0 UNIVERSITAT ._.
|] POLITECNICA EEEERN

DE VAL E NCIA Escuela Técnica Superior de Ingenieria del Disefio

DEPARTAMENTO DE INFORMATICA DE SISTEMAS Y COMPUTADORES
ESCUELA TECNICA SUEPERIOR DE INGENIERIA DEL DISENO
UNIVERSIDAD POLITECNICA DE VALENCIA

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR
THE NAVIGATION OF AN UNMANNED SUBMARINE
WITH ARDUINO

TRABAJO DE FIN DE GRADO:

Grado en Ingenieria Electronica Industrial y Automatica

Autor: Fco. Javier Pérez Villaplana
Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

VALENCIA, ABRIL 2019

Development of the control electronics for the navigation of an unmanned submarine with Arduino

RESUM

L’objectiu principal d’aquest projecte és el disseny dels sistemes electronics involucrats en el
control d’un Vehicle Autonom Subaquatic (VAS) fent Us del microcontrolador Arduino MEGA 2560
com a plataforma de desenvolupament, assegurant la fiabilitat i el baix cost dels sistemes
mencionats. Com es habitual en la forma de treballar amb Arduino, el projecte estara organitzat en
diferents moduls cadasct amb una funcio especifica dins del conjunt de sistemes de control.

Dintre del projecte, es trobara la caracteritzacié de sensors i actuadors, el estudi del diferents
moduls Arduino, la integracid d’aquests moduls, el disseny de I'estructura de control del VAS, aixi
com la implementacié y muntatge del moduls al xassis del vehicle.

Els principals sistemes a controlar i integrar son: control de rumb, sistemes de visualitzacid i
comunicacio, emmagatzemament de informacié i sistemes de representacié de resultats. Com es
tracta d’un projecte multidisciplinari, diversos estudiantes de I'ETSID i 'ETSINF estaran al carrec del
disseny d’altres sistemes fonamentals del VAS que s’uniran als sistemes inclosos en aquest projecte.

El codi de control desenvolupat permetra un correcte funcionament del VAS mitjangant la toma
de autonoma de decisions, en qualsevol situacio, gracies a les lectures provinents del diferents
sensors. La monitoritzacié d’aquests sistemes es de gran importancia ja que permet assegurar que
tot esta sota control i que el vehicle esta navegant dins del seu regim normal de funcionament.

Paraules Clau: VAS, Arduino, Sistemes de Control, Control de Rumb

Development of the control electronics for the navigation of an unmanned submarine with Arduino

RESUMEN

El objetivo principal de este proyecto es el disefio de los sistemas electrdnicos involucrados en
el control de un Vehiculo Auténomo Subacuatico (VAS) mediante el uso del microcontrolador
Arduino MEGA 2560 como plataforma de desarrollo, primando el bajo coste y la fiabilidad de dichos
sistemas. Como es habitual a la hora de trabajar con Arduino, el proyecto se organizard de manera
modular, donde cada mddulo realiza una funcidn diferenciada dentro del conjunto de sistemas de
control.

Dentro de este proyecto, se encontrara la caracterizacién de sensores y actuadores, el estudio
de los diferentes mdédulos Arduino, la integracién de dichos mddulos, el disefio de la estructura de
control del VAS, asi como la implementacién y montaje de dichos sistemas en el chasis del vehiculo.

Los sistemas principales a controlar e integrar son: control de rumbo, sistemas de visualizacién
y comunicacién, almacenamiento de datos y sistemas de representacion de resultados. Dado que
se trata de un proyecto multidisciplinar, varios estudiantes de la ETSID y la ETSINF se encargaran de
disefiar otros sistemas fundamentales del VAS que se unirdn a los sistemas incluidos en este
proyecto.

El cédigo de control desarrollado permitird el correcto funcionamiento del VAS mediante la
toma auténoma de decisiones, en cualquier situacién, gracias a la interpretacion de las lecturas
provenientes de los sensores. La monitorizaciéon de todos estos sistemas es de gran importancia
dado que permite asegurar que todo estd bajo control y que el vehiculo esta navegando dentro de
su régimen normal de funcionamiento.

Palabras Clave: VAS, Arduino, Sistemas de Control, Control de Rumbo

Development of the control electronics for the navigation of an unmanned submarine with Arduino

ABSTRACT

The main goal of this project is to provide a low-cost and reliable design for the electronics
systems involved in the control of an Autonomous Underwater Vehicle (AUV) using Arduino Mega
2560 as a development platform. The project will be organized in a modular fashion as it is the usual
way of working with Arduino, where each module performs a different task.

The project’s scope encompasses the characterization of the actuators and sensors, the study
of the different modules, the integrations of all the modules, the design of the control structure
and the implementation of the systems, including the mounting on the AUV chassis.

The main systems to be controlled and integrated are: attitude control systems, visualization
systems, communications, data storage and representation systems. As this is a multidisciplinary
project, several students from the ETSID and ETSINF schools will be in charge of designing other
vital systems of the AUV that will also be merged with the ones explained in this project.

The control code written will allow for the proper operation of the AUV vehicle by combining
every trace of data coming from the sensors into useful information in order to actuate
appropriately in every situation. Monitoring every subsystem is vital to ensure everything is under
control and working in a normal regime.

Keywords: AUV, Arduino, Control Systems, Attitude Control

Development of the control electronics for the navigation of an unmanned submarine with Arduino

Agradecimientos

Quiero agradecer, en primer lugar, a mis
padres por su apoyo incondicional a lo largo
de lo todos los afios de carrera y por
permitirme la gran oportunidad de cursar mis
estudios fuera de casa sin privarme de
ninguno de los aspectos que han hecho de
vida estudiantil una etapa inolvidable.

En segundo lugar, quiero dar las gracias a
mi pareja, Marlene, por ayudarme 'y
animarme en todo momento, impidiendo que
me rindiera en la realizacion de este proyecto
hasta el ultimo minuto. Sin ella, este trabajo
no seria mds que una ilusion esperando a ser
redactada.

Finalmente, quiero agradecer a todos mis
amigos y compafieros de carrera por hacer de
esta etapa algo especial.

Development of the control electronics for the navigation of an unmanned submarine with Arduino

DOCUMENTS

vk wheE

Report

Requirements

Budget

Diagrams & Schematics
Annexes

R UNIVERSITAT ﬁ
\ 7] POLITECNICA EEEESN

DE VAL E NCIA Escuela Técnica Superior de Ingenieria del Disefio

DEPARTAMENTO DE INFORMATICA DE SISTEMAS Y COMPUTADORES
ESCUELA TECNICA SUEPERIOR DE INGENIERIA DEL DISENO
UNIVERSIDAD POLITECNICA DE VALENCIA

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR
THE NAVIGATION OF AN UNMANNED SUBMARINE
WITH ARDUINO

1. REPORT

TRABAJO DE FIN DE GRADO:

Grado en Ingenieria Electronica Industrial y Automatica

Autor: Fco. Javier Pérez Villaplana
Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

VALENCIA, ABRIL 2019

Development of the control electronics for the navigation of an unmanned submarine with Arduino

1. Report

Index
Lo INEPOAUCTIONot et st ettt et e s b e e sae e st e sabe e b e ennes 6
1.1.- CoNteXtUANIZAtION ..eeieeiietie ettt st e s e s st e b e nanes 6
i Y (o 1V 1 Lo] PRSP 7
R T 0 o 1=t 1Y/ USSR SRRN 7
P o -1 T 111 - 2SR 8
3.- Attitude control SUDSYSEEMScc..oiiiiie e 10
3.0- INEFOAUCTION .ttt ettt et e e st e s bt e e s ab e e sabe e e sabeeebeeesnbeesabeeenanes 10
3.2.- PreVIOUS WOTK..c it eiiie ettt sttt sttt ettt et s e et e e st e s bt e e sateesabeeesabeesabeeesnbeesaneeenanes 10
3.3.- Hardware SEIECLIONciiuii ettt ettt st st sb e e et eneeas 11
R T B = o o 1= g Y (0] o I (T ST 11
3.3.2.- MOtOr CONTIOIIET ..ttt ettt et e sab e st e s ate e sbeeesanes 11
DRV8825 Arduino Shield PCB DESISNccevcuriiieiciiiieiiciiieeeeiiteeeesiteeessiaeeessnseeeessasseeessnseeeens 13
3.3.31- ACCEIEIOMEBLEN .. .eiiiiieiee ettt ettt ettt e sa e st e et e sbe e e sab e e sbeesbteesbaeenanes 17
3= PIECR AXIS ettt b ettt st b e b s reesaeeeneean 20
3.4.1.- Motor and Electronics HOUSING........ccccuiiiieiiiie ettt et e e e erae e e e aae e e e eaaeeeeas 21
B o] a1 o] (- =Y -2V APPSO 22
3.4.3.- Control IMmplementationcoovciiiiiiiiie e 22
3517 ROIAXIS ettt sttt et b e bttt s bt e bt e bt e beeebe e et e eaeean 26
3.5.1.- Motor and Mass HOUSINGcccoeeeuuiiiiieee ettt ee e esectteee e e e e s e e eanreae e e e e e s e s ennseneeeeeeeennns 26
3.5.2.- Transfer FUNCtion OBtENtION.......cocuiiiiiiiiee e 27
4.- COMMUNICALIONS SYSTEIMS ... 28
i R [01 4 oo [N ot o] o TSP U RSO PPTO P TOPRRPRT 28
4.2 PrOVIOUS WOTK...cutieiteeitette ettt ettt ettt sttt e te e bt e sbe e sae e sae e st e e beebeesbeesbeeeaeeeneeentean 28
4.3.- Bluetooth (BT) communication SYSTEMc.eeiiiiiiiiieciiee ettt 29
4.3.1.- HAardWare DESIZN......ueiiiciiieeeeiiiieecitee e ettt e e rtte e e e stte e e s stte e e e s atee e e s sbeeeeastaeeeenreeesennsenas 29
4.3.2.- BT Module Configuration and COde.......uuuiiiiiiiieiiiiieeeciees e e e 30
4.3.3.- Real Time Data and Android Control APP.....ceeeeeeciieee e e 32
Y o W @eT 0 0 ¢ 1U a1 or= A o] o I V] (=] o o [T 35
B.4.0.- INTFOAUCTION .ttt sttt e s et et e e st e e s bee e sabeesneeesnreesneeesaneeanne 35
4.4.2.- HAardWare DESIZN......ueiiiciiie ettt e cctee ettt e e este e e e sttee e s stae e s esabeeeesabaeeesnsaeeeennreeesennseeas 36
4.5.- 12C ComMMUNICAION SYSTOM e e e s eeens 38

Page 2 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino

1. Report

4.5.0.- INTrOAUCTION .ttt sttt e s e et e st e e bee e sabeeesneeesnreesneeesaneeanns 38
4.5.2.- HAardWare DESIZN.....uuiiiiciieeiiiieeeeiiiee e sttt e sttt e e s sbee e e ssbeeeeesbbeeesssbeeesssseeessnreeessnnseens 38

5.- Vehicle Status Display SCre@Nooouiiiiiiiiiie ettt et e e ite e e e ebae e e e eraeeeeennes 40
5. 0= INEFOAUCTION ettt ettt et e st st s e b e beesae e et e eneeas 40
5.2.- HAardware SEIECTIONccouuiiiee ettt et s 40
I TR LU B 1T =4 Yo [T PP 41
5.4.- 12C Channel Configuration and Variablescoucieiiiiiiiiiiiiiee e 44
5.4.1.- 12C Communication Between Arduino Boardscc.cceveerienieiiinseeseeeeneenee e 44
5.4.2.- Screen Real Time Data Updateoeecciiiiieciiieeeeee ettt e e 45

6.- CTD SENSOr IMOQUIEcoiiiiiiiieie ettt ettt e s bttt e et e s bt e e st e e sbe e e sareesneeesareens 47
6.1, INTFOAUCTION ..ttt ettt sttt e e st e s bt e e sat e e sabeeesabeesabeeesnbeesabeeenanes 47
6.2.- 12C CommMUNICAtION ProCEAUIE ...cocuviiiiiieiieeeiee ettt sttt et s e e e s e e 47
Lo T O D I - - T o - N 49
6.4.- HONEYWEIl DEPETN SENSOI ... ittt e et e e e e te e e e e ara e e e eate e e e e ntaeeeenrenas 49
7.-SD Card DAata LOSueiiiiiiiieiiiiiieecieee ettt e et e e et e e sttt e e et a e e e st e e e e ba e e e e antaeeeeanbteeeeanreeeean 50
7.0 INEFOAUCTION 1.ttt et ettt et s e s bt e e st e s bt e e sabeesabeeesabeesabeeenseesabeeenanes 50
7.2.- Data Storage Libraries and Code.......oouuiiiiiiiiiiieiiee ettt e e aae e e e 50
7.3.- Database File StrUCTUIooui ittt s st ee s 52
2 T] =T o] o TY ol 1Y, [o] o g W i LU 52
7.3.2.- CTD SENSOIS LOG FilB...uuuiiiiiiiiiie ettt ettt e e et e e s e e e ssaaa e e e e snbae e e sennaeeeens 52
7.3.3.- Honeywell Depth SENSOr LOG Fil.....ccccuviiiieiiiieecieie ettt 53
A DY - 1YY g =] PR 54
8.- CoNCIUSION & RESUILScoiiiiiiiiiii ettt sttt et be e b s ae e et et eeneean 55
8. RESUITS ettt sttt et e e b e s st sttt et b e re e s re e s eeare s 55
8.2.- CONCIUSIONS ..ttt sttt et et e b e st st st e e e r e e neesmeesmeeeneeenneen 56
.- REFEIENCES ...ttt e s st sttt s 57

Page 3 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Figure Index

Fig. 1: ALBA 14 HGL Glider 3D mMOdelliNgoiiviiiiiieiiieeeieee ettt ssee e e s e s svee e s e 6
Fig. 1.1: Project Planning DIagramciiiiiiiieiiiiie e ciiee e esiiee e eetee e e e tve e e seite e e e s abae e e e nbaeeeentaeeeennrenas 9
Fig. 4: Stepper Motor Datash@et......ccuiii it e s s sbee e e s 11
T I =T o o1 g T Y=L LU= g ol PSPPI 11
T A VN S =T o] o =T g 1Y/ [] o] PP PPPPPT 11
Fig. 5: Adafruit MOtor CONTIOIIEN ..ccoeieiee et e e s e e e e areeas 12
Fig. 6: “AFMotor.h” library motor control inStructionscccccueeeeeciieei e 12
Fig. 7: DRV8825 Polulu’s Breakout BOArdccceiiiiiieiiiiiiieeceiies e ccieee s sieee e esvee e s siee e s e s s 13
Fig. 8: DRV8825 BaSiC CONNECTIONSeeeiiiiiiiiiiiiiieeee e ettt e e e ettt e e e e e s e st reeeeesssssnnnereeeeessennas 13
Fig. 9: PCB ElECtIiC SCNEMALICS . .vviiiiiiiee ettt et e e et e e et re e e e abe e e e e nrae e e eeareeas 14
Fig. 11:J6-J7 JuMPEr PCB FOOTPIINT ...uiiiiiiiiiiiiiiieeee ettt ettt e e e s et e e e e s s s aeraaeeeeessennas 15
Fig. 12: H1-H2 JumMpPer PCB FOOLPIINT ..oeeiiiiiiiiiieee e ceecttree e ereirree e e e e e e st nee e e e e e e aannnnne e e e e e enas 15
Fig. 13: 3 DIP SWitCh PCB FOOTPIINT.....uiiiiiiiieeeceiiie ettt ettt e e eevee e e e eabee e e erabe e e s e nbee e e enreeas 15
Fig. 10: J1-J5 Jumper PCB FOOTPIINT ...uuiiiiiiiiiiiiiieeee ettt ettt e e e st re e e e e s s s aaraaeeeeessennas 15
Fig. 14: Decoupling Capacitors PCB FOOTPIINT........ccocciieieciiie e cciiee ettt eeve e e e e e 15
Fig. 15: DRVB825 PCB FOOTPIINT..cciiiiiiiiiiiiiiiieiiiiiieeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeseeeessessesessssssesssssessssrenens 15
Fig. 16: Arduino shield measurements (iNCHES).........cueeeviiiiiiiciiece e 15
Fig. 17: PCB Layout and ROUTING ..cccecuiiieiciiie e ceiiee ettt ettt e e tee e e e eatee e e eeaba e e e eare e e s enbaeeeenneeas 16
Fig. 18: Gerber Files for fabricationoccieiiiiii i e 16
Fig. 19: Fabricated Shield PCB.........cocuiiie ittt ettt ee e e e tee e e e eabee e s e be e e s enrae e e eeaneeas 17
Fig. 21: Implementation of PCB after Component Soldering..........cccoceveeecieeicciiee e, 17
Fig. 20: PCB 3D IMOUEL .. .uuuiiiieeie ettt ettt e e e e e eeerre e e e e e e e e e s ttbraaeeeeeeeessabssaeesaeeeessasssasaeaaeeanaas 17
Fig. 22: GY-80 ACCEI MOAUIEoveeeeee ettt et e e et e e et ee e e e be e e s e aba e e e e aneeas 17
Fig. 23: KalmMan Filter COU@ .. uiiiiiiiiiiiie ettt ee e e s ebe e e e e bee e e enareeas 18
Fig. 24: EKF Filtering measurements obtained with Glider 1..........cccocviiiiiiiiiiciie e, 19
Fig. 25: Kalman Filter EQUAtIONSccuiieeeciiee e ceieee ettt e et eetee e e e etee e e eeabee e e eeabeee e enbeeaeeanenas 19
Fig. 26: Example of AUV’s characteristic sawtooth movement.........cccccovvieeiicciee e, 20
Fig. 27: Transmission principle used for the Glider.........cccuviiieiiei e 20
Fig. 28: Attitude control system mechanical 3D design........ccccccueieeiiiiei e 21
Fig. 29: Detail of the inertial Mass traycevi e e 21
Fig. 31: Upper Side of the Moving IMass TraYc..ccceccieeeeeiiieeeeieeeeecteee e eetee e e eeteee e eetee e e e ereeeeeeanenas 21
Fig. 30: Bottom Side of the MoVINg IMass TraYccccccieeeiiiiiieecciiee e eceee e eree e esree e e sree e e e sveee e e saneeas 21
Fig. 32: Stepper Motor INitializationceeei i e 22
Fig. 33: Motor electric consumMpPtion table........ccueiiiiiiiiieciee e e e 23
Fig. 34: Sensor and control variables declarationccccccueiiieiieii e 23
Fig. 35: AUV trimming control system diagramcccccviiiieeeiieccciieie et e e e e 24
Fig. 36: Controller algorithm ... et e e e e e e ee e e e e e e 24
Fig. 37: Attitude control system flow Chartcoooiiiioce e 25
Fig. 38: Sawtooth angle change algorithm...........cooo e 26
Fig. 39: Complete trimming system 3D deSiZNcccovvuiieiiiiiie et 27
Fig. 40: Circular gear simplification for CalCulUS.........cueiiriiiii i 27
Fig. 41: Glider 1 Bluetooth receive event with commands..........ccccovviieiii e, 28
Fig. 42: HC-06 BlUEtOOth MOAUIE........oviiiiiieei e e bae e e 29
Fig. 43: Graphic representation of HC-06 module WiriNgcccceeeeciiiieciiiec et e 29
Fig. 44: HC-06 Module WiriNg TabIeccei ittt e e e e e e e e e e e e e e 30

Page 4 of 58

file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996901
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996901
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996902
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996902
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996903
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996903
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996904
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996904
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996905
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996905
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996906
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996906
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996907
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996907
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996908
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996908
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996909
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996909
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996910
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996910
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996911
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996911
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996912
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996912
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996913
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996913
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996914
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996914
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996915
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996915
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996916
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996916
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996917
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996917
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996918
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996918
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996919
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996919
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996920
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996920
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996921
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996921
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996922
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996922
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996923
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996923
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996924
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996924
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996925
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996925
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996926
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996926
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996927
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996927
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996928
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996928
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996929
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996929
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996930
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996930
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996931
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996931
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996932
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996932
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996933
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996933
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996935
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996935
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996936
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996936
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996937
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996937
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996938
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996938
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996939
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996939
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996940
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996940
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996941
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996941
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996942
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996942
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996943
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996943
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996944
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996944
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996945
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996945

Development of the control electronics for the navigation of an unmanned submarine with Arduino

1. Report
Fig. 45: HC-06 Module Configuration COAEcuiiiiiiiiiiiiiiie ettt 30
Fig. 46: Bluetooth Command Table........oooiiiiiiiie e 31
Fig. 47: Example of Command Code StrUCTUIEcccuviiieciiie ettt e 31
Fig. 48: Real Time Data Sending Through Serial Bus Procedurecccccevuieviviciececccieee e, 32
Fig. 50: APP Trim CONTIOl IMEBNU...cciiieiiieeciiee ettt ettt e et e e e etee e e et ee e e e rabe e e s e naaeeeeenneeas 33
Fig. 49: APP IMAiN IVIENUuiiiiiiiiiiiiiteee ettt ettt e e e e s s sttt e e e e e e s s s bbb eeeeeessssnsneneaaeesesanan 33
Fig. 51: APP Parameter Setting MENU L......coeeeeiiiiiiiiieeteeee ettt s e e e e e 34
Fig. 52: APP Parameter Setting MEnU [luuiiiiiiiii e e e e arrn e e e e e e 34
Fig. 53: RTD Reception and Display Block AIgOrithmcccueiiiiiiiiiiiiee e 35
Fig. 54: BT Command Sending Block Algorithm EXampleccccviiieiiiiiiiiiiecee e, 35
Fig. 56: SPI BUS LiNES DESCIIPLIONuuiiiiieieiiiiiiiiiteee e eesttte e e esrirree s e e e s e ssabar e e e e e s s e s saabeneeeesesennns 36
Fig. 55: SPI CommuUNICation EXamMPIE....cciiiuiiiiiiiie ittt ree e s e e 36
T] D O] o I Vo =T o1] PR 36
Fig. 58: SD Card Adapter Module Wiring Schematics and Tablecccccovvieviiicieiicccieee e, 37
Fig. 59: SPI Bus Configuration COEciiiiiiiiiiiiiei ettt e e e e s ebee e e 37
Fig. 60: EXampPle Of [2C WIlING c...uvviie ettt ettt e et e e e ree e e et e e e e e eabe e e s e nbaeaeeeanenas 38
Fig. 61: 12C Bus wiring configuration for the Glider.........ccccviiiiiiiiiiccie e, 39
Fig. 62: 12C Bus UNIQUE dEVICE AUUIrESSES.ueiiiciiieeieiieeeeciiee e et e e eettee e e etee e e e ebee e e e e bee e e e aae e e eeaneeas 39
Fig. 64: Arduino UNO BOard.........coiiiiiiiieieiiie e ceitee e cettee et e s eette e e eatae e e e earae e e eeabaee e eabaeesenneneeenanenas 41
Fig. 63: LCD Screen Arduing Shieldoocuiiiiieiiiei et e e 41
Fig. 65: LCD Touch Screen libraries and Pin Declaration.........cccceeeeeiieeiicciee et 41
Fig. 66: Screen Parameter Definition and SEt UPcccuveiiieiiiiiiiiie e 42
Fig. 67: Glider's Welcome SCreen COEuuiiiiiiiiiiiiiiiie ettt e et e e e svae e s s sbee e s e evee e s eareeas 42
Fig. 68: Glider's Welcome Screen on Display.........coocuiieiecciiee ettt 43
Fig. 69: RTD Glider Screen Design Codeuuiiiiiiiiiiiiiie i cciiee e cetee e ereee s esvte e e sbee e e sbee e s s svee e s e areeas 43
Fig. 70: RTD Glider Screen Display WOrKiNg.......c..cooicuiiiieciiee et ettt e 43
Fig. 71: 12C Bus Configuration on Arduino MEGA (MaSter)cccuveeeiciiiee ettt 44
Fig. 72: 12C Bus Configuration on Arduino UNO (SCrEEN) ...cccueeecuveeecieeecieeciee ettt 44
Fig. 73: Screen Module Update ROULING COUE......ccciiciiiiieciiie ettt ettt e e e 45
Fig. 74: Screen Module Data Update FUNCLIONccociiiiiiciiie et e 46
Fig. 75: Arduino MEGA I12C Data Update and Send Codecceovvemriiiieeeiiecciiieeeee e 46
Fig. 76: CTD Module Controller and SENSOrs SETUPcceeccuiieiiciiiie ettt 47
Fig. 77: Nose Hull for CTD and Optical Comm System HOUSINGcccvuveiiiiiereciiiee e e 47
Fig. 78: 12C Bus Configuration for Arduino MEGA (left) and CTD Module (right)........cccccccvvrrenneen. 48
Fig. 79: Arduino MEGA Data Reception (left) and CTD Variables Update & Sending Code (right).. 48
Fig. 80: Honeywell Pressure Sensor Data Adquisition and Handling Code.........ccccceevviviviieeeennnen. 49
Fig. 81: SD Card Module User Defined FUNCLIONSoeieiiiieiiciiee ettt e 50
Fig. 82: SD Card Setup FUNCLION COU...ciiiiiiiiiiiiie ettt ettt ere e et e e erae e e e svee e e e areeas 51
Fig. 83: File Creation FUNCLION COUE ..uuiiiiiiiiiieieeee ettt ettt e e e e e e e e e e e e e e e e e e e 51
Fig. 84: Data Write FUNCLION COUE ...uuiiiiiiii ettt e e e e e e e e e e e e nnree e e e e e e e eeaas 51
Fig 85: Motor Database Significance Table........ceeiiiiiiiiciee e 52
Fig. 86: CTD Sensor Database Structure Definition and Creation..........cccccoeeeeeiieeeecciee e, 53
Fig. 87: Honeywell Sensor Database Structure Definition and Creationccccceeeeieeeiciiee e, 53
Fig. 88: SD Card Honeywell Sensor LOg FUNCLION..........ciiiiiiiiiiiiie et 53
Fig. 89: Database Records displayed in Columns in EXCEl........ccooviiuiiiiiiieiiicciieeee e 54
Fig. 90: Motor Activation EXCel Graphccueeiiiciiiei et 54

Page 5 of 58

file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996946
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996946
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996947
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996947
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996948
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996948
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996949
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996949
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996950
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996950
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996951
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996951
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996952
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996952
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996953
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996953
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996954
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996954
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996955
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996955
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996956
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996956
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996957
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996957
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996958
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996958
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996959
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996959
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996960
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996960
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996961
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996961
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996962
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996962
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996963
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996963
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996964
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996964
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996965
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996965
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996966
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996966
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996967
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996967
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996968
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996968
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996969
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996969
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996970
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996970
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996971
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996971
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996972
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996972
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996973
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996973
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996974
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996974
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996975
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996975
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996976
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996976
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996977
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996977
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996978
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996978
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996979
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996979
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996980
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996980
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996981
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996981
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996982
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996982
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996983
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996983
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996984
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996984
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996985
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996985
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996986
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996986
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996987
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996987
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996988
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996988
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996989
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996989
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996990
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996990
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996991
file:///C:/Users/PEREZFS/Desktop/Tesis%20TFG%20-%20Javier_Pérez.docx%23_Toc3996991

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

1.- Introduction

1.1.- Contextualization

The idea of Autonomous Underwater Vehicles (AUV) has been around since 1989, when H.
Stommel first proposed the design, and later prototype, of an unmanned underwater vehicle
based on the variable buoyancy principle. This way, AUV convert part of their buoyancy force
into surge velocity, thus taking advantage of the Archimedes principle. To do so, they must
follow a sawtooth navigation pattern and should be provided with systems that are able to
produce an increase/decrease of the vehicles’ volume (water-air ballast, oil-air buoyancy
control) to induce a change in its net buoyancy.

As AUV are only propelled by this principle and not via motors, it could be said that they
glide through the water as much as their aviation counterpart glide through the air. For this
reason, some of these AUV are also called Gliders. Through the years, many different versions
of AUV have been proposed which included electric propellers [1], lube-oil filled bladders [2] or
jet pump propulsion [3]. Besides, different strategies, such as taking advantage of the ocean’s
temperature [4] or underwater currents [5] have been studied in order to reduce energy
consumption and increase the range of the Gliders. Some these designs have been a commercial
success and have been used in several oceanographic explorations and missions, including a
successful trip across the Atlantic [6].

Given the success of these vehicles, from
< the UPV, a new design, intended to reduce
the cost of fabrication of the Glider while
increasing its range and navigation
capabilities, was proposed. These series of
low-cost AUV was called ALBA Gliders and it
has been in continuous development for
several years by UPV students and professors.
The last version of the ALBA Glider, which this
project is focused on improving, is the ALBA-
14 HGL Glider [7]. This vehicle (Fig. 1%) is
designed in a modular fashion, using Arduino
as a developing platform, and it includes a hybrid buoyancy system which combines compressed
air and oil to fill the Glider’s bladders.

Fig. 1: ALBA 14 HGL Glider 3D modelling

1 Busquets J., Busquets D.., Busquets J.V., “Combined Gas-Fluid Buoyancy System for Improved Attitude and
Maneuverability Control for Application in Underwater Gliders”, IFAC-PapersOnlLine, 48-2 (2015) 281-287

Page 6 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

1.2.- Motivation

Given the unstoppable increase of chemical spills and other contaminants that end up in
our seas and oceans, underwater exploration and sampling has become increasingly more
important. It helps predict biological disasters or disturbances in the natural balance of the sea
fauna and flora such as plagues or water contamination. The main motivation for this project is
to provide sea scientist and marine biologist with a low-cost, highly efficient underwater glider
that reduces the cost of these explorations.

Personally, | find this project very interesting as its main goal is to combine different control,
visualization and data recording systems into one control structure. Fulfilling this task allows me
to characterize sensors and actuators, design control strategies and interface different modules
and systems together. Besides, it helps me to further develop my coding abilities as the control
is implemented using an Arduino Mega board. For these reasons, | think that this project is the
perfect combinations of every skill learned in the degree | studied: electronics, control
engineering and IT. Thus, | want to prove my knowledge and skills in my field of study through
this project.

1.3.- Objectives

The objective of the project is to design a solution for the attitude systems of the AUV in
charge of keeping the vehicles pitch and roll angles within the user’s specifications as well as
designing the visualization, communication and data storage systems that help the user know
the status of the vehicle in real time. The integration and mounting of all the different
subsystems will also be assessed together with explanations on the Arduino control code
written.

Page 7 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

2.- Planning

The approach chosen for the completion of this project, given the fact that it is Arduino based,
is @ modular approach. Thus, each different sensor and module will be coded and tested
independently and then merged into the main design.

First, an initial study of the previous Glider was performed to detect the main flaws of the mass
trimming systems which is one of the main points of this project. Then, a hardware selection for
the new system is carried out including motors, sensor, controller and mounting boards.

With the new stepper motors selected, it was found that the controller needed to operate them
was not manufactured as an Arduino shield and thus a custom PCB was designed to accommodate
the new controllers.

Once the hardware and control strategy for the mass trimming system were defined, Bluetooth
communication (BT) was next. In order to keep the vehicle monitored and under control, new
commands for the control system were coded and then included in a custom APP designed for the
exchange of data between the Glider and the mobile device.

Then, a screen display module was added to the project which allowed for the display of Real
Time Data (RTD) when setting up the Glider on the water surface. The 12C communication between
different Arduino board was also assessed at this point.

