one

2 Stepper motor moves 10 mm forwards T Set target angle to 25°

3 Stepper motor moves 5 mm backwards t Set target angle to - 25°

4 Stepper motor moves 5 mm forwards H Compensate accelerometer offset

5 Stepper motor moves 3 mm backwards h Set target angle to 0°

6 Stepper motor moves 3 mm forwards V Show current real angle value

S Set variable ‘posRail’ to 60 mm (midpoint) v Hide current real angle value

s Stepper motor is stopped X Increase time for angle value swap by 1.200
code cycles

I Increase motor RPM by one X Decrease time for angle value swap by
1.200 code cycles

i Decrease motor RPM by one Q Enable data storage

A Increase target angle by one q Disable data storage

a Decrease target angle by one W Show stored angle value

M Increase angle margin by one

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 32 of 58

Fig. 48: Real Time Data Sending Through Serial Bus Procedure

These commands (Fig. 46 & 47) allow the user to change the working parameters of the

Glider on the fly, retrieve real time information, compensate the offset of the accelerometer

measurements when the vehicle is powered and place the moving mass in the centre of the

mass tray before the Glider starts to move. Using these commands, the user will perform the

following sequence in order to set the initial conditions for the flight:

1. Place the Glider on the surface of the water as horizontal as possible.

2. Send command ‘H’ to set the current angle as 0° by compensating the initial offset.

3. Send command ‘h’ to set the target angle as 0°. This will prevent the motor from

moving automatically.

4. Once the motor is stopped, the used is enabled to move the motor at will until the

moving mass is in the centre of the moving tray using commands ‘1’ through ‘6’.
5. Send command ‘S’ to tell the microcontroller program that the mass is centred

(‘posRail’ = 60)
6. Set the desired target angle and margin using commands ‘A’, ‘a’, ‘M’, ‘m’, ‘T’ and ‘t’.

4.3.3.- Real Time Data and Android Control App

As the Glider will not be connected to a computer while underwater, the commands will be

sent through a smartphone. Sending the command as letters and number though a serial

monitor App can lead to confusion and mistakes. Thus, a specific App has been developed,

providing the user with a GUI that allows sending commands and receiving real time data easy

and visual. This APP has been developed using the online editing site “AppInventor2” from the
MIT [20].

Due to buffer limitations on the serial bus, real time data (RTD) cannot be sent over to the

mobile APP every microcontroller cycle. Thus, RTD is sent every 20 cycles and whenever the

stepper motor moves the mass (Fig. 48). Besides, whenever a parameter is modified through

a command (Fig. 46), the new value for said parameter is also sent through the serial bus (case

‘A’ and ‘a’ in Fig. 47).

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 33 of 58

Fig. 49: APP Main Menu Fig. 50: APP Trim Control Menu

Having defined how the data is sent and received through the Serial BT channel, the mobile

APP is developed. This APP consist of four different screens. The first one (Fig. 49) is the main

menu, where RTD from the glider is displayed and the user is able to access the different sub-

menus by clicking on the 4 buttons at the bottom of the screen. On top of this screen, the user

can select the BT device to be paired with the APP by clicking on the “DEVICES” button or end
this pairing by clicking on the button right next to it.

The second screen (Fig. 50) is displayed when the button “MASS TRIM CONTROL” is pressed.
This screen displays the several BT commands available to move the motor at will in order to

trim its position as explained in part 3.3.2. By clicking on any of these buttons, the APP will

send the corresponding BT command to the microcontroller. This provides a visual way of

sending commands without having to remember all of the numbers and letters (Fig. 46).

The following screens allow the user to set new navigation parameters for the Glider. The

third one (Fig. 51) is displayed whenever the button “VALUE SETTING I” is pressed allowing the
user to increase or decrease several parameter values by one. The last screen (Fig. 52) is shown

when the button “VALUE SETTING II” is pressed and includes several commands that provide
a predefined value to some navigation parameters.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 34 of 58

Fig. 51: APP Parameter Setting Menu I Fig. 52: APP Parameter Setting Menu II

App Inventor 2 uses a visual programming language, developed by the MIT, called

“Scratch”[21]. This language is easy to learn and use even with basic programming or APP

creation knowledge. The design process starts with the visual creation of every screen

displayed above and all of the objects they contain (buttons, labels, lists, etc…). Once the

necessary objects are laid onto the screen, App Inventor will provide you with the different

functions associated with each of these objects in order to start programming.

The algorithm is created by attaching different function blocks in order to obtain the desired

result each time an event happens. For example, RTD display is triggered every APP clock cycle

(Fig. 53) as long as the main menu screen (Fig. 49) is showing. Due to the fact that variables

cannot be sent over a serial bus, the three different RTD values are separated by a space (Fig.

48) when sent. This space then helps the APP to differentiate between the three values and

assign them to their corresponding label. Same thing happens for the parameters value when

changed.

Having covered the reception of RTD by the APP, the next step is to send the right command

when a command button is pressed on the app. The BT command character to be sent by each

button is hardcoded and unique. Before sending the command and after the button is pressed,

the program checks that BT communication is properly stablished (Fig. 54).

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 35 of 58

Fig. 53: RTD Reception and Display Block Algorithm

Fig. 54: BT Command Sending Block Algorithm Example

4.4.- SPI Communication System

4.4.1.- Introduction

SPI stands for Serial Peripheral Interface and it is a commonly used method to connect

several devices to one single microcontroller [22]. SPI is a synchronous communication

procedure, as opposed to the usual Serial Bus explained before. This means that, alongside the

data lines, there is a clock signal connecting both the device and the microcontroller which

rules the communication process. This clock signal ensures that every piece of information is

sent or received on a falling or rising clock signal edge (Fig. 557).

Being synchronous, SPI communication allows for a faster and larger data exchange while

ensuring that no information is lost in the process. For these reasons, SPI communication is

used in this project to connect the SD Card module to the Arduino Mega as a navigation data

log.

7 Mike Grusin, “Serial Peripheral Interface (SPI)”, Tutorials, https://learn.sparkfun.com/tutorials/serial-peripheral-

interface-spi/all, accessed November, 2018

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 36 of 58

Fig. 55: SPI Communication Example

Fig. 56: SPI Bus Lines Description

Fig. 57: SD Card Adapter

SPI is also based on a Master/Slave system that allows to connect several slaves

(devices/modules) to a single Master (microcontroller). To do so, SPI communication bus

includes one extra line used to select the slave to exchange information with (Fig. 56).

4.4.2.- Hardware Design

As stated before, SPI communication is only used to log navigation data into a SD card that

will be used to analyse the retrieved data via Excel. Further explanations on this procedure are

given on Part 6 of this document.

The SD card module used in this project is a generic SD Card Adapter (Fig. 57) that is

compatible with Micro SDHC cards. This type of cards can store larger data volumes at a higher

transfer speed, allowing the data log files to be written many times over the execution of one

program cycle. This generic module is connected to the Arduino MEGA with a SPI bus.

Acronym Description

SCK Seria Clock

MOSI Master Out/ Slave In

MISO Master In/Slave Out

SS Slave Select

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 37 of 58

Fig. 58: SD Card Adapter Module Wiring Schematics and Table

Fig. 59: SPI Bus Configuration Code

 In this part, the focus will be the wiring of the SD Card module (Fig. 58) to the

microcontroller in order to stablish proper communication and the Arduino configuration code

(Fig. 59).

To configure the SPI communication for the SD card adapter, the Arduino library called “SD”
has been used [23]. The Arduino MEGA pins selected for the project are the ones defined as

default by this library (Fig. 59). Besides, the “SD” library provides the user with several file
treatment functions such as open file, save, close, create, etc… that makes it easier to create

the navigation database.

PIN CONNECTION TABLE

SD Card Module Arduino MEGA Board

VCC 5V

GND GND

MISO PIN 50

MOSI PIN 51

SCK PIN 52

CS PIN 53

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 38 of 58

Fig. 60: Example of I2C wiring

4.5.- I2C Communication System

4.5.1.- Introduction

I2C communication is another type of master/slave synchronous serial bus developed by

Philips in the 1980s in order to control several TV chips [24]. The main difference between I2C

and SPI communication is that I2C uses only two lines (Fig. 608), one for the clock signal (SCL)

and another for the data (SDA). This means that both the master and the slave can send or

receive data through the same line. To do so, each device connected to an I2C bus has its

unique hexadecimal address inside the bus.

As every device connected to the bus can be either a slave or a master, this differentiation

is made programmatically inside the microcontroller code. To stablish communication with the

right device inside an I2C bus, the master sends the device address he wants to communicate

with through the bus. Then, every device check if the address requested matches its own

address. If so, said slave sends the master an acknowledge bit indicating that the device is

ready for the sending/reception of data [25].

The main advantages of I2C communications are the following [25]:

• Simple and powerful communication interface using only two bus lines.

• Devices can be both master or slave.

• The address space allows for the connection of up to 128 different devices.

• Up to 400 kHz data transfer speed

4.5.2.- Hardware Design

As I2C communication system is fast, reliable and allows for the connection of many

devices, a great number of Arduino modules use I2C as default. In the case of this project, the

following devices are connected to the bus:

• Accelerometer (Part 2)

• Real Time Clock (RTC) (Part 6)

8 Anonymous, “I2C”, Aprendiendo Arduino, https://aprendiendoarduino.wordpress.com/2017/07/09/i2c/, accessed

January, 2019

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 39 of 58

Fig. 61: I2C Bus wiring configuration for the Glider

Fig. 62: I2C Bus unique device addresses

• Depth Sensor (Part 5)

• Display Screen Arduino Board (Part 4)

• CTD Arduino Board (Part 5)

This part will not focus on each of the devices but on the wiring and addressing of the I2C

bus. Three of these devices are Arduino modules which have their own specific library and

address. Thus, the I2C communication protocol is already assessed and there is no need for

any bus configuration. However, there are two Arduino UNO boards that will work as slaves

under the commands of the Arduino MEGA board. The bus configuration for each of these

boards will be explained in the corresponding part highlighted above.

Once the number of devices to be connected and their corresponding addresses (Fig. 62)

are defined, the different modules and boards are connected to the I2C bus (Fig. 61).

