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Abstract 

The use of smartphones cameras for photogrammetric purposes is 
increasing. However, the suitability of smartphones for 3D modelling for 
medical purposes in general, and for cranial deformation in particular, is still 
to be analysed. This paper investigates the suitability of smartphone video 
cameras to create 3D models for cranial deformation analysis compared to 
the digital single-lens reflex (SLR) cameras traditionally used in close-range 
photogrammetry. Two models are obtained, the first one from a slow-motion 
video recorded with a smartphone, and the second one from SLR camera 
imagery. The models are compared to evaluate the differences not only 
between themselves but also through the best fitting ellipsoid that allow the 
determination of the cranial deformations. The average distance between 
models is 0.5 mm, and below 1 mm for 86% of the model points. The 
maximum difference between the two fitted ellipsoid semiaxes is 1 mm. It can 
be stated that smartphones are a low-cost solution that can provide 3D 
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models with a similar accuracy to that of SLR cameras for non-static objects 
in close range scenarios. More interestingly, slow-motion videos provide 
comparable results in real clinical conditions with infants in movement. 

Keywords: close-range photogrammetry, medicine, evaluation, 
videogrammetry. 

INTRODUCTION 

Cranial deformation in infants is a group of conditions that affects a great 
percentage of new-borns (Rogers, 2011). Although its prevalence is high, 
there are no standards for its systematic evaluation. Usually, the deformation 
is measured using callipers but experts do not fully agree on the suitability of 
this methodology. Photogrammetry is another of the main techniques in use 
(Siegenthaler, 2015), but it is not widely extended in consultations and 
hospitals despite its suitability to carry out non-contact and accurate 
measurements.  
Image-based 3D digitisation and 3D modelling are being used for a wide 
range of medical applications such as the creation of prosthesis (Salazar-
Gamarra et al., 2016), diagnosis (Farnood Ahmadi and Layegh, 2014), 
craniofacial information analysis (Byvaltsev, Belykh and Belykh, 2012) and 
dental reconstruction (Grenness et al. 2005; Hernandez and Lemaire 2016). 
However, the most common tools to obtain 3D information for medical 
purposes are magnetic resonance imaging (MRI) and computed tomography 
(CT) scanners. These methods are still considered the most reliable options 
and are the only ones to provide inner tissue information. In spite of their 
possibilities, MRI and TC scanners are costly and highly invasive. Its use in 
infants usually requires the use of anaesthesia to put the patient to sleep. 
Another approach for the extraction of 3D data is the use of special 3D 
scanners such as the STARscanner (Plank et al., 2006). These tools are 
applied for the creation of the orthotic helmets used to correct the 
deformations as well as an analysis tool. The main issue of this methodology 
is the high cost of the devices. 
Photogrammetry and 3D modelling are non-invasive and provide more 
detailed data than calliper measurements. However, the cost of the 
photogrammetric processes depends highly on the setup. One of the main 
challenges for the measurement of cranial deformation in infants is the 
movement of the patients. Infants, between 2 and 8 months old are, in most 
cases, in constant movement during the consultation, and below three 
months, they can hardly hold their heads. Therefore, special care must be 
taken to assure that the images are well-focused. The use of SLR 
professional cameras, although possible in some cases (i.e. the infant is 
extremely calmed), is usually challenging, it requires time and additional 



 

 