Following this, another Arduino board, in charge of collecting sensor data coming from a CTD
module, was added to the 12C bus. The proper communication between boards was tested
separately and then together with the rest of the 12C devices (accelerometer, RTC, etc...).

Next, an SD Card module using SPI communication is tested and added to the final design
together with an RTC module connected via I12C. The combination of these two, together with the
sensor data coming from the different sensors in the Glider, allow for the creation of a real time
data log which was also tested and validated.

Finally, every module was mounted on the back of the mass trimming system structure and
proper function of the different modules was tested when working together.

Page 8 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino

1. Report

s ™

Study of previous
Glider version

w

Control system
Hardware selection
o S

l

PCB Arduino
Shield for Motor
Controllers

|

P
Control code for |« .
- . Testing and
pitch and roll axis - h
. . validation
trimming systems >
e l vy .
" ™,
Communications
structure design
h 4 h 4 h 4
s . ™, s ™,
Bluetooth Comm SPI Comm 12C Comm
e e vy - vy
h h h 4
Connection to SD Card module Display screen
mobile device setup module comm
. l " l vy - l vy
s . ™y s ™y
APP design and Data Log Files Display screen GUI
validation design design
(. e vy " l vy
s ™y
CTD Module comm
s l ™y
Other Bus devices
comm (RTC, accel,
depth sensor)

h 4 h 4

Connection and
mounting of the
devices

w

Final test and
validation of the
whole system

Fig. 1.1: Project Planning Diagram

Page 9 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

3.- Attitude control subsystems

3.1.- Introduction

The aim of this part is to explain the design, implementation and testing of the attitude
control subsystems incorporated in the Alba glider. Working together with the oil-air buoyancy
control and the water-air ballasts, these attitude control systems ensure that the pitch and roll
angles of the Glider follow the ones selected by the user within a certain margin.

To do so, these systems are in charge of moving two inertial masses big enough to change
the centre of mass (CM) of the vehicle and create a positive or negative torque depending on
the direction of movement of these masses. Thus, this part will be divided in two subparts
related to each of the vehicle’s axes:

a) Pitch axis: The control of the pitch angle is performed by the back or forth
movements of the mass in a lineal motion along the longitudinal axis of the vehicle.

b) Roll axis: The control of the roll angle is performed in a rotational fashion where the
mass revolves around the longitudinal axis of the vehicle.

The use of stepper motors is common to both systems. This allows for a precise control of
the position of the masses in open loop. The motors are connected to an endless screw, which
is then mashed with a gear suited for each application, whether it is lineal or rotational motion.
Further explanations about the design and implementation of these systems will be provided
within this section.

3.2.- Previous work

In previous versions of the Alba Glider, the attitude control system was implemented using
DC motors which tend to be bulky, heavy and imprecise. These characteristics are not desirable
in an underwater vehicle as the weight and instability are increased with no apparent upside on
torque or power from the motor. Furthermore, after testing, it was found that these DC motors
were short on torque when the mass was pulled against gravity and compensation for this
phenomenon had to be taken into account.

To avoid this problem and improve the overall performance of the vehicle, stepper motors
will be used. The program created to run the vehicle with the DC motors (Glider 1) will be used
and modified so as to control the new motors.

This first part focuses on the modifications performed on the “Glider 1” code and the
measurements, test and calculations done in order to control the stepper motors properly while
improving the performance of the trimming systems and the code.

Page 10 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

3.3.- Hardware Selection

The very first part in order to design a control system is to know all the technical details about
the systems to be controlled. For this attitude control subsystems, two main hardware
components will be used: the stepper motor and the motor controller. These will be explained
in this section.

3.3.1.- Stepper Motor

The main concern when choosing the right motor is to fulfil the torque and power demands
required to move the masses along the Glider. After comparing technical data of several
stepper motors, the NEMA 17HS15 was chosen (Fig. 2). This motor includes a planetary
gearbox which helps deliver a higher torque at a slower speed as seen in the datasheet of the
motor (Fig. 4). This feature allows the motor to move the mass for and against gravity without
losing any step and thus keeping a precise control of the mass position.

oltaj

% STEP| A| B |C | D b 1.68A
O 1

1 - - - —

2 + - ' 2

3 + +

+ + 3 g 3
3 5 |m
Fig. 2: NEMA 17 Stepper Motor Fig. 3: Stepping Sequence Fig. 4: Stepper Motor Datasheet

After testing the motor thoroughly with the right controller, it was proved that the motor
can fulfil the task without any losses. Furthermore, using a heavier load does not affect the
performance. This is important in order to ensure proper function in a real-world scenario.

3.3.2.- Motor Controller

Due to the size and characteristics of these motors, it is impossible to drive it using directly
the Arduino Mega controller as it needs an external power source and a control circuit that
will provide power to each of the phases in the right order for the motor to step (Fig. 3).
Performing this operation via coding would consume a lot of processing power from the
Arduino Mega, slowing the process down.

Page 11 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

However, choosing the right controller is a
daunting task. The first option tested was to use
the Adafruit Motor Shield [8] based on the L293
IC (Fig. 5). This controller is intended for the
control of 4 DC motors simultaneously, or 2
stepper motors with a 4-phase configuration
such as the NEMA 17. In order to test this
controller, the motor was hooked up according
to the data sheet and tested with a simple
Arduino program using the “AFMotor.h” library
main instructions (Fig. 6).

- omm

T

Fig. 5: Adafruit Motor Controller

// Connect a stepper motor with 200 steps per revolution (1.8 degree)
// to motor port #2 (M3 and M4)

AF Stepper motor (200, 2);

motor.setSpeed(120); // 120 rpm

motor.step (92, FORWARD, SINGLE); //the motor moves the tray exactly lmm back or forth
Fig. 6: “AFMotor.h” library motor control instructions

As it can be seen, using the library makes the code simple. The only input values used to
control the motor are the motor speed, the direction, the stepping mode and the number of
steps to be performed. The controller will provide power to the motor and perform the

stepping on its own. Despite all of this, several problems were found during the test of this
controller:

e QOverheating of the IC for the demanded current (1 A max output current).
e Step control not precise enough.
e large amount of vibrations when the motor was operating.

Two options were tested as a solution for these problems:

e Soldering an additional IC on the top of the first one to increase the current output
(Piggyback).

e Search for a controller designed specifically for stepper motors of these
characteristics.

The first option was discarded as the overheating problem persisted after soldering the
additional IC. Besides, the solution looked clumsy, fragile and prone to fail at any moment.
Thus, the second solution was adopted.

To do so, different stepper motor controllers were compared in order to choose the most
appropriate one. The main concern was to avoid the overheating of the IC while providing
enough current to the motor. The controller chosen and used for both motors is a breakout
board based on the DRV8825 IC from Polulu [9] (Fig. 7).

This breakout board is designed specifically for stepper motors control and provides a
maximum current output higher than the one demanded by the motor (1.68 A) thus avoiding
the overheating. The main characteristics of this controller are the following:

Page 12 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

e Simple step and direction control interface (2 pins).

o Six different step resolutions: Full step up to 1/32-step.

e Adjustable current control to set the maximum current
output avoiding any damage to the motor when using
voltages above the motor’s rated voltage.

e 45V maximum supply voltage.

e Built-in regulator.

e Over-temperature thermal shutdown, over-current
shutdown, and under-voltage lockout.

Fig. 7: DRV8825 Polulu’s Breakout Board

VDD

Due to the fact that this little breakout board was not integrated into an Arduino shield,
compared to the Adafruit L293 controller, and given the necessity to use two controllers, one
per motor, a brand new PCB was designed in order to house both controllers and act like a
shield for the Arduino Mega. The next section will provide in-depth detail of the design and
fabrication processes of the PCB.

DRV8825 Arduino Shield PCB Design

Keeping in mind the concept of modularity and tidiness, it was decided to design a PCB
to integrate both controllers as an Arduino shield thus reducing the number of soldering
points and cables needed. The design was performed using a free development PCB web
site called “CircuitMaker” [10] developed by Altium [11]

The first part in the design is to know the basic connections and control signals needed
to control the motors stepping using the DRV8825 controller (Fig. 8).

DRV8824/ L— _ _
[+ As it can be seen, only two pins are necessary to
VMOT = 100 pF

o mpes control the motor’s stepping (STEP & DIR), MO to M2 are

¢ i Bz . .
PN 51 -] used to select the stepping mode, an enable pin should
; RESET ; A1 ¥
microcontroller E " —_—

o o also be used activate the IC and four pins are used for
GND —oir CECSREN) GND—|—‘ each of the phases of the bipolar motor.
L logic power supply Based on these connections, the electric layout of the

(2.5-5.25V)

PCB is designed (Fig. 9) taking into account the following

features of the controller:

Fig. 8: DRV8825 Basic Connections

e Stepping mode selection through 3 DIP Switches. This way, the connections are
hardwired and no pins of the Arduino Mega are wasted on mode selection.

e Decoupling capacitors close to the breakout boards and on the motor voltage
input.

e Hardwired RESET, SLEEP pins as they should always be connected to Vcc.

e ENABLE pin wired to an Arduino pin to control the activation of the IC.

Page 13 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino

1. Report
1
VMOT 5V
1 6
o W N
POWER T et 4
W1
GND ¢ VMOT
: _1rc2 |
- A ENABLE VMOT L !
: Bl MO GND =
I6 W i = R CoilsB - M1
s P T Al o M2 BI sonEe sl
baski . | L Ty ! 228l) z RESET Al f 2
GND 3 GND B T L 1 2
DET T3 o GND T 09 | Do SLEEP L 0%
B——5 e Y] B STEP FAOLT — 2 ;
DIl 5 e e)11 GND 1
510 5] g Power Coilsé - M1
DY | DRVEEZ -1 ==
hH T, H2 GND
25
D13 % j}fl’
az 2T % 1C2 VMOT
D7 ; T L D13 pLE B
- A 2 | ENABIE VMOT ey L =
| I . il Mo GND |— = ;
b - /)
23 SR - M1 B2 |- GND
D4 4 i Analog M2 Bl I~ |
D3 3 | 51 P e CoilsB - M2
g.]. 5§ Ly T e A2 | B) B
o0 %! 1 | o FAULT —————— -
T T Ble Ipw GND
D7
DRVSS23 - 2 == Coilsé - M2
GND
7 [P O
M
3 a0 4

Fig. 9: PCB Electric Schematics

As seen in the schematics, the Arduino Mega pins will be connected to the jumpers J6,
J7,H1 and H2 named as ‘D8-13’, ‘D0-7’, ‘Power’ and ‘Analog’ respectively. The connections
of both controllers to the Arduino pins are the following:

Controller 1 Controller 2
e ENABLE ->>D13 e ENABLE ->>D13
e MO-M2 ->> Hardwired to DIP Switch e MO-M2 ->> Hardwired to DIP Switch
e RESET & SLEEP ->> Hardwired to e RESET & SLEEP ->> Hardwired to
Arduino 5V Pin Arduino 5V Pin
e STEP->>D9 e STEP->>D11
e DIR->>D8 e DIR->>DI10
e FAULT ->>D6 e FAULT ->>D7

The rest of the connections are the external power source and the phases of the stepper
motors. As these pins carry the highest intensity and voltage in the circuit, the traces of the
PCB will be thicker and the jumpers, J1 to J5, have a small screw in order to secure the
connection thus avoiding damage to the motors or the power supply unit. The decoupling
capacitors are added between the main power lines so as to avoid bouncing and voltage or
current peaks.

Following these electric schematics, the footprint of each of the components is included
(Fig. 10 — 15) as they would appear on the PCB design (Fig. 17). To design the PCB with the
exact dimensions of an Arduino Mega shield, the official measurements and shape for an
Arduino shield was used (Fig. 16). After cutting out the board to the right dimensions and
shape, the components are laid out.

Page 14 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

J4

Fig. 10: J1-J5 Jumper PCB Fig. 12: H1-H2 Jumper PCB Footprint Fig. 13: 3 DIP Switch PCB Footprint

Fig. 14: Decoupling Capacitors PCB Footprint
Fig. 15: DRV8825 PCB Footprint

2.5
L 1.64
06
£ & %
—3x32 i
A
o
S w| v
~t il
= 3 2| «
A l mEEEEn —:L_ N |
| 1.8
- | 25
1 ololo
= | 26 glels
| 27
I

Fig. 16: Arduino shield measurements (inches)

The final disposition of the components (Fig. 17) is achieved after several tries with the
“autoroute” tool in order to ensure that all of the traces were at least 20 mil (inches) thick
and every connection was made without a significant amount traces overlapping.

Once the connections are validated and the routing of the traces is completed
successfully, all of the Gerber Files needed for the fabrication (Fig. 18) of the PCB are
generated using the tool designed for that purpose on ‘CircuitMaker’.

Due to the low cost of fabrication, the quality reports from other users and shipping fees
applied, the PCB was fabricated using the Chinese factory called ‘Seeed Studio’ [12] with
the following fabrication options:

Page 15 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino

1. Report
e Surface Finish: HASL e Colour: Blue
e Minimum Solder Mask Dam: e Base Material: FR-4 TG130
0.4mm e 2 layers
e Copper Weight: 1 oz. e Quantity: 10
e C(Castellated Holes: No e Buried Vias: No
e Minimum Drill Hole Size: e Thickness: 1.6 mm
0.3mm e Spacing: 6/6 mil

g‘.’.”o & &
TP

. O
00 0000 10000010

Fig. 17: PCB Layout and Routing

=] Status Report.Txt

|| v2Shield.apr || v2Shield.GTS

|| v2Shield.DRR |] V2Shield.LDP

|| V2Shield.EXTREP |] v2Shield.Outline
|| v2Shield.GBL |1 v2Shield.REP

|| V2Shield.GBO |] v2Shield.RUL

|| V2Shield.GBS =| v2Shield.TXT

|| v2Shield.GKO || v2Shield-macro....
|] v2Shield.GTL

|1 V2Shield.GTO

Fig. 18: Gerber Files for fabrication

The total cost of the fabrication and shipping was around 15 $ for 10 PCBs and, after 45
days, the final result arrived (Fig. 19). The quality was as good as expected and, after
soldering all the components (Fig. 21), the PCB was tested and validated proving that the
controllers worked as expected and the fabrication and design were not faulty.

Page 16 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

00000060 00GGGOEN

Fig. 20: PCB 3D Model Fig. 21: Implementation of PCB after Component Soldering

3.3.3.- Accelerometer

As there is no way to control the motors in closed loop unless an encoder is used, the loop
is closed through the angle reading of an accelerometer sensor that will move solidary to the
body of the Glider. The main control idea is to move the motors a small number of steps each
program period, and then check with the accelerometer measurements if the desired angle
has been reached.

Considering the need of a reliable and versatile sensor, it was decided to use the GY-80
Module [13] (Fig. 22) which merges different sensors such as:

e 3 Axis Gyroscope e 3 Axis Magnetometer
e 3 Axis Accelerometer e Barometer + Thermometer

ucc_IN©
UCC_3.3V

X’ (2 M-DROY
A_INTL
T_INT1 O

GY-80
P_XCLR

- P_EOC

Fig. 22: GY-80 Accel Module

Page 17 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

In order to transmit all of this information into the Arduino board, 12C communication is
used. 12C is Master/Slave Bus where any number of devices can be connected, each of them
have a unique address that will help identify which device is sending or receiving data. For this
application, only the Accelerometer sensor will be used, whose address is 0x53, and only the
pitch and roll axis are needed for the control.

In order to smooth out any peak that the sensor measurements may produce (Fig. 24?), a
Kalman Filter (KF) [14][15] is applied before using the measurement as valid data for the closed
loop control. As the code written in the Glider 1 for the KF works great, the same code will be
used for this version (Fig. 23).

finclude <math.h>

#include <MatrixMath.h>
#define PI 3.14159265358979f

[/ FEEE A AR AR AR A KK AR KA KRR F K Filter VAriables F A+ xkkk Ak kA xkk A XA KA XA AKX AR A KKK A * & & %

float x angle=0;

float Q@ angle = 0.01; //0.001 //0.005
float @ gyro = 0.0; //0.003 //0.0003
float R _angle = 0.01; SA0.03 A/0.008

float % _bias =
float P 00 =0, POl =0, P 10 =0, P 11 = 0;
float v, S;

float K 0, K 1;

float kalmanCalculate(float newAngle, float newRate, int looptime)
{

float dt = float (lecoptime)/1000;

=% _angle += dt * (newRate - xibiaa);

P 00 += - dt * (P_10 + P_01) + @ angle * dt;

P 01 += - dt * P_11;

P 10 += - dt * P_11;

P_11 += + Q gyro * dt;

Y = newAngle - x_angle;
S = P_00 + R _angle;

K 0 = P_00 / S;

K 1 =P 10 / S;

X_angle += EK_0 * y;
x bias += K 1 * y;

P 00 -= K 0 * P_00;
POl =K O * P 0l
P 10 -= K_1 * P_00;
P11 =K 1 * P 0l;

return x_angle;

Fig. 23: Kalman Filter code

As the code also follows a modular fashion, this piece of code is included as a standalone
module. The main aim of the KF is to deal with uncertainties, mainly white gaussian distributed
noise, in the process as well as in the sensors of the system. To do so, KF match the estimated
output of the observer (mathematical model of the system) with the real output, meaning that
the estimated value of the internal variables will converge to the real value of this internal
variable that cannot be measured directly.

2 Busquets J., Busquets D.., Busquets J.V., “Combined Gas-Fluid Buoyancy System for Improved Attitude and
Maneuverability Control for Application in Underwater Gliders”, IFAC-PapersOnlLine, 48-2 (2015) 281-287

Page 18 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino

1. Report
7ot = SEER R ‘ﬁc‘
¥ Y
4 N
."q
A\
J Y
/ Y
p———e %‘Vq
Reference
IMU input signal

e EKF output

Fig. 24: EKF Filtering measurements obtained with Glider 1

The KF is an iterative process that works in two steps: the first one computes a prediction
or “a priori Estimate” using the previous value of the estimated variable and the current input
and the second step incorporates the measurements from sensors and updates the value of
the “a posteriori estimate”. The equations that perform this iterative process (Fig. 253) are
implemented into the KF code (Fig. 23).

Prediction =
PC
1"; =~ ,—A}A
i, = A%, _, + Bu, CHO R
P =AP_A"+Q &, =1, + K, (y, — C%)
Initial estimates for P,=(I- I\’k(‘]l’;

T,_,and P, ,

Probability
density
function
Optimal state estimate

Z,

Predicted state 2
estimate L L]
2 / Measurement

Ty T, Yy Car's position x

Initial state estimate

Fig. 25: Kalman Filter Equations

Using this estimation algorithm and the measures from the sensors, the pitch and roll
angles of the Glider are obtained and fed into the control of the stepper motors in order to
keep the vehicle within user’s specifications.

With the selection of the hardware components, which are common to both attitude
control systems, well defined, the differences between the Pitch and Roll attitude control
systems will be assessed together with explanations about the Arduino code written for that
purpose.

3 Anonymous, “Understanding Kalman Filters”, Video and Webminar Series, (2017),
https://www.mathworks.com/videos/series/understanding-kalman-filters.html, accessed January, 2018

Page 19 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

3.4.- Pitch Axis

The pitch attitude control is one of the most vital systems for a Glider as its forward
movement is produce by a sawtooth trajectory (Fig. 26%) and this control systems ensures that
the angle of attack changes from negative to positive always within the user’s specifications.

As it has been already specified, this change in the pitch angle is achieved by the movement
of a mass in a longitudinal fashion along the body of the Glider. The mechanical system that
translates the rotational force of the motor into longitudinal displacement was designed by
another ETSID student, whose TFG is aimed at the mechanical design of these systems. The
principle on which this translation works is an endless screw attached to the axis of the stepper
via a pulley (Fig. 27).

No external moving parts

needed to control glider,

control managed through ’
changes in position of an ’
internal mass

4 N
4 N
/ N
7/ N
7/
'
/
4
4
4
\\/, Energy only needed at
top and bottom of each . “
S d Wings provide forward
yo’ to change buoyancy o
motion during sinking
and floating
Fig. 26: Example of AUV’s characteristic sawtooth movement Fig. 27: Transmission principle used for the Glider

In order to execute a precise control on the mass’ position, a transfer function (TF) is obtained
relating how many motor steps produce a 1mm displacement of the mass using a trial and error
method (1). First, the motor was coded to move 200 steps but, due to the reduction produced
by the planetary gearbox and the endless screw, the movement of the motor was too small to
provide a relevant measure. Then, the motor was moved different number of steps until one
complete revolution of the motor was achieved. Finally, the displacement of the moving tray
was measured for one revolution of the motor and the TF was obtained (2). The result of this
testing yielded a ratio of 735 steps/revolution, meaning that the reduction ratio included on the
motor datasheet was not correct and a new ratio was obtained (3).

Steps
Rev

Test Results — Ratio = 735 Tray displacement = 8 mm (1)

] 735 Steps
Translation TF = — = 91.88 = 92 (2)
8 mm
Rati duction = 200 2P Reduction = o> = 3.675 = 1:3.675 (3
— - = = . = H .
atio w/o reduction Rew eduction 500 3)

4 Annabel Chadbourne, “Coastal Glider Overview”, Oceanology International, (2014),
https://slideplayer.com/slide/2498065/, accessed March, 2018

Page 20 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

3.4.1.- Motor and Electronics Housing

Due to the limited space inside the Glider, the housing of all the components should be
studied carefully. Thus, every component of the housing has been designed in 3D and
fabricated via a 3D printer. This design has been part of the final project of another colleague
student, Alejandro [16]. All of the designs included belong to his work and are included here
(Fig. 28-29°) as a way to illustrate the main structure of the attitude control system housing.

gF =

Fig. 28: Attitude control system mechanical 3D design Fig. 29: Detail of the inertial mass tray

The main idea behind this clever design is to house the batteries that will power the stepper
motor in the violet mountings seen in the images. This way the batteries act as a power source
as well as dead weight for the attitude control system to work. All of the control systems
(Arduino, sensors, electronics) will be housed on the back of the moving mass tray. The real
implementation of this design together with the electronic systems is also included (Fig. 30-
31).

Fig. 30: Bottom Side of the Moving Mass Tray Fig. 31: Upper Side of the Moving Mass Tray

5 Cebridn Abellan, A., “Sistema de desplazamiento de masas para el control de orientacion de un Glider submarino”,
DISCA, (2018)

Page 21 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

3.4.2.- Control Strategy

Once the preliminary measurements and the hardware design were performed, it was time
to think of a way to control the stepper motor. Due to the fact that stepper motors are digital
systems and there is no direct feedback from the motor, the following was decided:

e The motor will move 92 steps or 1 mm every cycle until the desired angle is
achieved.

e Due to its digital nature, a simple Proportional (P) controller is implemented which
will change the speed of rotation (RPM) of the motor depending on the angle
difference between the desired angle and the measured one.

e The motor will be disabled when the desired angle or one of the ends of the moving
tray are reached so as to reduce energy consumption. Mechanical brake is provided
by the planetary gearbox and the endless screw transmission.

Using this strategy, the position of the mass is tracked at all time as the stepper motor will
not lose any steps and will move the mass exactly 1Imm each time, no matter the speed of
rotation.

3.4.3.- Control Implementation

With the strategy well defined, the solution was coded in Arduino. The control code was
implemented using the “Glider 1” code as a common ground. Thus, this section will be focused
on the changes that allowed for the control of the stepper motor.

The first part of the process is to declare the stepper motor using the “BasicStepperDriver”
library [17] together with the initialization parameters (Fig. 32) such as the Pins where the
controller is connected to the Arduino (STEP, DIR, ENABLE), the number of steps per revolution
(MOTOR_STEPS), the motor rotation speed (stepRPM) and the stepping mode (MICROSTEPS).
This last parameter was selected to be % of a step as it provides more precise movement when
the speed of rotation is changing. Even though micro stepping provides slightly less torque, the
noise and mechanical vibrations of the motor are greatly reduced. This is an important factor
in order to keep the AUV stable. Electric consumption is not a decisive factor as the current
draw in both full step and % step mode is almost the same, being the latter the one with the
least current draw (Fig. 33).

#include "BasicStepperDriver.h"

#define MAX RAIL 120 //Length of the endless screw after testing with some margin (MAX = 275)
#define MOTOR STEPS 200 //200 steps per revolutiocn (1.8°

#define MICROSTEPS 4 //1/4 steps (Best method for smoothness and torgue)

//Pin configuration for motor

#define DIR 10 //(9)

4#define STEP 11 //(8)

#define ENABLE 13

int stepRPM = 120; //Speed of Stepper Motor

BasicStepperDriver stepper (MOTOR STEPS, DIR, STEP, ENABLE); //Stepper driver declaration

Fig. 32: Stepper Motor Initialization

Page 22 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Together with the afore mentioned parameters used to declare the motor (‘stepper’), an
additional parameter regarding the physical environment of the control system is included.
‘MAX_RAIL" refers to the real length of the endless screw mounting (Fig. 28-29). This is a
constant that acts as a stop point for the motor’s movement. Whenever the internal variable
‘posRail’ reaches the ‘MAX_RAIL’ value, the motor is powered off no matter the actual angle
of the vehicle.

The next part deals with the declaration of the sensor (accelerometer) that closes the loop
and the variables used for the motor’s control (Fig. 34).

Stepping Electric
Mode consumption (A)
Full Step 1,25
% Step 0,8

Fig. 33: Motor electric consumption table

int RPM a = 0;
long delta_tetha=0; //Angle difference for P control
unsigned long timer=0, delta t=0; //delta time or how long it takes to execute data acquisition

int accx,accy,accz; // integer Read from Accel

double setAngle, inaAngle, outAngle; //Define Variables we'll be connecting to in PID
double angleOFF=0; //Rngle offset for trimming procedure

//double kp = 2.0, ki = 0.0, kd = 0.0;

int margin = 10;

int numCycle=0, showAccel=0;

int posRail=&0;

unsigned long timerChange = 0;

ADXL345 adxl; //variable adxl is an instance of the ADXL345 library

Fig. 34: Sensor and control variables declaration

The name and task inside the code of each of the variables are the following:

e RPM_a: OUTPUT variable of the control system (motor speed).

o delta_tetha: INPUT variable of the controller. It’s the difference between the user
defined angle (setAngle) and the vehicles’ real angle (inAngle).

e timer, delta_t: variable used by the KF to smooth the accelerometer measurements as
it is a time dependent algorithm.

e accx, accy, accz: variables used to store the readings of the accelerometer module in
3 axes.

e setAngle: USER defined REFERENCE for the control system.

e angleOFF: variable used for trimming the value provided by the accelerometer.

e margin: USER defined value to determine the angle values range that are within
specifications.

e posRail: internal variable used to represent the position of the moving mass inside the
vehicle.

o adxl: object declaration representing the accelerometer module.

To better understand the control system being coded, a block diagram is included (Fig. 35).
Within this diagram, the indirect feedback (via Accelerometer & KF) can be seen and
understood together with all of the system variables already explained.

Page 23 of 58

1. Report

Development of the control electronics for the navigation of an unmanned submarine with Arduino

30 G1 P In1
setAngle +/- margin (deg) NS delta_tetha (deg) w RPM_a posRail (mm) 2

setAngle (deg)

Cutl

P Controller Stepper Motor & Trimming
Mass

delta_t (ms)
u

inAngle (deg)

xhat

AUV Dynamics

accx (deg) AUV Attack Angle (deg)

y & adxl

KF Accelerometer

Fig. 35: AUV trimming control system diagram

As it has been already stated in section 2.4.2, a trial/error control strategy will be adopted

meaning that the motor will move until the desired angle is reached. Since the vehicle’s
dynamics are way too difficult to model due to the ever-changing sea environment, the vehicle
is included in the diagram (Fig. 35) as a blind subsystem block.

explain the controller algorithm (Fig. 36).

Once the variables and elements of the control system are well defined, the final step is to

adxl.readAccel (saccx, &accy, &accz); //read the accelerometer values and store them in variables x,vy,z
delta t = millis() - timer; // calculate time through loop i.e. acg. rate
timer = millis(); // reset timer

inAngle = kalmanCalculate(accx, 0.0, delta t);
inAngle = (inAngle - angleOFF); //Compensate observed offset in accel

//P speed controller
delta_tetha = (setAngle - inAngle);
delta tetha = abs(delta tetha);

RPM a = delta_tetha*0.90; //In order to extend the range between min and max.

if (RPM a >= 200){
stepRPM = 200;

lelse 1if (RPM_a <= 60){ //Limiting the minimum speed to ensure smooth motion.
StepRPM = 60;

} else stepRPM = RPM a;

//myPID.Compute () ;
stepper.begin (stepRPM, MICROSTEPS);
stepper.disable () ;

if (posRail<0){
posRail=0;
science.posRail = posRail;

}

if (posRail>MAX RATL) {
posRail=MAX RAIL+1;
science.posRail

}

posRail;

if (inAngle > setAngle + margin) {
if (posRail<MAX RATL) {
stepper.enable () ;
delay(20);

stepper.move (-MICROSTEPS*92); //the motor moves the tray exactly lmm back or forth
posRail++;

}
1
else if (inAngle < setAngle - margin) {
if (posRail>0) |
stepper.enable () ;

delay(20); //Delay introduced to avoid power bank automatic shutdown
stepper.move (MICROSTEPS*92) ;

posRail——;

Fig. 36: Controller algorithm

Page 24 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

The first part of the code (Fig. 36) deals with the data acquisition from the accelerometer
and the KF. This reading, multiplied by the P controller gain, will provide the value for the
motor’s RPM. This gain is set to be 0.90 according to empirical measurements of the maximum
angle difference between the user selected value and the real attack angle of the AUV.

Once the RPM value is obtained, the algorithm makes sure that this value is not higher than
200 RPM or lower than 60 RPM. Within this specification values, the motor is initialized with
the calculated RPM value (“stepper.begin”). Finally, the algorithm checks if the input angle
coming from the KF is within user’s specifications. Depending on whether the real angle is
above or below the user specified angle, the motor will perform 92 steps (1mm mass
displacement) in clockwise or counter clockwise direction. Otherwise, the motor will remain
disabled and it will not move. The middle part of the code ensures that the mass will not move
further than the length of the rails according to the variable “posRail”, which is updated every
time the motor rotates.

All the decision process of the controller algorithm is synthesized in a flow chart (Fig. 37).

Define process variables: posRail, inAngle, ete...
Define program objects: stepper motor,
accelerometer, etc...

l

YES
RPM_a <= 607

Accelerometer calibration (angleOFF) & stepRPM = RPM_a stepRPM = €0
system equilibrium initialization (stable at 0°)
i Initialize stepper motor with obtained value

(stepRPM)

Set USER defined control variables:
setAngle & margin

)

Obtain accelerometer angle data NO
(acex, accy, acez)

- _ YES
inAngle > setAngle + margin?
& posRail < MAX_RAIL?