I2C BUS CONFIGURATION

Arduino

MEGA

Display Screen

Arduino UNO

CTD Arduino

UNO

RTC

Module

Depth

Sensor

Accelerometer

GND GND GND GND GND GND

5V - - - VCC VCC

3.3V - - VCC - -

Pin 20 (SDA) A4 A4 SDA SDA SDA

Pin 21 (SCL) A5 A5 SCL SCL SCL

I2C BUS ADDRESSES

DEVICE ADDRESS

Arduino MEGA Board 0x07

Display Screen Arduino UNO 0x08

CTD Arduino UNO 0x09

RTC Module 0x56

Depth Sensor 0x40

Accelerometer 0x53

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 40 of 58

5.- Vehicle Status Display Screen

5.1.- Introduction

In this part, the configuration, design and physical implementation of a display screen GUI

for the glider will be assessed. The main idea behind the addition of a screen is to have real time

data shown to the scuba divers or to the operator of the Glider while underwater. This feature

will be especially important in the testing stage of the AUV where it must be ensured that all the

different systems work properly on site. After this stage, the screen will come in handy as an

auxiliary real time data log in case the developed APP fails. To fully understand the whole design

and implementation of this device, this part will be divided as follows:

• Hardware selection

• GUI design code on Arduino UNO

• Variable configuration of I2C channel between Arduino UNO and MEGA

5.2.- Hardware selection

The first hardware component to be selected was the display screen. As with every other

part of this project, the key criteria for component selection were lightness, low cost and

modularity. Although resolution and brightness are also important features to consider, they are

not as relevant in this case as the screen does not need to display any complicated graphics or

images, just letters and real time data numbers. Taking these filters into consideration, the

selected screen was a 2.8’’ LCD Touch Screen Arduino Shield [26] (Fig. 63) from a low-cost

manufacturer called “ELEGOO” [27]. The key screen features considered are the following:

• Cost: LCD screens provide good enough resolution and brightness for the purpose of the

project and half as expensive as LED screens of the same dimensions without any touch

screen feature

• Modularity: This LCD screen comes soldered to an Arduino shield that just pops onto

and Arduino UNO board without needing any wiring. This allows for an easy and

effortless change of component if the screen ever breaks.

• Touch Screen: When selecting the screen, it was though that it would be interesting to

have some buttons on the screen so that the divers could send commands to the

microcontroller in case Bluetooth communication fails.

• Easy coding: This screen come with its own set of libraries that allow the user to easily

implement GUIs, graphics or images.

The second hardware component needed for the screen to work is the microcontroller to

operate it. As there were many pins of the Arduino MEGA board that were in use for the other

devices of the Glider, it was decided to use a second Arduino UNO board [28] (Fig. 64). This

second board takes care of the LCD screen both in current demand and graphic processing

power. Then, the two microcontrollers are connected via I2C so that the RTD collected by the

sensors on the Arduino MEGA could be display on the LCD screen on the Arduino UNO.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 41 of 58

Fig. 63: LCD Screen Arduino Shield Fig. 64: Arduino UNO Board

Fig. 65: LCD Touch Screen libraries and Pin Declaration

5.3.- GUI Design Code

With the screen and microcontroller to be used selected, the Graphical Interface is coded

onto the Arduino UNO board. As the screen is mounted on a shield, there is no need for any

wiring. Although the mapping of the pins has already been performed by the manufacturer, a

small physical modification had to be made in order to connect the ‘RESET’ pin of the screen to

the ‘RESET’ pin on the Arduino board. This way, Arduino pins ‘A4’ and ‘A5’ are free to use for I2C
communication. The rest of the wiring stays as default and it is included in the Adafruit’s screen
libraries [29][30] used for the project (Fig. 65).

#include <TouchScreen.h>
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library

// The control pins for the LCD can be assigned to any digital or
// analog pins...but we'll use the analog pins as this allows us to
// double up the pins with the touch screen (see the TFT paint example).
#define LCD_CS A3 // Chip Select goes to Analog 3
#define LCD_CD A2 // Command/Data goes to Analog 2
#define LCD_WR A1 // LCD Write goes to Analog 1
#define LCD_RD A0 // LCD Read goes to Analog 0
#define LCD_RESET A6 // A4 is used for I2C Comm so A6 is defined not to
create interferences. Reset Pin is connected to Arduino's RST pin.

// Pins for the LCD Shield
#define YP A3 // must be analog
#define XM A2 // must be analog
#define YM 9 // digital or analog pin
#define XP 8 // digital or analog pin

With the Screen Shield – Arduino interface pins well defined, some basic parameters for the

touch screen and the LCD screen are defined. These also include the renaming of some variables

that will be used often in the code to make it easier such as colour names. Then, the LCD screen

and Touch Screen are declared in the code as different objects and initialized (Fig. 66).

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 42 of 58

Fig. 66: Screen Parameter Definition and Set Up

Fig. 67: Glider’s Welcome Screen Code

#define MINPRESSURE 1
#define MAXPRESSURE 600

// Calibration mins and max for raw data when touching edges of screen
#define TS_MINX 194
#define TS_MINY 130
#define TS_MAXX 909
#define TS_MAXY 905

// Assign names to some common 16-bit color values:
#define BLACK 0x0000
#define BLUE 0x001F
#define RED 0xF800
#define GREEN 0x07E0
#define CYAN 0x07FF
#define MAGENTA 0xF81F
#define YELLOW 0xFFE0
#define WHITE 0xFFFF

Adafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, LCD_RESET);

TouchScreen ts = TouchScreen(XP, YP, XM, YM, 300);

void TFTsetup(){
 tft.reset();
 uint16_t identifier = tft.readID();
 tft.begin(identifier); //Start communication with TFT screen
}

This first part of the code resets the screen every time it is powered up and re-establish

communication between the microcontroller and the screen which are now ready to exchange

data. The next part of the code deals with the graphical design of the GUI. To do so, the Adafruit’s
libraries provide the user with several “drawing” functions. The ones that are mainly used in this

project are:

• tft.fillScreen (WHITE)

• tft.drawRect (0, 0, 191, 331,

BLACK)

• tft.fillRect (0, 0, 190, 330, BLUE)

• tft.fillTriangle (20, 0, 100, 0, 20, 110,

CYAN)

In every function, each set of two numbers is the exact location, in pixels, of one of the

object’s vertex. As such, the rectangles are defined by the coordinates of two opposed vertexes

whereas in the case of a triangle, the location of the three vertexes is needed. The last argument

of the function is the colour of the object to be drawn. Taking this into account and using a trial

and error system, the welcome screen for the Glider is coded (Fig. 67) and displayed (Fig. 68).

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 43 of 58

Fig. 69: RTD Glider Screen Design Code

Fig. 70: RTD Glider Screen Display Working

Fig. 68: Glider’s Welcome Screen on Display

Apart from drawing shapes and images, the library also allows the user to write text with the

following functions:

• tft.setCursor(10, 85)

• tft.setTextColor(BLACK)

• tft.setTextSize(3)

• tft.println("ALBA GLIDER 3 GUI")

This is the common sequence in which any text or number is written on the screen. First, the

cursor is placed at one exact location, in pixels, inside the screen. Then, the colour and size of

the text is selected. Finally, the text is printed in the selected location with the selected

parameters.

These functions help in the design of the next screen (Fig. 69), which appears shortly after

the welcome screen and it displays the Real Time Data of the Glider. This screen displays the

Glider’s Pitch Angle, Depth, Temperature, Target Angle and Margin using numeric values coming
from the sensors. Besides, the screen also displays the attitude control mass position by means

of small graphic representing a bar that increases or decreases depending on the mass’ position

(Fig. 70).

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 44 of 58

On the first version of this screen, using the touch screen feature was also considered and a

different interface, including buttons that could send commands to the Glider, was designed.

However, due to the inherent difficulty of using a touch screen underwater and the fact that

adding a compartment to the AUV’s shell would compromise the structure of the vehicle, the

idea was discarded and thus not included in this work. The next part will deal with the updating

and refreshing of the RTD together with the communication variables used to exchange

information between the boards.

5.4.- I2C Channel Configuration and Variables

5.4.1.- I2C Communication Between Arduino Boards

As opposed to most I2C Arduino modules that have their own libraries to deal with the

communication procedure, when connecting two Arduino boards, their addresses, roles and

data variables to be exchanged in the I2C bus must be declared. This declaration has to be

performed on both Arduino boards and all of the variable must have the exact same name for

the I2C bus to work. Apart from this, two generic communication libraries [31][32] are used

for the connection to work (Fig. 71-72).

Fig. 71: I2C Bus Configuration on Arduino MEGA (Master) Fig. 72: I2C Bus Configuration on Arduino UNO (Screen)

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 45 of 58

With the help of these libraries, the procedure to communicate both boards is the
following:

1. Define the name of the “Slave” device on both bords (‘UNO’ in this case).
2. Define the Bus Address for both the “Master” and the “Slave” (7 for MEGA, 8 for

UNO board).
3. Create an identical data structure that contains exactly the same variables in each

board. The name of the structure may differ from one board to another
(RECEIVE/SEND_DATA).

4. Define the name that the structure will have on the bus. This name must be exactly
the same for both boards (science).

5. On the set up of each board, enter the bus with the assigned address (“Wire.begin
(…)”) and start the communication with the declared “Slave” using the declared
data structure on both boards (“UNO.begin(details(science), &Wire)”).

5.4.2.- Screen Real Time Data Update

Once the communication is stablished, the screen module will be constantly checking for

any information update on the I2C bus. To do so, a receive event is created so that each time

the Arduino UNO detects new data on the bus, the screen variables are updated (Fig. 73).

void setup() {

 Wire.onReceive(receiveEvent); // register event
}

void loop() {
 if(UNO.receiveData()){
 d = science.depth;
 t = science.temp;
 a = science.inAngle;
 pos = science.posRail;
 setA = science.setAngle;
 mar = science.margin;
 //h = science.hours;
 //m = science.minutes;
 //s = science.seconds;
 }

// function that executes whenever data is received from master

void receiveEvent(int numBytes) {
 //UpdateDate(h, m, s);
 UpdateData(a, d, t, pos, setA, mar);
 }

Following the spirit of the rest of the project, the Arduino UNO code for the screen is also

programmed in a modular way. Functions as “UpdateData” or “UpdateDate” are user created
and they take care of refreshing the values passed to the function on the screen (Fig. 74). As

said before, the program checks for any data received through the bus every cycle and updates

the variables if so. The values coming from the RTC (h, m and s) were commented out of the

code due to the fact that it made the communication very slow causing a great loss of RTD.