lighting sources. On the other hand, the use of a single portable triangulation 
3D scanner, such as Sense 3D (3D Systems, U.S.), is even more limited by 
the infant’s movement and does not work with this type of real-life settings.  
To deal with the problem of the movement, some photogrammetric 
techniques include complex setups of several professional cameras or a 
combination of cameras and 3D scanners. For these solutions, costly 
equipment is required. The use of smartphone cameras as a tool to create 
high-accuracy 3D models is becoming more common as the capabilities of 
the smartphones increase and they are equipped with higher quality cameras 
(Daponte et al., 2013; Bakula and Flasiński, 2014). Smartphone-based 
photogrammetry is starting to be used in different medical studies, most of 
them focused on the creation and measurement of medical prosthesis 
(Salazar-Gamarra et al. 2016; Hernandez and Lemaire 2016). However, in 
these studies, the target is static and photographs are used instead of video 
sequences. The use of videogrammetry, an imaging technique that extracts 
3D measures from video, is also becoming more common as it allows the 
acquisition of a large number of well-focused images in short periods of time, 
even with moving targets (Chong, 2012). Videogrammetry is usually 
understood as the science to extract 3D coordinates as a function of time, 
allowing the obtainment of multitemporal data of dynamic objects (Black and 
Pappa 2003; Lin et al. 2008). In this particular study, there is no intention to 
obtain dynamic information but well-focused images of a non-changing 
moving target. Videogrammetry reduces the time required for image 
acquisition and the high number of frames allows the removal of bad focused 
images (Xu et al., 2016). Smartphone-based slow-motion videos are an 
especially interesting methodology which allow us to obtain focused images 
of moving targets easily. 
The aim of this article is to compare the results obtained using photographs 
taken with a digital SLR camera and those obtained using a slow-motion 
video recorded with a smartphone by means of an auxiliary ellipsoid shape 
fitting the head. The use of a Sense 3D scanner was also part of the initial 
experiment. However, it was not possible to obtain a model of the infant using 
this device and therefore, the results achieved with the triangulation laser 
scanner are not reported here. Nevertheless, the experiments undertaken 
will indicate whether slow motion videos taken with a smartphone can provide 
a similar accuracy than SLR cameras for the measurement of cranial 
deformation in infants or not. 

METHODOLOGY 

Two 3D models of the head were created for the same patient using two 
imaging sensors: an Advanced Photo System type-C (APS-C) frame SLR 



 

  

camera and a high-end smartphone in slow-motion video mode; a set of 
frames was later extracted from the video. Parallel processes were carried 
out to create both models. The images were masked and orientation and self-
calibration processes were carried out. Once each mesh was obtained, it was 
cleaned and smoothed. Lastly, the fitted ellipsoid was calculated for each 
mesh using least squares adjustment and the ellipsoids and meshes were 
compared to evaluate their differences (Fig. 1). 
The acquisition of well-focused images to create the 3D model using the SLR 
camera was possible due to a situation more favourable than usual (i.e. the 
infant was specially calmed). Nevertheless, the image acquisition lasted 
longer than the video recording.  
 



 

 

 

Fig. 1. Flow diagram. 

 

Setup 

The image acquisition was carried out during a standard medical 
consultation, which involves several limitations. The time slot is very limited 
as the doctor has to move to the next patient within minutes. The infant 
(normally aged between 2 and 8 months old) is usually awake and moves 
quickly during the process and, in many cases, he gets nervous when he is 
set on an ideal position to take the pictures. In addition, patient’s parents are 
usually present and a certain degree of nervousness is to be expected. In 



 

  

this situation, it is vital to be quick, straightforward and interfere the minimum 
with the consultation. 

The setup for the data acquisition was therefore kept as simple as possible. 
This assures that the cost related to imaging equipment is expected to be low 
and the processes can be carried out regardless of the consultation place. 
The image shooting and the video recording were carried out during the same 
consultation. The infant was hold by an adult, therefore no special equipment 
was required. A cap was placed on the children’s head to avoid hair from 
affecting the quality of the model. Four pieces of measuring tape, of 
approximately two centimetres were placed on the cap. These marks were 
included in the model to allow scaling the model and to facilitate the image 
registration with easily identifiable features. 
In order to simplify the process no special light conditions were required, the 
usual illumination of the consultation room was enough. 

Data acquisition  

Two imaging devices were used for the data acquisition (Fig. 2). First, a 
digital SLR camera Canon EOS 1100D was used at a maximum resolution 
of 4272 x 2848 pixels with a Canon lens EF-S 18-55 mm. A principal distance 
of 35 mm was selected for taking the pictures at ISO 3200.No tripod or special 
illumination was used. Second, a high-end smartphone Samsung Galaxy S7 
Edge (Fig. 2b) in slow-motion video was used at a resolution of 1280 x 738 
pixels (Table 1).  

 
Fig. 2. Cameras used during the image acquisition: (a) Canon EOS 1100D, and (b) Samsung 

Galaxy S7 Edge. 