Enable motor, move 82 steps
forwards & posRail++

Motor DISABLED

Process input angle data through KF &
compensate for angle offset

l

Calculate angle difference (setAngle - inAngle) &

) YES
inAngle < setAngle - margin?
& posRail » 07

obtain RPM value (RPM_a) with controller gain

Enable motor, move 82 steps
backwards & posRail--

Motor DISABLED

NO YES

RPM_a »>= 2007

stepRPM = RFM_a

stepRPM = 200

Fig. 37: Attitude control system flow chart

Page 25 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

The loop seen in the flow chart (Fig. 37) repeats until the system is powered off or stopped
manually via Bluetooth. Communication systems will be assessed in the next chapter. The final
part of this algorithm performs the sawtooth movement required for the AUV to move
forward. This is achieved by counting the number of loop cycles (humCycle) and, when this
variable reaches a user defined variable (timerChange), the ‘setAngle’ is changed from positive
to negative and vice versa (Fig. 38).

if (numCycle timerChange && timerChange>1000) {

numCycle=0;

setAngle -1 * setAngle;

miSerial.print (" changed angle: ");

miSerial.println(setAngle);

Fig. 38: Sawtooth angle change algorithm

3.5.- Roll Axis

In order to change the course of the ‘Glider’, a roll axis trimming system is also included. As
said before, this system consists of a rotational mass whose displacement is translated into a
change in the roll angle of the vehicle. This system, together with the variable buoyancy systems
placed on the wings of the AUV and the pitch trimming system, will allow the ‘Glider’ to turn in
any direction in order to perform corrections on the course or avoid obstacles.

Despite being a rotational system, the control strategy is the same as in the pitch axis system.
As stated before, the same hardware will be used for both systems and every similarity between
them has already been discussed. For this reason, this section will focus only on the differences,
namely the system TF and physical implementation.

3.5.1.- Motor and Mass Housing

Before explaining how the TF was obtained, it is important to show how the motor is
connected to the rotational mass. As in the previous section, the 3D design implemented (Fig.
39°) was designed by my college Alejandro. This time, the stepper motor is also connected to
an endless screw which is then mashed into a round gear that moves solidary to the rotational
mass. This whole system is integrated with the previously explained pitch trimming system
housing. By the time this work is performed, the roll axis housing is not mounted physically,
and no picture is available.

6 Cebridn Abellan, A., “Sistema de desplazamiento de masas para el control de orientacion de un Glider submarino”,
DISCA, (2018)

Page 26 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Fig. 39: Complete trimming system 3D design

3.5.2.- Transfer Function Obtention

In this system, the stepper motor is also joined with the rotating mass by an endless screw.
However, the screw is directly mashed with a circular gear connected to the rotating mass by
its axis. In order to obtain the TF, the radius and the distance between two consecutive teeth
of the gear (gear step) are measured (4). Knowing that one full rotation of the endless screw
produces a full step linear displacement in the gear, the TF relating the number of steps needed
to rotate the gear by one degree is obtained (5.1, 5.2).

Teeth Arc Length = S = 6.7 mm
Gear Radius = R = 46.2 mm Arc Angle = 6 (4)

s
S=R-6 -6 > _ 87 d
= . e d = —_-—= —
R™ 462 ¢
360° - 67/46 2
Fig. 40: Circular gear simplification for ()= ————=£=831° (5.1)
calculus 2T

) .) 735 Steps

Steps per Rotation with Reduction =735 — TF = 831 =88 — (5.2)

Page 27 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino

4.- Communications systems

4.1.- Introduction

1. Report

Every vehicle needs a proper communication system in order to report back mission results,
provide real time feedback of its sensors or receive commands from the user. In order to ensure
that the Glider AUV is properly communicated with its environment and the final user, the
following communication systems have been developed and implemented:

a) Bluetooth communication system: used to stablish a link between the user and the
vehicle providing real time sensor date and enabling the user to send different

commands to the glider.

b) SPI communication system: used to read/write data from different devices such as

the SD card storage module.

c) 12C communication system: it is an internal bus that connects different devices in
the vehicle including communication between different Arduino boards.

On a higher level, the Glider is also fitted with GPS and Wi-Fi communication systems for long
distance trips. However, the scope of this work is limited to the low range communication
systems displayed above. This section will focus on all three communication procedures
including code explanations and physical implementation.

4.2 .- Previous work

Communication systems were taken into account on the previous version of the Glider code.
However, they solely focused on Bluetooth communication. For this reason, the commands
already designed for the control of the vehicle (Fig. 41) were kept and modified to fit the new
motors’ specifications and a different Bluetooth module was used. SPI and 12C communication
were not very developed as there were fewer devices in the previous versions of the Glider.

ch = miSerial.read();
miSerial.print ("Leido ");
miSerial.println(ch);
switch (ch) {
case '"l':relaylon(); break;
case '2':relayZon(); break;
case 'S':
case 's':relayStop(); break;
case 'I':relayInterval++; break;
case 'i':relayInterval--; break;
case 'D':relayDutyOn++; break;
case 'd':relayDutyOn--; break;
case 'C':relayCompensate++; break;
case 'c':relayCompensate--; break;
case 'A':setAngle+t+; break;
case 'a':setAngle--; break;
case 'M':margin+t+; break;

case
case
case
case
case
case
case
case

m'
v
VtV

VHV:

VhV
LAVAl

VXV

break;

case

))

X

break;

case
case
case

lQl
VqV
VWV

break;

:margin--; break;
:setAngle = 25; break;
:setAngle = -25; break;
:setAngle = 0; break;
:showAccel = 1; break;
:showAccel = 0; break;

:timerChange+=1200; numCycle=0;
:timerChange-=1200; numCycle=0;
:storeYes=1; numCycle=0; break;

:storeYes=0; numCycle=0; break;
:showrecordAngle () ;break;

Fig. 41: Glider 1 Bluetooth receive event with commands

Page 28 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

4.3.- Bluetooth (BT) communication system

4.3.1.- Hardware Design

The first step in designing the BT communication system is the hardware selection, this is,
choosing the right BT module for the work. The two most reliable and used BT modules in the
market are the HC-05 and the HC-06 [18] (Fig. 42). This time, the HC-06 BT module was selected
according to the following:

e Simplicity: HC-06 module has only 4 pins
compared to the 6 pins of the HC-05.

e Duty: As the BT module works only as a slave in
the communication procedure, the master-slave
feature of the HC-05 did not add any value to the
decision.

e Price: HC-05 prices go as low as 4 € whereas HC-
06 prices reach a low of 2.5 €

e Space: Given the reduced functionality of the HC-
06 and the lesser number of pins, the design is
more compact allowing for more space inside the
Glider.

Fig. 42: HC-06 Bluetooth Module

Once the device is selected, the wiring must be assessed (Fig. 43 & 44). Out of the 4 pins, 2
of them are connected to Vcc and GND while the other two are the data transmission pin (TX)
and the data reception pin (RX). These last pins are connected to one of the four Arduino MEGA
serial ports swapping the RX on the BT module with the TX pin on the Arduino and vice versa.

Due to several difficulties in configuring any serial port of the Arduino MEGA other than the
default (which is also used for USB communication with the board), Serial Port 0 was selected
in order to perform the BT communication of the Glider.

MADE IN

Arduino

WER ANALOG IN

Amuma>wu

Fig. 43: Graphic representation of HC-06 module wiring

Page 29 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

PIN CONNECTION TABLE

HC-06 Module Arduino MEGA Board
VCC 5V
GND GND
TXD PIN O (RX 0)
RXD PIN 1 (TX 0)

Fig. 44: HC-06 Module Wiring Table

4.3.2.- BT Module Configuration and Code

The first time one of these modules are powered up, you need to select the BT device name,
the pairing password and the serial connection speed. This is performed by sending a specially
formatted messages (Fig. 45), called AT commands [19], that can be understood by the BT
module when sent over the Arduino Serial Port. This configuration is performed only once as
the device remembers all the parameters even after alimentation is withdrawn. For the Glider
3, the configuration was as follows:

e Device Name: Glider3
e Pairing Password: 1234
e Connection Speed: 9600 baud

#include <SoftwareSerial.h>
#define miSerial Serial // 0OJO poner Serial3 para blue (Bluetooth now
connected to Serial Port 0, same as USB)

void initBlue () {

}

command ("AT",2);// response: OK

command ("AT+VERSION",12);// response: OKlinvorVl.5
command ("AT+NAMEGlider3",9);//response: OKsetname
command ("AT+BAUD4", 8) ;//response: O0K9600

command ("AT+PIN1234",1);//response:

void startControl ()

{

//Communication
miSerial.begin (9600) ;

// Blue
//initBlue(); //Uncomment only for configuration of new BT module

Fig. 45: HC-06 Module Configuration Code

As seen (Fig. 45), the first step in configuring the BT module is to stablish the Serial Port
where the communication is happening (Port 0 in this case). Then, a function that sends the
configuration AT command to the module is created (‘initBlue’). Finally, the same
communication speed selected for the BT module is selected for the Arduino board port to
ensure proper function of the system. If a new BT module is to be configured, the next line of
code will be uncommented, and the configuration function shall execute.

Page 30 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

The next piece of code that is related to the BT communication system is the command
table that the AUV is able to interpret and perform. The code structure for this table is the
same as the one shown in point 3.2 (Fig. 41). However, some commands have been modified
in order to properly control the stepper motors and some other new commands have been
introduced (Fig. 46).

Command Action Command Action

Char Char
1 Stepper motor moves 10 mm backwards m Decrease angle margin by one

2 Stepper motor moves 10 mm forwards T Set target angle to 25°

3 Stepper motor moves 5 mm backwards t Set target angle to - 25°

4 Stepper motor moves 5 mm forwards H Compensate accelerometer offset
5 Stepper motor moves 3 mm backwards h Set target angle to 0°

6 Stepper motor moves 3 mm forwards \Y Show current real angle value

S Set variable ‘posRail’ to 60 mm (midpoint) v Hide current real angle value

s X

Stepper motor is stopped Increase time for angle value swap by 1.200

code cycles
| Increase motor RPM by one X Decrease time for angle value swap by
1.200 code cycles
i Decrease motor RPM by one Q Enable data storage
A Increase target angle by one q Disable data storage
a Decrease target angle by one w Show stored angle value
M Increase angle margin by one
Fig. 46: Bluetooth Command Table
ch = (char)miSerial.read():
switch (ch) { case 'A':setAngle++;
case '1': miSerial.println(setAngle):;
stepper.enable(): miSerial.print (™ "):
delay (20): miSerial.print (margin):
stepper.move (MICROSTEPS*910) ; break;
posRail = posRail - 10; case 'a':setAngle--:
break: miSerial.println(setAngle):
case '2': miSerial.print (" "):
stepper.enable(): miSerial.print (margin):
delay (20): break:
stepper.move (-MICROSTEPS*910) ;
posRail = posRail + 10: case 'H':angleOFF = inAngle; break:
break: case 'h':setBngle = 0; break:
case 'V':showBccel = 1; break;
case 'S':posRail = 60: break: case 'v':showBccel = 0; break:
case 's':stepper.stop(): case 'X':timerChange+=1200; numCycle=0;
angleQOFF = inAngle; break;
setBngle = 0 case 'x':timerChange-=1200; numCycle=0;
break; break;
case 'I':stepRPM++; break; case 'Q':storeYes=1; numCycle=0; break;
case 'i':stepRPM--; break: case 'qg':storeYes=0; numCycle=0; break:
case 'W':showrecordAngle () ;break;
break:

}

Fig. 47: Example of Command Code Structure

Page 31 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

These commands (Fig. 46 & 47) allow the user to change the working parameters of the
Glider on the fly, retrieve real time information, compensate the offset of the accelerometer
measurements when the vehicle is powered and place the moving mass in the centre of the
mass tray before the Glider starts to move. Using these commands, the user will perform the
following sequence in order to set the initial conditions for the flight:

1. Place the Glider on the surface of the water as horizontal as possible.

2. Send command ‘H’ to set the current angle as 0° by compensating the initial offset.

3. Send command ‘h’ to set the target angle as 0°. This will prevent the motor from
moving automatically.

4. Once the motor is stopped, the used is enabled to move the motor at will until the
moving mass is in the centre of the moving tray using commands ‘1’ through ‘6’.

5. Send command ‘S’ to tell the microcontroller program that the mass is centred
(‘posRail’ = 60)

6. Set the desired target angle and margin using commands ‘A’, ‘a’, ‘M’, ‘m’, ‘T’ and ‘t’.

4.3.3.- Real Time Data and Android Control App

As the Glider will not be connected to a computer while underwater, the commands will be
sent through a smartphone. Sending the command as letters and number though a serial
monitor App can lead to confusion and mistakes. Thus, a specific App has been developed,
providing the user with a GUI that allows sending commands and receiving real time data easy
and visual. This APP has been developed using the online editing site “Applnventor2” from the
MIT [20].

Due to buffer limitations on the serial bus, real time data (RTD) cannot be sent over to the
mobile APP every microcontroller cycle. Thus, RTD is sent every 20 cycles and whenever the
stepper motor moves the mass (Fig. 48). Besides, whenever a parameter is modified through
a command (Fig. 46), the new value for said parameter is also sent through the serial bus (case
‘A’ and ‘a’ in Fig. 47).

if (inAngle > setAngle + margin) {

if (posRail<MAX RAIL) { void testControl()//Executed every 20

stepperfenab;e(); cycles

delav (20): {

stepper.move (-MICROSTEPS*92) ;

posRail++; miSerial.print (inAngle);
miSerial.print (" ");

miSerial.print (inAngle):; miSerial.print (posRail);

miSerial.print (" ");: miSerial.print (" ");:

miSerial.print (posRail): miSerial.print (depth):

miSerial.print (" "); }
miSerial.print (depth):

Fig. 48: Real Time Data Sending Through Serial Bus Procedure

Page 32 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Having defined how the data is sent and received through the Serial BT channel, the mobile
APP is developed. This APP consist of four different screens. The first one (Fig. 49) is the main
menu, where RTD from the glider is displayed and the user is able to access the different sub-
menus by clicking on the 4 buttons at the bottom of the screen. On top of this screen, the user
can select the BT device to be paired with the APP by clicking on the “DEVICES” button or end
this pairing by clicking on the button right next to it.

The second screen (Fig. 50) is displayed when the button “MASS TRIM CONTROL” is pressed.
This screen displays the several BT commands available to move the motor at will in order to
trim its position as explained in part 3.3.2. By clicking on any of these buttons, the APP will
send the corresponding BT command to the microcontroller. This provides a visual way of
sending commands without having to remember all of the numbers and letters (Fig. 46).

The following screens allow the user to set new navigation parameters for the Glider. The
third one (Fig. 51) is displayed whenever the button “VALUE SETTING I” is pressed allowing the
user to increase or decrease several parameter values by one. The last screen (Fig. 52) is shown
when the button “VALUE SETTING II” is pressed and includes several commands that provide
a predefined value to some navigation parameters.

GLIDER GUI
* * DEVICES 3 RETURN TO MENU

GLIDER ANGLE MASS CENTERED!

MASS POSITION MASS POSITION + 10 mm

MASS POSITION + 5 mm

DEPTH

MASS VALUE
TRIM SETTING
CONTROL II

VALUE EMERGENCY
SETTING

Fig. 49: APP Main Menu Fig. 50: APP Trim Control Menu

Page 33 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino

1. Report
3 RETURN TO MENU 3 RETURN TO MENU
TARGET ANGLE TARGET ANGLE
MARGIN ANGLE MARGIN ANGLE
MOTOR RPM + 1 D SET TARGET ANGLE = 25

MOTOR RPM - 1

SET TARGET ANGLE = -25

Fig. 51: APP Parameter Setting Menu | Fig. 52: APP Parameter Setting Menu Il

App Inventor 2 uses a visual programming language, developed by the MIT, called
“Scratch”[21]. This language is easy to learn and use even with basic programming or APP
creation knowledge. The design process starts with the visual creation of every screen
displayed above and all of the objects they contain (buttons, labels, lists, etc...). Once the
necessary objects are laid onto the screen, App Inventor will provide you with the different
functions associated with each of these objects in order to start programming.

The algorithm is created by attaching different function blocks in order to obtain the desired
result each time an event happens. For example, RTD display is triggered every APP clock cycle
(Fig. 53) as long as the main menu screen (Fig. 49) is showing. Due to the fact that variables
cannot be sent over a serial bus, the three different RTD values are separated by a space (Fig.
48) when sent. This space then helps the APP to differentiate between the three values and
assign them to their corresponding label. Same thing happens for the parameters value when
changed.

Having covered the reception of RTD by the APP, the next step is to send the right command
when a command button is pressed on the app. The BT command character to be sent by each
button is hardcoded and unique. Before sending the command and after the button is pressed,
the program checks that BT communication is properly stablished (Fig. 54).

Page 34 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

when (E[EEIES Timer
doiifi{o] %1 giobal RTD -

_BytesAvailableToReceive (0]

ReceiveText
numberOfBytes | call CEGEL @ S BylesAvailableToReceive
set [LNEEN to splitat spaces | get [NEELED
sot (I o || selectistilem list
index
set GITEIETLEIED to | selectistitem list get (REVIES
index
set GEERG ik to | selecthistitem list get (VARG
index
X | ciobal inAngie -]
- RN = global PosRail - |
BB global Depih - |

BlustoothClient

Fig. 54: BT Command Sending Block Algorithm Example

4.4.- SPI Communication System

4.4.1.- Introduction

SPI stands for Serial Peripheral Interface and it is a commonly used method to connect
several devices to one single microcontroller [22]. SPI is a synchronous communication
procedure, as opposed to the usual Serial Bus explained before. This means that, alongside the
data lines, there is a clock signal connecting both the device and the microcontroller which
rules the communication process. This clock signal ensures that every piece of information is
sent or received on a falling or rising clock signal edge (Fig. 557).

Being synchronous, SPI communication allows for a faster and larger data exchange while
ensuring that no information is lost in the process. For these reasons, SPI communication is
used in this project to connect the SD Card module to the Arduino Mega as a navigation data
log.

7 Mike Grusin, “Serial Peripheral Interface (SPI)”, Tutorials, https://learn.sparkfun.com/tutorials/serial-peripheral-
interface-spi/all, accessed November, 2018

Page 35 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

SPI is also based on a Master/Slave system that allows to connect several slaves
(devices/modules) to a single Master (microcontroller). To do so, SPI communication bus
includes one extra line used to select the slave to exchange information with (Fig. 56).

MASTER SLAVE
SCK + SCK
MOoSsI > MOsi
MISO * MISO

Master to Slave Slave to Master die o . ..
die | _Acronym Description |
sCK ”“”””l ””””””“” SCK Seria Clock
Clock from L] iuuuuy iduduuugy MOSI Master Out/ Slave In

0 1 2 3 48 67 01234567 MISO Master In/Slave Out
: {iE r : T o SS Slave Select

Fig. 56: SPI Bus Lines Description

MISO U
Master-in : 3 8

Fig. 55: SPI Communication Example

4.4.2.- Hardware Design

As stated before, SPI communication is only used to log navigation data into a SD card that
will be used to analyse the retrieved data via Excel. Further explanations on this procedure are
given on Part 6 of this document.

The SD card module used in this project is a generic SD Card Adapter (Fig. 57) that is
compatible with Micro SDHC cards. This type of cards can store larger data volumes at a higher
transfer speed, allowing the data log files to be written many times over the execution of one
program cycle. This generic module is connected to the Arduino MEGA with a SPI bus.

Fig. 57: SD Card Adapter

Page 36 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

In this part, the focus will be the wiring of the SD Card module (Fig. 58) to the
microcontroller in order to stablish proper communication and the Arduino configuration code
(Fig. 59).

PIN CONNECTION TABLE

SD Card Module Arduino MEGA Board
VCC 5V
GND GND
MISO PIN 50
MOSI PIN 51
SCK PIN 52
CS PIN 53

Fig. 58: SD Card Adapter Module Wiring Schematics and Table

To configure the SPI communication for the SD card adapter, the Arduino library called “SD”
has been used [23]. The Arduino MEGA pins selected for the project are the ones defined as
default by this library (Fig. 59). Besides, the “SD” library provides the user with several file
treatment functions such as open file, save, close, create, etc... that makes it easier to create
the navigation database.

#include <SD.h>

#include <Arduino.h>

//SPI settings

//MOSI,MISO,SCLK set as default
int CS_pin = 53;

int SDin = 1;

Fig. 59: SPI Bus Configuration Code

Page 37 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

4.5.- 12C Communication System

4.5.1.- Introduction

I2C communication is another type of master/slave synchronous serial bus developed by
Philips in the 1980s in order to control several TV chips [24]. The main difference between 12C
and SPI communication is that 12C uses only two lines (Fig. 608), one for the clock signal (SCL)
and another for the data (SDA). This means that both the master and the slave can send or
receive data through the same line. To do so, each device connected to an I12C bus has its
unique hexadecimal address inside the bus.

Vdd
@ ?Rp SDA
I I I [SCL
uC ADC DAC uC
Master Slave Slave Slave

Fig. 60: Example of 12C wiring

As every device connected to the bus can be either a slave or a master, this differentiation
is made programmatically inside the microcontroller code. To stablish communication with the
right device inside an 12C bus, the master sends the device address he wants to communicate
with through the bus. Then, every device check if the address requested matches its own
address. If so, said slave sends the master an acknowledge bit indicating that the device is
ready for the sending/reception of data [25].

The main advantages of 12C communications are the following [25]:

e Simple and powerful communication interface using only two bus lines.

e Devices can be both master or slave.

e The address space allows for the connection of up to 128 different devices.
e Up to 400 kHz data transfer speed

4.5.2.- Hardware Design

As 12C communication system is fast, reliable and allows for the connection of many
devices, a great number of Arduino modules use 12C as default. In the case of this project, the
following devices are connected to the bus:

e Accelerometer (Part 2)
e Real Time Clock (RTC) (Part 6)

8 Anonymous, “12C”, Aprendiendo Arduino, https://aprendiendoarduino.wordpress.com/2017/07/09/i2¢c/, accessed
January, 2019

Page 38 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

e Depth Sensor (Part 5)
e Display Screen Arduino Board (Part 4)
e CTD Arduino Board (Part 5)

This part will not focus on each of the devices but on the wiring and addressing of the 12C
bus. Three of these devices are Arduino modules which have their own specific library and
address. Thus, the 12C communication protocol is already assessed and there is no need for
any bus configuration. However, there are two Arduino UNO boards that will work as slaves
under the commands of the Arduino MEGA board. The bus configuration for each of these
boards will be explained in the corresponding part highlighted above.

Once the number of devices to be connected and their corresponding addresses (Fig. 62)
are defined, the different modules and boards are connected to the 12C bus (Fig. 61).

. I2CBUSCONFIGURATION

GND GND GND GND GND GND

5V = = = VCC VCC
3.3V - - VCC - -

Pin 20 (SDA) A4 A4 SDA SDA SDA

Pin 21 (SCL) A5 A5 SCL SCL SCL

Fig. 61: 12C Bus wiring configuration for the Glider

B AVD1D
Arduino MEGA Board 0x07
Display Screen Arduino UNO 0x08
CTD Arduino UNO 0x09
RTC Module 0x56
Depth Sensor 0x40
Accelerometer 0x53

Fig. 62: 12C Bus unique device addresses

Page 39 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

5.- Vehicle Status Display Screen

5.1.- Introduction

In this part, the configuration, design and physical implementation of a display screen GUI
for the glider will be assessed. The main idea behind the addition of a screen is to have real time
data shown to the scuba divers or to the operator of the Glider while underwater. This feature
will be especially important in the testing stage of the AUV where it must be ensured that all the
different systems work properly on site. After this stage, the screen will come in handy as an
auxiliary real time data log in case the developed APP fails. To fully understand the whole design
and implementation of this device, this part will be divided as follows:

e Hardware selection
e GUI design code on Arduino UNO
e Variable configuration of 12C channel between Arduino UNO and MEGA

5.2.- Hardware selection

The first hardware component to be selected was the display screen. As with every other
part of this project, the key criteria for component selection were lightness, low cost and
modularity. Although resolution and brightness are also important features to consider, they are
not as relevant in this case as the screen does not need to display any complicated graphics or
images, just letters and real time data numbers. Taking these filters into consideration, the
selected screen was a 2.8” LCD Touch Screen Arduino Shield [26] (Fig. 63) from a low-cost
manufacturer called “ELEGOQ” [27]. The key screen features considered are the following:

e Cost: LCD screens provide good enough resolution and brightness for the purpose of the
project and half as expensive as LED screens of the same dimensions without any touch
screen feature

e Modularity: This LCD screen comes soldered to an Arduino shield that just pops onto
and Arduino UNO board without needing any wiring. This allows for an easy and
effortless change of component if the screen ever breaks.

e Touch Screen: When selecting the screen, it was though that it would be interesting to
have some buttons on the screen so that the divers could send commands to the
microcontroller in case Bluetooth communication fails.

e Easy coding: This screen come with its own set of libraries that allow the user to easily
implement GUIs, graphics or images.

The second hardware component needed for the screen to work is the microcontroller to
operate it. As there were many pins of the Arduino MEGA board that were in use for the other
devices of the Glider, it was decided to use a second Arduino UNO board [28] (Fig. 64). This
second board takes care of the LCD screen both in current demand and graphic processing
power. Then, the two microcontrollers are connected via 12C so that the RTD collected by the
sensors on the Arduino MEGA could be display on the LCD screen on the Arduino UNO.

Page 40 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Fig. 63: LCD Screen Arduino Shield Fig. 64: Arduino UNO Board

5.3.- GUI Design Code

With the screen and microcontroller to be used selected, the Graphical Interface is coded
onto the Arduino UNO board. As the screen is mounted on a shield, there is no need for any
wiring. Although the mapping of the pins has already been performed by the manufacturer, a
small physical modification had to be made in order to connect the ‘RESET’ pin of the screen to
the ‘RESET’ pin on the Arduino board. This way, Arduino pins ‘A4’ and ‘A5’ are free to use for 12C
communication. The rest of the wiring stays as default and it is included in the Adafruit’s screen
libraries [29][30] used for the project (Fig. 65).

#include <TouchScreen.h>
#include <Adafruit GFX.h> // Core graphics library
#include <Adafruit TFTLCD.h> // Hardware-specific library

// The control pins for the LCD can be assigned to any digital or

// analog pins...but we'll use the analog pins as this allows us to

// double up the pins with the touch screen (see the TFT paint example).
#define LCD_CS A3 // Chip Select goes to Analog 3

#define LCD_CD A2 // Command/Data goes to Analog 2

#define LCD WR Al // LCD Write goes to Analog 1

#define LCD_RD AO // LCD Read goes to Analog 0

#define LCD RESET A6 // A4 is used for I2C Comm so A6 is defined not to
create interferences. Reset Pin is connected to Arduino's RST pin.

// Pins for the LCD Shield

#define YP A3 // must be analog
#define XM A2 // must be analog
#define YM 9 // digital or analog pin
#define XP 8 // digital or analog pin

Fig. 65: LCD Touch Screen libraries and Pin Declaration

With the Screen Shield — Arduino interface pins well defined, some basic parameters for the
touch screen and the LCD screen are defined. These also include the renaming of some variables
that will be used often in the code to make it easier such as colour names. Then, the LCD screen
and Touch Screen are declared in the code as different objects and initialized (Fig. 66).

Page 41 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

#define MINPRESSURE 1
#define MAXPRESSURE 600

// Calibration mins and max for raw data when touching edges of screen
#define TS MINX 194
#define TS MINY 130
#define TS MAXX 909
#define TS MAXY 905

// Assign names to some common 16-bit color values:
#define BLACK 0x0000

#define BLUE 0x001F
#fdefine RED 0xF800
#define GREEN 0x07E0
#define CYAN 0x07FF

#define MAGENTA OxF81F
#define YELLOW OxFFEOQO
#define WHITE OXFFFF

Adafruit_TFTLCD tft (LCD Cs, LCD CD, LCD WR, LCD RD, LCD RESET);
TouchScreen ts = TouchScreen (XP, YP, XM, YM, 300);

void TFTsetup () {
tft.reset();
uintl6 t identifier = tft.readID();
tft.begin(identifier); //Start communication with TFT screen

Fig. 66: Screen Parameter Definition and Set Up

This first part of the code resets the screen every time it is powered up and re-establish
communication between the microcontroller and the screen which are now ready to exchange
data. The next part of the code deals with the graphical design of the GUI. To do so, the Adafruit’s
libraries provide the user with several “drawing” functions. The ones that are mainly used in this
project are:

o tft.fillScreen (WHITE) o tft.fillRect (0, 0, 190, 330, BLUE)
e tft.drawRect (0, 0, 191, 331, o tft.fillTriangle (20, 0, 100, 0, 20, 110,
BLACK) CYAN)

In every function, each set of two numbers is the exact location, in pixels, of one of the
object’s vertex. As such, the rectangles are defined by the coordinates of two opposed vertexes
whereas in the case of a triangle, the location of the three vertexes is needed. The last argument
of the function is the colour of the object to be drawn. Taking this into account and using a trial
and error system, the welcome screen for the Glider is coded (Fig. 67) and displayed (Fig. 68).

volid WelcomeScreen () { tft.fillTriangle (20, 220, 100, 220 , 20, 322,
//Welcome screen design CYAN) ;

tft.fillScreen (WHITE) ; tft.fillTriangle (20, 220, 97, 220, 20, 320,
tft.drawRect (0, 0, 191, 331, BLACE); BLUE) ;

tft.fillRect (0, 0, 190, 330, BLUE); tft.drawRect (0, 0, 21, 331, BLACK);
tft.fillRect (0, 0, 20, 330, YELLOW); tft.setRotation(1l);

tft.fillTriangle (20, 0, 100, 0, 20, 110, tft.setCursor(10,85);

CYAN) ; tft.setTextColor (BLACK) ;
tft.fillTriangle (20, 0, %7, 0, 20, 107, tft.setTextsSize (3);

BLUE) ; tft.println("ALEA GLIDER 3 GUI");
tft.fillTriangle (20, 110, 20, 220 , 100, 220, tft.setCursor (70, 150);

CYAN) ; tft.setTextsize (2);

tft.fillTriangle (20, 113, 20, 220, 97, 220, tft.setTextColor (YELLOW) ;

BLUE) ; tft.println("Welcoms!") ;

}

Fig. 67: Glider’s Welcome Screen Code

Page 42 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

Ty

\\ Welcome! /\

Fig. 68: Glider’s Welcome Screen on Display

Apart from drawing shapes and images, the library also allows the user to write text with the
following functions:

e tft.setCursor(10, 85) o tft.setTextSize(3)
e tft.setTextColor(BLACK) . tft.printin("ALBA GLIDER 3 GUI")

This is the common sequence in which any text or number is written on the screen. First, the
cursor is placed at one exact location, in pixels, inside the screen. Then, the colour and size of
the text is selected. Finally, the text is printed in the selected location with the selected
parameters.

These functions help in the design of the next screen (Fig. 69), which appears shortly after
the welcome screen and it displays the Real Time Data of the Glider. This screen displays the
Glider’s Pitch Angle, Depth, Temperature, Target Angle and Margin using numeric values coming
from the sensors. Besides, the screen also displays the attitude control mass position by means
of small graphic representing a bar that increases or decreases depending on the mass’ position
(Fig. 70).

volid startGUI () { tft.println("Depth (m): ");
tft.fillsScreen (BLACK) ; tft.setCursor(0,80);
tft.setRotation(l); tft.println("Temp (Celsius): ");
tft.setTextsSize (2); tft.setCursor (0,110} ;
tft.setTextColor (YELLOW) ; tft.println("Set Angle (Degrees): ");
tft.setCurscor(0,0); tft.setCursor (0,140} ;
tft.println("vehicle Status"); tft.println("Margin (Degrees): ");

tft.drawRect (40, 170, 240, 30, WHITE);

//Information write tft.setCursor (38,205) ;
tft.setTextSize (2); tft.println("0™);
tft.setTextColor (GREEN) ; tft.setCursor(270,205);
tft.setCursor(0,20); tft.println("MAX");
tft.println("pitch A (Degress): "); tft.setCursor (125,210);
tft.setCursor(0,50); tft.println("Mass pos");

1
Fig. 69: RTD Glider Screen Design Code

Vehicle Status
Pitch A (Deare

Uepth <m):
Tempe (Cels

Set Angle

Marain \\F

Fig. 70: RTD Glider Screen Display Working

Page 43 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

On the first version of this screen, using the touch screen feature was also considered and a
different interface, including buttons that could send commands to the Glider, was designed.
However, due to the inherent difficulty of using a touch screen underwater and the fact that
adding a compartment to the AUV’s shell would compromise the structure of the vehicle, the
idea was discarded and thus not included in this work. The next part will deal with the updating
and refreshing of the RTD together with the communication variables used to exchange
information between the boards.