Fig. 73: Screen Module Update Routine Code

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 46 of 58

Fig. 75: Arduino MEGA I2C Data Update and Send Code

The “UpdateData” function uses the same drawing capabilities explained on part 4.3.
However, to fill the rectangle for the mass position (Fig. 70), one of the coordinate values for

the “tft.fillRect” function is dynamic and depends on the I2C variable called “Rpos”. The rest
of the RTD values are simply printed on their assigned places. In order to ensure a proper

refresh of the screen, a black rectangle covering the values is drawn before printing the new

ones.

The final aspect of the communication between the boards is to know how and when the

data is sent from the sensor board (Arduino MEGA) to the screen module (Arduino UNO).

Inside the Arduino MEGA code, the sensor values are stored in local variables. Then, the I2C

communication variables are updated with the local values in the following cases: when the

program starts, every time the motor moves or every 20 program cycles if none of these

happen. Once updated and ready to be transmitted, they are sent though the bus to the screen

using the function ‘DEVICENAME.sendData(“DEVICEADDRESS”)’ (Fig. 75).

Fig. 74: Screen Module Data Update Function

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 47 of 58

Fig. 77: Nose Hull for CTD and Optical Comm System Housing Fig. 76: CTD Module Controller and Sensors Setup

6.- CTD Sensor Module

6.1.- Introduction

The CTD module is a cluster of sensors that allow for the measurement of 3 main magnitudes:

Conductivity, Temperature and Depth [33] (Fig. 769). This last magnitude is obtained from water

pressure values and a simple transfer function. The measurement of these magnitudes is the

heart of the Glider as the data gathered by this set of sensors will allow for the monitoring of

the area that the vehicle is exploring and also provide a ground on which environment

predictions can be based. Inside the Glider, this module will be safely located at the nose of the

vehicle (Fig. 77) and close to the water that surrounds it in order to obtain the most accurate

measurements possible and the water samples for the conductivity measurements.

Given the importance of this data, it is mandatory to store it, as frequently as possible, in a

safe place during the Glider’s journey. For this reason, the Arduino UNO board that collects the

data and controls the sensors inside the CTD module will be connected via I2C to the Arduino

MEGA board of the Glider so that the sensor data can be stored inside an SD Card for later

analysis.

As the development and coding of this module was performed by another colleague student

called José Luis Pérez, this part will focus on the connection of the two boards and the exchange

of data between them. Data storage and database structure will be further assessed in Part 6 of

this work.

6.2.- I2C Communication Procedure

As it has been explained in part 3.5 of this document, the Arduino boards are connected

together using the I2C interface and their corresponding SCL and SDA pins (Fig. 61). The coding

needed to establish the communication is almost identical to the one used for the display screen

and the Arduino MEGA board, explained in part 4.4.1. This means that the libraries and data

structure used are the same. However, the variables to be transmitted and the device address

for the CTD module change (Fig. 78).

9 Image provided by Jose Luis Pérez from his work.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 48 of 58

Fig. 78: I2C Bus Configuration for Arduino MEGA (left) and CTD Module (right)

Fig. 79: Arduino MEGA Data Reception (left) and CTD Variables Update & Sending Code (right)

Opposed to the Arduino MEGA – Display Screen connection, the master device is now

receiving data from the CTD module instead of sending local data to the screen module. Thus,

the receive event is inside the Arduino MEGA code shown. The data structure that will be used

is called “ctd_data” on both boards and it includes the 5 measurements coming from the CTD

module sensors. In order to obtain the most faithful reading from the module, three different

thermometers are used to obtain the average temperature of the water. These three

measurements are related to variables ‘tempA’, ‘tempB’, ‘tempC’.

Every cycle, the program checks for new data available on the I2C bus and, if there is new

data, the local variables inside the Arduino MEGA board are updated and stored in the SD Card

(Fig. 79).

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 49 of 58

Fig. 80: Honeywell Pressure Sensor Data Adquisition and Handling Code

6.3.- CTD Data Log

In order to keep all the information coming from the CTD sensors well organized, each time

the Arduino MEGA is powered up, a file called ‘LOGCTD.csv’ is created, which will store the

readings coming from the sensors using comma separated values. This file is updated every time

the local values on the Arduino MEGA are updated (Fig. 79) using the ‘WriteSensorValues’
function. This user defined function will be further explained in the next part of this work.

The update of the CTD sensor values is performed every 100 milliseconds in order to obtain

a solid real time data base. With this many data logs, time-variant graphs can be obtained from

the sensors measurements in order to analyse the data and perform predictions based on it.

6.4.- Honeywell Depth Sensor

As the focus of this part is made on sensor data, it is important to mention that another

standalone pressure sensor is included in the vehicle. In the same way as in the CTD pressure

sensor, this sensor transforms an atmospheric pressure reading into a depth value in meters

using the formulas found on the datasheet of the Honeywell ASDX Sensor Series [34] (Fig. 80).

This depth value is then used for display on the mobile APP and logged into a “.csv” file for
later analysis.

As with the CTD module, this sensor is also connected to the Arduino by the I2C bus which

sends over the analog readings to be interpreted. However, the data acquisition code is included

as a standalone module which means that the variable containing the depth value must be

exported to the main control code. This is achieved by using the same structure procedure as

for the I2C communication between boards (Fig. 78) only this time the “struct” only contains
one variable. Then, on the main code, the data acquisition function is called at the same time

the display screen is updated and so are the variable values. Then, they are logged into the

“LogHONEY.csv” database which we be further explained in the next part.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 50 of 58

Fig. 81: SD Card Module User Defined Functions

7.- SD Card Data Log

7.1.- Introduction

In this part, the date storage capabilities of the Glider will be assessed together with

explanations on the libraries and code used to perform the data log into the SD Card. It is

important to remember that the main idea behind this project is to a create a low-cost AUV

which collects data from its environment to be used for biological experimentation, natural

disaster prediction or even water habitat damage assessment after said disaster.

For this reason, every subsystem on the Glider has been explained before in order to know

where every piece of data is coming from and just focus on the design of the databases and the

data analysis afterwards. Thus, this part will be organized as follows:

• Data storage libraries and code

• Database files structure

• Data analysis

7.2.- Data Storage Libraries and Code

As explained in part 3.4, the SD card adapter module uses the “SD.h” [23] library in order to

manage the SPI communication with the Arduino MEGA board and it also provides some basic

data storage and file management functions. However, these basic functions must be combined

in a way that the collected data can be properly displayed for analysis. For this reason, several

new functions are created (Fig. 81) in order to structure the database in a suitable fashion. These

functions are declared as a standalone module which can be later introduced into the main code.

The new user defined functions are divided in 3 main groups:

• SD card setup: this function checks that the SD Card module is properly connected

to the Arduino MEGA board using the “SD.begin” library function and the chip select

(CS) pin defined earlier in the code. If the function returns a 0, the functions creates

a card failure warning message for the user. Otherwise, the function sets the internal

variable “SDin” to 1, which allows for the execution of the rest of the code, and tells

the user that the card is ready (Fig. 82).

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 51 of 58

Fig. 82: SD Card Setup Function Code

Fig. 83: File Creation Function Code

Fig. 84: Data Write Function Code

• File generation: this function is in charge of creating a new data log file with the

specified name using the function “SD.open”. Once created, it prints the header row
containing the name of each column in the new file. Then, the file is closed and ready

to be filled with data. In the event that the file cannot be created, a warning message

is shown (Fig. 83).

• Data write: whenever this function is called, it prints a new line in the specified file

with the values introduced as arguments. The functions requires an argument for

each column or field in the file (Fig. 84).

This section will focus on demonstrating the basic operating principles of each of the

functions and thus only one example of each will be included.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 52 of 58

Fig 85: Motor Database Significance Table

7.3.- Database File Structure

The basic structure for every database is the same: values are introduced separated by a

comma each and the header row includes a short description of each of the fields. Being real

time databases, the first row of time values is logged right at the start of the program execution,

during the setup. The following sections will provide more insight details about each database

and its data gathering goals.

7.3.1.- Stepper Motor Log File

In order to monitor the power that the mass trimming motors consume, a log file database

is created (“LogSTEPL.csv”). This database records the amount of time that the motor is moving

while taking into account its direction of movement. To do so, it has 3 fields containing real

time values up to the millisecond subdivision (RTC minutes, RTC seconds and Milliseconds) and

2 fields (Motor Forwards and Motor Backwards) that indicate whether the motor is moving, in

one direction or another, or not (Fig. 83).

Knowing how to interpret the database, it is important to know when the file is written

within the main code. As the focus is made on the motor operation, the file is written every

microcontroller cycle whether the motor moves or not. The values for the motor direction

columns are updated accordingly (Fig. 85)

Within this database, it would also be interesting to include two additional fields to keep

track of the target angle value and the vehicle’s pitch angle. This setup would show that the

motor stops when the target angle is reached. This addition would also show the proper

function of the Proportional Controller that modulates the rotation speed of the motor.

7.3.2.- CTD Sensors Log File

As it has been explained in part 5 of this document, data collection is the upmost duty of

this Glider. Regardless of the origin of the data, whether it comes from the CTD module

integrated in the vehicle or any external source, it needs to be interpreted properly in order to

make good predictions or situation assessments. That is why an independent log database

(“LogCTD.csv”) is created. This database (Fig. 86) contains 3 fields that record the real time

when the file is written (RTC_Min, RTC_Sec and Millis) and 5 other fields corresponding to each

of the CTD modules sensors (Depth, Temperature A, Temperature B, Temperature C and

Conductivity).

Motor FW Motor BW Pitch Angle Error Meaning

0 0 0 Motor is stopped

0 1 POSITIVE Motor moving backwards

1 0 NEGATIVE Motor moving forwards

1 1 - No physical meaning

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 53 of 58

Fig. 86: CTD Sensor Database Structure Definition and Creation

Fig. 87: Honeywell Sensor Database Structure Definition and Creation

Fig. 88: SD Card Honeywell Sensor Log Function

This set of data will allow for the plotting of the CTD sensor values using a real time scale.

To ensure that the data records are as close as possible to a real time monitoring of the reality,

the CTD module sends data to the Arduino MEGA board, which records the instant value of

the sensors, every 100 milliseconds.

7.3.3.- Honeywell Depth Sensor Log File

Previously explained in part 5.3, the Honeywall depth sensor provides auxiliary pressure

readings, useful for the navigation of the Glider. As this sensor is not part of the CTD module,

a new database (“LogHONEY.csv”) containing 3 fields for real time records (RTC_min, RTC_sec

and Millis) and 1 field for the Glider’s depth values overtime (Depth), is created (Fig. 87).

