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Abstract 11 

A new Process Analytical Technology (PAT) has been developed and tested for 12 

on-line process monitoring of a vacuum freeze-drying process. The sensor uses an 13 

infrared camera to obtain thermal images of the ongoing process and multivariate 14 

image analysis (MIA) to extract the information. A reference model was built and 15 

different kind of anomalous events were simulated to test the capacity of the 16 

system to promptly identify them. Two different data structures and two different 17 

algorithms for the imputation of the missing information have been tested and 18 

compared. Results show that the MIA-based PAT system is able to efficiently 19 

detect on-line undesired events occurring during the vacuum freeze-drying 20 

process. 21 

Keywords: multivariate image analysis; process monitoring; infrared image; 22 

batch process.  23 
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1. Introduction 24 

 25 

Vacuum freeze drying (VFD) is a highly attractive process for the water removal in thermal 26 

sensitive products, mainly pharmaceutical ones, since water is removed at low temperature by 27 

sublimation. Monitoring of critical quality attributes of the product, e.g. the residual amount 28 

of ice and the product temperature, is required to guarantee a true quality-by-design 29 

manufacturing. To achieve this goal, the development of suitable Process Analytical 30 

Technologies (PAT), able to monitor/control the key variables of the process without 31 

interfering with the process dynamics, is a mandatory step, as stressed also by the Guidance 32 

for industry PAT by the American Food and Drug Administration [1].  33 

In the past, many approaches to this problem, based on the measurement of different 34 

process variables (e.g. product temperature, sublimation rate, heat flux to the product, among 35 

the others), were proposed and tested [2], in particular at lab-scale. The measurement of the 36 

temperature of the product, possibly in a well-defined position (e.g. the bottom of the vial), 37 

was extensively and successfully applied for process monitoring and control [3]. The main 38 

drawback, up to this moment, of this approach is that the temperature measurement has to be 39 

performed using a thermocouple stuck into the product, and this does not guarantee neither 40 

the sterility requirements nor that the sensor is not interfering with the ongoing process.   41 

In this work we used an infrared camera, instead of a thermocouple, for temperature 42 

measurement. Differently from the system proposed in the literature [4], we placed the 43 

camera inside the chamber, thus being able to monitor the vials in several positions, and not 44 

only on the top shelf of the freeze-dryer. Moreover, by this way it is possible to track vial 45 

temperature along several axial positions, and not only at the top. The spatial position of the 46 

vials inside the drying chamber has been proved to have a dramatic effect on the variability of 47 



3 

 

the product inside the single batch [5]; any monitoring algorithm, in order to be successful, 48 

has to account for this source of variability. In this work this aspect has been deeply 49 

investigated. Obviously, this system is able to monitor directly the temperature of the glass 50 

wall, and not that of the product, but several studies appeared in the literature evidenced that 51 

the temperature of the product is very close to that of the glass wall [6].  52 

Thermal images include a lot of useless (i.e. everything that is outside the vial) 53 

information and, also the one directly related with the process, i.e. the temperature, is highly 54 

noisy, redundant and correlated. The first problem is a matter of gray-scale image 55 

segmentation, whereas the second is a frequent problem when dealing with real industrial 56 

data. Latent variables based multivariate statistical techniques can easily deal with these 57 

kinds of problems. In this framework, Kourti [7] discussed the primary role of multivariate 58 

statistical techniques in the development of PAT for the pharmaceutical industry.  59 

Multivariate Image Analysis (MIA) is the application of multivariate statistics 60 

methods to the extraction of information from images, both spectral [8], that is directly 61 

related to the intensity of each pixel, and textural, i.e. linked to the spatial distribution of 62 

intensity gradient [9]. Prats-Montalbán et al. [10] published a complete review of MIA 63 

techniques and possible applications to problems of image segmentation, monitoring and 64 

defect detection, classification and prediction. Application to hyperspectral images was also 65 

discussed. Two different possible approaches to MIA were discussed: a global image 66 

approach and a pixel level one. The latter treats the spectral information in each pixel as a 67 

sample of the whole image, while, global image MIA is used when a set of features 68 

describing certain characteristics of the image are extracted and used for classification and/or 69 

prediction purposes. In this work, a global image approach was used. 70 

The idea underlying the development of a latent variable multivariate monitoring 71 
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system is that only a few underlying events are driving the process, and all the measurements 72 

we obtain are just a different sight on this underlying driving force. Multivariate Statistical 73 