5.4.-12C Channel Configuration and Variables

5.4.1.- 12C Communication Between Arduino Boards

As opposed to most 12C Arduino modules that have their own libraries to deal with the
communication procedure, when connecting two Arduino boards, their addresses, roles and
data variables to be exchanged in the 12C bus must be declared. This declaration has to be
performed on both Arduino boards and all of the variable must have the exact same name for
the 12C bus to work. Apart from this, two generic communication libraries [31][32] are used
for the connection to work (Fig. 71-72).

finclude <SoftwareSerial.h> #include <Wire.h>
finclude <EasyTransferI2C.h> #include <EasyTransferI2C.h>
EasyTransferI2C UNO; EasyTransferI2C UNO; //Name of slave device
#define MASTER_ADDR 7 //I2C Master struct RECEIVE DATA({
#define UNO ADDRESS B //I2C slave address int depth;
- int temp;

struct SEND DATA{ double inAngle;

int deth; int posRail;

int temp; double setAngle;

double inAngle; int margin;

int posRail; int hours;

double setAngle; int minutes;

int margin; int seconds;

int hours; Y

int minutes;

int seconds; RECEIVE_DATA science;

Y

#define UNO ADDRESS 8
SEND_DATA science;

void setup() {
void startControl ()

{ Serial.begin(9600);
Wire.begin (MASTER ADDR); //I2C Comm
UNO.begin (details (science), &Wire); Wire.begin (UNO_ADDRESS) ; // join i2c bus

with address #8
UNO.begin{details (science), &Wire);

Fig. 71: 12C Bus Configuration on Arduino MEGA (Master) Fig. 72: 12C Bus Configuration on Arduino UNO (Screen)

Page 44 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

With the help of these libraries, the procedure to communicate both boards is the
following:

1. Define the name of the “Slave” device on both bords (‘UNO’ in this case).

2. Define the Bus Address for both the “Master” and the “Slave” (7 for MEGA, 8 for
UNO board).

3. Create an identical data structure that contains exactly the same variables in each
board. The name of the structure may differ from one board to another
(RECEIVE/SEND_DATA).

4. Define the name that the structure will have on the bus. This name must be exactly
the same for both boards (science).

5. Onthe set up of each board, enter the bus with the assigned address (“Wire.begin
(...)”) and start the communication with the declared “Slave” using the declared
data structure on both boards (“UNO.begin(details(science), &Wire)”).

5.4.2.- Screen Real Time Data Update

Once the communication is stablished, the screen module will be constantly checking for
any information update on the 12C bus. To do so, a receive event is created so that each time
the Arduino UNO detects new data on the bus, the screen variables are updated (Fig. 73).

void setup () {

Wire.onReceive (receiveEvent); // register event

}

void loop () {
if (UNO.receiveData()) {
d = science.depth;
t = science.temp;
= science.inAngle;

V)]

pos = science.posRail;
setA = science.setAngle;
mar = science.margin;
//h = science.hours;

//m = science.minutes;
//s = science.seconds;

}
// function that executes whenever data is received from master

void receiveEvent (int numBytes) {
//UpdateDate (h, m, s);
UpdateData(a, d, t, pos, setA, mar);
}

Fig. 73: Screen Module Update Routine Code

Following the spirit of the rest of the project, the Arduino UNO code for the screen is also
programmed in a modular way. Functions as “UpdateData” or “UpdateDate” are user created
and they take care of refreshing the values passed to the function on the screen (Fig. 74). As
said before, the program checks for any data received through the bus every cycle and updates
the variables if so. The values coming from the RTC (h, m and s) were commented out of the
code due to the fact that it made the communication very slow causing a great loss of RTD.

Page 45 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

void UpdateData (double angle, int dep, int temp, int Rpos, double sAngle, int margin) {
tft.setTextSize (2);
tft.setTextColor (WHITE, BLACK); //Print with black background for refresing

//5lider representation in GUI
tft.fillRect (41, 171, 238, 28, BLACK);
rail=mzp (Rpos, 0, 120, 1, 238);
tft.fillRect (41, 171, rail, 28, RED);

tft.setCursor (250,20} ;
tft.println(angle);
tft.fillRect (249, 49, 40, 29, BLACK);
tft.setCursor (250,50} ;
tft.println(dep);
tft.setCursor (250,80} ;
tft.println(temp);
tft.setCursor (250,110);
tft.println(sangle);
tft.setCursor (250,140) ;
tft.println(margin);

Fig. 74: Screen Module Data Update Function

The “UpdateData” function uses the same drawing capabilities explained on part 4.3.
However, to fill the rectangle for the mass position (Fig. 70), one of the coordinate values for
the “tft.fillRect” function is dynamic and depends on the I12C variable called “Rpos”. The rest
of the RTD values are simply printed on their assigned places. In order to ensure a proper
refresh of the screen, a black rectangle covering the values is drawn before printing the new
ones.

The final aspect of the communication between the boards is to know how and when the
data is sent from the sensor board (Arduino MEGA) to the screen module (Arduino UNO).
Inside the Arduino MEGA code, the sensor values are stored in local variables. Then, the 12C
communication variables are updated with the local values in the following cases: when the
program starts, every time the motor moves or every 20 program cycles if none of these
happen. Once updated and ready to be transmitted, they are sent though the bus to the screen
using the function ‘DEVICENAME.sendData(“DEVICEADDRESS”)’ (Fig. 75).

vold testControl ()

{

science.depth = depth;
science.temp = temph;
science.infAngle = inAngle;
science.posRail = posRail;
UNO.seniEata(UNO_ADDRESS);

Fig. 75: Arduino MEGA 12C Data Update and Send Code

Page 46 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

6.- CTD Sensor Module

6.1.- Introduction

The CTD module is a cluster of sensors that allow for the measurement of 3 main magnitudes:
Conductivity, Temperature and Depth [33] (Fig. 76°). This last magnitude is obtained from water
pressure values and a simple transfer function. The measurement of these magnitudes is the
heart of the Glider as the data gathered by this set of sensors will allow for the monitoring of
the area that the vehicle is exploring and also provide a ground on which environment
predictions can be based. Inside the Glider, this module will be safely located at the nose of the
vehicle (Fig. 77) and close to the water that surrounds it in order to obtain the most accurate
measurements possible and the water samples for the conductivity measurements.

Given the importance of this data, it is mandatory to store it, as frequently as possible, in a
safe place during the Glider’s journey. For this reason, the Arduino UNO board that collects the
data and controls the sensors inside the CTD module will be connected via 12C to the Arduino
MEGA board of the Glider so that the sensor data can be stored inside an SD Card for later
analysis.

As the development and coding of this module was performed by another colleague student
called José Luis Pérez, this part will focus on the connection of the two boards and the exchange
of data between them. Data storage and database structure will be further assessed in Part 6 of
this work.

Fig. 76: CTD Module Controller and Sensors Setup Fig. 77: Nose Hull for CTD and Optical Comm System Housing

6.2.- 12C Communication Procedure

As it has been explained in part 3.5 of this document, the Arduino boards are connected
together using the 12C interface and their corresponding SCL and SDA pins (Fig. 61). The coding
needed to establish the communication is almost identical to the one used for the display screen
and the Arduino MEGA board, explained in part 4.4.1. This means that the libraries and data
structure used are the same. However, the variables to be transmitted and the device address
for the CTD module change (Fig. 78).

% Image provided by Jose Luis Pérez from his work.

Page 47 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino

1. Report
#include <wire.h> // For communicating with another Arduinoc by I2C
#include <EasyTransferI2C_h> $finclude <Wire.h>

#include <EasyTransferI2C.h>
#define CTD ADDRESS 9 //12C slave address
#define MASTER ADDR 10 // I2C master address

EasyTransferI2C CTD;
#define MASTER_ADDR 10 //I2C Master
#define CTD ADDRESS & //I2C CTD sensors slave address

struct CTD DATA{ //I2C communication for CTD
intl@j:aépth; EasyTransferI2C CTD;
float tempk;
float temps; struct CTD DATA{
float tempC; int16 t depth;

float conduct;

Vi float tempk;

float tempB;

CTD DATA ctd data; float tempC;
float conduct;

//CTD sensor variable for reception I
intlé t depth=0;
float tempA=0, tempB=0, tempC=0, conduct=0; CTD DATA ctd data;

unsigned long MesMillis = 0; . .
void setup (void) {

void receiveEvent (int numBytes) {

} // Communication
Wire.begin (CTD_ADDRESS) ;
void setup() { Wire.onReceive (receive);
Serial.begin(9€00); CTD.begin (details {ctd data), &Wire);
Wire.begin (MASTER_ ADDR) ; 1 -

CTD.begin(details(ctd data), &Wire);
Wire.onReceive (receiveEvent) ;

Fig. 78: 12C Bus Configuration for Arduino MEGA (left) and CTD Module (right)

Opposed to the Arduino MEGA — Display Screen connection, the master device is now
receiving data from the CTD module instead of sending local data to the screen module. Thus,
the receive event is inside the Arduino MEGA code shown. The data structure that will be used
is called “ctd_data” on both boards and it includes the 5 measurements coming from the CTD
module sensors. In order to obtain the most faithful reading from the module, three different
thermometers are used to obtain the average temperature of the water. These three
measurements are related to variables ‘tempA’, ‘tempB’, ‘tempC’.

Every cycle, the program checks for new data available on the 12C bus and, if there is new
data, the local variables inside the Arduino MEGA board are updated and stored in the SD Card

(Fig. 79).
void loop{void) {
void loop () {
// put your main code here, to run repeatedly: updateCTD() ;
if (CTD.receiveData()) { sendDataCTD() ;

depth = ctd_data.depth; delay(100); // Wait 100 milliseconds.

tempA = ctd data.tempk;

}

tempB = ctd_data.tempB; void sendDataCTD()
tempC = ctd_data.tempC; {
conduct = ctd data.conduct; ctd data.depth = getPressure();

A LT ctd _data.temph = getTempA() ;
MesMillis = millis(); ctd_data.tempB = getTempB();
WriteSensorValues (MesMillis, depth, tempZ, tempB, tempC, conduct); ctd_data.tempC = getTempC () ;

} ctd_data.conduct = getConductivity();

CTD.sendData (MASTEE_ADDR) ;

Fig. 79: Arduino MEGA Data Reception (left) and CTD Variables Update & Sending Code (right)

Page 48 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

6.3.- CTD Data Log

In order to keep all the information coming from the CTD sensors well organized, each time
the Arduino MEGA is powered up, a file called ‘LOGCTD.csV’ is created, which will store the
readings coming from the sensors using comma separated values. This file is updated every time
the local values on the Arduino MEGA are updated (Fig. 79) using the ‘WriteSensorValues’
function. This user defined function will be further explained in the next part of this work.

The update of the CTD sensor values is performed every 100 milliseconds in order to obtain
a solid real time data base. With this many data logs, time-variant graphs can be obtained from
the sensors measurements in order to analyse the data and perform predictions based on it.

6.4.- Honeywell Depth Sensor

As the focus of this part is made on sensor data, it is important to mention that another
standalone pressure sensor is included in the vehicle. In the same way as in the CTD pressure
sensor, this sensor transforms an atmospheric pressure reading into a depth value in meters
using the formulas found on the datasheet of the Honeywell ASDX Sensor Series [34] (Fig. 80).
This depth value is then used for display on the mobile APP and logged into a “.csv” file for
later analysis.

#include "sensors.h" void getdata(byte *a, byte *b)
#include <Wire.h> {
#include "DHT.h" tFrom(I2C_PRESSION, 2);

#define I2C PRESSICN 40 //Unigue bus address for W .available()) {

pressure sensor ; //first byte recieved
fdefine MEGA
#define EXT REF 0O) Wire.read(): //second byte recieved
#define ADC HONEYWELL 2 // Arduino analog input pin stored here
}
//Pressure sensor i
byte msh, lsb = 0;
int press = 0; float getPressure ()
int out_Max = 14745; {
int out_Min = 1600; getdata (amsb, &1shb) ;
int P_max = 90; //psi (max.: 6€.12 atm) press = msh;
int P_min = 15; //psi (max.: 1.02 atm) press = (press << 8) + lsb;
int P out = 0; P out = ({(press - out Min)* (P max -
P_min))}/ (cut_Max - out_Min}) + P_min;

//Conversion found in datasheet
return P _out;

Fig. 80: Honeywell Pressure Sensor Data Adquisition and Handling Code

As with the CTD module, this sensor is also connected to the Arduino by the I12C bus which
sends over the analog readings to be interpreted. However, the data acquisition code is included
as a standalone module which means that the variable containing the depth value must be
exported to the main control code. This is achieved by using the same structure procedure as
for the 12C communication between boards (Fig. 78) only this time the “struct” only contains
one variable. Then, on the main code, the data acquisition function is called at the same time
the display screen is updated and so are the variable values. Then, they are logged into the
“LogHONEY.csv” database which we be further explained in the next part.

Page 49 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

7.- SD Card Data Log

7.1.- Introduction

In this part, the date storage capabilities of the Glider will be assessed together with
explanations on the libraries and code used to perform the data log into the SD Card. It is
important to remember that the main idea behind this project is to a create a low-cost AUV
which collects data from its environment to be used for biological experimentation, natural
disaster prediction or even water habitat damage assessment after said disaster.

For this reason, every subsystem on the Glider has been explained before in order to know
where every piece of data is coming from and just focus on the design of the databases and the
data analysis afterwards. Thus, this part will be organized as follows:

e Data storage libraries and code
e Database files structure
e Data analysis

7.2.- Data Storage Libraries and Code

As explained in part 3.4, the SD card adapter module uses the “SD.h” [23] library in order to
manage the SPI communication with the Arduino MEGA board and it also provides some basic
data storage and file management functions. However, these basic functions must be combined
in a way that the collected data can be properly displayed for analysis. For this reason, several
new functions are created (Fig. 81) in order to structure the database in a suitable fashion. These
functions are declared as a standalone module which can be later introduced into the main code.

#include <SD.h>

#include <Arduinoc.h>

voilid SDSetup () s
CreateMotorLogFile () ;
CreateSensorLogFile () ;
CreateHoneyWellLogFile () ;

WriteMotorValues (int RTC mins, int RTC_sec, unsi ong MesMillis, int motor FW, int motor BW);
g MesMillis, intl6 t depth, float tempR, float tempB, float tempC, float conduc);

long MesMillis, int depth);

WriteSensorValues (int RTC mins, int RTC_sec,

void WriteHoneyValues (int R'I‘C_mins, int RTC_sec, unsigned

Fig. 81: SD Card Module User Defined Functions

The new user defined functions are divided in 3 main groups:

e SD card setup: this function checks that the SD Card module is properly connected
to the Arduino MEGA board using the “SD.begin” library function and the chip select
(CS) pin defined earlier in the code. If the function returns a 0, the functions creates
a card failure warning message for the user. Otherwise, the function sets the internal
variable “SDin” to 1, which allows for the execution of the rest of the code, and tells
the user that the card is ready (Fig. 82).

Page 50 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

e File generation: this function is in charge of creating a new data log file with the
specified name using the function “SD.open”. Once created, it prints the header row
containing the name of each column in the new file. Then, the file is closed and ready
to be filled with data. In the event that the file cannot be created, a warning message
is shown (Fig. 83).

e Data write: whenever this function is called, it prints a new line in the specified file
with the values introduced as arguments. The functions requires an argument for
each column or field in the file (Fig. 84).

This section will focus on demonstrating the basic operating principles of each of the
functions and thus only one example of each will be included.

oid sDSetup(}{

intln{"Initializing Card");
(C8 pin, OUTPUT);

//Check if card is ready
begin(Cs_pin)){

Serial.println("Card Failed!!");
SDin=0
return
}
Serial.println("Card Ready");
SDin=1;

Fig. 82: SD Card Setup Function Code

d CreatseMotorLogFile () {
le logFile = SD.open("LogSTEPL.csv", FILE WRITE):
if (logFile) {

//Movement of the longitudinal tray

logFile.println{(", , , ,"}; //Blank line
String header = "RTC_Min, RTC_sec, Millis, Motor_FW, Motor BW";
logFile.println (header);
logFile.c ();
yelse if (SDin==1){
Serial.println("Couldn't open log file™):

}

Fig. 83: File Creation Function Code

o0id WriteMotorValues (int RTC_mins, int RTC_sec, unsigned long MesMillis, int motor_ FW, int motor BW) {
//Cc8v format data string
String dataString = String(RTC mins)+ ", " + String(RTC_sec) + ", " + String(MesMillis) + ", " + String(motor FW) + "

pen file to write to, only one file
e logFile = SD.open("LogSTEPL.csv",

if(logFile) {

open at a time
FILE_WRITE);

logFile.println(datasString);
logFile.close{);

telse if (SDin==1){
Serial.println("Couldn't access file");

H

Fig. 84: Data Write Function Code

N " + String(motor BW);

Page 51 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

7.3.- Database File Structure

The basic structure for every database is the same: values are introduced separated by a
comma each and the header row includes a short description of each of the fields. Being real
time databases, the first row of time values is logged right at the start of the program execution,
during the setup. The following sections will provide more insight details about each database
and its data gathering goals.

7.3.1.- Stepper Motor Log File

In order to monitor the power that the mass trimming motors consume, a log file database
is created (“LogSTEPL.csv”). This database records the amount of time that the motor is moving
while taking into account its direction of movement. To do so, it has 3 fields containing real
time values up to the millisecond subdivision (RTC minutes, RTC seconds and Milliseconds) and
2 fields (Motor Forwards and Motor Backwards) that indicate whether the motor is moving, in
one direction or another, or not (Fig. 83).

0 0 0 Motor is stopped

0 1 POSITIVE Motor moving backwards
1 0 NEGATIVE Motor moving forwards
1 1 - No physical meaning

Fig 85: Motor Database Significance Table

Knowing how to interpret the database, it is important to know when the file is written
within the main code. As the focus is made on the motor operation, the file is written every
microcontroller cycle whether the motor moves or not. The values for the motor direction
columns are updated accordingly (Fig. 85)

Within this database, it would also be interesting to include two additional fields to keep
track of the target angle value and the vehicle’s pitch angle. This setup would show that the
motor stops when the target angle is reached. This addition would also show the proper
function of the Proportional Controller that modulates the rotation speed of the motor.

7.3.2.- CTD Sensors Log File

As it has been explained in part 5 of this document, data collection is the upmost duty of
this Glider. Regardless of the origin of the data, whether it comes from the CTD module
integrated in the vehicle or any external source, it needs to be interpreted properly in order to
make good predictions or situation assessments. That is why an independent log database
(“LogCTD.csv”) is created. This database (Fig. 86) contains 3 fields that record the real time
when the file is written (RTC_Min, RTC_Sec and Millis) and 5 other fields corresponding to each
of the CTD modules sensors (Depth, Temperature A, Temperature B, Temperature C and
Conductivity).

Page 52 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

d CreateSensorLogFile () {
File logFile = SD.open("LogCTD.csv", FILE_WRITE); //Movement of the longitudinal tray
if (logFile){

logFile.printin{™, , + + r r :™}# //Blank line

String header = "RTC Min, RTC_sec, Millis, Depth, Temperatured, TemperatureB, TemperatureC, Conductivity"

logFile.println (header);
logFile.close () ;
telse if (SDin==1){
Serial.println("Couldn't open log file");
H
}

Fig. 86: CTD Sensor Database Structure Definition and Creation

This set of data will allow for the plotting of the CTD sensor values using a real time scale.
To ensure that the data records are as close as possible to a real time monitoring of the reality,
the CTD module sends data to the Arduino MEGA board, which records the instant value of
the sensors, every 100 milliseconds.

7.3.3.- Honeywell Depth Sensor Log File

Previously explained in part 5.3, the Honeywall depth sensor provides auxiliary pressure
readings, useful for the navigation of the Glider. As this sensor is not part of the CTD module,
a new database (“LogHONEY.csv”) containing 3 fields for real time records (RTC_min, RTC_sec
and Millis) and 1 field for the Glider’s depth values overtime (Depth), is created (Fig. 87).

volid CreateHoneyWellLogFile () {

le logFile = SD.open("LogHONEY.csv", FILE_WRITE);
if (logFile){
logFile.println(", , , ")}: //Blank line
String header = "RTC_Min, RTC_sec, Millis, Depth™;
logFile.println(header) ;
logFile.close ()
yelse if (SDin==1){
Serial.println("Couldn't open log file");

}
}

Fig. 87: Honeywell Sensor Database Structure Definition and Creation

The log frequency is the same as the update frequency of the values on the display screen
explained in part 4 of this document. As such, the log file is written every 20 microcontroller
cycles with the depth value (“depthH”) returned from the function named “cycleScience” (Fig.
88), which ultimately uses the “getPressure” function seen earlier (Fig. 80), to obtain the right
reading.

vold testControl ()

struct sciData theSci;

theSci = cycleScilence (inAngle, tempk);

//Honeywell dataLoG

MesMillis = m211lis{);

WriteHoneyValues(m, s, MesMillis, theSci.depthH); //Log into SD card

science.depth = depth;
science.temp = tempk;
science.infAngle = inAngle;
science.posRail = posRail;
UNO.;eni[a:a(UNO_ADDRESS]J

Fig. 88: SD Card Honeywell Sensor Log Function

Page 53 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino

1. Report

7.4.- Data Analysis

As the databases are quite similar except for the number of fields and the kind of data they
contain, the arrangement of the data for its analysis is the same. For this reason, this section

will only focus on one of the files.

The program chosen for the data analysis is Excel because it is powerful enough for the kind
of graphics it is intended to generate and easy to use. Then, the first step is to arrange the CSV

values into different columns (Fig. 89).

RTC_Min RTC_sec Millis Motor_FW Motor_BW
30 43 21950 0 0
30 43 22120 0 0
30 43 22227 1 0
30 43 22734 0 0
30 43 22772 0 0
30 43 22881 1 0
30 43 23388 0 0
30 43 23425 0 0
30 43 23533 1 0
30 43 24041 0 0
30 43 24078 0 0
30 43 24186 1 0
30 43 24693 0 0
30 43 24731 0 0
30 43 24843 1 0
30 43 25350 0 0
an A2 78288 n n

Fig. 89: Database Records displayed in Columns in Excel

Once the real time values are manipulated in a suitable way for the data analysis by, for
example, joining the minutes and seconds to create the labels for the graph, each of the data
fields is introduced in the graph as an independent series. This leads to a graphic representation

of a big number of records (Fig. 90).

Stepper Motor Activation

= \OTOR FW ss==MOTOR BW

) Ak o s S
;¥ X N N A WY WYY
S o DY Y Y Y T N o o

S R I TN P
,,;\c ,,)’\ .,)'\ Y ,,;\c .,)'\ % rp;“ .,;'v

-0,5

Fig. 90: Motor Activation Excel Graph

Page 54 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino

1. Report

8.- Conclusion & Results

8.1.- Results

Due to several time and budget constraints, the control system implemented in this project
has not been tested underwater. However, every system designed has proved to be working in
the lab environment. To perform a detailed results analysis of each module, they will be assessed
independently:

1.

Arduino MEGA Board: as the ‘brain’ of the systems designed in this project, the
Arduino MEGA has proved to be powerful enough to properly handle every
subsystem according to the algorithm written. However, computing limitations were
found when attempting to display the data coming from the RTC module on the
screen. Besides, it is important to mention that the function in charge of moving the
stepper motors blocks the code execution until the movement is completed. These
two limitations should be considered when analysing the RTD collected by the Glider.
Stepper Motor Control: the hardware items selected and designed (PCB) work
flawlessly together proving to have enough torque and structural strength to pull the
trimming mass, even at a 90° angle. The control and communication algorithms
designed works as expected, allowing for the automatic and manual operation of the
motors.

BT Module & Communications: despite its limited range, the sending of BT
commands and the reception of RTD on the mobile device works properly together
with the designed APP. The rest of the communication procedures fulfil their jobs as
expected allowing for the communication of every module with the Arduino MEGA.
Display Screen: throughout the design process, several options have been studied
for the display screen. Before being used as an assistance RTD display device for the
Glider’s operator, the screen also allowed for command sending, taking advantage
of its touchscreen feature. However, the screen ended up being too full of different
buttons and so the control functionalities were laid off in benefit of the display
functionality. Both the communication and data update on the screen worked
properly.

CTD Module: given the fact that this module is meant to be tested mostly
underwater and it was designed by another college, only the communication and
update capabilities are assessed. As such, the communication proved to be reliable,
allowing for a regular data update.

SD Card Data Log: despite having the log files written many times in one
microcontroller cycle, the module copes properly with the many data accesses. The
file creation also proved to work properly creating the 3 data files with the right
structure database.

Page 55 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

8.2.- Conclusions

e Stepper motors provide a compact and viable solution to the trimming system of the
Glider while ensuring higher accuracy and torque values despite needing more
complex controllers.

e PCB design can be very useful when no manufacturer is able to offer the solution
needed. The use of PCB specific programs makes the design and fabrication process
easier and accessible to a great number of users. Together with the low fabrication
cost offered by some websites, custom PCBs make the design cleaner and more
reliable.

e Wireless communications are key as the Glider will be navigating without any human
input. Thus, the RTD update transmission has to be reliable and secure in order to
keep the vehicle located and monitored at all times.

e Modular coding helps organize the subsystems designed and makes the code more
readable and understandable whether you are familiar with it or not. Besides, coding
each module independently allow for the testing of these systems without
interfering with the main code. In a project with such amount of coding, modules are
vital.

e Within the laboratory environment, it has been proved that the control and
operation of an AUV vehicle is possible using low-cost Arduino modules and
microcontrollers without compromising its reliability or functionality.

e Different control, display, communication and storage systems have been designed
and tested under the scope of this project thus fulfilling the objectives explained in
Part 1.3. Besides, this project has proved to be a good blend of every skill acquired
within the Electronic and Automatics Degree such as control theory, coding or
digital/analog electronics.

Page 56 of 58

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

9.- References

[1] Claus B., Bachmayer R., Williams C.D., “Development of an auxiliary propulsion module for an
autonomous underwater glider, Proc. of the Institution of Mechanical Engineers”, Part M: Journal of
Engineering for the Maritime Environment, 224 (4) (2010), pp. 255-266

[2] Davis R.E., Eriksen C.C., Jones C.P., “Autonomous Buoyancy- driven Underwater Gliders”, The
Technology and Applications of Autonomous Underwater Vehicles, Taylor and Francis, London (2002):
G. Griffiths (Ed.), pp. 37-58

[3] Alvarez A., Caffaz, A. Caiti, G. Casalino, L. Gualdesi, A. Turetta, R. Viviani Folaga, “A low-cost
autonomous underwater vehicle combining glider and AUV capabilities”, Ocean Engineering, 36 (1)
(2009), pp. 24-38

[4] Webb D.C., Simonetti P.J., Jones C.P., “SLOCUM, an underwater glider propelled by environmental
energy”, IEEE Journal of Oceanic Engineering, 26 (2001), pp. 447-452

[5] Glenn S., Schofield O., Kohut J., McDonnell J., Ludescher R., Seidel D., Fanjul E., “The Trans-Atlantic
Slocum Glider Expeditions: A Catalyst for Undergraduate Participation in Ocean Science and
Technology”, Marine Technology Society Journal, 45 (1) (2011), pp. 52-67

[6] Ibidem.