The log frequency is the same as the update frequency of the values on the display screen

explained in part 4 of this document. As such, the log file is written every 20 microcontroller

cycles with the depth value (“depthH”) returned from the function named “cycleScience” (Fig.

88), which ultimately uses the “getPressure” function seen earlier (Fig. 80), to obtain the right

reading.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 54 of 58

Fig. 89: Database Records displayed in Columns in Excel

Fig. 90: Motor Activation Excel Graph

7.4.- Data Analysis

As the databases are quite similar except for the number of fields and the kind of data they

contain, the arrangement of the data for its analysis is the same. For this reason, this section

will only focus on one of the files.

The program chosen for the data analysis is Excel because it is powerful enough for the kind

of graphics it is intended to generate and easy to use. Then, the first step is to arrange the CSV

values into different columns (Fig. 89).

Once the real time values are manipulated in a suitable way for the data analysis by, for

example, joining the minutes and seconds to create the labels for the graph, each of the data

fields is introduced in the graph as an independent series. This leads to a graphic representation

of a big number of records (Fig. 90).

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 55 of 58

8.- Conclusion & Results

8.1.- Results

Due to several time and budget constraints, the control system implemented in this project

has not been tested underwater. However, every system designed has proved to be working in

the lab environment. To perform a detailed results analysis of each module, they will be assessed

independently:

1. Arduino MEGA Board: as the ‘brain’ of the systems designed in this project, the
Arduino MEGA has proved to be powerful enough to properly handle every

subsystem according to the algorithm written. However, computing limitations were

found when attempting to display the data coming from the RTC module on the

screen. Besides, it is important to mention that the function in charge of moving the

stepper motors blocks the code execution until the movement is completed. These

two limitations should be considered when analysing the RTD collected by the Glider.

2. Stepper Motor Control: the hardware items selected and designed (PCB) work

flawlessly together proving to have enough torque and structural strength to pull the

trimming mass, even at a 90° angle. The control and communication algorithms

designed works as expected, allowing for the automatic and manual operation of the

motors.

3. BT Module & Communications: despite its limited range, the sending of BT

commands and the reception of RTD on the mobile device works properly together

with the designed APP. The rest of the communication procedures fulfil their jobs as

expected allowing for the communication of every module with the Arduino MEGA.

4. Display Screen: throughout the design process, several options have been studied

for the display screen. Before being used as an assistance RTD display device for the

Glider’s operator, the screen also allowed for command sending, taking advantage

of its touchscreen feature. However, the screen ended up being too full of different

buttons and so the control functionalities were laid off in benefit of the display

functionality. Both the communication and data update on the screen worked

properly.

5. CTD Module: given the fact that this module is meant to be tested mostly

underwater and it was designed by another college, only the communication and

update capabilities are assessed. As such, the communication proved to be reliable,

allowing for a regular data update.

6. SD Card Data Log: despite having the log files written many times in one

microcontroller cycle, the module copes properly with the many data accesses. The

file creation also proved to work properly creating the 3 data files with the right

structure database.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 56 of 58

8.2.- Conclusions

• Stepper motors provide a compact and viable solution to the trimming system of the

Glider while ensuring higher accuracy and torque values despite needing more

complex controllers.

• PCB design can be very useful when no manufacturer is able to offer the solution

needed. The use of PCB specific programs makes the design and fabrication process

easier and accessible to a great number of users. Together with the low fabrication

cost offered by some websites, custom PCBs make the design cleaner and more

reliable.

• Wireless communications are key as the Glider will be navigating without any human

input. Thus, the RTD update transmission has to be reliable and secure in order to

keep the vehicle located and monitored at all times.

• Modular coding helps organize the subsystems designed and makes the code more

readable and understandable whether you are familiar with it or not. Besides, coding

each module independently allow for the testing of these systems without

interfering with the main code. In a project with such amount of coding, modules are

vital.

• Within the laboratory environment, it has been proved that the control and

operation of an AUV vehicle is possible using low-cost Arduino modules and

microcontrollers without compromising its reliability or functionality.

• Different control, display, communication and storage systems have been designed

and tested under the scope of this project thus fulfilling the objectives explained in

Part 1.3. Besides, this project has proved to be a good blend of every skill acquired

within the Electronic and Automatics Degree such as control theory, coding or

digital/analog electronics.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 57 of 58

9.- References

[1] Claus B., Bachmayer R., Williams C.D., “Development of an auxiliary propulsion module for an

autonomous underwater glider, Proc. of the Institution of Mechanical Engineers”, Part M: Journal of

Engineering for the Maritime Environment, 224 (4) (2010), pp. 255-266

[2] Davis R.E., Eriksen C.C., Jones C.P., “Autonomous Buoyancy- driven Underwater Gliders”, The

Technology and Applications of Autonomous Underwater Vehicles, Taylor and Francis, London (2002):

G. Griffiths (Ed.), pp. 37-58

[3] Alvarez A., Caffaz, A. Caiti, G. Casalino, L. Gualdesi, A. Turetta, R. Viviani Folaga, “A low-cost

autonomous underwater vehicle combining glider and AUV capabilities”, Ocean Engineering, 36 (1)

(2009), pp. 24-38

[4] Webb D.C., Simonetti P.J., Jones C.P., “SLOCUM, an underwater glider propelled by environmental
energy”, IEEE Journal of Oceanic Engineering, 26 (2001), pp. 447-452

[5] Glenn S., Schofield O., Kohut J., McDonnell J., Ludescher R., Seidel D., Fanjul E., “The Trans-Atlantic

Slocum Glider Expeditions: A Catalyst for Undergraduate Participation in Ocean Science and

Technology”, Marine Technology Society Journal, 45 (1) (2011), pp. 52-67

[6] Ibidem.

[7] Busquets J., Busquets D.., Busquets J.V., “Combined Gas-Fluid Buoyancy System for Improved

Attitude and Maneuverability Control for Application in Underwater Gliders”, IFAC-PapersOnLine, 48-2

(2015) 281–287

[8] Anonymous, “Adafruit Motor Shield”, Adafruit Explore & Learn, (2012),

https://learn.adafruit.com/adafruit-motor-shield/overview , accessed January, 2018

[9] Anonymous, “DRV8825 Stepper Motor Driver Carrier, High Current, Item #2133”, Pololu Stepper

Motor Drivers, https://www.pololu.com/product/2133, accessed January, 2018

[10] https://circuitmaker.com accessed February, 2018

[11] https://www.altium.com/es/ accessed February, 2018

[12] https://www.seeedstudio.com/fusion_pcb.html accessed February, 2018

[13] Oscar Liang, “HOW TO USE GY80 ARDUINO – ADXL345 ACCELEROMETER”, (2014),
https://oscarliang.com/use-gy80-arduino-adxl345-accelerometer/ , accessed January, 2018

[14] Anonymous, “Understanding Kalman Filters”, Video and Webminar Series, (2017)

https://www.mathworks.com/videos/series/understanding-kalman-filters.html, accessed January,

2018

[15] T. Lacey, "Tutorial: The Kalman Filter", Computer Vision, http://www.cc.gatech.edu/classes/cs7322-

98-spring/PS/kf1.pdf , accessed November, 2018

[16] Cebrián Abellán, A., “Sistema de desplazamiento de masas para el control de orientación de un
Glider submarino”, DISCA, (2018)

[17] Laurentiu Badea, “Arduino library for A4988, DRV8825, DRV8834, DRV8880 and generic two-pin

(DIR/STEP) stepper motor drivers”, Stepper Driver, https://github.com/laurb9/StepperDriver, accessed

February, 2018

https://learn.adafruit.com/adafruit-motor-shield/overview
https://www.pololu.com/product/2133
https://circuitmaker.com/
https://www.altium.com/es/
https://www.seeedstudio.com/fusion_pcb.html
https://oscarliang.com/use-gy80-arduino-adxl345-accelerometer/
https://www.mathworks.com/videos/series/understanding-kalman-filters.html
http://www.cc.gatech.edu/classes/cs7322-98-spring/PS/kf1.pdf
http://www.cc.gatech.edu/classes/cs7322-98-spring/PS/kf1.pdf
https://github.com/laurb9/StepperDriver

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Page 58 of 58

[18] Luis Llamas, “CONECTAR ARDUINO POR BLUETOOTH CON LOS MÓDULOS HC-05 Ó HC-06”,
Tutoriales Arduino, (2015), https://www.luisllamas.es/conectar-arduino-por-bluetooth-con-los-

modulos-hc-05-o-hc-06/, accessed March, 2018

[19] Shah Saifur Rahman, “AT Command Mode of HC-05 and HC-06 Bluetooth Module”, (2017),
https://www.instructables.com/id/AT-command-mode-of-HC-05-Bluetooth-module/, accessed March,

2018

[20] MIT, “APP INVENTOR 2”, http://appinventor.mit.edu/explore/, accessed November, 2018

[21] Anonymous, “Scratch (programming language)”,
https://en.wikipedia.org/wiki/Scratch_(programming_language), accessed January, 2019

[22] Mike Grusin, “Serial Peripheral Interface (SPI)”, Tutorials,

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all, accessed November, 2018

[23] Anonymous, “SD Library”, Reference, https://www.arduino.cc/en/reference/SD, accessed April

2018

[24] Anonymous, “I2C”, https://en.wikipedia.org/wiki/I%C2%B2C, accessed January, 2019

[25] Anonymous, “I2C”, Aprendiendo Arduino,

https://aprendiendoarduino.wordpress.com/2017/07/09/i2c/, accessed January, 2019

[26] Dmainmon, “UNO R3 2.8 TFT Touch Screen With SD Card Socket for Arduino Board Module”,
https://www.instructables.com/id/UNO-R3-28-TFT-Touch-Screen-With-SD-Card-Socket-for/, accessed

April, 2018

[27] https://www.elegoo.com/, accessed January, 2019

[28] https://store.arduino.cc/arduino-uno-rev3, accessed February, 2018

[29] Phillip Burgess, “Adafruit GFX Graphics Library”, Adafruit Explore & Learn,

https://learn.adafruit.com/adafruit-gfx-graphics-library/overview, accessed April, 2018

[30] Anonymous, “TFTLCD-Library”, Adafruit, https://github.com/adafruit/TFTLCD-Library, accessed

April, 2018

[31] Anonymous, “Wire Library”, Reference, https://www.arduino.cc/en/Reference/Wire, accessed