Process Control (MSPC) allows us to obtain a model of the process by projecting the 74 

information into a low dimensional space defined by latent variables and, in this reduced 75 

space, to build control charts able to detect any deviation from the normal operating 76 

conditions [11]. Both principal component analysis (PCA) [12] and projection to latent 77 

structures (PLS) [13] have been widely studied and applied for this purpose, being also able 78 

to successfully deal with the highly auto-correlated data typical of batch processes [14-16] 79 

such as VFD intrinsically is. Multivariate control charts for batch process monitoring were 80 

proposed by Nomikos and MacGregor [17], while Kourti [18] presented a more general 81 

discussion of MSPC of batch processes. Ramaker et al. [19] discussed the advantage of 82 

conjugating these techniques with process specific information in a so called gray model. Van 83 

Sprang et al. [20] presented a comparative evaluation of five different algorithms to the 84 

problem of on-line batch process MSPC. Rato et al. [21][22] recently presented a systematic 85 

methodology to compare batch process monitoring methods and compared different 86 

approaches in terms of detection strength and speed. 87 

In more recent years many successful applications of MSPC to real industrial 88 

problems were published; a definitely not exhaustive list of them includes industrial polymer 89 

batch process [23,24], a continuous recovery process [25], batch production of PVC [26], 90 

fed-batch fermentation [27], autobody assembly [28] and continuous slurry stripping [29]. A 91 

complete discussion of multivariate image analysis in the process industries was published by 92 

Duchesne, Liu and MacGregor [30], including different examples of image analysis 93 

application to MSPC and real-time process control and optimization [31]. 94 

This paper is thus focused on the design of a new Process Analytical Technology 95 
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(PAT) for on-line process monitoring in a VFD process. The sensor uses an infrared camera 96 

to obtain thermal images and multivariate image analysis (MIA) to extract the information 97 

after automatic detection and segmentation of the region corresponding to the product in 98 

every vial. This information allows detecting on-line undesired events eventually occurring in 99 

the batch.  100 

The paper is organized in six sections: section 2 introduces the experimental work and 101 

some useful nomenclature, section 3 deals with image preprocessing and feature extraction, 102 

section 4 presents the MSPC scheme and the different approaches to two of the major issues 103 

related to batch process MSPC (data unfolding and missing data estimation) tested, section 5 104 

presents the main results, and section 6 the general conclusions of this work. 105 

 106 

 107 

2. Experimental study and nomenclature 108 

 109 

Drying experiments were carried out using a lab scale equipment LyoBeta 25™ freeze-dryer 110 

(Telstar, Spain). In all tests ten vials (ISO 8362-1 10R) were placed at 30 cm from the 111 

camera, and a new image was acquired every five minutes for 50h corresponding to almost 112 

600 image acquisitions. The actual elapsed time from the beginning of the process was used 113 

to report the results of continuous variables “sampled” by the sensor, while the progressive 114 

number of the image acquisition was preferred to refer to the results of the calculation 115 

performed by the algorithm on the single images.   116 

The sensor, together with the infrared camera (FLIR A35), includes a HDTV rgb 117 

(upper or lower case letters) camera. In this work, only the thermal images were used and will 118 

be discussed. The data are stored into a microprocessor that can be accessed via wi-fi and 119 
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monitored in real time through a graphical user interface. A case in plastic material was 120 

designed (IMC Services s.r.l., (upper or lower case letters)  Italy) to resist and protect the 121 

electronics from the low pressure, low temperature and high moisture level typical of the 122 

drying chamber during the freeze-drying process [32].  123 

The normal operating conditions (NOC) set was obtained processing 5 ml of a 124 

solution 10% b.w. of sucrose (Sigma Aldrich, 99.5%) at -20°C and 20 Pa. Five batches were 125 

processed in the same operating conditions, thus obtaining a total of 50 vials. Each vial in the 126 

batches was assigned with a number referring to the position on the shelf as Figure 1A shows, 127 

progressively increasing with the number of the batches. Batch 6 was intended to be another 128 