 
 



 

 

 

Camera 

Focal 
length 
(mm) 

Effective 
format size 

(mm) 
Pixel count 

(pixels) 
Pixel pitch 

(mm) 

Canon EOS 
1100D 34.35 22.17x14.78 4272x2848 0.00519 

     
Samsung 
Galaxy S7 4.2 5.64x4.23 

Video: 1280x738 
Still: 4032x3024 0.0014 

Table 1. Sensor specifications 

 
It has been reported that good-quality 3D models can be obtained using 
approximately 10-20 images for outer dome surfaces (geometry close to the 
infant’s head) using multi-convergent images (Kraus, 1997). In this study, a 
higher number of images was acquired to assure that the final model can be 
created. A high number of images was found to be necessary as the 
geometry of the network is not ideal for calibration (i.e. the infant’s head 
occupies only the central part of the image). Another unexpected issue was 
that many of the images were blurred due to the quick infant’s head 
movement. Fig. 3 displays a partial view of the two data sets. 

 

Fig. 3. Sample of images used for the processing and 3D modelling: (a) extracted from the 
slow-motion video; (b) taken with SLR camera. 

 



 

  

Processing 

The two data sets were processed independently using Photoscan 
Professional version 1.2.6 (Agisoft LLC, Russia).  
The first dataset was composed by the images taken with the SLR camera 
once the blurry images were discarded. A large number of images were 
obtained as the elimination rate was expected to be high due to the head 
movement. Finally, 24 images out of 53 were used. 
The second set was composed of the images extracted from the video. The 
extraction of the most useful frames from the video is one of the main 
challenges in videogrammetry. The usage of the totality of the images is 
unnecessary and would be unmanageable in terms of computational cost. 
The selected images must be well-focused and present a good geometry 
around the object. In this case, a set of images were extracted automatically 
using a fixed frequency (e.g. one frame out of ten). Later, the blurred images 
were automatically removed using an automated procedure. The individual 
image quality was estimated and the bad-quality images were determined 
using a threshold. Finally, the geometry of the network was reviewed to 
manually remove redundant images. 
In the end, a total of 63 frames were used for the 3D modelling from the 
second set. The quantity of frames is almost three times larger than the 
number of images used for the SLR camera model. A larger number of 
images is necessary a priori to compensate both the lack of resolution and 
the geometric accuracy of the camera. 
The two sets of images followed the same steps to create the 3D models 
(Processing part, Fig. 1). Firstly, the images were masked to delimit the part 
of the images that were to be used for modelling. This process is necessary 
as the infant is moving in relation to the background. For that reason, it would 
not be possible to obtain an acceptable model without excluding this 
background through the image masks. The masking process was carried out 
manually, although the automation of the process must be approached in the 
future. 
The second step was the image orientation (also known as alignment), which 
is the process used to determine the positions and rotations for each image 
in the object space. During this step, the cameras were also calibrated (see 
below the Results Section). A relative ground reference system (GRS) for the 
models was set by assigning coordinates to three points of known distances. 
This process was carried out automatically using Agisoft PhotoScan. Later, 
the point cloud was densified and the mesh created. The meshes needed to 
be cleaned and smoothed in order to remove the texture of the cap and 
possible artefacts. Lastly, the final models were scaled using the markers 
placed on the cap and the texture was draped on the 3D models (Fig. 4) 



 

 

 

Fig. 4. 3D models created using both cameras: (a) right and (b) left views, Canon EOS 1100D 

; (c) right and (d) left views, smartphone video. 

Self-calibration 

No independent calibration of the cameras was carried out as it would make 
the setup more complex and would greatly increase the time required by the 
doctor to collect the necessary data. Instead, a self-calibration process was 
undertaken with ten additional parameters. The self-calibration accuracy is 
expected to be limited by the nature of the setup. In most images, the object 
covers only a small area in the centre of the image, while the rest of the image 
must be masked. The inner instability of the smartphone camera is also 
expected to affect the calibration.  

Ellipsoid fitting 

The similarity in shape and volume between the human skull and the ellipsoid 
has been pointed out in previous studies (Bergerhoff, 1957). According to this 



 

  

study, the cranial deformation can be measured in terms of distances from 
the real head surface to an ellipsoid representing the ideal head surface 
(Barbero-García et al., 2017). 
The ideal head shape will be different for each patient and, therefore, the 
ellipsoid must be calculated for each one. The ideal ellipsoid is the one which 
minimises the distances to the real head while meeting some constraints to 
assure that the head is normal, i.e. antrophometric cranial indexes 
considered normal according to medical literature (Pindrik et al., 2016). 
The ideal ellipsoid was obtained by least square fitting using the 
mathematical model presented in Bektas (2015). The obtained parameters 
are the semiaxes of the fitted ellipsoid. The accuracy of the solution can be 
evaluated using the semiaxes standard deviation (Table 4). Approximately 
30000 points from each model were used for the fitting process. 