March, 2018

[32] Bill Porter, “Arduino Easy Transfer”, https://github.com/madsci1016/Arduino-EasyTransfer,

accessed March, 2018

[33] Anonymous, “CTD (instrument)”, https://en.wikipedia.org/wiki/CTD_(instrument), accessed April,

2018

[34] Honeywell, “ASDX Series Silicon Pressure Sensors”, https://sensing.honeywell.com/honeywell-

sensing-asdx-series-digital-pressure-sensors-product-sheet-008095-13-en.pdf, accessed May, 2018

https://www.luisllamas.es/conectar-arduino-por-bluetooth-con-los-modulos-hc-05-o-hc-06/
https://www.luisllamas.es/conectar-arduino-por-bluetooth-con-los-modulos-hc-05-o-hc-06/
https://www.instructables.com/id/AT-command-mode-of-HC-05-Bluetooth-module/
http://appinventor.mit.edu/explore/
https://en.wikipedia.org/wiki/Scratch_(programming_language)
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all
https://www.arduino.cc/en/reference/SD
https://en.wikipedia.org/wiki/I%C2%B2C
https://aprendiendoarduino.wordpress.com/2017/07/09/i2c/
https://www.instructables.com/id/UNO-R3-28-TFT-Touch-Screen-With-SD-Card-Socket-for/
https://www.elegoo.com/
https://store.arduino.cc/arduino-uno-rev3
https://learn.adafruit.com/adafruit-gfx-graphics-library/overview
https://github.com/adafruit/TFTLCD-Library
https://www.arduino.cc/en/Reference/Wire
https://github.com/madsci1016/Arduino-EasyTransfer
https://en.wikipedia.org/wiki/CTD_(instrument)
https://sensing.honeywell.com/honeywell-sensing-asdx-series-digital-pressure-sensors-product-sheet-008095-13-en.pdf
https://sensing.honeywell.com/honeywell-sensing-asdx-series-digital-pressure-sensors-product-sheet-008095-13-en.pdf

DEPARTAMENTO DE INFORMÁTICA DE SISTEMAS Y COMPUTADORES

ESCUELA TÉCNICA SUEPERIOR DE INGENIERÍA DEL DISEÑO

UNIVERSIDAD POLITÉCNICA DE VALENCIA

2. REQUIREMENTS

TRABAJO DE FIN DE GRADO:

Grado en Ingeniería Electrónica Industrial y Automática

VALENCIA, ABRIL 2019

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR

THE NAVIGATION OF AN UNMANNED SUBMARINE

WITH ARDUINO

Autor: Fco. Javier Pérez Villaplana

Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

Development of the control electronics for the navigation of an unmanned submarine with Arduino
2. Requirements

Page 2 of 3

Index

1.- Requirements ... 3

Development of the control electronics for the navigation of an unmanned submarine with Arduino
2. Requirements

Page 3 of 3

1.- Requirements

The requirements that this project must fulfil, within the whole structure of the Glider, are

the following:

1. The attitude control system designed must be able to change the orientation of the

Glider, both in the pitch and roll axis, according to the user specifications. This needs

to be achieved by the displacement of two inertial masses that change the centre

of mass of the vehicle and thus produce a shift in its orientation. This system, joined

with the variable buoyancy system, allow for the forward movement of the Glider.

2. The Glider must be able to transmit real time information as well as storing this

information for later computer analysis.

3. The Glider must have a communication interface for the user to change its internal

parameter and set new targets for the pitch and roll angles. This should be achieved

by a Bluetooth module and a GUI designed for a mobile APP.

4. Throughout the whole design process, the cost of the different modules, sensors

and actuators must be as low as possible, using the already available materials in

the lab.

5. In order to ensure an easy repair or replacement of the components in the control

system, modularity must be applied to every sensor and actuator connected to the

Arduino board. This way, whenever something fails, it will just be a Plug & Play

repair.

6. The programming language must be C, with the Arduino syntaxis, so that every

piece of code can be added to the whole Glider project after.

7. Modularity must also be applied to the code, separating each system, sensor or

actuator into an independent module. This should be achieved with the creation of

functions that will be called on the main part of the code.

8. Space economy should also be considered, and hardware component must have

the smallest size possible. This can be achieved by including as much hardware as

possible within a PCB Arduino shield.

9. Power consumption and build quality must also be assessed in the design and

implementation of the hardware as well as in the selection of the power source for

the system.

DEPARTAMENTO DE INFORMÁTICA DE SISTEMAS Y COMPUTADORES

ESCUELA TÉCNICA SUEPERIOR DE INGENIERÍA DEL DISEÑO

UNIVERSIDAD POLITÉCNICA DE VALENCIA

3. BUDGET

TRABAJO DE FIN DE GRADO:

Grado en Ingeniería Electrónica Industrial y Automática

VALENCIA, ABRIL 2019

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR

THE NAVIGATION OF AN UNMANNED SUBMARINE

WITH ARDUINO

Autor: Fco. Javier Pérez Villaplana

Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

Development of the control electronics for the navigation of an unmanned submarine with Arduino
3. Budget

Page 2 of 3

Index

1.- Material Cost ... 3

2.- Development & Labour Cost ... 3

3.- Budget ... 3

Development of the control electronics for the navigation of an unmanned submarine with Arduino
3. Budget

Page 3 of 3

1.- Material Cost

Description Unit Cost (€/unit) Units Total Cost (€)
Arduino MEGA 2560 u 35 1 35

Arduino UNO u 20 2 40

NEMA 17 Stepper Motor u 12 2 24

DRV8825 Controller u 8 2 16

3 DIP Switch u 0,85 2 1,7

Electrolytic Capacitor u 0,35 3 1,05

2 Pin Terminal Block u 0,5 5 2,5

8 Pin Socket u 0,25 6 1,5

6 Pin Socket u 0,25 2 0,5

GY-80 IMU 10 DOF u 7 1 7

HC-06 BT Module u 3,8 1 3,8

SD Card Adapter Module u 2 1 2

RTC Module u 2,5 1 2,5

2.8'' LCD Touch Screen Shield u 15 1 15

Honeywell ASDX Pressure Sensor u 55 1 55

PCB u 1,5 1 1,5

USB Li-Po Battery u 18 5 90

 TOTAL 300

2.- Development & Labour Cost

Description Unit Cost (€/unit) Units Total Cost (€)
Project Study & Hardware Selection h 25 20 500

Software Design h 25 15 375

PCB & Hardware Design h 25 40 1000

Coding & Debugging h 25 120 3000

Assembly h 25 10 250

Testing h 25 25 625

Documentation h 25 130 3250

 TOTAL 9000

3.- Budget

Description Unit Cost (€/unit) Units Total Cost (€)
Material Cost u 300 1 300

Development & Labour Cost u 9000 1 9000

 TOTAL 9300

DEPARTAMENTO DE INFORMÁTICA DE SISTEMAS Y COMPUTADORES

ESCUELA TÉCNICA SUEPERIOR DE INGENIERÍA DEL DISEÑO

UNIVERSIDAD POLITÉCNICA DE VALENCIA

4. DIAGRAMS & SCHEMATICS

TRABAJO DE FIN DE GRADO:

Grado en Ingeniería Electrónica Industrial y Automática

VALENCIA, ABRIL 2019

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR

THE NAVIGATION OF AN UNMANNED SUBMARINE

WITH ARDUINO

Autor: Fco. Javier Pérez Villaplana

Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

Page 2 of 8

Index

1.- Connection Schematics ... 3

1.1.- DRV8825 Stepper Motor Controller Wiring .. 3

1.2.- HC-06 Bluetooth Module Wiring... 3

1.3.- SD Adapter Module Wiring ... 3

1.4.- I2C Bus Wiring Schematics .. 4

2.- Arduino Shield PCB Schematics .. 4

2.1.- Controller Shield Electric Schematic ... 4

2.2.- PCB Socket Footprint .. 5

2.3.- PCB Connection Block Footprint ... 5

2.4.- 3 DIP Switch PCB Footprint ... 5

2.5.- Decoupling Capacitor PCB Footprint ... 5

2.6.- DRV8825 PCB Footprint .. 5

2.7.- PCB Shield Dimensions Diagram ... 6

2.8.- PCB Final Layout and Routing Schematics .. 6

2.9.- PCB 3D Model ... 6

3.- Diagrams .. 7

3.1.- Planning Diagram .. 7

3.2.- AUV Trimming Control System Diagram ... 8

3.3.- Attitude Control System Flow Chart ... 8

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

Page 3 of 8

1.- Connection Schematics

1.1.- DRV8825 Stepper Motor Controller Wiring1

1.2.- HC-06 Bluetooth Module Wiring

1.3.- SD Adapter Module Wiring

1 Anonymous, “DRV8825 Stepper Motor Driver Carrier, High Current, Item #2133”, Pololu Stepper Motor Drivers,
https://www.pololu.com/product/2133

https://www.pololu.com/product/2133

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

Page 4 of 8

1.4.- I2C Bus Wiring Schematics

2.- Arduino Shield PCB Schematics

2.1.- Controller Shield Electric Schematic

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

Page 5 of 8

2.2.- PCB Socket Footprint

2.3.- PCB Connection Block Footprint

2.4.- 3 DIP Switch PCB Footprint

2.5.- Decoupling Capacitor PCB Footprint

2.6.- DRV8825 PCB Footprint

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

Page 6 of 8

2.7.- PCB Shield Dimensions Diagram

2.8.- PCB Final Layout and Routing Schematics

2.9.- PCB 3D Model

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

Page 7 of 8

3.- Diagrams

3.1.- Planning Diagram

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

Page 8 of 8

3.2.- AUV Trimming Control System Diagram

3.3.- Attitude Control System Flow Chart

DEPARTAMENTO DE INFORMÁTICA DE SISTEMAS Y COMPUTADORES

ESCUELA TÉCNICA SUEPERIOR DE INGENIERÍA DEL DISEÑO

UNIVERSIDAD POLITÉCNICA DE VALENCIA

5. ANNEXES

TRABAJO DE FIN DE GRADO:

Grado en Ingeniería Electrónica Industrial y Automática

VALENCIA, ABRIL 2019

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR

THE NAVIGATION OF AN UNMANNED SUBMARINE

WITH ARDUINO

Autor: Fco. Javier Pérez Villaplana

Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 2 of 63

Index

1.- Arduino MEGA Datasheet (ATmega2560) .. 3

2.- Arduino UNO Datasheet (ATmega328)... 10

3.- DRV8825 Stepper Motor Controller Datasheet ... 14

4.- ASDC Series Silicon Pressure Sensors ... 38

5.- NEMA 17 Stepper Motor Datasheet ... 44

6.- Código Completo ... 45

6.1.- Main Code ... 45

6.2.- Control Module ... 46

6.3.- SD Card Module .. 55

6.4.- Bluetooth Configuration Module .. 57

6.5.- Kalman Filter Module .. 58

6.6.- RTD Module .. 58

6.7.- Science Module ... 59

6.8.- Sensors Module... 61

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 3 of 63

1.- Arduino MEGA Datasheet (ATmega2560)1

1 http://www.mantech.co.za/datasheets/products/A000047.pdf

http://www.mantech.co.za/datasheets/products/A000047.pdf

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 4 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 5 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 6 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 7 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 8 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 9 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 10 of 63

2.- Arduino UNO Datasheet (ATmega328)2

2 https://www.farnell.com/datasheets/1682209.pdf

https://www.farnell.com/datasheets/1682209.pdf

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 11 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 12 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 13 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 14 of 63

3.- DRV8825 Stepper Motor Controller Datasheet3

3 https://www.pololu.com/file/0J590/drv8825.pdf

https://www.pololu.com/file/0J590/drv8825.pdf

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 15 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 16 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 17 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 18 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 19 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 20 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 21 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 22 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 23 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 24 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 25 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 26 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 27 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 28 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 29 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 30 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 31 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 32 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 33 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 34 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 35 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 36 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 37 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 38 of 63

4.- ASDC Series Silicon Pressure Sensors4

4 https://sensing.honeywell.com/honeywell-sensing-asdx-series-digital-pressure-sensors-product-sheet-
008095-13-en.pdf

https://sensing.honeywell.com/honeywell-sensing-asdx-series-digital-pressure-sensors-product-sheet-008095-13-en.pdf
https://sensing.honeywell.com/honeywell-sensing-asdx-series-digital-pressure-sensors-product-sheet-008095-13-en.pdf

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 39 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 40 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 41 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 42 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 43 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 44 of 63

5.- NEMA 17 Stepper Motor Datasheet5

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 45 of 63

6.- Código Completo

6.1.- Main Code

// ******************* Libraries
#include <Arduino.h>
#include <TimerOne.h> // No analogWrite() in pins 9 y 10
#include <Wire.h>
#include <ADXL345V.h>
#include <EEPROMex.h>
#include <PID_v1.h>
#include <RTClib.h>
#include <SoftwareSerial.h>
#include <EasyTransferI2C.h>

// ******************* Modules
#include "control.h"
#include "data.h"
#include "process.h"
#include "user.h"
#include "communication.h"
#include "sensors.h"
#include "DHT.h"

#define TICK_MS 10
#define CYCLE_MS 50
#define MAX_CONT_TEST 20 // 6000 = 5 minuto

unsigned long ContTest = 0;

void setup()
{
 startProcess();
 startUser();
 startCommunication();
 startData();
 startControl();

 ContTest = 0;
/*
 Timer1.initialize(TICK_MS * 1000); // initialize timer1, and set
0,1s
*/
 Timer1.attachInterrupt(isr_Timer1); // attaches isr overflow
interrupt
}

void isr_Timer1()
{
 tickProcess();
 tickData();
 tickControl();
 tickUser();
 tickCommunication();

5 https://www.pololu.com/file/0J714/SY42STH38-1684A.pdf

https://www.pololu.com/file/0J714/SY42STH38-1684A.pdf

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 46 of 63

}

void FullTest()
{
 testProcess();
 testData();
 testControl();
 testUser();
 testCommunication();
}

char end_condition() { return 0;}

void FullEnd() {
 endProcess();
 endUser();
 endCommunication();
 endData();
 endControl();
}

void loop()
{
 cycleProcess();
 cycleData();
 cycleControl();
 cycleUser();
 cycleCommunication();

 if (ContTest++ > MAX_CONT_TEST) {
 ContTest = 0;
 FullTest();
 }

 if (end_condition()) FullEnd();

 delay (CYCLE_MS);
}

6.2.- Control Module

// CHANGES MADE IN PRINT FUNCTIONS IN ORDER TO WORK WITH ANDROID APP
DEVELOPED
//***************LIBRARIES & MODULES********************
#include <Arduino.h>
#include <Wire.h>
#include <ADXL345V.h>
#include <PID_v1.h>
#include <SoftwareSerial.h>
#include <EasyTransferI2C.h>

#include "RTClib.h"
#include "RTC.h"
#include "control.h"
#include "filter.h"
#include "science.h"
#include "record.h"

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 47 of 63

#include "BasicStepperDriver.h"
#include "SDCard.h"
//**

#define miSerial Serial // OJO poner Serial3 para blue (Bluetooth now
connected to Serial Port 0, same as USB)
#define miSerialEvent serialEvent

//I2C communication for TFT screen & CTD Sensors
EasyTransferI2C UNO;
EasyTransferI2C CTD;
#define MASTER_ADDR 7 //I2C Master
#define UNO_ADDRESS 8 //I2C slave address
#define CTD_ADDRESS 9 //I2C CTD sensors slave address

struct CTD_DATA{
 int16_t depth;
 float tempA;
 float tempB;
 float tempC;
 float conduct;
};

CTD_DATA ctd_data;

struct SEND_DATA{
 int depth;
 int temp;
 double inAngle;
 int posRail;
 double setAngle;
 int margin;
 int hours;
 int minutes;
 int seconds;
};

SEND_DATA science;

//Struc to save the values coming from sensor in different modules
struct sciData{
 int depthH;
 int temp;
};

#define SW1 6
#define SW2 7

#define MAX_RAIL 120 //Length of the endless screw after testing with
some margin (MAX = 275)
#define MOTOR_STEPS 200 //200 steps per revolution (1.8º)
#define MICROSTEPS 4 //1/4 steps (Best method for smoothness and
torque)

//Pin configuration for motor
#define DIR 10 //(9)
#define STEP 11 //(8)
#define ENABLE 13

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 48 of 63

int stepRPM = 120; //Speed of Stepper Motor
int RPM_a = 0;
long delta_tetha=0; //Angle difference for P control
unsigned long timer=0, delta_t=0; //delta time or how long it takes to
execute data acquisition

//Variables for measurement of On/Off motor periods
unsigned long TOnFWAcc = 0; //Forward tray motion
unsigned long TOnBWAcc = 0; //Backwards tray motion
unsigned long Mstart = 0; //Measure of the cycle period

int accx,accy,accz; // integer Read from Accel

double setAngle, inAngle, outAngle; //Define Variables we'll be
connecting to in PID
double angleOFF=0; //Angle offset for trimming procedure
//double kp = 2.0, ki = 0.0, kd = 0.0;
int margin = 10;
int numCycle=0, showAccel=0;
int posRail=60;
unsigned long timerChange = 0;

//SD information log variables.
int m=0, s=0, M_OnFW=0, M_OnBW=0;
unsigned long MesMillis = 0;

BasicStepperDriver stepper(MOTOR_STEPS, DIR, STEP, ENABLE); //Stepper
driver declaration

// PID::PID(double* inAngle, double* outAngle, double* setAngle,
double Kp, double Ki, double Kd, int ControllerDirection)
//PID myPID(&inAngle, &outAngle, &setAngle, kp, ki, kd, DIRECT);

ADXL345 adxl; //variable adxl is an instance of the ADXL345 library

//SoftwareSerial softSerial(31, 30); // RX, TX for Bluetooth

//CTD sensor variable for reception
int16_t depth=0;
float tempA=0, tempB=0, tempC=0, conduct=0;

//************** Functions

void command(const char* cmd, int num_bytes_response) {
 delay(1000);
 //miSerial.print(cmd);
 delay(1500);
 for (int i=0;i<num_bytes_response;i++)
 Serial.write(miSerial.read());
}

void initBlue() {
 command("AT",2);// response: OK
 command("AT+VERSION",12);// response: OKlinvorV1.5
 command("AT+NAMEGlider3",9);//response: OKsetname
 command("AT+BAUD4",8);//response: OK9600
 command("AT+PIN1234",1);//response:
}

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 49 of 63

void readSensors()
{
}

void writeActuators()
{
}

void receiveEvent(int numBytes){
 }

void startControl()
{
 //Communication
 miSerial.begin(9600);
 Wire.begin(MASTER_ADDR);
 UNO.begin(details(science), &Wire);
 CTD.begin(details(ctd_data), &Wire);
 Wire.onReceive(receiveEvent);

 //RTC module
 //initializeRtc(); //Use only once, the battery will keep the time

 // Blue
 //initBlue(); //Uncomment only for configuration of new BT
module

 // Accelerometer
 adxl.powerOn();

 //SD Card Initialization
 SDSetup();
 CreateMotorLogFile();
 CreateSensorLogFile();
 CreateHoneyWellLogFile();

 // Timer functions
 //RTC data adquisition
 m = getMinute();
 s = getSecond();
 Mstart = millis(); //Starting value of millis when RTC is measured
 timer = millis(); // For Filter
 WriteMotorValues(m, s, Mstart, M_OnFW, M_OnBW); //Log into SD card
 WriteSensorValues(m, s, Mstart, depth, tempA, tempB, tempC,
conduct); //Log sensors values to SD

 // Stepper Motor
 stepper.begin(stepRPM, MICROSTEPS); //Motor initial parameters
 stepper.enable();

 // SW
 pinMode(SW1, INPUT_PULLUP);
 pinMode(SW2, INPUT_PULLUP);

 setAngle = 0; //Angle initialization

 /* PID
 inAngle = 0.0;
 myPID.SetMode(AUTOMATIC);
 myPID.SetOutputLimits(40, 200);
 */

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 50 of 63

 //miSerial.println("startControl");
}

void cycleControl()
{
 numCycle++;
 readSensors();
 writeActuators();
 M_OnFW = 0;
 M_OnBW = 0;

//Check if data is received from the CTD sensors and assign values to
local variables
 if(CTD.receiveData()){
 depth = ctd_data.depth;
 tempA = ctd_data.tempA;
 tempB = ctd_data.tempB;
 tempC = ctd_data.tempC;
 conduct = ctd_data.conduct;
 MesMillis = millis();
 WriteSensorValues(m, s, MesMillis, depth, tempA, tempB, tempC,
conduct);
 }

 //Send Real time to screen (Too time consuming, other method will be
assessed)
 /*
 science.hours = getHour();
 science.minutes = getMinute();
 science.seconds = getSecond();
 UNO.sendData(UNO_ADDRESS);
 */

 //Set parameter to be sent to screen
 science.setAngle = setAngle;
 science.margin = margin;
 science.depth = depth;
 science.temp = tempA;

 stepper.disable(); //Endless screw does not slip. No motor brake
needed.

 adxl.readAccel(&accx, &accy, &accz); //read the accelerometer
values and store them in variables x,y,z
 delta_t = millis() - timer; //
calculate time through loop i.e. acq. rate
 timer = millis(); // reset
timer

 inAngle = kalmanCalculate(accx, 0.0, delta_t);
 inAngle = (inAngle - angleOFF); //Compensate observed offset in
accel

 //P speed controller
 delta_tetha = (setAngle - inAngle);
 delta_tetha = abs(delta_tetha);

 RPM_a = delta_tetha*0.90; //In order to extend the range between min
and max.