NOC batch but, due to the vibrations of the equipment, the vial in position number 7 felt 129 

down and was, for this reason, regarded as a fault, while the remaining nine vials were 130 

considered successfully dried.  131 

The detection ability of the system was evaluated in four additional batches. In batch 132 

7 a breakage in the vacuum system have been simulated and, after 5 hours of drying, chamber 133 

pressure was raised to 50 Pa. In batch 8 the shelf temperature was set to -10°C while in batch 134 

10 a solution 5% b.w. of sucrose was used. Batch 9 aimed to prove the ability of the model to 135 

detect faults affecting the single vials and, while shelf temperature and chamber pressure 136 

were set to the NOC values, only four vials (corresponding to vials 81, 88, 89 and 90) were 137 

filled with a 10% solution. For the remaining six vials the configuration was the following: a 138 

piece of glass was inserted into two of them; another one was filled with pure water; one 139 

more with the same 5% b.w. solution used for batch 10, and the remaining two with, 140 

respectively, 2.5 and 7.5 ml of solution. Batches 11 and 12 are NOC batches included into the 141 

test set and used only to assess the monitoring performance of the algorithm. Given the high 142 

amount of time required to obtain a new batch these were assembled randomly by selecting 143 
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vials from the five batches that constitutes the training set (batches 1 to 5). The only 144 

restriction imposed during selection was to preserve the position of the vial on the shelf (e.g. 145 

vial 111, first vial in batch 12 was selected between the vials 1, 11, 21, 31 and 41), as it is one 146 

of the variables studied in this work. Should we stress that this “simulated” NOC test data set 147 

would give overoptimistic results? Table 1 resumes the number of the vials belonging to each 148 

batch, the operating conditions tested and whether it was used to train the model or to test it.  149 

The ratio between the pressure measurements obtained from a conductive Pirani 150 

gauge and a capacitive Baratron manometer was measured on-line in every batch.  This ratio 151 

is greater than one when the ice is sublimating, while approaches the unitary value at end of 152 

the primary drying [33]. For this reason it has been used to determine when the drying was 153 

completed and as a comparison for the features extracted (see section 3) from the thermal 154 

images.  155 

 156 

 157 

3. Image segmentation and features acquisition 158 

 159 

The thermal images are 256x320 pixels. The camera is equipped with a 63°x50° lens which 160 

leads to a slight optical distortion, known as barrel effect. This second order deviation from 161 

the ideal rectilinear projection can be compensated by remapping the pixels according to the 162 

following equation:  163 

 164 

 
2

new old oldr r f r              (1) 165 

 166 

where r is the distance from the center of the image of a generical pixel and f a correction 167 
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factor (negative in this kind of optical aberration) depending on the distance between the 168 

camera and the object [34]. Since in all our tests the same distance was used, this factor is 169 

approximately constant and equal to -1.5. 170 

After optical correction, the Hough transform [35] was used to detect the position of 171 

the vials in the images, as shown in Figure 1B. Being known the diameter of the vials bottom 172 

and the length of the line detected by the Hough transform we could infer the width of a 173 

single pixel and, thus, as we know also the height of the vial, the height of the region to be 174 

segmented, Figure 1C.  175 

The whole portion of the image corresponding to the product into every vial was 176 

segmented and, to study the evolution over time of the temperature distribution, the values of 177 

mean, standard deviation (std), skewness and kurtosis of the temperature in this region were 178 

calculated from the measured values. The results were collected into a three-dimensional data 179 

structure using two approaches. In the first approach, in the following referred as vial-wise or 180 

VW, each vial has been considered as a single observation, thus X1 is an I × J × K data 181 

structure where I is the number of vials (fifty considering 10 vials in each one of the batches 182 

included in the training set), J is the number of variables measured (mean, std, skewness and 183 

kurtosis), and K is the number of time instants (six hundred). In the second approach, referred 184 

as batch-wise or BW, also the position on the shelf was included among the modeled 185 

variables, thus X2 is a B ×J* × K data structure, where B is the number of batches (i.e. five in 186 

the training set), K is again the number of time instants while the variables (J*) are forty, 187 

corresponding to mean, std, skewness and kurtosis for each one of the ten positions that a vial 188 

could occupy on the shelf. 189 

 190 

 191 



9 

 