[7] Busquets J., Busquets D.., Busquets J.V., “Combined Gas-Fluid Buoyancy System for Improved
Attitude and Maneuverability Control for Application in Underwater Gliders”, IFAC-PapersOnLine, 48-2
(2015) 281-287

[8] Anonymous, “Adafruit Motor Shield”, Adafruit Explore & Learn, (2012),
https://learn.adafruit.com/adafruit-motor-shield/overview , accessed January, 2018

[9] Anonymous, “DRV8825 Stepper Motor Driver Carrier, High Current, Item #2133”, Pololu Stepper
Motor Drivers, https://www.pololu.com/product/2133, accessed January, 2018

[10] https://circuitmaker.com accessed February, 2018

[11] https://www.altium.com/es/ accessed February, 2018

[12] https://www.seeedstudio.com/fusion pch.html accessed February, 2018

[13] Oscar Liang, “HOW TO USE GY80 ARDUINO - ADXL345 ACCELEROMETER”, (2014),
https://oscarliang.com/use-gy80-arduino-adx|345-accelerometer/ , accessed January, 2018

[14] Anonymous, “Understanding Kalman Filters”, Video and Webminar Series, (2017)
https://www.mathworks.com/videos/series/understanding-kalman-filters.html, accessed January,
2018

[15] T. Lacey, "Tutorial: The Kalman Filter", Computer Vision, http://www.cc.gatech.edu/classes/cs7322-
98-spring/PS/kfl.pdf , accessed November, 2018

[16] Cebrian Abellan, A., “Sistema de desplazamiento de masas para el control de orientacién de un
Glider submarino”, DISCA, (2018)

[17] Laurentiu Badea, “Arduino library for A4988, DRV8825, DRV8834, DRV8880 and generic two-pin
(DIR/STEP) stepper motor drivers”, Stepper Driver, https://github.com/laurb9/StepperDriver, accessed
February, 2018

Page 57 of 58

https://learn.adafruit.com/adafruit-motor-shield/overview
https://www.pololu.com/product/2133
https://circuitmaker.com/
https://www.altium.com/es/
https://www.seeedstudio.com/fusion_pcb.html
https://oscarliang.com/use-gy80-arduino-adxl345-accelerometer/
https://www.mathworks.com/videos/series/understanding-kalman-filters.html
http://www.cc.gatech.edu/classes/cs7322-98-spring/PS/kf1.pdf
http://www.cc.gatech.edu/classes/cs7322-98-spring/PS/kf1.pdf
https://github.com/laurb9/StepperDriver

Development of the control electronics for the navigation of an unmanned submarine with Arduino
1. Report

[18] Luis Llamas, “CONECTAR ARDUINO POR BLUETOOTH CON LOS MODULOS HC-05 O HC-06”,
Tutoriales Arduino, (2015), https://www.luisllamas.es/conectar-arduino-por-bluetooth-con-los-
modulos-hc-05-0-hc-06/, accessed March, 2018

[19] Shah Saifur Rahman, “AT Command Mode of HC-05 and HC-06 Bluetooth Module”, (2017),
https://www.instructables.com/id/AT-command-mode-of-HC-05-Bluetooth-module/, accessed March,
2018

[20] MIT, “APP INVENTOR 2”, http://appinventor.mit.edu/explore/, accessed November, 2018

[21] Anonymous, “Scratch (programming language)”,
https://en.wikipedia.org/wiki/Scratch (programming language), accessed January, 2019

[22] Mike Grusin, “Serial Peripheral Interface (SPI)”, Tutorials,
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all, accessed November, 2018

[23] Anonymous, “SD Library”, Reference, https://www.arduino.cc/en/reference/SD, accessed April
2018

[24] Anonymous, “I>C”, https://en.wikipedia.org/wiki/|1%C2%B2C, accessed January, 2019

[25] Anonymous, “12C”, Aprendiendo Arduino,
https://aprendiendoarduino.wordpress.com/2017/07/09/i2c/, accessed January, 2019

[26] Dmainmon, “UNO R3 2.8 TFT Touch Screen With SD Card Socket for Arduino Board Module”,
https://www.instructables.com/id/UNO-R3-28-TFT-Touch-Screen-With-SD-Card-Socket-for/, accessed
April, 2018

[27] https://www.elegoo.com/, accessed January, 2019

[28] https://store.arduino.cc/arduino-uno-rev3, accessed February, 2018

[29] Phillip Burgess, “Adafruit GFX Graphics Library”, Adafruit Explore & Learn,
https://learn.adafruit.com/adafruit-gfx-graphics-library/overview, accessed April, 2018

[30] Anonymous, “TFTLCD-Library”, Adafruit, https://github.com/adafruit/TFTLCD-Library, accessed
April, 2018

[31] Anonymous, “Wire Library”, Reference, https://www.arduino.cc/en/Reference/Wire, accessed
March, 2018

[32] Bill Porter, “Arduino Easy Transfer”, https://github.com/madscil016/Arduino-EasyTransfer,
accessed March, 2018

[33] Anonymous, “CTD (instrument)”, https://en.wikipedia.org/wiki/CTD_(instrument), accessed April,
2018

[34] Honeywell, “ASDX Series Silicon Pressure Sensors”, https://sensing.honeywell.com/honeywell-
sensing-asdx-series-digital-pressure-sensors-product-sheet-008095-13-en.pdf, accessed May, 2018

Page 58 of 58

https://www.luisllamas.es/conectar-arduino-por-bluetooth-con-los-modulos-hc-05-o-hc-06/
https://www.luisllamas.es/conectar-arduino-por-bluetooth-con-los-modulos-hc-05-o-hc-06/
https://www.instructables.com/id/AT-command-mode-of-HC-05-Bluetooth-module/
http://appinventor.mit.edu/explore/
https://en.wikipedia.org/wiki/Scratch_(programming_language)
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all
https://www.arduino.cc/en/reference/SD
https://en.wikipedia.org/wiki/I%C2%B2C
https://aprendiendoarduino.wordpress.com/2017/07/09/i2c/
https://www.instructables.com/id/UNO-R3-28-TFT-Touch-Screen-With-SD-Card-Socket-for/
https://www.elegoo.com/
https://store.arduino.cc/arduino-uno-rev3
https://learn.adafruit.com/adafruit-gfx-graphics-library/overview
https://github.com/adafruit/TFTLCD-Library
https://www.arduino.cc/en/Reference/Wire
https://github.com/madsci1016/Arduino-EasyTransfer
https://en.wikipedia.org/wiki/CTD_(instrument)
https://sensing.honeywell.com/honeywell-sensing-asdx-series-digital-pressure-sensors-product-sheet-008095-13-en.pdf
https://sensing.honeywell.com/honeywell-sensing-asdx-series-digital-pressure-sensors-product-sheet-008095-13-en.pdf

o UNIVERSITAT ._.
G2 POLITECNICA EEEERN

DE VAL E NCIA Escuela Técnica Superior de Ingenieria del Disefio

DEPARTAMENTO DE INFORMATICA DE SISTEMAS Y COMPUTADORES
ESCUELA TECNICA SUEPERIOR DE INGENIERIA DEL DISENO
UNIVERSIDAD POLITECNICA DE VALENCIA

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR
THE NAVIGATION OF AN UNMANNED SUBMARINE
WITH ARDUINO

2. REQUIREMENTS

TRABAJO DE FIN DE GRADO:

Grado en Ingenieria Electronica Industrial y Automatica

Autor: Fco. Javier Pérez Villaplana
Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

VALENCIA, ABRIL 2019

Development of the control electronics for the navigation of an unmanned submarine with Arduino
2. Requirements

R = To [T =10 0 1=T | KOO PSP PP PP PPPPPPPPPON 3

Page 2 of 3

Development of the control electronics for the navigation of an unmanned submarine with Arduino

2. Requirements

1.- Requirements

The requirements that this project must fulfil, within the whole structure of the Glider, are
the following:

1.

The attitude control system designed must be able to change the orientation of the
Glider, both in the pitch and roll axis, according to the user specifications. This needs
to be achieved by the displacement of two inertial masses that change the centre
of mass of the vehicle and thus produce a shift in its orientation. This system, joined
with the variable buoyancy system, allow for the forward movement of the Glider.

The Glider must be able to transmit real time information as well as storing this
information for later computer analysis.

The Glider must have a communication interface for the user to change its internal
parameter and set new targets for the pitch and roll angles. This should be achieved
by a Bluetooth module and a GUI designed for a mobile APP.

Throughout the whole design process, the cost of the different modules, sensors
and actuators must be as low as possible, using the already available materials in
the lab.

In order to ensure an easy repair or replacement of the components in the control
system, modularity must be applied to every sensor and actuator connected to the
Arduino board. This way, whenever something fails, it will just be a Plug & Play
repair.

The programming language must be C, with the Arduino syntaxis, so that every
piece of code can be added to the whole Glider project after.

Modularity must also be applied to the code, separating each system, sensor or
actuator into an independent module. This should be achieved with the creation of
functions that will be called on the main part of the code.

Space economy should also be considered, and hardware component must have
the smallest size possible. This can be achieved by including as much hardware as
possible within a PCB Arduino shield.

Power consumption and build quality must also be assessed in the design and

implementation of the hardware as well as in the selection of the power source for
the system.

Page 3 of 3

0 UNIVERSITAT ._.
|] POLITECNICA EEEERN

DE VAL E NCIA Escuela Técnica Superior de Ingenieria del Disefio

DEPARTAMENTO DE INFORMATICA DE SISTEMAS Y COMPUTADORES
ESCUELA TECNICA SUEPERIOR DE INGENIERIA DEL DISENO
UNIVERSIDAD POLITECNICA DE VALENCIA

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR
THE NAVIGATION OF AN UNMANNED SUBMARINE
WITH ARDUINO

3. BUDGET

TRABAJO DE FIN DE GRADO:

Grado en Ingenieria Electronica Industrial y Automatica

Autor: Fco. Javier Pérez Villaplana
Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

VALENCIA, ABRIL 2019

Development of the control electronics for the navigation of an unmanned submarine with Arduino

3. Budget

Index
R Y T o 1) TSP SPPP 3
2.- Development & LaboUr COSE......uiiiiiiiiiciee ettt ettt e e et e e e eaba e e e e earae e s enreeas 3
IR = 10T == RSP PR 3

Page 2 of 3

Development of the control electronics for the navigation of an unmanned submarine with Arduino

3. Budget
1.- Material Cost
De DTIO 0 ota 0
Arduino MEGA 2560 u 35 1 35
Arduino UNO u 20 2 40
NEMA 17 Stepper Motor u 12 2 24
DRV8825 Controller u 8 2 16
3 DIP Switch u 0,85 2 1,7
Electrolytic Capacitor u 0,35 3 1,05
2 Pin Terminal Block u 0,5 5 2,5
8 Pin Socket u 0,25 6 1,5
6 Pin Socket u 0,25 2 0,5
GY-80 IMU 10 DOF u 7 1 7
HC-06 BT Module u 3,8 1 3,8
SD Card Adapter Module u 2 1 2
RTC Module u 2,5 1 2,5
2.8" LCD Touch Screen Shield u 15 1 15
Honeywell ASDX Pressure Sensor u 55 1 55
PCB u 1,5 1 1,5
USB Li-Po Battery u 18 5 90
300
2.- Development & Labour Cost
e DTIO 0 O1d 0
Project Study & Hardware Selection h 25 20 500
Software Design h 25 15 375
PCB & Hardware Design h 25 40 1000
Coding & Debugging h 25 120 3000
Assembly h 25 10 250
Testing h 25 25 625
Documentation h 25 130 3250
OTA 9000
3.- Budget
) DTIO 0 0 0
Material Cost u 300 1 300

Development & Labour Cost u 9000 1 9000
9300

Page 3 of 3

I UNIVERSITAT B L]
A poLITECNICA il

DE VAL E NCIA Escuela Técnica Superior de Ingenieria del Disefio

DEPARTAMENTO DE INFORMATICA DE SISTEMAS Y COMPUTADORES
ESCUELA TECNICA SUEPERIOR DE INGENIERIA DEL DISENO
UNIVERSIDAD POLITECNICA DE VALENCIA

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR
THE NAVIGATION OF AN UNMANNED SUBMARINE
WITH ARDUINO

4. DIAGRAMS & SCHEMATICS

TRABAJO DE FIN DE GRADO:

Grado en Ingenieria Electronica Industrial y Automatica

Autor: Fco. Javier Pérez Villaplana
Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

VALENCIA, ABRIL 2019

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

Index
1.- ConNection SChEMATLICSooiiiiiiii e s 3
1.1.- DRV8825 Stepper Motor Controller WiriNgeevvciiiiieciieeiciiee e srree s sseeee e 3
1.2.- HC-06 Bluetooth Module WiFING......c..uiiiiciiiiiiiiie ettt e e s e s eessaneee s 3
1.3.- SD Adapter ModUIE WIlINEGcceccuuieeeeiiiee ettt e e s iree e e ve e e e s ate e e e e ara e e e e ntaee e ennres 3
1.4.- 12C BUS WiriNg SCHEMATICS ...vviiiiiiiieeecitie ettt et e st e e s e v e e e e ntae e e enreas 4
2.- Arduino Shield PCB SChemMaAtiCscocuiriiiiiiiieiieiceceeee et 4
2.1.- Controller Shield Electric SChemMatiCcccueirieiiiiiiiieeeeec e 4
2.2.- PCB SOCKET FOOLPIINT . .eviiiiiiiiiie ettt sree e e et e e st e e e e sabe e e e s abaee e eares 5
2.3.- PCB Connection BlOCK FOOTPIINTcciiciieeeiiiie ettt ettt 5
2.4.- 3 DIP SWiItch PCB FOOTPIINT ...vviiiiiiiee ettt ettt tee e e eebee e e eeave e e e e eabae e e enreas 5
2.5.- Decoupling Capacitor PCB FOOTPIINt.......ccciiiiieeceiiee ettt et e e e 5
2.6.- DRV8B825 PCB FOOTPIINT cettiiiiiiiiiiiieieeeeeeriiitee e e e sttt e e e s s eiaree e e e e e s s sssanneeeeessssssnnsnenens 5
2.7.- PCB Shield DIMeNnsioNns DIagramcccueeeiiciieeeieiieeeeeiieeeesieeesssieeeessreeeessveeeessseessssnsens 6
2.8.- PCB Final Layout and Routing SChematicsccouviiieiiii i 6
2.9.- PCB 3D IMOGEI ..ttt ettt ettt sb e st sttt e nb e s he e et sane e 6
T b I -4 -1 1 1 YU U TP PPT PP 7
R B S T o Lol = DI = - o [P R 7
3.2.- AUV Trimming Control System Diagramccccececuieiiiiiieeeciiiee et ceiees e e e svae e e 8
3.3.- Attitude Control System FIOW Chartcccveiiiiiieecciee et 8

Page 2 of 8

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

1.- Connection Schematics

1.1.- DRV8825 Stepper Motor Controller Wiring?

DRV8824/ —

—{vDD A -

microcontroller

—>STEP _

—{GND f>DIR _ B8 | GND "]

— logic power supply
(2.5-5.25V)

1.2.- HC-06 Bluetooth Module Wiring

MADE IN
ITALY

Arduino

POWER ANALOG IN
oA m

nade IN - @

ITALY aAammuaag T @ ~awnsmuaAao

5 3 Arduino
.. [POWER ANALOG IN
s . numru®. ar3s3

ST LTS TLLELT

1 Anonymous, “DRV8825 Stepper Motor Driver Carrier, High Current, ltem #2133”, Pololu Stepper Motor Drivers,
https://www.pololu.com/product/2133

Page 3 0f 8

https://www.pololu.com/product/2133

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

1.4.- 12C Bus Wiring Schematics

ougnpay

2.- Arduino Shield PCB Schematics

2.1.- Controller Shield Electric Schematic

sV
1 [6
38 L
3
SWI
1c1 YMOT n
_re2 2
- Bid ENABLE VMOT e ¢
RESET 25 Mo oD GND
J6 W 26| e] i Cols - M1
Auet & Tl b 7] Al sy M2 Bl il
GND | GFD I T RESET 4l L 1 2 W
= 2 B = A3 3 SCEEP A2 = .
DIiip i 3 \57,]“5 33 Al b sTEp FAULT | — ¢ , B
St il . 3 |5 01 g &D
D10 [g ower CoilsA - M1
D9 72 DRVESDS -1 ==
] | 2 GiD
] AD 251
DE-13 il %] 4
a2 b 162 YMOT
11 ¥ L s 1
11 Mo 2la D3 |FRABIE vMOT oy L 2
12 R Rl T MO oND |— R i
o i Analog i}l g? z i [
m3 3 T 2 % CoilsB - M2
m § N (]| i 5
il SCEEP Pep s |
2 — 7 P sTER e | S | B 2
8 B0 I pr oND i
D07 IR O I
DRVESDS -2 = CoilsA - M2
GND
5y
1 [s
£ 0
3 e o
SW2

Page 4 of 8

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

2.2.- PCB Socket Footprint

06660600

2.3.- PCB Connection Block Footprint

2.4.- 3 DIP Switch PCB Footprint

Page 5 of 8

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

2.7.- PCB Shield Dimensions Diagram

2.5
1.64
¢ 086 5
7, oo oo
3x3.2
=]
y «|g 8
<[3 2|
S e e
| 1.8
_ 25
s 26 EI5[E
27

i
=
FlE& ¢ £ el e plalple

L \d
Q00 000 [010:0;0:0:0

Page 6 of 8

Development of the control electronics for the navigation of an unmanned submarine with Arduino

3.- Diagrams

3.1.- Planning Diagram

4. Diagrams & Schematics

Study of previous
Glider version

hJ
I ™

Control system
Hardware selection
. v

l

PCB Arduino
Shield for Motor
Controllers

l

=

Control code for -
N . Testing and
pitch and roll axis X .
. - N validation
trimming systems >
o l vy .
Communications
structure design
e vy
v v hJ
s s ™, s ™
Bluetooth Comm SPI Comm 12C Comm
. e vy e v
h 4 h 4 h 4
s s ™y s ~
Connection to SD Card module Display screen
mobile device setup module comm
. l e l vy . l v
s s ™y s ~
APP design and Data Log Files Display screen GUI
validation design design
. e vy . l v
s ™
CTD Module comm
e l v
s ™
Other Bus devices
comm (RTC, accel,
depth sensor)

v h 4 r

Connection and
mounting of the
devices

Final test and
validation of the
whole system

Page 7 of 8

Development of the control electronics for the navigation of an unmanned submarine with Arduino
4. Diagrams & Schematics

3.2.- AUV Trimming Control System Diagram

VA
» » 0. P In1 Out1 —
% setAngle +/- margin (deg) Qj/ delta_tetha (deg) 090 RPM_a &1 posRail (mm) Z !
setAngle (deg) P Controller Stepper Motor & Trimming AUV Dynamics
Mass
delta_t (ms)
inAngle (deg) 4
xhat
accx (deg) AUV Attack Angle (deg)
Y adx|
KF Accelerometer

3.3.- Attitude Control System Flow Chart

START

Define process variables: posRail, inAngle, etc...
Define program objects: stepper motor,
accelerometer, etc...

YES
RPM_a <= 607

Accelerometer calibration (angleOFF) & stepRPM = RPM_a stepRPM = 60

system equilibrium initialization (stable at 0°)

Initialize stepper motor with obtained value
(stepRPM)

Set USER defined control variables:
setAngle & margin

|

- . YES
inAngle > setAngle + margin?
& posRail < MAX_RAIL?

Obtain accelerometer angle data
(accx, accy, accz)

Enable motor, move 92 steps
forwards & posRail++

Motor DISABLED

Process input angle data through KF &
compensate for angle offset

l

Calculate angle difference (setAngle - inAngle) &

YES

inAngle < setAngle - margin?
& posRail > 07

obtain RPM value (RPM_a) with controller gain

Enable motor, move 92 steps
backwards & posRail--

Motor DISABLED

NO YES

RPM_a >= 2007

stepRPM = RPM_a stepRPM = 200

Page 8 of 8

o UNIVERSITAT ._.
G2 POLITECNICA EEEERN

DE VAL E NCIA Escuela Técnica Superior de Ingenieria del Disefio

DEPARTAMENTO DE INFORMATICA DE SISTEMAS Y COMPUTADORES
ESCUELA TECNICA SUEPERIOR DE INGENIERIA DEL DISENO
UNIVERSIDAD POLITECNICA DE VALENCIA

DEVELOPMENT OF THE CONTROL ELECTRONICS FOR
THE NAVIGATION OF AN UNMANNED SUBMARINE
WITH ARDUINO

5. ANNEXES

TRABAJO DE FIN DE GRADO:

Grado en Ingenieria Electronica Industrial y Automatica

Autor: Fco. Javier Pérez Villaplana
Director: Jose Vicente Busquets Mataix

Codirector: Javier Busquets Mataix

VALENCIA, ABRIL 2019

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes

Index
1.- Arduino MEGA Datasheet (ATMEZa2560)c..cocereiiieiciiieiiie e ecteeeteeeereeseeesreeesaeeeens 3
2.- Arduino UNO Datasheet (ATMEZa328)..........cccueeieiiiieieiiiee et eetee e rree e e e e 10
3.- DRV8825 Stepper Motor Controller Datasheetccccoooocieiiiiiiii e, 14
4.- ASDC Series Silicon Pressure SENSOKScocieiiiiiiiiierieeeenieeniee sttt e s s s 38
5.- NEMA 17 Stepper Motor Datasheet...............c.oooiviiiiiiiiiiiie e 44
(R oo T [T-Jo 0] 41T 1] o SRS 45
5.1, IMAIN COTR ..ttt et b e bt e sat e st e et e e bt e sbeesate st e sabeebe e beennees 45
6.2.- CONLIOI IMOTUIE ...ttt ettt st st st st b e b e snees 46
6.3.- SD Card MOUIEcc.eeeiiiiieie ettt et ettt e st e s e st e s nbeesbeeenaeeas 55
6.4.- Bluetooth Configuration MoOdUIE.........c.ueiiieiiiii i 57
6.5.- Kalman Filter MOdUIE.......ooiieiee ettt s 58
6.6.- RTD IMOTUIE ..ttt sttt et sbe e st st e b e b e beennees 58
6.7.- SCIENCE MOAUIE ...ttt ettt st st st b e beesnees 59
6.8.- SENSOIS MOTUIE....coiiiiiiiii ettt ettt e st e e s b e sbe e sbbeesbeeenaeeas 61

Page 2 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

1.- Arduino MEGA Datasheet (ATmega2560)*!

Arduino MEGA 2560

NWW . ARDUINO. CC

Product Overview

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560
(datasheet). It has 54 digital input/output pins (of which 14 can be used as PWM outputs),
16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB
connection, a power jack, an ICSP header, and a reset button. It contains everything
needed to support the microcontroller; simply connect it to a computer with a USB cable or
power it with a AC-to-DC adapter or battery to get started. The Mega is compatible with
most shields designed for the Arduino Duemilanove or Diecimila.

Technical

Specifications Page 2

1 |
onlouse Ay ... Page 6

L http://www.mantech.co.za/datasheets/products/A000047.pdf

Page 3 of 63

http://www.mantech.co.za/datasheets/products/A000047.pdf

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Technical Specification

EAGLE files: arduino-mega2560-reference-design.zip Schematic: arduino-mega2560-schematic.

Summar

Microcontroller ATmega2560
Operating Voltage 5V
Input Voltage (recommended) 7-12v
Input Voltage (limits) 6-20V
Digital I/0 Pins 54 (of which 14 provide PWM output)
Analog Input Pins 16
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 256 KB of which 8 KB used by bootloader
SRAM 8 KB
EEPROM 4 KB
Clock Speed 16 MHz

the board

Power
Led

OMMUNICATION

C

w N

bWWWW
AN DOOOAMNEDD

S

-analog pins|

Page 4 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Power

The Arduino Mega2560 can be powered via the USB connection or with an external power supply. The power source is
selected automatically. External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The
adapter can be connected by plugging a 2.1mm center-positive plug into the board’s power jack. Leads from a battery
can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 voits. If supplied with less than 7V, however, the 5V pin may
supply less than five voits and the board may be unstable. If using more than 12V, the voitage regulator may overheat
and damage the board. The recommended range is 7 to 12 volts.

The Mega2560 differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it
features the Atmega8U2 programmed as a USB-to-serial converter.

The power pins are as follows:

e VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to 5 voits
from the USB connection or other regulated power source). You can supply voitage through this pin, or, if
supplying voitage via the power jack, access it through this pin.

e 5V. The reguiated power supply used to power the microcontroller and other components on the board. This
can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.
3V3. A 3.3 voit supply generated by the on-board regulator. Maximum current draw is 50 mA_

GND. Ground pins.

Memor

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for the bootioader). 8 KB of
SRAM and 4 KB of EEPROM (which can be read and written with the EEPROM lbrary).

Input and Output

Each of the 54 digital pins on the Mega can be used as an input or output, using pinMode(). digitaiWrite(). and
digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an
internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

e Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 (TX); Serial 3: 15 (RX) and
14 (TX). Used to receive (RX) and transmit (TX) TTL senal data. Pins 0 and 1 are also connected fo the
comresponding pins of the ATmega8U2 USB-to-TTL Serial chip .

* External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20 (interrupt 3), and 21
(interrupt 2). These pins can be configured to frigger an interrupt on a low value, a rising or falling edge, or a
change in value. See the attachinterrupt() function for details.

PWM: 0 to 13. Provide 8-bit PWM output with the analogWrite() function.

SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI communication, which, aithough
provided by the underlying hardware, is not currently included in the Arduino language. The SPI pins are also
broken out on the ICSP header, which is physically compatible with the Duemilanove and Diecimila.

e LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when
the pin is LOW, it's off.

e FC: 20 (SDA) and 21 (SCL). Support °C (TWI) communication using the Wire library (documentation on the
Wiring website). Note that these pins are not in the same location as the I°C pins on the Duemilanove.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default
they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and
analogReference() function.

There are a couple of other pins on the board:

e AREF. Reference voitage for the analog inputs. Used with analogReference().
¢ Reset. Bring this line LOW to reset the microcontrolier. Typically used to add a reset button to shields which
block the one on the board.

Page 5 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Communication

The Arduino Mega2560 has a number of facilities for communicating with a computer, another Arduino. or
other microcontrollers. The ATmega2560 provides four hardware UARTS for TTL (5V) serial communication.
An ATmegaB8U2 on the board channels one of these over USB and provides a virtual com port to software on
the computer (Windows machines will need a .inf file, but OSX and Linux machines will recognize the board
as a COM port automatically. The Arduino software includes a serial monitor which allows simple textual
data to be sent to and from the board. The RX and TX LEDs on the board will flash when data is being
transmitted via the ATmega8Uz2 chip and USB connection to the computer (but not for serial communication
on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Mega's digital pins.
The ATmega2560 also supports 12C (TWI) and SPI communication. The Arduino software includes a Wire

library to simplify use of the 12C bus; see the documentation on the Wiring website for details. To use the SPI
communication, please see the ATmega2560 datasheet.

Programming

The Arduino Mega2560 can be programmed with the Arduino software (downicad). For details, see the
reference and tutorials.

The Atmega2560 on the Arduino Mega comes preburned with a bootloader that allows you to upload new
code to it without the use of an external hardware programmer. It communicates using the original STK500
protocol (reference. C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial
Programming) header; see these instructions for details.

Page 6 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Automatic (Software) Reset

Rather then requiring a physical press of the reset button before an upload, the Arduino Mega2560 is
designed in a way that allows it to be reset by software running on a connected computer. One of the
hardware flow control lines (DTR) of the ATmegaB8U2 is connected to the reset line of the ATmega2560 via a
100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the
chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload
button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the
lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Mega2560 is connected to either a computer running Mac OS X
or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second
or so, the bootloader is running on the Mega2560. While it is programmed to ignore malformed data (i.e.
anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a
connection is opened. If a sketch running on the board receives one-time configuration or other data when it
first starts, make sure that the software with which it communicates waits a second after opening the
connection and before sending this data.

The Mega contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can
be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset
by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

USB Overcurrent Protection

The Arduino Mega has a resetiable polyfuse that protects your computer's USB ports from shorts and
overcurrent. Although most computers provide their own internal protection, the fuse provides an exira layer
of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection
until the short or overload is removed.

Physical Characteristics and Shield Compatibilit

The maximum length and width of the Mega PCE are 4 and 2.1 inches respectively, with the USB connector
and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to
a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple
of the 100 mil spacing of the other pins.

The Mega is designed to be compatible with most shields designed for the Diecimila or Duemilanove. Digital
pins 0 to 13 (and the adjacent AREF and GND pins), analog inputs 0 to 5, the power header. and ICSP
header are all in equivalent locations. Further the main UART (serial port) is located on the same pins (0 and
1), as are external interrupts 0 and 1 (pins 2 and 3 respectively). SPI is available through the ICSP header on
both the Mega and Duemilanove / Diecimila. Please note that FC is not located on the same pins on the
Mega (20 and 21) as the Duemilanove | Diecimila (analog inputs 4 and 5).

Page 7 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

How to use Arduino

Arduino can sense the environment by receiving input from a variety of sensors and can affect its
surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is
prograrmmed using the Arduino programming language (based on Wiring) and the Arduino
development environment (based on Progcessing). Arduino projects can be stand-alone or they can
communicate with software on running on a computer (e.g. Flash, Processing, MaxMSP).

Arduino is a cross-platoform program. You'll have to follow different instructions for your personal
05. Check on the Arduino site for the latest instructions. hiftp/arduino.cc/en/Guide/HomePage

Linux Install Windows Install Mac Install

Once you have downloaded/unzipped the arduino IDE, you can Plug the Arduino to your PC via USB cable.

Blink led

Mow you're actually ready to “burn” your B bk | Al b1
first program on the arduino board. To
select "blink led”, the physical transiation
of the well known programming “hello
world”, select

File>Sketchbook>
Arduino-0017>Examples> sctwi) '
DIgI'.’tHI:’BIInk pirfiede [LeapPin, '1‘-':—.3:

Once you have your skecth you'll
see something very close to the
screenshot on the right.

irice|ledPin, EIGH)F
FTLOON Y 5
. tte§ LedFtn, LOW) 3

In Tools>Board select MEGA

v LA000) -

Now you have to go to
Tools>SerialPort

and select the right serial port, the
one arduino is attached to.

Done compiling m

Press [

(to check for errors) Upload

Page 8 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Dimensioned Drawing

Page 9 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

2.- Arduino UNO Datasheet (ATmega328)?

Arduino Uno

O el e R R e |
- e Y ¥ -

m u BT fomener ,. ER
Swe =0 0

CCEFC =

T &

Arduino Uno R3 Front Arduino Uno R3 Back

Arduino Uno R2 Front Arduino Uno SMD Arduino Uno Front Arduino Uno Back

Overview

The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet). It has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic
resonator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything
needed to support the microcontroller; simply connect it to a computer with a USB cable or power it
with a AC-to-DC adapter or battery to get started.

The Uno differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip.
Instead, it features the Atmegal6U2 (Atmega8U2 up to version R2) programmed as a USB-to-serial
converter.

Revision 2 of the Uno board has a resistor pulling the 8U2 HWB line to ground, making it easier to put
into DFU mode.
Revis i of the board has the following new features:

e 1.0 pinout: added SDA and SCL pins that are near to the AREF pin and two other new pins
placed near to the RESET pin, the IOREF that allow the shields to adapt to the voltage provided
from the board. In future, shields will be compatible both with the board that use the AVR,
which operate with 5V and with the Arduino Due that operate with 3.3V. The second one is a
not connected pin, that is reserved for future purposes.

e Stronger RESET circuit.

e Atmega 16U2 replace the 8U2.

"Uno" means one in Italian and is named to mark the upcoming release of Arduino 1.0. The Uno and
version 1.0 will be the reference versions of Arduino, moving forward. The Uno is the latest in a series
of USB Arduino boards, and the reference model for the Arduino platform; for a comparison with
previous versions, see the index of Arduino boards.

Summary
Microcontroller ATmega328
Operating Voitage sv

Input Voltage (recommended) 7-12V

2 https://www.farnell.com/datasheets/1682209.pdf

Page 10 of 63

https://www.farnell.com/datasheets/1682209.pdf

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
Input Voltage (limits) 6-20V
Digital 1/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6
DC Current per 1/0 Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 32 KB (ATmega328) of which 0.5 KB used by booticader
SRAM 2 KB (ATmega328)
EEPROM 1 KB (ATmega328)
Clock Speed 16 MHz

Schematic & Reference Design

EAGLE files: arduino-uno-Rev3-reference-design.zip (NOTE: works with Eagle 6.0 and newer)
Schematic: arduino-uno-Rev3-schematic pdf

Note: The Arduino reference design can use an Atmega8, 168, or 328, Current models use an
ATmega328, but an Atmega8 is shown in the schematic for reference. The pin configuration Is identical
on all three processors.

Power

The Arduino Uno can be powered via the USB connection or with an external power supply. The power
sourge is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The
adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads
from a battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however,
the 5V pin may supply less than five volts and the board may be unstable. If using more than 12V, the
voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

e VIN. The input voltage to the Arduino board when it's using an external power source (as
opposed to S volts from the USB connection or other regulated power source). You can supply
voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.

* SV.This pin outputs a requlated 5V from the regulator on the board. The board can be supplied
with power either from the DC power jack (7 - 12V), the USB connector (5V), or the VIN pin of
the board (7-12V). Supplying voltage via the 5V or 3.3V pins bypasses the regulator, and can
damage your board. We don't advise it.

 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is S0 mA.

* GND. Ground pins.

Memory

The ATmega328 has 32 KB (with 0.5 KB used for the bootloader). It also has 2 KB of SRAM and 1 KB
of EEPROM (which can be read and written with the EEPROM library).

Input and Output

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(),
digitalWrite(), and digitalRead() functions. They operate at 5 voits. Each pin can provide or receive a
maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In
addition, some pins have specialized functions:

e Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These pins
are connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip.

« External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low
value, a rising or falling edge, or a change in value. See the attachinterrupt() function for
details.

e PWM: 3,5, 6,9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.

Page 11 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

e SPI: 10 (SS), 11 (MOSI), 12 (MISO0), 13 (SCK). These pins support SPI communication
using the SPI library.

e LED: 13. There is a buiit-in LED connected to digital pin 13. When the pin is HIGH value, the
LED is on, when the pin is LOW, it's off.

The Uno has 6 analog inputs, labeled A0 through AS, each of which provide 10 bits of resolution (i.e.
1024 different values). By default they measure from ground to 5 volts, though is it possibie to change
the upper end of their range using the AREF pin and the analogReference() function. Additionally, some
pins have specialized functionality:

« TWI: A4 or SDA pin and AS or SCL pin. Support TWI communication using the Wire library.
There are a couple of other pins on the board:

o AREF. Reference voltage for the analog inputs. Used with analogReferance().
¢ Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to
shields which block the one on the board.