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 51 of 63

 if (RPM_a >= 200){
 stepRPM = 200;
 }else if (RPM_a <= 60){ //Limiting the minimum speed to ensure
smooth motion.
 stepRPM = 60;
 } else stepRPM = RPM_a;

 //myPID.Compute();
 stepper.begin(stepRPM, MICROSTEPS);
 stepper.disable();

/*
 if (digitalRead(SW1)==0) {
 stepper.stop();
 posRail=MAX_RAIL+1;
 }
 if (digitalRead(SW2)==0) {
 stepper.stop();
 posRail=0;
 }
*/
 if (posRail<0){
 posRail=0;
 science.posRail = posRail;
 }
 if (posRail>MAX_RAIL){
 posRail=MAX_RAIL+1;
 science.posRail = posRail;
 }

 if (inAngle > setAngle + margin) {
 if (posRail<MAX_RAIL) {
 stepper.enable();
 delay(20);

 //SD card Log
 MesMillis = millis();
 M_OnFW = 1;
 WriteMotorValues(m, s, MesMillis, M_OnFW, M_OnBW);

 stepper.move(-MICROSTEPS*92); //the motor moves the tray
exactly 1mm back or forth

 MesMillis = millis();
 M_OnFW = 0;
 WriteMotorValues(m, s, MesMillis, M_OnFW, M_OnBW);

 posRail++;
 science.posRail = posRail;
 science.inAngle = inAngle;
 miSerial.print(inAngle);
 miSerial.print(" ");
 miSerial.print(posRail);
 miSerial.print(" ");
 miSerial.print(depth);
 UNO.sendData(UNO_ADDRESS);
 }
 }
 else if (inAngle < setAngle - margin) {
 if (posRail>0) {
 stepper.enable();

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 52 of 63

 delay(20); //Delay introduced to avoid power bank
automatic shutdown

 MesMillis = millis();
 M_OnBW = -1;
 WriteMotorValues(m, s, MesMillis, M_OnFW, M_OnBW);

 stepper.move(MICROSTEPS*92);

 MesMillis = millis();
 M_OnBW = 0;
 WriteMotorValues(m, s, MesMillis, M_OnFW, M_OnBW);

 posRail--;
 science.posRail = posRail;
 science.inAngle = inAngle;
 miSerial.print(inAngle);
 miSerial.print(" ");
 miSerial.print(posRail);
 miSerial.print(" ");
 miSerial.print(depth);
 UNO.sendData(UNO_ADDRESS);
 }
 }

 if (numCycle > timerChange && timerChange>1000) {
 numCycle=0;
 setAngle = -1 * setAngle;
 //miSerial.print(" changed angle: ");
 //miSerial.println(setAngle);
 }

 if (showAccel) {
 // outAngle x,y,z values - Commented out
 miSerial.println(accx);
 miSerial.print(", ");
 miSerial.print(inAngle);
 miSerial.print(", ");
 // miSerial.print(y);
 // miSerial.print(", ");
 // miSerial.println(z);
 miSerial.println(stepRPM);
 //miSerial.print(" Period On FW: ");
 //miSerial.println(TOnFW);
 //miSerial.print(" Period On BW: ");
 //miSerial.println(TOnBW);
 //miSerial.print(" Cycle Period: ");
 //miSerial.println(Ttotal);
 }
 else {
 if ((numCycle%20)==0) {
 m = getMinute();
 s = getSecond();
 //miSerial.print(inAngle);
 //miSerial.print(" ");
 }
 }
 MesMillis = millis(); //Starting value of millis when RTC is
measured
 WriteMotorValues(m, s, MesMillis, M_OnFW, M_OnBW); //Log into SD
card

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 53 of 63

}

void miSerialEvent()
{
 while (miSerial.available()){
 char ch;
 ch = (char)miSerial.read();
 //miSerial.print("Leido ");
 //miSerial.println(ch);
 switch (ch) {
 case '1':
 stepper.enable();
 delay(20);
 stepper.move(MICROSTEPS*910);
 posRail = posRail - 10;
 break;
 case '2':
 stepper.enable();
 delay(20);
 stepper.move(-MICROSTEPS*910);
 posRail = posRail + 10;
 break;
 case '3':
 stepper.enable();
 delay(20);
 stepper.move(MICROSTEPS*450);
 posRail = posRail - 5;
 break;
 case '4':
 stepper.enable();
 delay(20);
 stepper.move(-MICROSTEPS*450);
 posRail = posRail + 5;
 break;
 case '5':
 stepper.enable();
 delay(20);
 stepper.move(MICROSTEPS*240);
 posRail = posRail - 3;
 break;
 case '6':
 stepper.enable();
 delay(20);
 stepper.move(-MICROSTEPS*240);
 posRail = posRail + 3;
 break;
 case 'S':posRail = 60; break; //Once the load is trimmed, set
current position as middle position
 case 's':stepper.stop();
 angleOFF = inAngle;
 setAngle = 0;
 break;
 case 'I':stepRPM++; break;
 case 'i':stepRPM--; break;
 case 'A':setAngle++;
 //miSerial.println(setAngle);
 //miSerial.print(" ");
 //miSerial.print(margin);
 break;

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 54 of 63

 case 'a':setAngle--;
 //miSerial.println(setAngle);
 //miSerial.print(" ");
 //miSerial.print(margin);
 break;
 case 'M':margin++;
 //miSerial.println(setAngle);
 //miSerial.print(" ");
 //miSerial.print(margin);
 break;
 case 'm':margin--;
 //miSerial.println(setAngle);
 //miSerial.print(" ");
 //miSerial.print(margin);
 break;
 case 'T':setAngle = 25;
 //miSerial.println(setAngle);
 //miSerial.print(" ");
 //miSerial.print(margin);
 break;
 case 't':setAngle = -25;
 //miSerial.println(setAngle);
 //miSerial.print(" ");
 //miSerial.print(margin);
 break;
 case 'H':angleOFF = inAngle; break;
 case 'h':setAngle = 0; break;
 case 'V':showAccel = 1; break;
 case 'v':showAccel = 0; break;
 case 'X':timerChange+=1200; numCycle=0; break;
 case 'x':timerChange-=1200; numCycle=0; break;
 case 'Q':storeYes=1; numCycle=0; break;
 case 'q':storeYes=0; numCycle=0; break;
 case 'W':showrecordAngle();break;
 break;
 }
 //miSerial.print(" SP MotorSpeed: ");
 //miSerial.println(stepRPM);
 //miSerial.print(" A angle: ");
 //miSerial.println(setAngle);
 //miSerial.print(" M margin: ");
 //miSerial.println(margin);
 //miSerial.print(" X change: ");
 //miSerial.println(timerChange);
 //miSerial.print(" Q store: ");
 //miSerial.println(storeYes);

 //miSerial.println(" T Angle 10, H Horizontal, s Stop, M
margin, V vervose");
 }
}

void tickControl()
{
}

void testControl()
{
 struct sciData theSci;
 theSci = cycleScience(inAngle, tempA);
 //Honeywell dataLOG

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 55 of 63

 MesMillis = millis();
 WriteHoneyValues(m, s, MesMillis, theSci.depthH); //Log into SD
card

 science.depth = depth;
 science.temp = tempA;
 science.inAngle = inAngle;
 science.posRail = posRail;
 UNO.sendData(UNO_ADDRESS);

 miSerial.print(inAngle);
 miSerial.print(" ");
 miSerial.print(posRail);
 miSerial.print(" ");
 miSerial.print(depth);
}

void endControl()
{
}

6.3.- SD Card Module

#include <SD.h>
#include <Arduino.h>

//SPI settings
//MOSI,MISO,SCLK set as default
int CS_pin = 53;
int SDin = 1;

void SDSetup(){

 Serial.println("Initializing Card");
 pinMode(CS_pin, OUTPUT);

 //Check if card is ready
 if(!SD.begin(CS_pin)){
 Serial.println("Card Failed!!");
 SDin=0;
 return;
 }
 Serial.println("Card Ready");
 SDin=1;
}

void CreateMotorLogFile(){
 File logFile = SD.open("LogSTEPL.csv", FILE_WRITE); //Movement of
the longitudinal tray
 if (logFile){
 logFile.println(", , , ,"); //Blank line
 String header =
"RTC_Min, RTC_sec, Millis, Motor_FW, Motor_BW";
 logFile.println(header);
 logFile.close();
 }else if (SDin==1){
 Serial.println("Couldn't open log file");
 }
}

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 56 of 63

void CreateSensorLogFile(){
 File logFile = SD.open("LogCTD.csv", FILE_WRITE); //Movement of the
longitudinal tray
 if (logFile){
 logFile.println(", , , , , , ,"); //Blank line
 String header =
"RTC_Min, RTC_sec, Millis, Depth, TemperatureA, TemperatureB
, TemperatureC, Conductivity";
 logFile.println(header);
 logFile.close();
 }else if (SDin==1){
 Serial.println("Couldn't open log file");
 }
}

void CreateHoneyWellLogFile(){
 File logFile = SD.open("LogHONEY.csv", FILE_WRITE); //Movement of
the longitudinal tray
 if (logFile){
 logFile.println(", , , "); //Blank line
 String header = "RTC_Min, RTC_sec, Millis, Depth";
 logFile.println(header);
 logFile.close();
 }else if (SDin==1){
 Serial.println("Couldn't open log file");
 }
}

void WriteMotorValues (int RTC_mins, int RTC_sec, unsigned long
MesMillis, int motor_FW, int motor_BW){
 //CSV format data string
 String dataString = String(RTC_mins)+ ", " + String(RTC_sec) +
", " + String(MesMillis) + ", " + String(motor_FW) + ", " +
String(motor_BW);