4. Batch process monitoring 192 

 193 

In both approaches the data structures were unfolded putting all the features extracted for a 194 

single observation beside each other in order of time acquisition. This kind of unfolding 195 

preserves the information on the single observation, beside capturing the cross-correlation 196 

and the auto-correlation along time [16]. The final matrix obtained for the BW approach 197 

X2(B×J*K) has ten times more columns and ten times less rows of X1(I×JK), the unfolded 198 

matrix obtained with the VW approach. After mean centering and scaling the unfolded data 199 

sets X1 and X2, a PCA model with, respectively, A1 and A2 principal components was built 200 

using only the batches of the training set, that is, the 50 successfully dried vials included in 201 

batches 1 to 5. The general structure of a PCA model is the following: 202 

 203 

  X T P' E             (2)     204 

 205 

where T is the I×A1 (or B×A2) score matrix, P is the A1×JK (or A2×J*K) loading matrix and 206 

E is the residual matrix, having the same dimension of the original matrix X. 207 

Only the batches included into the training set were used to build up the PCA model;  208 

batches 6 to 12 were used for validation purposes [36]. Once the latent variable subspace is 209 

known, unusual behaviors can be detected using two multivariate control charts buit on the 210 

following two statistics: Hotelling T2 (T2) and the squared prediction error (SPE), defined by 211 

Equations 3 and 4, respectively. For each observation: 212 

 213 

2
2

1

A
a

a a

t
T



                (3)             214 
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2

1

KJ

c

c

SPE e


              (4) 215 

 216 

where ta is the a-th score, a its corresponding variance and ec is the error obtained after 217 

predicting the measurement of variable c for a certain observation.  218 

In on-line monitoring the SPE is computed only on the information measured at 219 

instant k, and for this reason it is called instant SPE (SPEI): 220 

 221 

 

2

1 1

JK

c

c k J

SPEI e
  

             (5) 222 

 223 

where JK becomes J*K in the batch-wise approach. Nomikos and MacGregor [17] proposed 224 

to use the errors on a moving window of five instant measurements to compute the upper 225 

control limit (UCL) for this statistic. First guess UCLs for these charts were computed both 226 

empirically, that is taking the 99.5 % percentile of the actual values of both statistics obtained 227 

from the training set, and using their theoretical approximations, following the approach of 228 

Nomikos and MacGregor [17]. 229 

The percentage of time instants that a single statistic overtakes the UCL in NOC 230 

batches, is called Overall type I (OTI) risk, and should be close to the imposed significance 231 

level (ISL = 0.5%): 232 

 233 

OTI =100 ×
Nf

I
NOC

× K
%           (6) 234 

 235 

where Nf is the number of time instants that a single statistic overtakes the UCL for the 236 
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overall training set [38]. Notice that the number of vials I should be replaced with B, the 237 

number of batches in the training set, in the BW approach.  238 

Due to the limited number of batches available, a one-batch-out cross-validation 239 

approach was used. It consists in removing in turn each batch (in case of the VW approach, all 240 

the ten vials obtained in the same batch) from the training data set, build a PCA model using 241 

the remaining training batches (vials), measure the actual OTI for the deleted batch (vials), 242 

measure the average OTI after all iterations, modify, if needed, the UCLs by multiplying this 243 

by a coefficient greater or lower than 1, and repeat the procedure, until the desired OTI is 244 

achieved [37]. To evaluate the actual performance of the algorithm, the UCLs have been 245 

manually retuned, i.e. the original ones (both theoretical or empiric) were multiplied by a 246 

positive factor greater or lower than 1. To what extent this is already stated in the highlighted 247 

text in yellow?? 248 

The main issue when dealing with on-line batch multivariate SPC is that at time k 249 

(k<K)  the future part of the trajectory of each variable j (or j*) is missing and has to be 250 