Comparison 

The estimated accuracy was calculated for both cameras (Table 2) using the 
formula presented in Fraser (1992): 

          𝜎 =  
𝑞

√𝑘
𝑆𝜎𝑖𝑚𝑔                                                         (1) 

 
The theoretical precision 𝜎 is affected by the image co-ordinate standard 

error 𝜎img, the image scale S and the number of images k. The factor 𝜎img is 
obtained as the maximum reprojection error provided by Agisoft PhotoScan. 
 
The design factor q is given by the strength of the camera network. For 
acceptable convergent networks, it is expected to take values from 0.4 to 0.8. 
Values of 0.6 and 0.7 are considered suitable for design purposes in these 
cases (Fraser, 1996). A value of 0.6 has been assigned for both models as 
the network geometry is convergent. Since the goal of the study is the 
comparison of cameras and not the retrieval of absolute accuracy values, the 
value of this parameter will not affect the results, as the network geometry is 
the same for both cameras. 
Once both models were created they were compared to evaluate their 
differences. At this point, the models were roughly registered, however small 
differences could be expected as only 3 points were used to set the relative 
GRS. Then, the registration was improved after identifying homologous 
points between the models in CloudCompare 2.7.0. working environment 
(GPL software). Afterwards, the Iterative Closest Point algorithm was applied 
to achieve the best possible accuracy in the registration. After that, the same 
software was used to compute the Euclidean distances between both models 
(i.e. the model created using the smartphone and the model created using 



 

 

the SLR camera) (Fig. 6). Following this way, the differences between models 
can be evaluated for each point. The evaluation of these differences will allow 
us to state whether the models are comparable or not. 
The differences between the fitted ellipsoids were compared as differences 
in their three semiaxes. 

RESULTS 

Table 2 shows the calibration parameters and their standard deviations for 
both cameras. The significance of the additional parameters was evaluated 
using the Student’s t-test (Kraus, 1997; Lerma, 2002). The standard 
deviations achieved are extremely high for the smartphone camera. In fact, 
Student’s t-test confirms that only the principal distance parameter (f) is 
reliable. High standard deviations discredit the mean parameters during the 
self-calibration, and thereby they should not be taken into account. For the 
SLR camera, standard deviations were considerable smaller. The radial 
correction parameter k1 presented a low significance value and therefore it 
will not be taken into account.  

. 

  Samsung Galaxy S7 Canon EOS 1100D 

 Mean  Std t-Student Mean  Std t-Student 

f 29.08 2.41 100% 37.43 0.22 100% 
x0 1.23 0.87 78.2% 1.29 0.03 100% 
y0  0.70 2.17 23.8% -0.16 0.02 100% 
k1 -4.2·10-04 8.1·10-04 36.8% -2.9·10-05 2.2·10-05 74.7% 
k2 1.4·10-06 4.9·10-06 20.9% -2.9·10-06 1.2·10-07 100% 
k3 -1.7·10-09 7.5·10-09 16.6% 3.0·10-09 1.7·10-10 100% 
p1 -4.2·10-04 8.5·10-04 34.9% 2.6·10-04 3.5·10-06 100% 
p2 -7.0·10-04 9.5·10-04 50.2% 1.9·10-04 6.2·10-06 100% 
b1 0.04 9.4·10-03 98.9% -2.8·10-03 5.3·10-05 100% 
b2 9.1·10-03 8.5·10-03 46.2% -4.9·10-03 3.1·10-04 100% 

Table 2. Additional calibration parameters for the two cameras (f, x0, y0 in mm), standard 

deviations and significance percentage according to Student’s t-test. 

 
The great differences in the image deformations can be graphically observed 
in Fig. 5. As it may be expected, both radial and tangential distortions are 
much higher for the smartphone camera. In spite of these values, if the 
corrections are correctly calculated and applied, the final geometric camera 
calibration model will cope with the deformation and the observations will be 
free of systematic errors thanks to the interior orientation parameters. 