See also the mapping between Arduino pins and ATmeqga328 ports. The mapping for the Atmega8,
168, and 328 is identical.

Communication

The Arduino Uno has a number of facilities for communicating with a computer, another Arduino, or
other microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is
available on digital pins 0 (RX) and 1 (TX). An ATmegal6U2 on the board channels this serial
communication over USB and appears as a virtual com port to software on the computer. The '16U2
firmware uses the standard USB COM drivers, and no external driver is needed. However, on Windows
a .inf file is required. The Arduino software includes a serial monitor which allows simple textual data to
be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being
transmitted via the USB-to-serial chip and USB connection to the computer (but not for serial
communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Uno's digital pins.

The ATmega328 also supports 12C (TWI) and SPI communication. The Arduino software includes a
Wire library to simplify use of the 12C bus; see the documentation for details. For SPI communication,

use the SP| library.

Programming

The Arduino Uno can be programmed with the Arduino software (download). Select "Arduino Uno from
the Tools > Board menu (according to the microcontroller on your board). For details, see the
reference and tutorials.

The ATmega328 on the Arduino Uno comes preburned with a bootloader that allows you to upload new
code to it without the use of an external hardware programmer. It communicates using the original
STK500 protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit
Serial Programming) header; see these instructions for details.

The ATmegalbU2 (or 8U2 in the revl and rev2 boards) firmware source code s available . The
ATmegal6U2/8U2 is loaded with a DFU bootloader, which can be activated by:

 On Revl boards: connecting the solder jumper on the back of the board (near the map of Italy)
and then resetting the 8U2.

e On Rev2 or later boards: there is a resistor that pulling the 8U2/16U2 HWB line to ground,
making it easier to put into DFU mode.

You can then use Atmel's FLIP software (Windows) or the DFU programmer (Mac OS X and Linux) to
load a new firmware. Or you can use the ISP header with an external programmer (overwriting the
DFU bootloader). See this user-contributed tutorial for more information.

Automatic (Software) Reset

Page 12 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Rather than requiring a physical press of the reset button before an upload, the Arduino Uno is
designed in a way that allows it to be reset by software running on a connected computer. One of the
hardware flow control lines (DTR) of the ATmega8U2/16U2 is connected to the reset line of the
ATmega328 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops
long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by
simply pressing the upload button in the Arduino environment. This means that the bootloader can
have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.
This setup has other implications. When the Uno is connected to either a computer running Mac 0S X
or Linux, it resets each time a connection is made to it from software (via USB). For the following half-
second or so, the bootloader is running on the Uno. While it is programmed to ignore malformed data
(i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the
board after a connection is opened. If a sketch running on the board receives one-time configuration or
other data when It first starts, make sure that the software with which it communicates waits a second
after opening the connection and before sending this data.

The Uno contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace
can be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the
auto-reset by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for
details.

USB Overcurrent Protection

The Arduino Uno has a resettable polyfuse that protects your computer’s USB ports from shorts and
overcurrent. Although most computers provide their own internal protection, the fuse provides an extra
layer of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break
the connection until the short or overioad is removed.

Physical Characteristics

The maximum length and width of the Uno PCB are 2.7 and 2.1 inches respectively, with the USB
connector and power jack extending beyond the former dimension. Four screw holes allow the board to
be attached to a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil
(0.16"), not an even muitiple of the 100 mil spacing of the other pins.

Page 13 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

3.- DRV8825 Stepper Motor Controller Datasheet?

Texas

INSTRUMENTS DRV8825
SLVSATIF -APRS. 2010-REVISED ALY 2014
DRV8825 Stepper Motor Controller IC
1 Features 3 Description

+ PWM Microstepping Stepper Motor Driver The DRV8825 provides an integrated motor driver
Built-In Mi G lod solution for printers, scanners, and other automated
- Built-In Microstepping indexer equipment applications. The device has two H-bridge
-~ Up to 1/32 Microstepping drivers and a microstepping indexer, and is intended
+ Multiple Decay Modes to drive a bipolar stepper motor. The output driver
- Mixed Deca block consists of N-channel power MOSFET's
Y configured as full H-bridges to dnive the motor
— Slow Decay windings. The DRVB825 is capable of driving up to
~ Fast Decay 2:5 A of current from each output (with proper heat

« 8.2-V to 45-V Operating Supply Voltage Range sinking, at 24 V and 25°C).
« 2.5-A Maximum Drive Current at 24 V and A simple STEP/DIR interface allows easy interfacing
To=25C to controller circuits. Mode pins allow for configuration

of the motor in full-step up to 1/32-step modes. Decay

* Simpls STEP/OIR kfuriace mode is configurable so that slow decay, fast decay,

* Low Current Sleep Mode or mixed decay can be used. A low-power sleep
+ Built-In 3.3-V Reference Output mode is provided which shuts down intemnal circuitry
< ckage cotprin to achieve very low quiescent current draw. This

SmallP.a . s sleep mode can be set using a dedicated nSLEEP
» Protection Features pin.

= v Eacin [T Intenal shutdown functions are provided for

N iidown (Ve overcurrent, short circuit, under voitage lockout and

- VM Undervoltage Lockout (UVLO) over temperature. Fault conditions are indicated via

~ Fault Condition Indication Pin (nFAULT) the nFAULT pin.

— %
2 Applications Device Information'
- : PART NUMBER PACKAGE | BODY SIZE (NOM)

b e Te’“ Ma"‘!"“ DRVBS25 HTSSOP (28) 9.70 mm x 6.40 mm
e (1) For all avalable packsges, see the orderable addendum at
* Video Security Cameras the end of the data st
» Printers
* Scanners

= Office Automation Machines
+ Gaming Machines

« Factory Automation

* Robotics

4 Simplified Schematic

Microstepping Current Waveform
Mo 3 . -
M A, i
1V '3
5 § 1 L Ir‘_
= i L L I
e = L J
c o . 1 r F
§ 1 o -
3 H r
— AT —— BT L'_ = nip 5 A
-’-‘Jr “"V’
STEP Input
An IMPORTANT NOTICE at the end of this data sheet addresses bility, wamranty, changes, use n safety-cnitical applications,

Intellectual property matters and other important disciaimers. PRODUCTION D'ATA

3 https://www.pololu.com/file/0J590/drv8825.pdf

Page 14 of 63

https://www.pololu.com/file/0J590/drv8825.pdf

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

DRV8825
ELVSATIF - APRHL 7110-REVESED ALY 2014 e, i com

Table of Contents

A3 Fastre Meacripton
B4 Dewce Functional Modes -

9 Application and hlphmnmﬁnn
0.1 Appecation informetion
02 TypealApplication

10 Power Supply Recommendations
10:1 Bul Capacitance b
102 Power Supply &ndl_ngm‘.sammc:rbg
114 La-,-mvsuuamae A =
112 Laynul:l':ﬂﬂ'ﬂe.... 22
11.3 Thermal Protechon = i - 22

12 Device and Documentation Support 24
121 Trademsaks . BTV .
122 Ehacnmﬂsawget‘.m S———
123 Chossary .. TSRy

13 Mechanical, Pill‘tig!rg. ilndm
Information . -

b BRI

oE E R

(= I~ -

B2 Funcsonal Block Diagram

&

5 Revision History

Changes from Revision E (August 2013) to Revision F Pags

Added p:rwmﬂ.lpptylamp rate Erll:iupdalad IEENSExplnmﬂamm Amdemxmmﬂatr@
Updated V;; voltage mirimum and typical in Electrical Characterislics !
Updated |, and lheq in Eladnics Chavacwwrises - 000 8

(= I I P

Submit Documentation Fesdback Copryight © 2010-20%4. Texas instnuments, incomorated
Product Folder Links: DRVES2S

Page 15 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Texas

INSTRUMENTS

www.ti.com

DRV8825
SLVSAZIF - APRE 2010-REVISED JULY 2014

6 Pin Configuration and Functions

cPi | @ MEEN GND
CP2 I BEE nHOME
VCP HEl B MODE2
VMA KN EEEm MODE1
AQUT1T HEN Bl VWODEO
ISENA HEE =l NC
AQOUT2 Il Bl STEP
BOUTZ HEN Bl "ENBL
ISENB HEN EEEm DR
BOUT1 EEEE BEE DECAY
VME SE BEN nFAULT
AVREF EN Bl nSLEEP
BVREF HEN BEE nRESET
GND N BEl V3P30UT
Pin Functions
PIN vo® DESCRIPTION EXTERNAL COMPONENTS
NAME | NoO. OR CONNECTIONS
POWER AND GROUND
cP1 1 I
L o e Connect a 0.01-pF 50-V capacitor between CP1 and CP2.
cP2 2 110 | Charge pump flying capacitor
GND 14,28 — | Device ground
vee 3 1O | High-side gate drive voltage WCOM a 0.1-pF 16-V ceramic capacitor and a 1-M(resistor to
VMA 4 — Bridge A power supply Connect to motor supply (8.2 to 45 V). Both pins must be
connected to the same supply. bypassed with a 0.1-uF capacitor
VMB 1 — | Booge B power supply to GND, and connected 1o appropriate bulk capacitance.
V3P30UT 15 o 3.3V regulstor output Bymi: to GNyDV:EmFa 0.47-pF 6.3-V ceramic capacitor. Can be
CONTROL
AVREF 12 I Bridge A current set reference input | Reference voitage for winding curent set. Normally AVREF and
BVREF are connected to the same voltage. Can be connected to
BVREF 13 1 Bndge B current set reference input | vap30UT
Low = siow decay, open = mixed decay,
DECAY 19 | Decay mode high = fast decay.
Internal pulldown and pullup
DIR 20 | Direction input Level sets the direction of slepping. intemal pulidown.
MOODEO 24 | Microstep mode 0 S
MODED through MODE2 set the step mode - full, V2. 1/4, V&
il 2 §: }Micsstep mode 1 1416, or 1732 step. Intemal pulldown.
MODE2 26 I Microstep mode 2
NC 23 — | No connect Leave this pin unconnected
nENBL 21 1 | Enaie ﬁn:)rg:bza;aue device outputs and Indexer operation, logic
NRESET % I Reset input :«-mw-bwrese;-:‘u! Iniializes the Indexer logic and disables the
Legic high to enable device, logic low 10 enter low-power sleep
nSLEEP 17 1 Sieep mode input mode. Intemal pulidown.
STER 22 | Step input :‘s’«g‘g’.enogemusesmemoexermmmestep. Intemal
STATUS
nFAULT [18 [oD [Faun [chnc low when in faull condition (overtemp, overcurrent)

(1) Directions: | = input, O = output. OD = open-drain output. 10 = inputioutput

Copynight © 2010-2014, Texas Instruments incorporated

Submit Documentaton Feeddack 3

Product Foider Links: DRVS825

Page 16 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

wip Texas
INSTRUMENTS

DRVEBE2Z5
SLVEATIF = APRL X110= HEVESED JULY 2014 ey i comm
Pin Functions (continued)
PiN — i EXTERMAL COMPONENTS
MAME NO. OR CONNECTIONS
nHOME 7 00 | Home position LiaZic [ow wihean &t home state of steg Ehie
OUTPUT
AOUTT 5 0 | Bridge A output 1 Connect o bipoiar stepner molor winding A
ADLT2 7 O | Brdge A output 2 Positive cument s ADLITT — AOUT2
BOUT1 10 O | Gridge B output 1 Connect o bipoier stepper moior winding &
BOLTZ B 0O | Bridge B output 2 Positive curment 5 BOUT1 — BOUT2
ISEMA] 0 | Bradge A ground | fsense Cornect o current sense resistor for brdge A
ISEMNB ¥ | Bridge B ground ! izanse Connect o currant sanse resistor for bridge B
7 Specifications
7.1 Absolute Maximum Ratings "™
MIN MAX| UNT
Viosag Power supply vollage 03 &t v
Powwer supply ramp rate 1 Wijs
Digital pin vollage 05 T v
Wiawrsr; Input voitage 0.3 4 v
ISENSEx pin voitage'! -08 o8 v
Peak molor drive oulpul curment, 1< 1 ps Internaily mited A
Contnuous motor drive output currentt™ L1} 25 A
Contnusous tetal power dissipation Sea Themal Information
T) Operating junciion IEmperaios range —40 150 =

(1) Stresses bayond Mose lissed under Absslute Maximum RSngs may Cause permanent damags 1o he devce. These are siress ratings
only, and fenctional operation of the device &t thase of any offer conditions beyond those ndicaled under Recommended Opersting
Conditions i not impied Exposure o absalute-maximum-misd condifions for extended periods may affect device reliatity

@) Al voltege values ane wilth respect 1o network ground teminal
(3) Transients of £1 % for less than 25 ns are acceptable
{4) Power dissipation and thermal lrmits must be obsened.

7.2 Handling Ratings

MM MAX UMIT
Temy Storape temperature range —E0 150 *C
v Blectrmstatie | Human body model (HEM). per ANSUESDAJJEDEC J5-001, alf pins™! -2000 2000 o
B dacnange Charged device model (COM) per JEDEC specificaton JESDZ2.C101, af pire® | 500 500

(1) JEDEC document JEP1SS states that S00-Y HBM allows safe marufactunng with a standard ESD control process
[Zy JEDEC documant JEF15T alsles thal 250-V COM sliows sale manuisciunng wilh a standand ESD control pocess.
7.3 Recommended Dp-mming Conditions

NOM MAX UNIT
Wi Motor power supply voltage range'’ 82 45 v
Vinges VREF input voltage ™ 1 35 v
L%] WIFI0UT koad current 0 1 mA

(1) All Vi pens must be connected o the same supply voltage
[2) Operatonal at VREF betwesan O to 1V, but accuraey = degraded

4 Submit Decumentation Feedback

Cogynghd £ 2010-2014 Tes stuments incoporabesd

Product Folder Links: DRVER2S

Page 17 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
E INSTRUMENTS
DRV8825
www.ti com SLVSAZIF -APRL 2010-REVISED JULY 2014
7.4 Thermal Information
DRVB82S
THERMAL METRIC!" PWP uNiT
28 PINS
Ram Junction-1o- 1t thermal 2 316
| Rascig) Junction-to-case (top) thermal resistance ™ 159
Rae Junction-to-board thermal resistance 4! 56 o
W Junction-1o-top characterization parameter’™' 02
ve Junction-to-board ch tion p au 55
Raxcpes Junction-to-case () thermal @ 14
(1) memmmmmnmalmdmmemmseemeICr ge Th e appl! report. SPRASS3.
(2) The junction-to under convection s ina dation on a JEDEC-standard. high-K board, as
specified in JESD51-7, in an environment described in JESDS1-2a.
(3) The junction-to-case (top) th i Is d by lating a coid plate test on the package top. No specific JEDEC-
standard test exsts, Mamammmmnmemsnsmlwm
(4) The junction-to-board th s d by dating in an environment with a ring cold piate fixture 1o control the PCB
temperature, as descrbed in JESDS1-8
(5) The junction-to-top ch ct of a device in a real system and is extracted
mmemlmmmmen mmapoeed:edewmn.i 1-2a (sections 6 and 7).
(6) The junction-to-board ch Y. the junction temperature of a device in a real system and is extracted

ﬁommmmnonmbrobmmeu uengapmmduemwmednJESDS%Za(me?;
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold piate test on the exposed (power) pad. No speciic
JEDEC standard test exists. but a close description can be found In the ANSI SEMI standard G30-88.

Copynght © 20102014, Texas Instuments Incorporated Submit Documentation Feedback
Product Folder Links: DRVE825

Page 18 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

DRVEB25

SLVEATIF - APRIL 2010 REVISED ALY 2014

5. Annexes

ﬁ TeExas
INSTRUMENTS

wrare. 1 Cioem

7.5 Electrical Characteristics

over operafing free-air lemperature range of —40°C o B5"C {unjess otherwisa noted)

PARAMETER | TEST CONDITIONS N TP max| unm
POWER SUPPLIES
- WM oparating supply current Vo = 24 ¥ 5 2| mA
b Vi sieap mode supply cument Voma =24V 10 20| pA
VIPIOUT REGULATOR
Vapy VAP30UT voltags I0UT = 00 1 mA 32 3.3 34| W
LOGIC-LEVEL INPUTS
Wi Input bow voltage o or| v
Vi Input high voltage 22 55| w
Vs Inpust hysteresis 0.3 045 o8| WV
" Inipust Sow cument ViN =0 -20 20| pA
L) Iriprut hisgh current ViN=33V 00| pA
Ran Intemal pulldown resistance 100 k0
nHOME, nFALULT OUTPUTS (OPEN-DRAIN OUTPUTS)
Vi Output low voltage lp=5maA 0S| W
o Cutput high lsakage cument Vo=33V 1| A
DECAY INFUT
Vi Input bow threshold voltage For slow decay mods 0.8 W
Wiy Input high threshald voltage For tast decay mode 2 W
Ll It current =10 d0f pA
By ::ﬁﬂza!a,ﬁu"up resistEnce 58 &0
Fap Irtermial pulldown resisiance 80 L8]
H-BRIDGE FETS
R Voate) = 24V, lg= 1 AT, = 25°C 0.2
Vooa = 24V, Ig=1A T, =85C 025 032
Rosaom 2 x = =
Y Vi = 24V, lo= 1A, T; = 25°C 02
Vs * 24V, lp= 1 AT, = 85°C o35 a3z
s Off-state leakape curent -20 20| pA
MOTOR DRIVER
fram :Patimu:':;.ureﬂ confrol PYM 50 st
G Cuiment sense biankong tme 4 ps
R Fitse time 30 200| s
k Fail ame 30 200 ns
PROTECTION CIRCUITS
Vo VM undervoltsge lockout woltage: | Vo, faing T8 B2 WV
bocp Oreaveirment protecton i evel 3 A
tea Onercurrent degliteh time 3 ps
bsn Thermal shuidown tempersiure | Die Eempearsturs 150 160 180 LF
CURRENT CONTROL
Iags XVREF input current Voures = 33V -3 3| A
Ve XISENSE tnip woltage Viwres) ® 3.3 V, 100% current setfing 635 660 685 mv
Vaures; ® 3.3 V. 5% cument sefing -25% 5%
Al Cument irip accuracy Viyres ® 3.3 V., 10% to 34% cument setting -15% 15%
(relatve: to programmed value) |y, oo = 3.3 W, 38% to 67% curmant cetiing 0% 10%
Viomss = 3.3 V. 71% to 100% curent setting -5, 54
Muspaesz Cument sense ampEfier gain Reference only 5 Vv

B Submit Documentation Feedback

Product Folder Links: DRVERZ2S

Copyngit © 2070- 2014, Texs instruments, incorporated

Page 19 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
E INSTRUMENTS
DRV8825
www.ti.com SLVSATIF -APRL 2010-REVISED JULY 2014
7.6 Timing Requirements
MIN MAX| UNIT

1 fster Step frequency 250| KHz
2 burysTeRy Pulse duration, STEP high 19 ps
3 |%wustes; Pulse duration, STEP low 1.9 us
< tsuETeR) Setup time, command before STEP rising 650 ns
5 |%aster) Hold time, command after STEP nsing 650 ns
6 tenat Enable time, nENBL active to STEP 650 ns

7 e Wakeup time, nSLEEP inactive high to STEP input accepted 17 ms

- 1 -
Q3 pe 3>
see [L/
DIR, MODEXx b W ¢
e
nENBL \
- iow
nSLEEP [
—
Figure 1. Timing Diagram
Copyright © 2010-2014, Texas Instuments incorporated Submit Documentation Feedback 7

Product Folder Links: DRV3825

Page 20 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
Texas
INSTRUMENTS
DRVEB825
SLVEATIF - APRE. H110- REVISED JULY 2014 wrwrefi_cown
T.T Typical Characteristics
T 14
65 _/
12 =
b SC
E ET ..-""fp_.__...a- <l = === f:. 19 f/f;r’ﬁ//
s P : =
4
= —F - . e -
(_____,..--' —_— A et —_—
. =g > =
-/ — 1T ; — =T
41-:| i Fasl 25 m b . A0 5 E:|:| 15 20 4 ko 3 40 45
Vo (V] Wovmess (W]
Figure 2. b, V8 Vivs Figare 3. hagen V8 Vi
TED [j-"1]
— a0 f
yo — — e — 00 L1
= amn ; — 1] o .
3 a0 5 3 wo ¥l
@ - /
© 540 f——] = 0
H — - H
” = s == o 1
= -4 P .
280 s fel] — v
| _,,_-““ 8y
e} 400
! a -] ie ral 28 X] 41 £0 E--- a -] 5 -] oo 25
W (W) Tl
Figure & Rogion ¥8 Vi Figure 5. Rpsyow; ¥8 Temperaturs

Suomit Documentation Feadback

Product Folder Links: DRVES2S

Copynght © 2010-2014, Texas insruments. iIncororaied

Page 21 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
E INSTRUMENTS
DRV8825
www_ti.com SLVSATIF -APRL 2010-REVISED JULY 2034

8 Detailed Description

8.1 Overview

The DRV8825 is an integrated motor driver solution for bipolar stepper motors. The device integrates two NMOS
H-bridges, current sense, regulation circuitry, and a microstepping indexer. The DRV8825 can be powered with a
supply voltage between 8.2 and 45 V and is capable of providing an output current up to 2.5 A full-scale.

A simple STEP/DIR interface allows for easy interfacing to the controller circuit. The internal indexer is able to
execute high-accuracy microstepping without requiring the processor to control the current level.

The current regulation is highly configurable, with three decay modes of operation. Depending on the application
requirements, the user can select fast, slow, and mixed decay.

A low-power sleep mode is included which allows the system to save power when not driving the motor.

Copynight © 20102014, Texas Instuments incorporated Submit Documentation Feeddback 9
Product Folder Links: DRVES25

Page 22 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
3 Texas
INSTRUMENTS
DRVE825
g.u:?..ﬁ?iF - APRE H110- REVESED ML ej'u: wnwwa i coem
8.2 Functional Block Diagram
V.:','.' LS Gabe
33V Drive
T WAPIOUT [] T
’ l Charge
Low Sice p
i VIP30UT mﬂ"é“ Gate e
¥ Dintve
A3V
% vl
l_a
AVREF [T] I
o §
P
5 Fde
§ T3]
E 0
Motor Driver Sepper
A Kifobor
I Jaout2 =
| 5 YY)
[1SENA
| S
Control
VM
Logic/indexer Ao
| &
Lo
e
Mator Driver
B
[| BouTz
-
Thenmal
I ISENBE
Shut
[y o
1 1 1
i e
10 Submit Decumaniancn Feeoback Copyright € 20702014, Tesas instruments. ncomporaied

Product Folder Links: DRVES25

Page 23 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

” ‘E.ENXSER'LTMENTS

weanw.toom

5. Annexes

SLYSATIF -APRE 200 REVESED JULY 24

8.3 Feature Description

8.3.1 PWM Motor Drivers

The DRVBEZS contains two H-bridge motor drivers with current-conirol PWM circuitry. Figure 6 shows a biock

diagram of the motor control circuitry.

e 1. o
I] A
WEP, WED —» o = 1 pm— g
e |
| ,Imtm _
From Indaxar Logic =3 C?_’ L f i =,
| S EU = fep
AFNEL 1 drae ::_,- [T
APHASE - =L e
L ADUTZ
ADECAY i . G T
e S—— F:-_"
—e
oce i:
| '_.,_;—';_&L
—] B
=) AxS <
=
amn DACS 1
= I_l_ 4
AVREF |
v
Lo DER
—— L v 4
5 - —T—" I
-
R
—— B
| Frm b
BENGL - | arhes
-
BPFHASE -
1 1 reours
BOECAY il | ‘_h.__l
<P :r
| e e P
— < -f L
o 7 A=8 f:.
“»
Bip:o] | 1
p e
B¥REF

Figure 6. Motor Control Circuitry

Mote that there are moitiple VM motor power supply pins. All VM pins must be connected together to the motor

supply voltage.

Copyright £ 2010-2014, Texas insinaments incorporabed

Product Folder Links: DRVEE25

Subemit Documemtetion Feedback 1"

Page 24 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
* Tovae
INSTRUMENTS
DRVEBa25
SLVEATIF - APRR 210- REVISED JULY 2074 e Coen
Feature Description (continued)

8.3.2 Current Reguiation

The current through the motor windings is reguiated by a fixed-frequency PWM current regulafion, or current
chopping. When an H-bridge is enabled, curment rises through the winding at a rate dependent on the DC voltage
and inductance of the winding. Once the current hits the current chopping threshold, the bndge disables the
current until the beginning of the next PWM cycle.

In stepping mators, cument requilation s used to vary the current in the two windings in a semi-sinusoidal fashion
1o provide smooth moton.

The PWM chopping cument is set by a comparator which compares the voltage across a current sense resisior
connected to the xISEN pins, muitiplied by a factor of 5. with a reference voltage. The reference voltage & input
from the x\VREF pins.

The full-scale {100%} chopping current is calculated in Equation 1.

v,
(4REF)
besioe =———"—
5 = Rigenge (1
Example:
If a 0.25-0) sense resistor 2 used and the VREFx pin is 2.5 V, the full-scale (100%) chopping cumment will be
25V /{5x0250)=2A
The reference voltage ks scaled by an internal DAC that afiows fractional stepping of a bipolar stepper motor, as
described in the microstepping indexer section below.
8.3.3 Dacay Mode
During PWM current chopping, the H-bridge is enabled to drive curment through the motor winding until the PWM
current chopping threshold is reached. This is shown in Figure 7 as case 1. The cument fiow direction shown
indicates positive current fow.
Once the chopping current threshold is reached, the H-bridge can operate in two different states, fast decay or
slow decay.

In fast decay mode, once the PYWM chopping cumrent level has been reached, the H-bridge reverses staie fo
allow winding current to flow in a reverse direction. As the winding current approaches 0, the bridge is disabled fo
prevent any reverse current flow. Fast decay mode is shown in Figure 7 as case 2

In slow decay made, winding current is recirculated by enabling both of the low-side FET= in the bridge_ This is
shown in Figure T as case 3.

12 Submit Decurmentation Feedback Cogrymighst & 20182014, Tess nsmamenis noomporiet
Product Foicer Links: DRVEE2S

Page 25 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
@ Texas
INSTRUMENTS
DRV8825
www._ti_.com SLVSATIF ~-APRL 2010-REVISED JULY 2014
Feature Description (continued)
M
PR
“ .) :
_k f =
\""‘@“’“L (7) orve Current
xoUTt g S YYY Uil ours (2)Fast decay overse
o 8*) : @so-oec-y (Drake)
_Ei4 frg

Figure 7. Decay Mode

The DRV8825 supports fast decay, slow decay and a mixed decay mode. Slow, fast, or mixed decay mode is
selected by the state of the DECAY pin; logic low selects slow decay, open selects mixed decay operation, and
logic high sets fast decay mode. The DECAY pin has both an internal pullup resistor of approximately 130 kQ
and an intemal pulldown resistor of approximately 80 kQ. This sets the mixed decay mode if the pin is left open
or undriven.

Mixed decay mode begins as fast decay, but at a fixed period of time (75% of the PWM cycle) switches to siow
decay mode for the remainder of the fixed PWM period. This occurs only if the current through the winding is
decreasing (per the indexer step table); if the current is increasing. then slow decay is used.

8.3.4 Blanking Time

After the current is enabled in an H-bridge, the voltage on the xISEN pin is ignored for a fixed period of time
before enabling the current sense circuitry. This blanking time is fixed at 3.75 ps. Note that the blanking time also
sets the minimum on time of the PWM.

8.3.5 Microstepping Indexer

Built-in indexer logic in the DRV8825 allows a number of different stepping configurations. The MODEO through
MODEZ2 pins are used to configure the stepping format as shown in Table 1.

Table 1. Stepping Format

MODE2 MODE1 MODEO STEP MODE
0 0 0 Full step (2-phase excitation) with 71% current
0 0 1 1/2 step (1-2 phase excitation)
0 1 0 1/4 step (W1-2 phase excitation)
0 1 1 8 microstepa/step
1 0 0 16 microsteps/step
1 0 1 32 mecrostepa/step
1 1 o 32 microstepa/step
1 1 1 32 microsteps/step

Copynght © 2010-2014, Texas Instuments Incorporated Submit Documentation Feedback 13

Product Folder Links: DRVB825

Page 26 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

DRVEB25

i3 Texas
INSTRUMENTS
SLVESATIF - APRE 2010-REWVISED JULY 2074 m_h_tﬂ

Table 2 shows the relative cumrent and step directions for different settings of MODEx. At each rising edge of the
STEP input. the indexer ravels to the next staie in the table. The direction is shown with the DIR pin high; i the
DIR pin is low the sequence is reversed. Positive curment is defined as xOUT1 = positive with respect to xOUTZ2

Note that if the step mode is changed while stepping, the indexer will advance to the next vaiid state for the new

MODEx setting at the rising edge of STEP.