“filled in” [17]. Arteaga and Ferrer showed that among the different scores estimation 251 

methods for future multivariate incomplete observations from an existing PCA model, the 252 

most statistical efficient ones are those that estimate the scores for the new incomplete 253 

observation as the prediction from a regression model: the so-called regression-based method. 254 

Out of these methods, two are recommended: the Trimmed Score Regression (TSR) method 255 

and the Known Data Regression (KDR) [39], [40]. These have been tested and compared in 256 

this work.  257 

Given a reference matrix of observations X and its PCA decomposition X = T·P’ + E, 258 

when a new partially unknown observation z is available at time k, it can be written as zT = [ 259 

z*T z#T], where z* includes the first Jk (or J*k) known values of z and z# contains all the 260 
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values still unknown. This partition induces a partition also into PT = [P*T P#T] and X = [X* 261 

X#], see Figure 2. Ferrer and Arteaga proved that z# can be estimated by the general formula: 262 

  263 

ẑ# = S#* ×L × LT ×S** ×L( )
-1

×LT × z*
              (7) 264 

 265 

where L is key matrix, different for each method of imputation used,,equal to the identity 266 

matrix I (K-k×K-k) for the KDR method, and to the partial loading matrix P* (A×K-k) when 267 

the TSR method is used. Given the full covariance matrix S obtained from the know data set 268 

X, S#* and S** are the partition induced by the separation in z [39]: 269 

 270 

* * * *

*

1 1

1 1 1

T TT

T Tn n n

   
     

     

# ** #

# # # #* ##

X X X X S SX X
S

X X X X S S
        (8)        271 

 272 

The two regression methods were compared in terms of accuracy of the score estimation, 273 

accuracy of the prediction of the future observation and, indeed, the fault detection ability 274 

following the procedure used by Garcia-Muñoz et al. [41]. Three fundamental properties of a 275 

good predicted score matrix were checked: orthogonality, coherence and stability. The score 276 

predicted for each principal component must be orthogonal, thus the covariance matrix 277 

should be diagonal with the terms on the diagonal, in order to be coherent, arranged in a 278 

decreasing order. Stability means that the estimation of the score must be constant in time and 279 

equal to the true value, i.e. the one obtained at the end of the process when all the variables 280 

are known, also at the beginning of the batch when most of the matrix is missing. The future 281 

prediction sum of squares (FPRESS) and the future prediction mean square error (FPMSE), 282 

Equations 10 and 11, introduced by Garcia-Muñoz et al. [41] were used as a measurement of 283 
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the quality of the forecast of the unknow part of the trajectory of variable j, in observation i 284 

made at time instant k: 285 

 286 

FPRESS
k

ij = e
k

ij

l
( )

2

l=1

K-k

å           (9)        287 

FPMSE
k

ij =

1

l
e

k

ij

l
( )

2

l=1

K-k

å

1

l
l=1

K-k

å
                                                (10) 288 

Quizá habría que indicar que FPRESS se  calcula sumando los FPRESSj para cada variable j. 289 

where 
ij

k l
e  is the error made for each observation i at time instant k when forecasting the 290 

future part of the unknown trajectory of variable j, that is, the values corresponding to the 291 

data to be acquired from k+1 to K or, equivalently, for l from 1 to K-k. FPRESS is the 292 

equivalent of a SPE calculated on the predicted part of the observation and represents a 293 

measure of global forecast accuracy. In the FPMSE the error at each instant of time is 294 

weighted by the inverse of the distance to the current time sample giving back a measure of  295 

the local forecast accuracy at specific time instant k.  296 

Finally, after the PCA model was created and the control limits tuned, the monitoring 297 

performances of both T2 and SPEI control charts were compared by projecting the 298 

observations of the test set onto the reference model. At every time step, only the information 299 

known up to that time instant was used, the missing part of the observation was forecasted, 300 

with either the KDR or the TSR algorithm, thus simulating an on-line acquisition system. The 301 

occurrence of false positives and false negatives were investigated, together with the amount 302 

of time needed to perform the calculation on the whole data set of images.  303 

 304 
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5. Results 305 

 306 

Figure 3 shows the Pirani-Baratron pressure ratio trajectory (Figure 3a) compared with the 10 307 

trajectories, one for each vial, described by the four variables: mean, std, skewness and 308 

kurtosis of the temperature of the pixels corresponding to the product into the vials (Figure 309 