 

  

 

 

Fig. 5. Distortion grids: (a) Radial distortion for smartphone camera. (b) Radial distortion for 
SLR camera. (c) Tangential distortion for smartphone camera. (d) Tangential distortion for 
SLR camera. (e) Total distortion for both smartphone camera (blue) and SLR camera (red). 

The theoretical precision and the relative accuracy, together with the 
parameters that affect them, can be checked in Table 3. The standard 
deviation of the image measurements σimg is slightly better for the SLR 



 

 

camera. Nevertheless, the final estimated precision is slightly better for the 
smartphone camera. This difference is caused mainly by the larger quantity 
of images obtained and used with the smartphone. The differences in 
precision can be considered not relevant.  

 

 

 
Fig. 6 shows several views and a histogram with the Euclidean distances 
between the two 3D models. These distances are represented as 
hypsometric colours on the model created using the SLR camera. Some 
areas of notable difference can be distinguished; an important part of them 
being close to the edge of the cap or belonging to one of the markers that 
may have moved during the image acquisition. The figure also shows the 
histogram of the distances. The mean distance between models is 0.5 mm, 
and the standard deviation 0.47 mm. A small bias can be detected as the 
mean of the signed distances is 0.17 mm and the probability mass under zero 
is 41.6%. Nevertheless, it is work noticing that 86% of the distances between 
both models are below 1 mm. 

Camera 
Mean 

distance 
(mm) 

Design 
factor q 

Number 
of 

images               
K 

Standard 
deviation of 

image 
measurements      

σimg (mm)  

Theoretical 
precision 
σ(mm) 

Triangulation 
accuracy 

indicator σ/R 

Canon 
EOS 

1100D 
310 0.6 24 0.016 0.019 1:80000 

Galaxy 
S7 Edge 

256 0.6 63 0.02 0.013 1:110000 

Table 3. Differences in estimated precision for both cameras. 



 

  

 
Fig. 6. Model showing the differences between the models as hypsometric colours. Right view 
(a), left (b), top (c) and back (d). 



 

 

The differences between the ellipsoidal semiaxes (Table 4) are 1 mm for two 
of the semiaxes, B and C (shortest); the difference for semiaxis A (longest) 
is 0.6 mm. The precision of each semiaxis is between 0.02 and 0.03 mm. 
 
 

  Semiaxis A (mm) Semiaxis B (mm) Semiaxis C (mm) 

Smartphone 68.9 ± 0.02 75.4 ± 0.03 82.3 ± 0.03 
SLR camera 68.3 ± 0.02 74.4 ± 0.03 81.3 ± 0.03 

Table 4. Fitted ellipsoid parameters for both models. 

DISCUSSION 

In medical applications, photography and photogrammetry are used for 
multiple purposes. However, its usage is not integrated as part of the 
consultation workflow and it is often related to high costs. One of these 
applications that we are envisioning is cranial deformation analysis, a 
condition that affects a great number of new-borns and that can vary from 
minor aesthetical problems (moderate positional plagiocephaly or 
brachiocephaly) to serious diseases such as craniosynostosis 
(Pathmanaban et al, 2016). The extensive usage of smartphone cameras for 
this cranial deformation analysis is especially interesting as the method is 
highly flexible and has an affordable (low) cost. The use of a slow-motion 
video recorded with a smartphone is especially suitable for this specific 
application as it works well for uncontrolled moving targets and reduces 
considerably the time required for the image acquisition process. In addition, 
no special lighting is required due to the high sensitivity of the smartphone 
cameras.  
The creation of 3D models of moving infants using SLR cameras is 
challenging. It was possible in this particular case because the infant was 
calmer than normal (although moving). The problems encountered when 
using SLR cameras were in the same trend even while taking pictures with a 
high-end digital camera, such as the Canon 1Ds Mark III with a Canon lens 
EF 35 mm lens. New-borns and children below 6-8 months are unconsciously 
moving either in the consultancy or in the hospital. 
In spite of their advantages, smartphone cameras –especially for slow-
motion video- still have lower resolution than the 4K video cameras and even 
the SLR cameras that are traditionally used for photogrammetric purposes. 
Smartphone cameras are also expected to have less stability on the interior 
orientation calibration, although this statement still needs to be confirmed 
from our side.  