The home state is 45°. This state is entered at power-up or application of nRESET. This is shown in Table 2 by
the shaded ceils. The logic inputs DIR, STEP, nRESET, and MODEx have intemnal pulldown resisiors of 100 kL

Table 2. Relative Current and Step Directions

132 STEP |16 STER | e STER | wwsTer | wasvep | FULLITER | WROHG | WORONS | B
1 1 1 i 1 100r% % o
2 100% Th 3
3 2 1D0% 105]
B oo 15% B
5 3 2 8% 20% 11
6 P 24%% 14
L i 95% 20% 1w
8 oy 4% 20
g 5 3 2 92% 8% 23
10 S0% 43% 5
11 & 2% 47%: 28
12 BE% 51% 3
13 T 4 BI% 56% 34
14 80% B0% a7
15 B s 63% 33
16 T4 67 % 42
17 g 5 3 2 1 T1% 71% 45
18 67% Td% 48
18 10 53% 7% =1
0 B0 BO% 53
Fa | i1 B 56% B3% 56
= 51% B6%: 58
3 12 4T BE% 62
24 4% 50% B3
25 13 0§ 4 3E% 92% (=%
26 % B Ta
a7 14 20°% BE%: 73
28 4% =l [):1
Fat] 15 B 20% B5% 72
0 15% 0g% a2
k| 16 10% 100% B4
32 5% 100 B7
33 17 B 5 3 rs 10F% =1
k! ~5% 100% =3
35 18 ~10% 100% BE
36 -15% 98% 98
ar 19 10 —20% B8% 101
38 —-Z4% 7% 104
8 prat] 2% 5% 107

14 Submil Decumeaniafion Feacback Cogynght & 2010-2014. Taxas insuments Incomorated

Product Folder Links: DREVBS2S

Page 27 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
w@ TEXAS
INSTRUMENTS
DRVB&25
wearw i com SLVEATIE - APRE 20 0-REVIESED JULY 30

Table 2. Relative Current and Step Directions [continued)

1/32 STEP | 116 STEP | 18 STEP | 14 STEP | uzSTEP F"'"]'.'“m mmA mn E"E:'L“L:""'
40 —3% 9% 110
i1 M 11 B —3E% a2% 113
42 4% B0% 1S
43 22 7% BE% 118
44 —51% BE% 121
45 P 12 —EE E3% 124
1= —E0% B0% 127
47 24 % % 129
48 —&T% 4% 132
4a a5 13 7 4 2 7% 1% P
= 4% 7% 138
51 % s aa% St
52 —B0% 0% 143
53 27 14 —B3% SE% 148
54 —BE% 51% 149
55 i 4T% 152
Bl —o0% 43% 152
57 29 15 8 —o0% 9% 158
55 —O4% 3% 160
52 30 —05% 20% 163
E0 o7T% 24% 166
&1 3 18 —oE% 20% 169
e —a9'% 15% 112
53 3z —100% 10% 174
B4 ~100% 5o w7
&5 33 17 9 - —~100% e 1a0
B8 ~100% 5% 183
&t 24 —100% —i0% 188
&8 oo —15% 188
62 s B —oa% —0% 191
0 o7 —24% 194
] 36 —oe% —29% 197
2 % —34% 0
73 a7 g 10 oo —3a% 203
74 —o0% —43% ms
75 18 —BE% —AT% 08
] —8E% —51% 1
7 30 20 —Ba% —2E, 4
75 —B0% 0% 24¥
i) 40 —TT% 3% 210
BO —Ti% &% v
) a1 71 11 8 3 -Ti% -Ti% 5

6% —Ta% =8
—53% —IT% 31
—E0% —B0% 33
73 —55% —Bi% 38
—51% —EE% g
Instuments Incorporated Submil Docurmentebon Fesabsck 153

Product Folder Links: DRV

Page 28 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
i3 Texas
INSTRUMENTS
DRVBE25
SLVEATIF - APRE J010- REVISET) S0 Y 2014 wrwss ti.cxwn
Table Z. Relative Current and Step Directions (continued)

132 STEP | 116 STEP| UBSTEP | UM STEP | wasTep | FULLSTER | REG | Mre | ancie
B7 44 -47% —E5% 242
BB —43% ~20% 245

45 23 12 -3E% -50% 248
=] -34% -Sd% =0
g1 46 -20% -96% 253
g2 -24% —-a7% 56
B3 a7 24 ~20% —oa% 59
=5 -15% = %52
85 48 -10% —100% 2654
26 —5% -100% 67
a7 49 25 i3 7 i ~100% 770
B8 5% -100% 273
o 50 10%% ~100% Fijs
100 15 ~% Zra
1o 51 26 0% —oa% 281
102 24% -S7% 284
103 52 29% 5% 287
104 3% -Sd% 290
105 53 o7 14 I8 -3% 23
106 43% -50% 295
107 54 AT —B3% 28
108 1% ~BE% am
109 55 28 55% —B3% 304
110 0% —80% 307
111 SE 3% —TTh 09
112 6% -Td% 312
113 57 29 18 8 4 7% -T1% s
114 74% —&7% 38
115 58 7% &% =
116 B0% -50% 323
117 =] 30 B3 ~55% =l
118 B6% -51% 129
118 [21] BE%: —AT% 32
120 0% —A3% 335
121 &1 3 16 32% -3% 33
122 o4% ~34% 340
123 62 6% -29% 343
124 97% ~24% ME
125 63 32 B8% -20% 323
126 9% ~15% 52
127 B4 100% -10% 354
128 100% -5% 357

16 Submit Decumentation Fesdback Copynight © 2010-2014. Texas insiuments incomcrated

Froduct Folder Links: DRVESZS

Page 29 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
w INSTRUMENTS
DRV8825
www_ti. com SLVSATIF -APRL 2010-REVISED JULY 2014

8.3.6 nRESET, nENBL, and nSLEEP Operation

The nRESET pin, when driven active low, resets intemal logic, and resets the step tabie to the home position. It
also disables the H-bridge drivers. The STEP input is ignored while nRESET is active.

The nENBL pin is used to control the output drivers and enable/disable operation of the indexer. When nENBL is
low, the output H-bridges are enabled, and rising edges on the STEP pin are recognized. When nENBL is high,
the H-bridges are disabled, the outputs are in a high-impedance state, and the STEP input is ignored.

Driving nSLEEP low will put the device into a low power sleep state. In this state, the H-bridges are disabled, the
gate drive charge pump is stopped, the V3P30UT regulator is disabled, and all intemal clocks are stopped. In
this state all inputs are ignored until nNSLEEP retumns inactive high. When retuming from sleep mode, some time
(approximately 1 ms) needs to pass before applying a STEP input, to allow the intemal circuitry to stabilize. Note
that nRESET and nENABL have internal pulldown resistors of approximately 100 kQ. The nSLEEP pin has an
intemal pulldown resistor of 1 MQ. nSLEEP and nRESET signals need to be driven to logic high for device
operation.

8.3.7 Protection Circuits
The DRV8825 is fully protected against undervoltage, overcurrent, and overtemperature events.

8.3.7.1 Overcurrent Protection (OCP)

An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this
analog current limit persists for longer than the OCP time, all FETs in the H-bridge will be disabled and the
nFAULT pin will be driven low. The device remains disabled until either nRESET pin is applied, or VM is
removed and reapplied.

Overcurrent conditions on both high-side and low-side devices; that is, a short to ground, supply, or across the
motor winding all result in an overcurrent shutdown. Note that overcurrent protection does not use the current
sense circuitry used for PWM current control, and is independent of the lsgnse resistor value or xVREF voltage.
8.3.7.2 Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT pin will be
driven low. After the die temperature has fallen to a safe level, operation automatically resumes.

8.3.7.3 Undervoltage Lockout (UVLO)

If at any time the voltage on the VM pins falls below the UVLO threshold voitage, all circuitry in the device will be
disabledandirwnallog'cwilberesetOpetaﬁonwilmsumwhenvmtisesabovethOheshold.

8.4 Device Functional Modes

8.4.1 STEP/DIR Interface

The STEP/DIR interface provides a simple method for advancing through the indexer table. For each rising edge
on the STEP pin, the indexer travels to the next state in the table. The direction it moves in the table is
determined by the input to the DIR pin. The signals applied to the STEP and DIR pins should not vioiate the
timing diagram specified in Figure 1.

8.4.2 Microstepping

The microstepping indexer allows for a variety of stepping configurations. The state of the indexer is determined

by the configuration of the three MODE pins (refer to Tabie 1 for configuration options). The DRV8825 supports
full step up to 1/32 microstepping.

Copynght © 2010-2014, Texas Instuments incorporated Submit Documentation Feedback 17
Product Folder Links: DRVES825

Page 30 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
Q' Texas
INSTRUMENTS
DRVBB25
SLVEATIF - APAL 3010 AEVISED ALY 2_|}'|-! e _HLCooem

9 Application and Implementation

9.1 Application Information

The DRVBE2S i= used in bipolar stepper control. The microstepping motor driver provides additional precision
and a smooth rotation from the stepper motor. The following design is a common appbcation of the DRVBE25.

9.2 Typical Application

CIRfRRS, ——
(-2 GND
Qi pF L] = 10 k0
§ = P2 HOME
wep ucoez p—=<]
WhEA, MODET —]
ADUT1 MODED e
Vi ISENA Ne |—
i_ ADLT2 ETER f—ol
108 gF
$ BOUTZ i —— |
ISENE S il
VARAOUT
BOLT1 DECAY o]
10 kO
¥ WME AEALLT
B
b1wF VIPIOUT
l AVREF aSUEER g]
50 ki)
=i BYREF nRESET *_G
30 kil E WAL
o END H VAPSOUT ——i
! L
9.2.1 Design Requirements
Design Parametsr Reference Ezampls Value
Supply Voltage VM MV
Botor Winding Resistance AL is0n
Motor Winding Inductence L 28 mH
Motor Full Step Angle Batep 18" ftep
Target Microstepping Level nm B psieps per siep
Tanget Motor Speed v 120 rpm
Target Full-Scale Curent F5 1354

9.2.2 Detailed Design Procedure

9.2.2.1 Stepper Motor Speed

The first step in configuring the DRVEE25 requires the desired motor speed and microstepping level. If the target
application requires a consiant speed. then a sguare wave with frequency f... musi be applied to the STEP pin.

18 Subwmit Documentation Fesdback Copyright & 30 10-21t4, Tems insuments: incomaraied
Prodiuct Folder Links: DRVERZES

Page 31 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
E INSTRUMENTS
DRV8825
www.ti.com SLYSATIF -APRE 2010-REVISED JULY 2014

If the target motor startup speed is too high, the motor will not spin. Make sure that the motor can support the
target speed or implement an acceleration profile to bring the motor up to speed.

For a desired motor speed (v). microstepping level (n..). and motor full step angle (8....).

" rotations\xaso usteps |
(minute) { step }
e)
m(s:anat:}’e“"’(mpj @

i)™

[step (USteps / second) =

120(’“,’“"3)-360(2l)xB{um‘B]
minute rotation step

f step (usteps / second) = =N -
() o)

minute step
8., can be found in the stepper motor data sheet or written on the motor itself.

For the DRV8825, the microstepping level is set by the MODE pins and can be any of the settings in Table 1.
Higher microstepping will mean a smoother motor motion and less audible noise, but will increase switching
losses and require a higher f.... to achieve the same motor speed.

(3)

9.2.22 Current Regulation

Iin a stepper motor, the set full-scale current (I¢) is the maximum current driven through either winding. This

quantity depends on the xVREF analog voitage and the sense resistor value (Rsense). During stepping, les
defines the current chopping threshold (lre) for the maximum current step. The gain of DRV8825 is set for 5
VIV.

bo(A)- VREF(V) _ _xVREF(V)

A, xRsense () 5% Regnse (Q) (4)
To achieve Ies = 1.25 A with Rsexse 0f 0.2 Q, XVREF shouid be 1.25 V.

9.2.2.3 Decay Modes

The DRV8825 supports three different decay modes: slow decay, fast decay, and mixed decay. The current
through the motor windings is regulated using a fixed-frequency PWM scheme. This means that after any drive
phase, when a motor winding current has hit the current chopping threshold (lge), the DRVSS25 will place the
winding in one of the three decay modes until the PWM cycle has expired. Afterward, a new drive phase starts.
The blanking time, ta s, defines the minimum drive time for the current chopping. hge is ignored during ta anx.
so the winding cumrent may overshoot the trip level.

Copynight © 20102014, Texas Instuments Incorporated Submit Documentstion Feedback 19
Product Folder Links: DRVBS25

Page 32 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
! I
NSTRUMENTS
DRV8825
SLVSAZIF - APRIL 2010-REVISED JULY 2014 wwww ti_com
9.2.3 Application Curves
¥ LT —
14
—
NANAN
ANNNANSAN 3
AUNNNASNN

| TR T T

Figure 8. Microstepping Current (Phase A) vs STEP Input, Figure 9. Microstepping Current (Phase A) vs STEP Input,

Mixed Decay Slow Decay on Increasing Steps
———
M
-—1
v g

v vy

| TP TR T

Figure 10. Microstepping Current (Phase A) vs STEP Input, Mixed Decay on Decreasing Steps

20 Submit Documentation Feadback Copynight © 2010-2014, Texas instruments Incorporated
Product Folder Links: DRVB825

Page 33 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
3 Texas
INSTRUMENTS
DRVBE2S
v B coim SLVEATIF -APRL 30— REVESED JULY 2014

10 Power Supply Recommendations

The DRVBE25 is designed io operate from an input voliage supply (VMx) range between 8.2 and 45 V. Two
0. 1-yF ceramic capacitors rated for VMx must be placed as close as possible to the VMA and VMB pins
respeciively (one on each pin). In addition fo the local decoupling caps, additional bulk capacitance is requined
and must be sized accordingly to the application requirements.

10.1 Bulk Capacitance

Bulk capacitance sizing is an imporiant factor in motor drive system design. It is dependent on a variety of factors
including:

= Type of power supply

= Acceptable supply voltage ripple

= Parasitic inductance in the power supply wiring

= Type of motor (brushed DC, brushiess DC, stepper)

= Motor starfup current

= Motor braking mathod

The inductance between the power supply and motor drive system will imit the rate cument can change from the

power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or
dumps from the motor with a change in voliage. You should size the bulk capacitance to meet acceptable

voltage ripple levels.
The data sheet generally provides a recommended value but system level testing is required o determine the
appropriate sized bulk capacitor.

Parasitic Wire
Inductance
Power Supply * Motor Drive System

Motor
Driver

10.2 Power Supply and Logic Sequencing

There s no specific sequence for powernng-up the DRWVBB25. It iz okay for digital input signals o be present
before VMx is applied. After VMx is applied to the DRVESZS, it begins operation based on the status of the
control pins.

Copyngit & 2010-2014, Texas instuments inoorporaied Submit Docurnemtatun Feaohsok e
Produet Folder Links: DRVES2S

Page 34 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
g INSTRUMENTS
DRV8825
SLVSATIF -APRIL 2010-REVISED JULY 2014 www_ti_com
11 Layout

11.1 Layout Guidelines

The VMA and VMB pins should be bypassed to GND using low-ESR ceramic bypass capacitors with a
recommended value of 0.1-pF rated for VMx. This capacitor should be placed as close to the VMA and VMB pins
as possible with a thick trace or ground plane connection to the device GND pin.

The VMA and VMB pins must be bypassed to ground using an appropriate bulk capacitor. This component may
be an electrolytic and should be located close to the DRV8825.

A low-ESR ceramic capacitor must be placed in between the CPL and CPH pins. Tl recommends a value of
0.01-pF rated for VMx. Place this component as close to the pins as possible.

A low-ESR ceramic capacitor must be placed in between the VMA and VCP pins. Tl recommends a value of 0.1-
pF rated for 16 V. Place this component as close to the pins as possible. Also, place a 1-MQ resistor between
VCP and VMA.

Bypass V3P3 to ground with a ceramic capacitor rated 6.3 V. Place this bypass capacitor as close to the pin as
possible
11.2 Layout Example

0 F 1 En =»
* "7 =m ® =
’3:_,% el EER e
T == e
L 00 =m Ogg e
o “W\+ x| 009 |mm .
O Rssa OO =3 :ooo [= DR 5,
(o) (o]e) [s | : 000 e
S WA+ = o000 | mEme
O Rsae 0O s | . e
000
e m=m| >
ah 1% =3 | =scsms B
F 531 % =3 | msser 2R
-
e o
4k
047 F

11.3 Thermal Protection

The DRV8825 has thermal shutdown (TSD) as described above. If the die temperature exceeds approximately
150°C, the device will be disabled until the temperature drops to a safe level.

Any tendency of the device to enter TSD is an indication of either excessive power dissipation, insufficient
heatsinking, or too high an ambient temperature.
11.3.1 Power Dissipation

Power dissipation in the DRV8825 is dominated by the power dissipated in the output FET resistance, or Rpson)-
Average power dissipation when running a stepper motor can be roughly estimated by Equation 5.

2 Submit Documentation Feedback Copyright © 2010-2014, Texas insuments incorporated
Product Folder Links: DRVB825

Page 35 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
Texas
INSTRUMENTS
DRVBa2s
wranw L Com SUVSATIF - AR 2010 - REVISED JULY 2014
Thermal Protection (continued)
2

Progr =4x anu:m o ['numus}} i5)

where Prgr is the tofal power dissipation, Rpsiny is the resistance of each FET, and loymmes; i the RMS output
current being applied to each winding. lauripus, i equal to the approximately 0.7x the full-scale output cument
setting. The factor of 4 comes from the fact that there are two motor windings, and at any instant two FETs are
conducting winding current for each winding (one high-side and one low-side).

The maximum amount of power that can be dissipated in the device iz dependent on ambient Eemperature and
Mote that Rpziow; increases with temperature, so as the device heats, the power dissipation increases. This must
be taken into consideration when sizing the heatsink.

11.3.2 Heatsinking

The PowerPAD™ package uses an exposed pad to remove heat from the device. For proper operation, this pad
must be thermally connected to copper on the PCB fo dissipate heat On a multi-ayer PCB with a ground plane,
this can be accompiished by adding a number of vias to connect the thermal pad to the ground plane. On PCBs
without internal planes, copper area can be added on either side of the PCB to dissipate heat i the copper area
is on the opposite side of the PCB from the device, thermal vias are used to transfer the heat between top and
bottom layers.

For details about how to design the PCB, refer to Tl applicabion report SLMADGZ, "PowerPAD™ Thermally
Enhanced Package® and T application brief SLMADDY, PowerPAD™ Made Easy, available at www.Iicom.

In general, the more copper area that can be provided, the more power can be dissipated. It can be seen that the
heatsink effectiveness increases rapidly to about 20 cmz.'d'mnlevelsaﬂ'mm&:rla'gafm

Copynght € 2010-2014. Texas ins¥uments incorporated Sl Documeniaton Feedback 3
Product Foider Links: ORVEE2S

Page 36 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes
3 Toas
INSTRUMENTS
DRV8825
SLVEATIF - APRE 210~ REVISED ALY 2014 wrerer i Coom.

12 Device and Documentation Support

12.1 Trademarks
PowerPAD is a trademark of Texas Instruments.
12.2 Electrostatic Discharge Caution

." These devices have Bmited built-in ESD protection. The leads should be shorfed ogether or the devics placad in conductive foam
imﬂ during storage of handing o prevent electrostatc damege to the MOS gates.

12.3 Glossary
SLYZ022 — TI Glossary.
Thiz glossary kists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most

current data availabie for the designated dewices. This data is subject 1o change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the lefi-hand navigation.

24 Submit Documentation Fesdback Copyight @ 3010-2014, Texas instuments incomporated
Product Folder Links: DRVES25

Page 37 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes

4.- ASDC Series Silicon Pressure Sensors®

ASDX Series Silicon

Pressure Sensors

Low Pressure and Ultra-Low
Pressure Digital Output,
+2% Total Error Band,

10 Inches Hy0 to 100 psi

DESCRIPTION

The ASDX Senes is a Silicon Pressure Sensor offering either
an I°C or SPI digital interface for reading pressure over the
specified full scale pressure span and temperature range.

The ASDX is fully calibrated and temperature compensated for
sensor offset, sensitivity, temperature effects and non-linearity
using an on-board Application Specific integrated Circust
(ASIC). Calibrated output values for pressure are updated at
approximately 1 kHz.

The standard ASDX Is calibrated over the temperature range
of 0 °C t0 85 °C [32 °F 1o 185 “F]. The sensor is characterized
for operation from a single power supply of either 3.3 Vdc or
5.0 Vdc.

These sensors are avalable to measure absolute, differential
and gage pressures. The absolute versions have an internal
vacuum reference and an output value proportional to absolute
pressure. Differential versions allow apphcation of pressure to
either side of the sensing diaphragm. Gage versions are
referenced to atmospheric pressure and provide an output
proportional to pressure variations from atmosphere.

The ASDX Series sensors are intended for use with non-
corrosive, non-lonic working flulds such as air and dry gases.
They are designed and manufactured according to standards
in ISO 2001.

FEATURES POTENTIAL APPLICATIONS

e Output options: I*C- or SPI-compatible 12-bit digtal e Flow calibrators
Precision ASIC conditioning and temperature « Ventdation and air flow monitors
compensated over 0 °C to 85 °C [32 °F to 185 °F] « Gas flow instrumentation
temperature range « Sleep apnea monitoring and therapy equipment

e Low operating voltage e Barometry

e Absolute, differential and gage types « Pneumatic controls

e Pressure ranges from 10 inches H2O to 100 psi e HVAC

« Standard calibratons in inches H:O, cm H:0, psi, mbar,
bar, kPa

e Total error band of £2 0% of full scale span maximum

 RoHS compliant

4 https://sensing.honeywell.com/honeywell-sensing-asdx-series-digital-pressure-sensors-product-sheet-

008095-13-en.pdf

Page 38 of 63

https://sensing.honeywell.com/honeywell-sensing-asdx-series-digital-pressure-sensors-product-sheet-008095-13-en.pdf
https://sensing.honeywell.com/honeywell-sensing-asdx-series-digital-pressure-sensors-product-sheet-008095-13-en.pdf

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes

|
ASDX Series Silicon Pressure Sensors

Tukin 1. Shsshiie Maatrmam Ratings'

Paramariar Min Hmx U
Erimhy Wil | ey | 403 EL WHe
Nolisc o army e 403 ' i [1.3 Wi
Degtall ook, by
o 100 ik kiir
| S BN
EESD susrsilaiy {hurrms bty s | | L
Shme merrsaakios <241 |-5H] pr—fre14] L FFy
Lass] el w |2 6 4 i 250 [RHE) L rF
E a1l capiclire B barisass W @0 H s 1IEl LT3 =k
Ts=in L Oparairy Sococlcadicas
Parsrmarior [T Typ TS st
Sipoly voitags (Ve[
E3vEs 1.8 1 h TE ik
20 vae 4.3 5 528 v
A e R DD O O DN e B OO il) Dk il 1
Supply cures] 248 p L -1 =L
Lo nsled] berrpsetalons s O{xd| S [185 LRy
Clpsrwbey iemperabaw range BT B8 fE] & F
Che o e LA opeat lJluq PERETE L mreaT
Burdd prwomare 2 Spmrabr] QS TR ST
Sty b | e us B derti reeety) 1.8 3 Tl
aesirss s] ITH
Lo S vt el b T [—
PCa 5 rlag bevsl hah L | '
Pi-ing o S et D01 1 Sl i) 1 [Ta
Trokia | s B Fd= SRS
Lhuizd senrdaiam k| &1

Tatdn 1 Envircnmesist S pecilc sfoms

Pararreshar Charecinrinic

Hormardehy % b 5% M oo radiermiegy

ik 0 LS 1) HE e ST HE

S ol 1S B 1S s

L= 5 riisn v sl
[akin 4. Weswd Matwriais

Pararmeier Post 1 [Presairs Pod ™ Pasdt T [Hefarerce Pardi
L gans-hilad FET Slams-Hled FHET
Arfiaurms LI Bliora il mboey
Em—imres cisrporaels piazn ar! plasa afnal s add pued

or corec] HFDIY OpETELnR

ALEOSE TEATENT MEETE A0 e RETT R e e wll sl arfoul camange i DT
o ST Ty CEEECTT b regLied Soees e psondp ol (e Gend D - ps Fioprs dj e Sose 12 P S sappd e e promsisia

i Poiomsschy o T s S sty of te oiee D e b e b wiege] b s i He epesiias opanery sorsgs e ams
opbor. Cims —ular suppsy ol oe sslizhis. passs ©orec Hoeepesll Cannra Ssrece

& Tha ST & PO A polardp omiscsel. | e spp oo of asceieienT ol ags o o T Hhe S ong: R ey Chaa secionl bk

S T orrerprsd SrpeEEeE T B e ek ey mnge b s o vhich B Bans Wil pork s, 0 ookl propoainasl i

Erwners A T i e pertrrancs o

B T8 opa v TSl e i Erearalaw 1809 o et P s sl procers on colmud preccriral T reens b oroey e

FEMAN AN Ba epacied cerormees B

ChE RS B S AR [LT A e ey e e e 3 ke o o T O AR RCaRsT DI AN LR T i

i CpaTEEY rEErE e Lo o hipher prennses oy o perraeed cherracs b B peocact

i Do e :|.r-'r:nn.n;:-u'l-r.lﬂlr:.lmi-unlrru:-.:'npnn.q:ﬁm.: BN smrmcw of e e, Presus
w304 b anperied 12 lawios e xpona 0 BT7 PO beposd e bt

B Tl wror e B Ba mEsreuT dramion T sl from e et Facker ove B lrl ST W NN N P

InZ e wi SToIE DU T ofee, U G B R MO - ETS SeEss by % . Tedrsl affes or pflas CEETTE AN
l,:ml.rurllrll'-.l-'lu Spescioson a5 N paroen of kel e e S8 |
v} i'..] arais rpar PR | B ire sipebmer offeses bk s e ol vyeeseees @ s roereee Prm | e roraenee (Prren - imde =

o e e g

i Corme hrnarpesll Corerwr Sarves b deoses ramerwr oo
1L Fz il srmairs pofl oo fgaeren. Hha "premes” ars el ere s pors s e

d IETETG s el o

Page 39 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Low and Ultra-Low Pressure Digital Output

Figure 1. Nomenclature and Order Guide

b gL 1

Pl

= i3 aowt on A, SRS TR On o

Fr e
D= I Acormms Sl
1 WD Asorem S

|PA = Rads port o0 WE, M posd o besiom Em i A sl
7= 0. Aorwm aarw

P E T
Gags Dfsmnim LTIy

= BBEMD = x5 i i 0 -
FIDND = iDm 0 D = 5 53 indbd -

[0 . i cotn e — . HECO = s emiyd -

ESCO = = om bl BEEROD = -omi 0 -

For s movis
HAPRG = i pm HWAPD = ! =
122 BMEEPL = 18 po -
HSPE r 35 pa HPD = S pm HIEPA = {5 o
EIEPG = 31 pu FMEPDI = 130 e AMPA = 1 i
ARG = +3] per - SR, = DD

- RS = 1 S iy -
|7 = Pl i, g EIEG = = i EIEM0 m Gl T =+
b={ DEDIG = 20 PR FEEED = 50 ey -
1BEEG = |00 e ABBED: = 0100 b

RS = N0 rinar ILEE0 = LILD st -
SELE = O BEENID: = o504 rrzad B
ARG = 1§ b BERD = i baw BETOA = | b

BEIDE ~ T oo HEIE0 = nd bay HII0A = T
TG - 7w - WTHRA = T
BEAKT = 3 kPa IR = w1 6Fs -
DEND = 4 kPN DK = 54 bFS =
|FIII.BI- D'Pﬁlﬂ.: BOSKE = & kg HERD = & P -
HFERE = 0Py FBHD = 591 iFw -
B3EHWO = 20 kPs BIED = o3 T -
EEDND = A0 kPs BERKD = %5 b
1pBEE = 100 kPs TR = W e SEIRA, = 0 s

TEEKG = JDE kPa IERKD = w200 bR IR, = T Fw
TEERED = "0 &Ps = TR = TIHI WF'w

Wotas:
13 Other package combinations ane possibée, pisass contact Honeyesl Cusiomer Sendce

14

15

18

1=

The iransier funclon Bmits deline @ output of the sersor al a given pressors input. By speciang (ke oulpul signal al the maamom [Prmas.)
@ed menimam (Fman.) limils of the pressore mnge, the compieie enstes ourve hor S sensor 5 delned. S0 Figune 2 Tor @ graphical
representadon of each calbration. For e 12-hi digial ouipe?, Tahie B provides: the: ouipad of the sensor al significant peroertages. Thess
cefipas are valld al fe raied input voltage of the sersar.
Thunu‘mun'pnuu'ru'lmmmﬂn.ru:.nnnm'ntncnlﬂ'l:lmmulucmmun:m.mmﬂuWmmltu‘hn!d.p&uﬁﬁlm
achs only @s a slave]. Thes communication profocod B not Seld seiscinble, and mees be defined when oiderning [he sersor

Corsinim prESEse ANGESs 3e availabie, pleass oontacl Honeywaed] Customer Servioe

The pressuns writs (nches H,0, omi LD, psi, mbar, bar, kFa) dafine the urits wsed duning calBsaiion and in fhe appication

Sae Tabie 5 for an explanaiion of senscor fypes.

Page 40 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

ASDX Series Silicon Pressure Sensors

Tablo B. Sensor Types

Type Description

Absolle Cauitput is proporlional o difference beteeen applied pressure and baiill-in refenencs b vaduem {2860 pressaime)
Gage Cuitput is proporional o difference between agplied pressure and atmosphenc (ambienl) pressuns.
Ciifferenizal Cuilpul iz proporional to dference betwesen prsoigre appbad fo each of (e pressure ports (Par 1 = Pon 2}

Figuro 2. Transfer Funclions and Limits

A Calibration, 16% to 90°% B Calibration, &% to 88%
1] .‘/‘J'F' 1L
5) 1
i =
- 1"} !u ¥ -
4 "
W W P L]
i B i Il
¥ . : |
0 R
Prazsurs H B Pragsurs :
i] iy,
gl (% el 1 Cemiie = - A ST o I TR e Culgud (ool 7 ool) = Presmue Y L LY
B_.p [PR, e =
Table 6. Sensor Outpul at Significant Percentages
T Dutput Diigital Counts (dec) Digial Counts [hex)
3 [i] T
3% =19 I 353
0% LEE] ITTAT T
S0 Bt D2 0D
T T PIEREET
A5h 16553 (A s
1005 VB ik EE

Figure X, Completed Catalog Listing Example
ASDEAVIRIIPGLAL: ABDNAVEDN PGZAT Dutput vs Pressurn
AV pressure poet, 1 psi gage, NG oulmnd
iAddress O], 10% & 0% califnrabion
&l 3.3 Wde oparation

Piasdiing [

Page 41 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Low and Ultra-Low Pressure Digital Output

Figure 4. Dimensional Drawings (For reference only: mm [inl.}
AV Packa G2) RR Package (Legacy D4}
go c¥
LU TR = _,'-,,;','1'
o
AR .
M| T
||
I
- W i
TETW o e
- Il'rl'; —— {5 Im| T i
b ' ~Fri i roarz~,] [Fpem e] e
d: .;\;_;_-'I ___J_' Ly = i pem iga | I ATy L] :_ P
LE- | 1 I 1 FETCE AR T TEETTT
P 1 2 e I‘---|—| — 1 I;I- L | ' |If_':! J
| | | I' 1 } i W . E]
15 el 1 asa | 5ai L waw pari i L
e I'I:""nl.-.:l.-' T T e Al Ty
o] 14 i |
AC Package [Legacy A2) RV Package
l'-‘1-'-|E-.|:| L.I*F'Ihll i PiHE — = j" P T
- 4
ol Fa o 1 a1 8| | ¥
ol & o pem ad B e
il n [§]
! o !
i i T
| L] [TR -ll - S -
e | | i
. [| | . I Y I
: | | 18 o583
I-1 ik 3 17 10 |
1 RO (-4 CHEN N _+ i—u— A --—I 3::-;“
nga | | 1 l d !
= | TNt [B
| | IHEERHEE | Gk 3 -
| i _|l.'_|'_'" il e L |l Logs,
Y Easn R e | I N
| 16,28 4 | - i E
,.-_mmq_..l =] +|;$;D1:.p I | L. - R i .+_:._-.-.-.
L1 0 g8
por| LB BE
Table T Pinout
1 5Pl
Fin Dafinitican Typo Duscription Pim Dwsfindion Typs Dascri
1 p=ie g 10 senal oieciona data 1 KHED digefal oufper. | "WMasier in Slave Oul” - senal
dafia ks clocked inoor ol on ourpt data; dala & docked
chook edge of SCL iont on chock exige of SCK
z S0 el inpr senal clock nput; ussd io 2 L ggial npes | senal clock nput used o
clock data on S0A clock data on MIS0
3 GEND SLppF Proraaes Sl rond 3 M0 oy s supply growund
4 M gl do not conned in the 4 ML o s ad o mof conned in the
aopication apglication
5 BS agial opuipui | Inferupt signal [conversion 5 oo dgial imps | slove solect
ST Pl it}
-] Vaupply Suppiy EeofsT BLUDDlY BOLETE i WEUEdy SLEply Py SUpply SOUCE
T 3 s nat wsed dio mct canned in the T HWIC i s 0 mot conned in he
appdication application
a NC nai e ol mot connect in the] MNC miol LEse o mot conned in tha
zogbcabian zggiication

Page 42 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

4h WARNING

PERSONAL INJURY

OO0 MOT USE (hese products s safely o @mengency stop
devices or in dny other applicaion whene hilure ol the
pod it oould resll in personak injury.

Failure to comply with these instrschions could resualt
in death or sedous injury.