3b, 3c, 3d and 3e, respectively) measured during the drying of one of the reference batches. 310 

Average temperature shows a change of slope around 9 hours after the onset of the primary 311 

drying stage, and an asymptotic behavior up to the thermal equilibrium. The standard 312 

deviation (std), after a sudden decrease, grows up until a maximum reached at almost 9 313 

hours; then, it slowly decreases again until reaching an almost constant value at 36 hours. 314 

Both skewness and kurtosis show a maximum, followed by a local minimum around 9 hours. 315 

An almost constant value is kept from 36 hours to the end. The local maxima (or minima, as 316 

well as the change of slope in the mean temperature) seems to correspond to the first slope 317 

change of the Pirani/Baratron pressure ratio. The constant values at the end indicates that the 318 

thermal equilibrium has been reached, i.e. there is no more sublimation, thus the primary 319 

drying is over. Significant differences in the thermal trajectories obtained in different tests 320 

may reveal an abnormal heat transfer, that is an anomalous drying kinetic and a lower product 321 

quality. The features extracted from the thermal images, although based on simple first order 322 

statistics, contain some relevant information about the process required to perform a process 323 

monitoring. Multivariate statistical techniques are, nevertheless, mandatory to deal with such 324 

amount of noisy and redundant data. 325 

In the VW approach , the reference model was created extracting 10 PC corresponding 326 

to 93.6% of variance explained. In the BW approach, two or more principal components, give 327 

back basically the same results. Thus, the reference model was built extracting two principal 328 
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components. Regarding the UCL for T2, there is a remarkable difference between the 329 

theoretical and the empirical values, being the former always lower than the latter. The UCL 330 

for SPEI computed with the theoretical distribution and the one obtained taking the percentile 331 

of 99.5% are always very similar. After tuning the control limits, the obtained OTIs for the 332 

VW approach with TSR and KDR were, respectively, 0.47% and 0.48% for SPEI, and 0.48% 333 

and 0% for T2; in the case of a BW data approach we obtained 0.47% and 0.47% for SPEI, 334 

and 0.43% and 0% for T2. It was impossible to achieve a higher OTI in the case of T2 335 

simulated with KDR because the scores are straight and as the limits were relaxed the error 336 

soon exceeded the ISL. 337 

 338 

5.1 Missing information algorithms comparison 339 

Figure 4 shows the evolution along time of the prediction of the score of the first principal 340 

component for both TSR and KDR algorithms and both data unfolding approaches for the 341 

training data set: 50 vials for the VW approach corresponding to 5 batches for the BW 342 

approach. In both cases the scores predicted with the KDR algorithm are more stable during 343 

the process and, except for the first few images of the VW approach, they are perfectly 344 

constant and equal to the true values (i.e. the values obtained at the end of the batch). The 345 

score predicted with the TSR algorithm asymptotically moves toward the true values, but 346 

without completely reaching them. In both cases the coherence of the score covariance matrix 347 

was respected, that is the variance explained by the scores of the first component is greater 348 

than that of the second component and so on, but the full orthogonality of the scores was 349 

obtained only applying the KDR. A diagonal matrix was obtained from the first instant of 350 

time in case of a BW approach and after the first 15 images in the VW approach. 351 

After the scores were computed, an estimation of the original data matrix X could be 352 
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obtained by multiplying the score matrix and the transpose loading matrix; subtraction of this 353 

estimation from the original data matrix gives back the forecast error of the future (unknown) 354 

part of the trajectory of all the variables in observation i made at each time instant k. From the 355 

final K-k columns, the values of FPRESS and FPMSE, shown in Figure 5 and 6, were 356 

obtained. As expected, being a global estimation of the prediction error, FPRESS always 357 

decreases with time, while FPMSE, that accounts for the local forecast accuracy, could 358 

increase, decrease or, as in this case, keep an almost constant (except for generalized 359 

increment towards the end) value. To ease the comparison among the different algorithms, a 360 

darker line with symbols, representing the mean value of the trajectories, has been reported. 361 

In Figure 5, corresponding to VW approach, the mean FPRESS shows a maximum of 26 at k 362 