 

  

Due to the demanding requirements in medical applications, it is vital to 
evaluate the accuracy and reliability of smartphone cameras for 3D 
modelling. In this study, we have compared two totally different cameras. In 
the first place, a professional, high-end SLR camera with a resolution of 4272 
x 2848 pixels which requires the target to be still and needs a large amount 
of time to take the photographs. In the second place, a smartphone in slow-
motion video mode recording, that despite its lower resolution (1280 x 738 
pixels), allows users to take enough imagery data in shorter time slots.   
The camera self-calibration results show large errors, especially for the 
smartphone camera. The main limitation to obtain accurate calibration 
parameters is, undoubtedly, the geometry of the network. In this study, only 
a small area in the centre of the images was used. Moreover, not many 
accurate control points could be identified in the images. The identifiable 
points are concentrated on the measuring tape used as targets and the 
geometric distribution is far from ideal. For this reason, the calibration 
parameters need to be extrapolated providing very poor results. This situation 
is a limitation given by the image acquisition situation. After this 
experimentation, a new data acquisition framework was figured out: the 
implementation of an independent on-the-job calibration framework using 
images acquired by the doctor prior to the video recording. The accuracy 
improvement expected with a calibration framework will be studied in the 
future in case higher accuracy is requested for the image-based 3D modelling 
solution. The estimates of the additional calibration parameters were notably 
worse for the smartphone-based camera. This can be explained by the lack 
of stability of the video camera, and it is well-known from literature (Fraser, 
1997). 
The image measurement standard error is 0.016 mm for the SLR camera, 
and slightly higher for the smartphone camera, 0.02 mm. However, the video 
allows the acquisition of a larger quantity of images in shorter periods of time 
resulting in a better estimated precision for the smartphone model. The 
precision achieved is 0.013 mm for the smartphone model and 0.019 mm for 
the SLR camera model. These results show that the differences in the 
estimated precision between the two methodologies are not relevant. 
The mean Euclidean distance between the registered point clouds is 0.5mm. 
The mean of the signed distances is 0.17 mm. With our large dataset (that 
included up to 34555 distances), this difference is significant and therefore it 
cannot be stated that models are the same. Nevertheless, the differences are 
small in the context of this application, as cranial deformation is usually 
measured using callipers that have a maximum accuracy of 1 mm in ideal 
conditions (rarely achieved in real clinical situations), without considering the 
landmarks identification error. Similar levels of accuracy are reported by other 



 

 

authors using high-cost special devices (Aldridge et al., 2005; Schaaf et al., 
2010). 
The differences in the semiaxis of the fitted ellipsoids have a maximum of 1 
mm, which is within tolerance with the accuracy of the parameters. These 
two latter evaluations coming from the Euclidean distances as well as from 
the semiaxes comparison allow us to confirm that the theoretical precision 
estimations presented in Table 3 are too optimistic. 
Smartphone cameras in slow-motion mode are proven to be as suitable as 
SLR cameras for the creation of 3D models to evaluate cranial deformation 
in infants. In addition, smartphone slow-motion video reduces the time 
required to collect the images and produces even comparable results for 
analysing infants’ head in movement.   

CONCLUSIONS 

The use of smartphone cameras, especially those with slow motion video 
mode, were proved to be a suitable technique for the creation of 3D models 
intended to evaluate cranial deformation in infants at close ranges. Although 
SLR cameras provide a slightly better standard deviation for image 
measurements, the slow-motion video images taken with a smartphone allow 
users the acquisition of a higher number of well-focused images at lower 
resolution, and at closer ranges (ca. 30 cm). Besides, neither additional 
lighting is requested to take neat images with low ISO numbers nor additional 
accessories such as tripod are required. After this research, it can be 
confirmed that smartphones can provide similar precision to SLR cameras, 
but with higher flexibility and ability to move around during data acquisition, 
at low-cost and without carrying external lighting equipment. Moreover, the 
concept of slow motion video works better than still images to achieve 
focused images for uncontrolled moving targets. The use of single 3D 
scanners is discarded for this application, as they are incompatible with 
infant’s movement. 
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