WARRANTYREMEDY

Honeywell wamants goods of its manulasiure as being Tree o
dedachve maleriais and Bully wodkmanship. Hooemwel's
slardand product wamanty apples unless agieed (o olhenwiss
iy Honeyaedl in wriling, pleate refer o pour artdes
acknowiedgemen or cordeull your local sales offios for dpechc
wanranly details. f wamanied goods are returned ¥ FHoneyssl
dhing the period of mverage, Honeywell will repae or replace,
al s option, withoul dharge hose ilsms il finds defectve. The
foregoing is buyer's sole remedy amnd is in Bou of all other
warrantios, expressed or implied, including those of
merchantability and filmess for & particular purpose. In no
ovent shall Honoywell be liable for consequential, special,
or indirect damages.

‘While we provide application assistance persanally, through
aur lii=rsure and the Honeywell web ==, i s up o the
cursiramer b defenrerne fhe suilshiity of the prodoc n the

apglicalion.

Specificalions may change without nofice. The irfoemation we
supply is bebEved 10 be pocurale and remable a5 of his

piinting. Howewsr, wis Assume o respordhity for s use

Sersing and Contrel

Honepael
1886 Douglas Orive Mok

Ah WARNING

MISUEE OF DOCUMENTATION

s The informalion presenied in this produc sheet s for
reference anly, Do nol wse s documesn| &85 8 product

instalafion guide.

s Compisle msisistion, operaion, and manienanoe
information is provided in e nsirections suppled with
each prod et

Fallure to comply with these instructions could result in

death or serious injury.

SALES AND SERVICE

Horeywell sérves (|s cusinmers fhrough a ‘acridwide network
of sal et officas reprassn bafves and dislributons. Far
applicaton ssEiance, curmen specficalions, pricing of n&ame
of ihe reares) Aulborised Distribulos, contact your iocal saes
office ar

E-mail: info.scifareywell.com

Intermet: sensing bansyweall omm

Phone and Fax:

Adis Paclfhc «85 63562828, +55 B445-5020 Fax

Europe 44 [0 1658 481487, <44 (0] 1558 481676 Fax

Ladiny Aurssracs & 1-305-R05-8188; +1-305-B83-E2 57 Fan

UsaCansds «1-800-537-8945; 1-815-235-6847
&1-015-2Z35-8545 Fiax

Honeywel

Page 43 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

5.- NEMA 17 Stepper Motor Datasheet?

HIGH TORQUE HYBRID STEPPING MOTOR SPECIFICATIONS

(eperad specilicatioas Blectrical specilicatioas

_5:*.':- lpgle (w} | Bated '"|j_1'ﬂ L] L
| Tegenaiure Kise AT BN imis o, [e el § Rpsed fprremt AW Lol
| fmkivmd - Tewgsd fura (T =3 Lmiilme ey Mo |10 G § 145 35T
bammes 6l P) |mdsctsoce Per P 4 200 ol 1]
[amlaiim Bednzesce GROI W lin |3 RIRTE] Relding gorgue (% rui |

[aslndiom Clags [lsss 8

e radinl Jomre N I [l from tke [linge

B axind foree N 1k

@ Wiring Disgram : W JLL st lnrgue cafie

THLOGEE: DREDE COWETANT CTMRENT

BLI

|_dhk BAL¥ SERP
.' ——— .
61y ' i

. == £ I = Lol o

|Vt | an

{7 =l

LED BLU

43

&
o

SPelSTHYE-Fal4d THHAICAL [OMBITIONS

m ETSN IR | b
LAY
(e
|FFETE

(IR0 SORCT i AN [MRET | ELECTROMNY
S5 TICRAIC [ETITITE

L ELEEL

Page 44 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

6.- Cédigo Completo

6.1.- Main Code

// kkkhkkAkhk Ak Ak kA kkkh kKK Libraries

#include <Arduino.h>

#include <TimerOne.h> // No analogWrite() in pins 9 y 10
#include <Wire.h>

#include <ADXL345V.h>

#include <EEPROMex.h>

#include <PID vl.h>

#include <RTClib.h>

#include <SoftwareSerial.h>

#include <EasyTransferI2C.h>

// khkkhkhkhkkhkhkhkkhkkhkkkhkkkhkkkxk Modules

#include "control.h"
#include "data.h"

#include "process.h"
#include "user.h"

#include "communication.h"
#include "sensors.h"
#include "DHT.h"

#define TICK MS 10
#define CYCLE MS 50
#define MAX_CONT TEST 20 // 6000 = 5 minuto

unsigned long ContTest = 0;

void setup ()

{
startProcess () ;
startUser () ;
startCommunication () ;
startData () ;
startControl () ;

ContTest = 0;
/*

Timerl.initialize (TICK MS * 1000); // initialize timerl, and set
0,1s
* /

Timerl.attachInterrupt (isr Timerl); // attaches isr overflow
interrupt

}

void isr Timerl ()

{
tickProcess () ;
tickData() ;
tickControl () ;
tickUser () ;
tickCommunication () ;

5> https://www.pololu.com/file/0J714/SY42STH38-1684A.pdf

Page 45 of 63

https://www.pololu.com/file/0J714/SY42STH38-1684A.pdf

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

}

void FullTest ()

{
testProcess () ;
testDatal();
testControl () ;
testUser (),
testCommunication () ;

}

char end condition() { return 0;}

void FullEnd() {
endProcess () ;
endUser () ;
endCommunication () ;
endData () ;
endControl () ;

}

void loop ()

{
cycleProcess () ;
cycleDatal();
cycleControl () ;
cycleUser();
cycleCommunication () ;

if (ContTest++ > MAX CONT TEST) {
ContTest = 0;
FullTest () ;

}

if (end condition()) FullEnd();

delay (CYCLE MS);

6.2.- Control Module

// CHANGES MADE IN PRINT FUNCTIONS IN ORDER TO WORK WITH ANDROID APP
DEVELOPED

//***************LIBRARIES & MODULES********************

#include <Arduino.h>

#include <Wire.h>

#include <ADXL345V.h>

#include <PID vl.h>

#include <SoftwareSerial.h>

#include <EasyTransferI2C.h>

#include "RTClib.h"
#include "RTC.h"

#include "control.h"
#include "filter.h"
#include "science.h"
#include "record.h"

Page 46 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

#include "BasicStepperDriver.h"
#include "SDCard.h"

//**

#define miSerial Serial // 0OJO poner Serial3 para blue (Bluetooth now
connected to Serial Port 0, same as USB)
#define miSerialEvent serialEvent

//I2C communication for TFT screen & CTD Sensors
EasyTransferI2C UNO;

EasyTransferI2C CTD;

#define MASTER ADDR 7 //I2C Master

#define UNO ADDRESS 8 //I2C slave address

#define CTD _ADDRESS 9 //I2C CTID sensors slave address

struct CTD DATA({
intl6 t depth;
float tempA;
float tempB;
float tempC;
float conduct;

}i
CTD_DATA ctd data;

struct SEND DATA({
int depth;
int temp;
double inAngle;
int posRail;
double setAngle;
int margin;
int hours;
int minutes;
int seconds;

bi
SEND DATA science;

//Struc to save the values coming from sensor in different modules
struct sciData{

int depthH;

int temp;
}i

#define SW1 6
#define SW2 7

#define MAX RAIL 120 //Length of the endless screw after testing with
some margin (MAX = 275)

#define MOTOR STEPS 200 //200 steps per revolution (1.8°)

#define MICROSTEPS 4 //1/4 steps (Best method for smoothness and
torque)

//Pin configuration for motor
#define DIR 10 //(9)

#define STEP 11 //(8)

#define ENABLE 13

Page 47 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

int stepRPM = 120; //Speed of Stepper Motor

int RPM a = 0;

long delta tetha=0; //Angle difference for P control

unsigned long timer=0, delta t=0; //delta time or how long it takes to
execute data acquisition

//Variables for measurement of On/Off motor periods
unsigned long TOnFWAcc = 0; //Forward tray motion
unsigned long TOnBWAcc = 0; //Backwards tray motion
unsigned long Mstart = 0; //Measure of the cycle period

int accx,accy,accz; // integer Read from Accel

double setAngle, inAngle, outAngle; //Define Variables we'll be
connecting to in PID

double angleOFF=0; //Angle offset for trimming procedure
//double kp = 2.0, ki = 0.0, kd = 0.0;

int margin = 10;

int numCycle=0, showAccel=0;

int posRail=60;

unsigned long timerChange = 0;

//SD information log variables.
int m=0, s=0, M OnFW=0, M OnBW=0;
unsigned long MesMillis = 0;

BasicStepperDriver stepper (MOTOR STEPS, DIR, STEP, ENABLE); //Stepper
driver declaration

// PID::PID(double* inAngle, double* outAngle, double* setAngle,
double Kp, double Ki, double Kd, int ControllerDirection)
//PID myPID(&inAngle, &outAngle, &setAngle, kp, ki, kd, DIRECT);

ADXL345 adxl; //variable adxl is an instance of the ADXL345 library
//SoftwareSerial softSerial (31, 30); // RX, TX for Bluetooth

//CTD sensor variable for reception
intlé t depth=0;
float tempA=0, tempB=0, tempC=0, conduct=0;

//************** Functions
Ak Ak hkhk ko hkhhhkhhkhhhhhkhhkhhdhhhkhkhhhhhkhkhkhhdhrhkhhkhhkkhhrhkhhkhhkkhkrhkhhhrhkkhhrhkhkxkhkkx

void command(const char* cmd, int num bytes response) {
delay (1000) ;
//miSerial.print (cmd) ;
delay (1500) ;
for (int i=0;i<num bytes response;i++)
Serial.write (miSerial.read());

}

void initBlue () {
command ("AT",2);// response: OK
command ("AT+VERSION",12);// response: OKlinvorV1l.5
command ("AT+NAMEGlider3",9);//response: OKsetname
command ("AT+BAUD4", 8) ;//response: 0K9600
command ("AT+PIN1234",1);//response:

Page 48 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

vold readSensors ()
vold writeActuators ()

void receiveEvent (int numBytes) {

void startControl ()

{
//Communication

miSerial.begin (9600);

Wire.begin (MASTER ADDR) ;
UNO.begin (details (science), &Wire);
CTD.begin (details (ctd data), &Wire);
Wire.onReceive (receiveEvent) ;

//RTC module
//initializeRtc(); //Use only once, the battery will keep the time

// Blue
//initBlue (); //Uncomment only for configuration of new BT
module

// Accelerometer
adxl.powerOn () ;

//SD Card Initialization
SDSetup () ;
CreateMotorLogFile () ;
CreateSensorLogFile () ;
CreateHoneyWellLogFile () ;

// Timer functions

//RTC data adquisition

m = getMinute();

s = getSecond() ;

Mstart = millis(); //Starting value of millis when RTC is measured

timer = millis(); // For Filter

WriteMotorValues(m, s, Mstart, M OnFW, M OnBW); //Log into SD card

WriteSensorValues (m, s, Mstart, depth, tempA, tempB, tempC,
conduct); //Log sensors values to SD

// Stepper Motor
stepper.begin (stepRPM, MICROSTEPS); //Motor initial parameters
stepper.enable () ;

// SW
pinMode (SW1, INPUT PULLUP);
pinMode (SW2, INPUT PULLUP);

setAngle = 0; //Angle initialization

/* PID
inAngle = 0.0;
myPID.SetMode (AUTOMATIC) ;
C;

)
myPID.SetOutputLimits (40, 200);

/

~/

Page 49 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

//miSerial.println("startControl");

void cycleControl ()
{
numCycle++;
readSensors () ;
writeActuators();
M OnFW = 0;
M OnBW = 0;

//Check if data is received from the CTD sensors and assign values to
local variables
1f (CTD.receiveData ()) {

depth = ctd data.depth;

tempA = ctd data.tempA;

tempB ctd data.tempB;

tempC = ctd data.tempC;

conduct = ctd data.conduct;

MesMillis = millis();

WriteSensorValues(m, s, MesMillis, depth, tempA, tempB, tempC,
conduct) ;

}

//Send Real time to screen (Too time consuming, other method will be
assessed)

science.hours = getHour();

SC1 s = getMinute () ;

UNO. sendData (UNO_ADDRESS

* /

//Set parameter to be sent to screen
science.setAngle = setAngle;
science.margin = margin;
science.depth = depth;

science.temp = tempA;

stepper.disable(); //Endless screw does not slip. No motor brake

needed.

adxl.readAccel (&accx, &accy, &accz); //read the accelerometer
values and store them in variables x,vy,z

delta t = millis() - timer; //
calculate time through loop i.e. acqg. rate
timer = millis(); // reset
timer
inAngle = kalmanCalculate(accx, 0.0, delta t);
inAngle = (inAngle - angleOFF); //Compensate observed offset in
accel

//P speed controller
delta tetha = (setAngle - inAngle);
delta tetha = abs(delta tetha);

RPM a = delta tetha*0.90; //In order to extend the range between min
and max.

Page 50 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

if (RPM_a >= 200) {
stepRPM = 200;
}else if (RPM _a <= 60) { //Limiting the minimum speed to ensure
smooth motion.
stepRPM = 60;
} else stepRPM = RPM a;

//myPID.Compute () ;
stepper.begin (stepRPM, MICROSTEPS) ;
stepper.disable () ;

if (posRail<0) {
posRail=0;
science.posRail = posRail;
}
if (posRail>MAX RAIL) {
posRail=MAX RAIL+1;
science.posRail = posRail;

if (inAngle > setAngle + margin) {
if (posRail<MAX RAIL) {
stepper.enable() ;
delay (20);

//SD card Log

MesMillis = millis();

M OnFW = 1;

WriteMotorValues (m, s, MesMillis, M OnFW, M OnBW);

stepper.move (-MICROSTEPS*92); //the motor moves the tray
exactly 1mm back or forth

MesMillis = millis () ;
M OnFW = 0;
WriteMotorValues (m, s, MesMillis, M OnFW, M OnBW);

posRail++;
science.posRail = posRail;
science.inAngle inAngle;

miSerial.print (inAngle);

miSerial.print (" ");

miSerial.print (posRail);
(

miSerial.print ("™ "),
miSerial.print (depth):;

UNO.sendData (UNO_ADDRESS) ;

}
else 1if (inAngle < setAngle - margin) {
if (posRail>0) {
stepper.enable () ;

Page 51 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes

delay(20); //Delay introduced to avoid power bank
automatic shutdown

MesMillis = millis();
M OnBW = -1;

WriteMotorValues (m, s, MesMillis, M OnFW, M OnBW);

stepper.move (MICROSTEPS*92) ;

MesMillis = millis();
M OnBW = 0;

WriteMotorValues (m, s, MesMillis, M OnFW, M OnBW);

miSerial.print (inAngle);

posRail--;

science.posRail = posRail;
science.inAngle = inAngle;
miSerial.print ("™ ");
miSerial.print (posRail);
miSerial.print ("™ ");

miSerial.print (depth);
UNO.sendData (UNO_ADDRESS) ;

}

if (numCycle > timerChange && timerChange>1000) {

numCycle=0;
setAngle = -1 * setAngle;

//miSerial.print (" changed angle:
//miSerial.println(setAngle);

}

if (showAccel) {

// outAngle x,y,z values - Commented out
miSerial.println (accx);
miSerial.print (", ");
miSerial.print (inAngle);
miSerial.print (", ");

// miSerial.print(y);

// miSerial.print (", ");
// miSerial.println(z);
miSerial.println (stepRPM) ;

//miSerial.print (" Period On FW: ");
//miSerial.println (TOnFW) ;
//miSerial.print (" Period On BW: ");
//miSerial.println (TOnBW) ;
//miSerial.print (" Cycle Period: ");

//miSerial.println (Ttotal) ;
}

else {

s = getSecond();
//miSerial.print (inAngle) ;
//miSerial.print (" ");
}
}
MesMillis millis(); //Starting value of millis when RTC 1is
measured

if ((numCycle%20)==0) {
m = getMinute () ;

")

WriteMotorValues (m, s, MesMillis, M OnFW, M OnBW);

card

//Log into SD

Page 52 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

void miSerialEvent ()
{
while (miSerial.available()){
char ch;
ch = (char)miSerial.read();
//miSerial.print ("Leido ");
//miSerial.println(ch);
switch (ch) {
case '1':
stepper.enable();
delay (20);
stepper.move (MICROSTEPS*910) ;
posRail = posRail - 10;

break;
case '2':
stepper.enable () ;
delay (20);

stepper.move (-MICROSTEPS*910) ;
posRail = posRail + 10;

break;
case '3':
stepper.enable () ;
delay (20);
stepper.move (MICROSTEPS*450) ;
posRail = posRail - 5;
break;
case '4':
stepper.enable () ;
delay (20);
stepper.move (-MICROSTEPS*450) ;
posRail = posRail + 5;
break;
case '5H':
stepper.enable () ;
delay (20);
stepper.move (MICROSTEPS*240) ;
posRail = posRail - 3;
break;
case '6':
stepper.enable () ;
delay (20);
stepper.move (-MICROSTEPS*240) ;
posRail = posRail + 3;
break;
case 'S':posRail = 60; break; //Once the load is trimmed, set

current position as middle position
case 's':stepper.stop();
angleOFF = inAngle;
setAngle = 0;
break;
case 'I':stepRPM++; break;
case '"i':stepRPM--; Dbreak;
case 'A':setAngle+t+;
//miSerial.println (setAngle);

//miSerial.print (" ");
//miSerial.print (margin);
break;

Page 53 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes

case 'a':setAngle--—;
//miSerial.println (setAngle) ;

//miSerial.print (" ");
//miSerial.print (margin);
break;

case 'M':margin++;
//miSerial.println (setAngle) ;

//miSerial.print (" ");

//miSerial.print (margin) ;
break;

case 'm':margin--;

//miSerial.println (setAngle) ;

//miSerial.print (" ");

//miSerial.print (margin) ;
break;

case 'T':setAngle = 25;
//miSerial.println (setAngle) ;

//miSerial.print (" ");
//miSerial.print (margin) ;
break;

case 't':setAngle = -25;
//miSerial.println (setAngle) ;
//miSerial.print (" ");
//miSerial.print (margin) ;
break;

case 'H':angleOFF = inAngle; break;
case 'h':setAngle = 0; break;
case 'V':showAccel = 1; break;
case 'v':showAccel = 0; break;
case 'X':timerChange+=1200;
case 'x':timerChange-=1200;

case 'Q':storeYes=1; numCycle=0; break;
case 'g':storeYes=0; numCycle=0;

case 'W':showrecordAngle () ;break;
break;

}

numCycle=0;
numCycle=0;

break;
break;

//miSerial.
//miSerial.
//miSerial.
//miSerial.
//miSerial.
//miSerial.
//miSerial.)

.println (timerChange) ;
//miSerial.
//miSerial.

//miSerial

//miSerial.

print (" SP MotorSpeed: ");
println (stepRPM) ;

print (" A angle: ");
println (setAngle) ;

print (" M margin: ");
println (margin) ;
print (" X change: "

’

print (" Q store: ");
println(storeYes);

println(" T Angle 10, H Horizontal, s Stop,

margin, V vervose");

}
}

void tickControl ()
{
}

void testControl ()
{

struct sciData theSci;

theSci = cycleScience (inAngle, tempA);

//Honeywell datalOG

Page 54 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

MesMillis = millis();
WriteHoneyValues (m, s, MesMillis, theSci.depthH); //Log into SD
card

science.depth = depth;

science.temp = tempA;
science.inAngle = inAngle;
science.posRail = posRail;

UNO.sendData (UNO_ADDRESS) ;

miSerial.print (inAngle) ;

miSerial.print ("™ ");
miSerial.print ("™ ");

(

(
miSerial.print (posRail);

(

(

miSerial.print (depth);
}

void endControl ()

{
}

6.3.- SD Card Module

#include <SD.h>
#include <Arduino.h>

//SPI settings

//MOSI,MISO,SCLK set as default
int CS pin = 53;

int SDin = 1;

void SDSetup () {

Serial.println("Initializing Card");
pinMode (CS _pin, OUTPUT);

//Check if card is ready

if (!SD.begin (CS _pin)) {
Serial.println("Card Failed!!"™);
SDin=0;
return;

}

Serial.println("Card Ready");

SDin=1;

}

void CreateMotorLogFile () {
File logFile = SD.open("LogSTEPL.csv", FILE WRITE); //Movement of
the longitudinal tray
if (logFile) {
logFile.printlin(", , , ,"™); //Blank line
String header =
"RTC Min, RTC_ sec, Millis, Motor FW, Motor BW";
logFile.println (header) ;
logFile.close();
}else if (SDin==1) {
Serial.println("Couldn't open log file");
}

Page 55 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

void CreateSensorLogFile () {
File logFile = SD.open("LogCTD.csv", FILE WRITE); //Movement of the
longitudinal tray
if (logFile) {
logFile.printlin(", , , , , , ,"); //Blank line
String header =
"RTC Min, RTC_ sec, Millis, Depth, TemperatureA, TemperatureB
, TemperatureC, Conductivity";
logFile.println (header) ;
logFile.close();
}else if (SDin==1) {
Serial.println("Couldn't open log file");
}
}

void CreateHoneyWellLogFile () {
File logFile = SD.open("LogHONEY.csv", FILE WRITE); //Movement of
the longitudinal tray
if (logFile) {
logFile.println(", , , "); //Blank line
String header = "RTC Min, RTC sec, Millis, Depth";
logFile.println (header);
logFile.close();
telse if (SDin==1) {
Serial.println("Couldn't open log file");
}
}

void WriteMotorValues (int RTC mins, int RTC sec, unsigned long
MesMillis, int motor FW, int motor BW) {

//CSV format data string

String dataString = String(RTC mins)+ ", " + String(RTC_sec) +

n

" " + String(MesMillis) + ", " + String(motor FW) + ", +

14

String (motor BW);

//Open file to write to, only one file open at a time
File logFile = SD.open("LogSTEPL.csv", FILE WRITE);
if (logFile) {
logFile.println (dataString);
logFile.close();
}else if (SDin==1) {
Serial.println("Couldn't access file");
}
}

void WriteSensorValues (int RTC mins, int RTC_sec, unsigned long
MesMillis, intl6 t depth, float tempA, float tempB, float tempC, float
conduc) {

//CSV format data string

String dataString = String(RTC mins)+ ", " + String (RTC_sec) +
", " + String(MesMillis) + ", " + String(depth) + ", "o+
String (temphA)+ ", " + String(tempB) + ", " + String(tempC) +
", " + String(conduc);

//Open file to write to, only one file open at a time
File logFile = SD.open("LogCTD.csv", FILE WRITE);
if (logFile) {
logFile.println (dataString) ;
logFile.close();
}else 1if (SDin==1) {

Page 56 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

Serial.println("Couldn't access file");

}

void WriteHoneyValues (int RTC mins, int RTC sec, unsigned long
MesMillis, int depth) {

//CSV format data string

String dataString = String(RTC mins)+ ", " + String(RTC_sec) +
", " + String(MesMillis) + ", " + String(depth);

//Open file to write to, only one file open at a time
File logFile = SD.open ("LogHONEY.csv", FILE WRITE);
if(logFile) {

logFile.println (dataString);

logFile.close();
}else 1if (SDin==1) {

Serial.println("Couldn't access file");

}

6.4.- Bluetooth Configuration Module

#include <Arduino.h>
#include "bluetoothSetup.h"

char name[10] = "GLIDER";
char bps = "4"';
char password[1l0] = "1234";

void configureBluetooth ()
{

pinMode (12,0UTPUT); //Changed to pin 12 as pin 13 is used by
the motor

digitalWrite(12,HIGH);

//If bluetooth is not conected

delay (10000) ;

digitalWrite (12, LOW) ;

//Start configuration
Serial.print ("AT");
delay (1000) ;

//Configure name
Serial.print ("AT+NAME") ;
Serial.print (name);
delay (1000) ;

//configure baud
Serial.print ("AT+BAUD") ;
Serial.print (bps);

delay (1000) ;

//Configure password
Serial.print ("AT+PIN");
Serial.print (password) ;
delay (1000) ;

Page 57 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

6.5.- Kalman Filter Module

(
(
(

Extended Kalman filter applied to one axis of the accelerometer

#include <math.h>
#include <MatrixMath.h>
#define PI 3.14159265358979f

//************************ Fllter Variables
khkhkhkhkhkkhkhkhkhkhkhkhkkhkhrhkhkhkhkhkkhkhhkhhkhkhkkhkhkkkxk*k

float x angle=0;

float Q angle = 0.01; //0.001 //0.005
float Q gyro = 0.0; //0.003 //0.0003
float R_angle = 0.01; //0.03 //0.008

float x bias =
float P_00 = O,
float vy, S;

float K 0, K 1;

float kalmanCalculate(float newAngle, float newRate, int looptime)
{

float dt = float (looptime)/1000;

x_angle += dt * (newRate - x bias);

P 00 += - dt * (P_10 + P_01l) + Q angle * dt;

P 01 += - dt * P_11;

P 10 += - dt * P_11;

P 11 += + Q gyro * dt;

y = newAngle - x angle;
S =P 00 + R _angle;

K O0O="PO00 / S;
K1

1 =P 10 / S;
x_angle += K 0 * y;
x bias += K 1 * y;
P 00 -= K 0 * P _00;
P01l -=K O * P 01;
P 10 -= K 1 * P _00;
P 11 -= K 1 * P _01;

return X angle;

6.6.- RTD Module

#include "rtc.h"
#include <Wire.h>
#include "RTClib.h"

RTC _DS3231 RTC;
DateTime now;

Page 58 of 63

//Initializes the rtc time to the current time of the PC

Development of the control electronics for the navigation of an unmanned submarine with Arduino

void initializeRtc()

{

and

int

int

int

int

int

int

//Wire.begin(); // Start the I2C port
RTC.begin(); // Initiates communication with the RTC

//RTC.adjust (DateTime (DATE , TIME)); // Sets the date

time of compilation

getYear ()

now = RTC.now();

return now.year();
getMonth ()

now = RTC.now();

return now.month () ;
getDay ()

now = RTC.now () ;

return now.day();
getHour ()

now = RTC.now();

return now.hour () ;
getMinute ()

now = RTC.now () ;

return now.minute () ;
getSecond ()

now = RTC.now () ;
return now.second();

6.7.- Science Module

#include <Arduino.h>
#include "science.h"
#include "communication.h"
#include "record.h"
#include "sensors.h"
#include <Wire.h>

Page 59 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

struct sciDataf{
int depth;
int temp;

}i

//objects to store the information from the sensors
Record recordAngle (1024,2047);
Record recordDepth (2048,3071);
Record recordTemp (3072,4096) ;

int contador =0;
byte storeYes=0;

vold startScience ()

{
}

void showrecordAngle ()

{
recordAngle.loadEE () ;
recordDepth.loadEE () ;
recordTemp. loadEE () ;

}

struct sciData cycleScience (double angle, float tempA)

{

struct sciData sci;
int depthH;

//angle = mission.getAngle();

depthH = (int) (getPressure()); //Si queremos quedarnos con un
decimal
sci.depth = depthH;

//temp = getTemperatureZX();
sci.temp = tempA;

sendUnder (angle, depthH, tempA);

//showVar ("A ", angle);
//showVar ("D ", depthH);
//showVar ("T ", tempA);
//blueSerial.println();
//sendUnder ((int)angle, depth, temperature);

(contador++ > 10 && oreYes)
recordAngle.storeEE
recordDepth.storeEE ((char)depth) ;

Stc
((char)angle);
((c

recordTempB.storeEE ((char) temp) ;

contador=0;
blueSerial.print ("!");

* /
/

return sci;

}

Page 60 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

6.8.- Sensors Module

/*

SENSOR PRESION

modelo ASDX RRX 100PG 2A5
RR: Radial Radial

X: nada

100PG: 100PSI

2: I2C ADDR 0X28

A: RANGE 10% A 90%

5: VCC = 5V

#include "sensors.h"
#include <Wire.h>
#include "DHT.h"

#define DHTPIN 2 //Select pin2 to comunicate
#define DHTTYPE DHT11 //The DHT11 is selected

#define I2C PRESSION 40 //Unique bus address for pressure sensor
#define MEGA
#define EXT_REF 0

#define ADC_HONEYWELL 2 // Arduino analog input pin
#define ADC ZXTEMP 1 // Arduino analog input pin

const float Null = 0.50; // Null VDC; datasheet Page 32

const float Sensitivity = 266.6; // Sensitivity mV/psi; datasheet
Page 32

// A variable that will be used by Arduino to communicate with the
sensor starts

DHT dht (DHTPIN, DHTTYPE) ;

//Pressure sensor

byte msb, 1lsb = 0;

int press = 0;

int out Max = 14745;

int out Min = 1600;

int P max = 90; //psi (max.: 6.12 atm)
int P min = 15; //psi (max.: 1.02 atm)
int P out 0;

//Moisture sensor

byte relePin = 8; //pin del rele

byte saPin = 13; //pin del la salida analogica (led 13 con PWM)
byte shPin = Al; //Pin del sensor de humedad

int valHumedad = 0; // valor de la humedad

byte valSalida 0; // valor de la humedad en byte
//sensors function to initialize
void startSensors()
{
//Start pressure sensor, wakes up I2C bus
Wire.begin () ;
//Start temperature and humidity sensor

Page 61 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino

5. Annexes

dht.begin () ;

pinMode (relePin, OUTPUT); // Fran: ;para que es esto?

}

void getdata(byte *a, byte *b)
{

Wire.requestFrom (I2C_ PRESSION, 2) ; //Sends content of first two

registers

while (Wire.available()){ //Salve may send less than requested

*a = Wire.read(): //first byte recieved stored
here

*b = Wire.read(); //second byte recieved stored
here

}
}

//The pressure is read

float getPressure()

{
getdata (&msb, &1sb) ;
//Serial.print ("byte 1: "); Serial.println(aa,BIN);
//Serial.print ("byte 2 "); Serial.println (bb,BIN);
press = msb;

press = (press << 8) + 1sb;

//Serial.print ("Combined byte: "); Serial.println(c,BIN);
//Serial.print ("Count #: "); Serial.println(c);

P out = (((press - out Min)* (P max - P min))/(out Max - out Min)) +

P min; //Conversion found in datasheet
//Serial.print (" Pressure: "); Serial.print (pressure,DEC)
//Serial.println (" psi");

return P _out;

}

float getPressure2 () {
float pressurePSI,pressureMBAR,pressureVDC;
int pressure;

pressure = analogRead (ADC HONEYWELL) ;

pressureVDC = (float)pressure * 0.0048828125; // (5/1024
0.0048828125)

pressureVDC = pressureVDC - Null;

pressurePSI = pressureVDC / Sensitivity * 1000;

pressureMBAR = pressurePSI * 68.948;

return pressureMBAR;

}

//function that returns the temperature sensor DTHI1
int getTemperature ()
{

return dht.readTemperature();

}

//function that returns the humidity sensor DTHI11
int getHumidity ()
{
return dht.readHumidity() ;
}

’

Page 62 of 63

Development of the control electronics for the navigation of an unmanned submarine with Arduino
5. Annexes

//function that returns the humidity read by the YL-69 sensor. Returns
255 if no humidity and low humidity value if it detects
int getMoisture ()
{

valHumedad = analogRead(shPin); // reads the value of the
moisture

valSalida = map(valHumedad, 0, 1023, 0, 255); // sets the value
at analog output range

analogWrite (saPin,valSalida);

//Serial.print ("Humedad: ");

//Serial.println(valSalida) ;

return valSalida;

// Read from ZX-Thermometer (Analog with long wire plus thermistor)
// Return temp x10: 234 for 23.4°C
int getTemperatureZX()
{

int sensorValue;

double temp;

sensorValue = analogRead (ADC ZXTEMP) ;

temp = (sensorValue - 151) / 10.5;

return (temp*10) ;

Page 63 of 63