 //Open file to write to, only one file open at a time
 File logFile = SD.open("LogSTEPL.csv", FILE_WRITE);
 if(logFile){
 logFile.println(dataString);
 logFile.close();
 }else if (SDin==1){
 Serial.println("Couldn't access file");
 }
}

void WriteSensorValues (int RTC_mins, int RTC_sec, unsigned long
MesMillis, int16_t depth, float tempA, float tempB, float tempC, float
conduc){
 //CSV format data string
 String dataString = String(RTC_mins)+ ", " + String(RTC_sec) +
", " + String(MesMillis) + ", " + String(depth) + ", " +
String(tempA)+ ", " + String(tempB) + ", " + String(tempC)+
", " + String(conduc);

 //Open file to write to, only one file open at a time
 File logFile = SD.open("LogCTD.csv", FILE_WRITE);
 if(logFile){
 logFile.println(dataString);
 logFile.close();
 }else if (SDin==1){

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 57 of 63

 Serial.println("Couldn't access file");
 }
}

void WriteHoneyValues (int RTC_mins, int RTC_sec, unsigned long
MesMillis, int depth){
 //CSV format data string
 String dataString = String(RTC_mins)+ ", " + String(RTC_sec) +
", " + String(MesMillis) + ", " + String(depth);

 //Open file to write to, only one file open at a time
 File logFile = SD.open("LogHONEY.csv", FILE_WRITE);
 if(logFile){
 logFile.println(dataString);
 logFile.close();
 }else if (SDin==1){
 Serial.println("Couldn't access file");
 }
}

6.4.- Bluetooth Configuration Module

#include <Arduino.h>
#include "bluetoothSetup.h"

char name[10] = "GLIDER";
char bps = '4';
char password[10] = "1234";

void configureBluetooth()
{
 pinMode(12,OUTPUT); //Changed to pin 12 as pin 13 is used by
the motor
 digitalWrite(12,HIGH);
 //If bluetooth is not conected
 delay(10000);
 digitalWrite(12,LOW);

 //Start configuration
 Serial.print("AT");
 delay(1000);

 //Configure name
 Serial.print("AT+NAME");
 Serial.print(name);
 delay(1000);

 //configure baud
 Serial.print("AT+BAUD");
 Serial.print(bps);
 delay(1000);

 //Configure password
 Serial.print("AT+PIN");
 Serial.print(password);
 delay(1000);
}

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 58 of 63

6.5.- Kalman Filter Module

/*

Extended Kalman filter applied to one axis of the accelerometer

*/

#include <math.h>
#include <MatrixMath.h>
#define PI 3.14159265358979f

//************************ Filter Variables

float x_angle=0;

float Q_angle = 0.01; //0.001 //0.005
float Q_gyro = 0.0; //0.003 //0.0003
float R_angle = 0.01; //0.03 //0.008

float x_bias = 0;
float P_00 = 0, P_01 = 0, P_10 = 0, P_11 = 0;
float y, S;
float K_0, K_1;

float kalmanCalculate(float newAngle, float newRate, int looptime)
{
 float dt = float(looptime)/1000;
 x_angle += dt * (newRate - x_bias);
 P_00 += - dt * (P_10 + P_01) + Q_angle * dt;
 P_01 += - dt * P_11;
 P_10 += - dt * P_11;
 P_11 += + Q_gyro * dt;

 y = newAngle - x_angle;
 S = P_00 + R_angle;
 K_0 = P_00 / S;
 K_1 = P_10 / S;

 x_angle += K_0 * y;
 x_bias += K_1 * y;
 P_00 -= K_0 * P_00;
 P_01 -= K_0 * P_01;
 P_10 -= K_1 * P_00;
 P_11 -= K_1 * P_01;

 return x_angle;
}

6.6.- RTD Module

#include "rtc.h"
#include <Wire.h>
#include "RTClib.h"

RTC_DS3231 RTC;
DateTime now;

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 59 of 63

//Initializes the rtc time to the current time of the PC
void initializeRtc()
{
 //Wire.begin(); // Start the I2C port
 RTC.begin(); // Initiates communication with the RTC
 //RTC.adjust(DateTime(__DATE__, __TIME__)); // Sets the date
and time of compilation
}

int getYear()
{
 now = RTC.now();
 return now.year();
}

int getMonth()
{
 now = RTC.now();
 return now.month();
}

int getDay()
{
 now = RTC.now();
 return now.day();
}

int getHour()
{
 now = RTC.now();
 return now.hour();
}

int getMinute()
{
 now = RTC.now();
 return now.minute();
}

int getSecond()
{
 now = RTC.now();
 return now.second();
}

6.7.- Science Module

#include <Arduino.h>
#include "science.h"
#include "communication.h"
#include "record.h"
#include "sensors.h"
#include <Wire.h>

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 60 of 63

struct sciData{
 int depth;
 int temp;
};

//objects to store the information from the sensors
Record recordAngle(1024,2047);
Record recordDepth(2048,3071);
Record recordTemp(3072,4096);

int contador =0;
byte storeYes=0;

void startScience()
{

}

void showrecordAngle()
{
 recordAngle.loadEE();
 recordDepth.loadEE();
 recordTemp.loadEE();
}

struct sciData cycleScience(double angle, float tempA)
{
 struct sciData sci;

 int depthH;

 //angle = mission.getAngle();

 depthH = (int)(getPressure()); //Si queremos quedarnos con un
decimal
 sci.depth = depthH;

 //temp = getTemperatureZX();
 sci.temp = tempA;

 sendUnder(angle, depthH, tempA);

 //showVar("A ", angle);
 //showVar("D ", depthH);
 //showVar("T ", tempA);
 //blueSerial.println();
 //sendUnder((int)angle, depth, temperature);

/*
 if (contador++ > 10 && storeYes) {
 recordAngle.storeEE((char)angle);
 recordDepth.storeEE((char)depth);
 recordTempB.storeEE((char)temp);
 contador=0;
 blueSerial.print("!");
 }
*/
 return sci;
}

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 61 of 63

6.8.- Sensors Module

/*

SENSOR PRESION
modelo ASDX RRX 100PG 2A5
RR: Radial Radial
X: nada
100PG: 100PSI
2: I2C ADDR 0X28
A: RANGE 10% A 90%
5: VCC = 5V

#include "sensors.h"
#include <Wire.h>
#include "DHT.h"

#define DHTPIN 2 //Select pin2 to comunicate
#define DHTTYPE DHT11 //The DHT11 is selected

#define I2C_PRESSION 40 //Unique bus address for pressure sensor
#define MEGA
#define EXT_REF 0

#define ADC_HONEYWELL 2 // Arduino analog input pin
#define ADC_ZXTEMP 1 // Arduino analog input pin

const float Null = 0.50; // Null VDC; datasheet Page 32
const float Sensitivity = 266.6; // Sensitivity mV/psi; datasheet
Page 32
// A variable that will be used by Arduino to communicate with the
sensor starts
DHT dht(DHTPIN, DHTTYPE);

//Pressure sensor
byte msb, lsb = 0;
int press = 0;
int out_Max = 14745;
int out_Min = 1600;
int P_max = 90; //psi (max.: 6.12 atm)
int P_min = 15; //psi (max.: 1.02 atm)
int P_out = 0;

//Moisture sensor
byte relePin = 8; //pin del rele
byte saPin = 13; //pin del la salida analogica (led 13 con PWM)
byte shPin = A1; //Pin del sensor de humedad
int valHumedad = 0; // valor de la humedad
byte valSalida = 0; // valor de la humedad en byte

//sensors function to initialize
void startSensors()
{
 //Start pressure sensor, wakes up I2C bus
 Wire.begin();
 //Start temperature and humidity sensor

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 62 of 63

 dht.begin();
 pinMode(relePin,OUTPUT); // Fran: ¿para que es esto?
}

void getdata(byte *a, byte *b)
{
 Wire.requestFrom(I2C_PRESSION,2); //Sends content of first two
registers
 while (Wire.available()){ //Salve may send less than requested
 *a = Wire.read(); //first byte recieved stored
here
 *b = Wire.read(); //second byte recieved stored
here
 }
}

//The pressure is read
float getPressure()
{
 getdata(&msb,&lsb);
 //Serial.print("byte 1: "); Serial.println(aa,BIN);
 //Serial.print("byte 2 "); Serial.println(bb,BIN);
 press = msb;
 press = (press << 8) + lsb;
 //Serial.print("Combined byte: "); Serial.println(c,BIN);
 //Serial.print("Count #: "); Serial.println(c);
 P_out = (((press - out_Min)*(P_max - P_min))/(out_Max - out_Min)) +
P_min; //Conversion found in datasheet
 //Serial.print(" Pressure: "); Serial.print(pressure,DEC);
//Serial.println(" psi");

 return P_out;
}

float getPressure2() {
 float pressurePSI,pressureMBAR,pressureVDC;
 int pressure;

 pressure = analogRead(ADC_HONEYWELL);
 pressureVDC = (float)pressure * 0.0048828125; // (5/1024 =
0.0048828125)
 pressureVDC = pressureVDC - Null;
 pressurePSI = pressureVDC / Sensitivity * 1000;
 pressureMBAR = pressurePSI * 68.948;

 return pressureMBAR;
}

//function that returns the temperature sensor DTH11
int getTemperature()
{
 return dht.readTemperature();
}

//function that returns the humidity sensor DTH11
int getHumidity()
{
 return dht.readHumidity();
}

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Page 63 of 63

//function that returns the humidity read by the YL-69 sensor. Returns
255 if no humidity and low humidity value if it detects
int getMoisture()
{
 valHumedad = analogRead(shPin); // reads the value of the
moisture
 valSalida = map(valHumedad, 0, 1023, 0, 255); // sets the value
at analog output range
 analogWrite(saPin,valSalida);
 //Serial.print("Humedad: ");
 //Serial.println(valSalida);

 return valSalida;
}

// Read from ZX-Thermometer (Analog with long wire plus thermistor)
// Return temp x10: 234 for 23.4ºC
int getTemperatureZX()
{
 int sensorValue;
 double temp;
 sensorValue = analogRead(ADC_ZXTEMP);
 temp = (sensorValue - 151) / 10.5;
 return(temp*10);
}