= 3 for TSR, while the maximum for KDR is 135 and is located at the fifteenth data 363 

acquisition. This five-time difference is kept through all the process and the mean value for 364 

TSR also goes faster to zero. A slighter difference can be noticed also in the FPMSE, with the 365 

TSR always behaving moderately better. Same conclusions can be stated from the analysis of 366 

Figure 6, corresponding to BW approach. In this case FPRESS is one order of magnitude 367 

greater than in the VW approach while FPMSE is basically constant. 368 

KDR seems to give back a more stationary prediction of the scores, while the TSR 369 

algorithm better forecasts the original value of the observations. The larger the number of 370 

columns included in the unfolded data set, the higher the prediction errors are. 371 

 372 

5.2 Classification performance - VW approach  373 

Once a PCA model of the process has been fitted using the observations included in the NOC 374 

batches and the UCL for both SPEI and T2 have been tuned in order to have an OTI closed to 375 

the imposed ISL of 0.5%, we can evaluate the ability of this model to discriminate a fault 376 
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from a successful drying. The classification performance of this monitoring system has been 377 

evaluated by projecting the whole test set on the obtained model. At each time step, only the 378 

measurements available up to that instant were used while missing part of the observations 379 

was forecasted with the algorithms just discussed, thus simulating a real on-line monitoring 380 

system. Tuned empirical limits performed slightly better than the theoretical ones and have 381 

been used. This could be due to the fact that taking the percentile of the actual distribution of 382 

the statistics helps to better follow the instantaneous variation of the distribution itself and 383 

better describe the little misbehavior that could occur.  384 

The control chart for SPEI is almost the same in both cases while the T2 control charts are 385 

quite different especially at the beginning. Using the trimmed score regression algorithm, 386 

while tuning UCLs, the control charts for SPEI detected 8 false positives vials in the training 387 

set (8, 9, 15, 16, 19, 31, 40 and 50). Comparable results have been obtained with the known 388 

data regression method; SPEI detected 7 false positives (vials 1, 6, 9, 15, 41, 50, 54) in the 389 

training data set. Looking at the vials that appeared as false positives in SPEI (they are 1, 6, 8, 390 

9, 15, 16, 40, 41, 50 and 54) we can notice a certain periodicity in the results. Position 1 and 391 

10 in every batch corresponds to the external vials, directly radiated by the chamber walls. In 392 

the first two batches a thermocouple was located inside the vials in position 5 and 6, see 393 

Figure 1. This slight difference into the data structure of vials 6, 15, 16 might be due to the 394 

influence of the thermocouple on the drying kinetics. 395 

These observations mildly overtake the control limits on a limited number of time instants. 396 

If we accept these spurious errors as part of the unavoidable statistical error rate, that is, we 397 

assume that the phenomena responsible for these instantaneous faults cannot jeopardize the 398 

quality of the resulting product, the fault detection performance could be further optimized. 399 

This new relaxation of the control limits was achieved by considering faults only the vials 400 
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whose SPEI  crossed the control limits in more than 5% of the time instants. In this way all 401 

the false positives in SPEI where properly classified as successful tests. 402 

The validation of the obtained model was performed by projecting all the vials of the test 403 

set onto the obtained model step by step simulating a real-time acquisition. Figure 8 404 

compares the control charts obtained with the different algorithms for three vials:  405 

- number 105, a NOC vial, always below the UCL;  406 

- number 51, a vial expected to be in control but reported as a fault in the SPEI control 407 

charts;  408 

- number 75, dried at a higher shelf temperature and lies over the control limits in all cases 409 

almost all the time.  410 

Vial 57, as well as all the vials of the anomalous batches 7, 8 and 10 were detected as 411 

faults. In batch 9 six vials were tampered and all of them have been correctly 412 

discriminated. The T2 control chart reported nine false negatives and two false positives 413 

(vials 52 and 56). Only one of the four vials of batch 9 dried with the original 10% sucrose 414 

solution (vial 81) has been correctly found to be a successful drying test. Vials 88 and 89 415 

and 90 have been highlighted as faults by the T2 control chart. This results are from TSR? 416 

Using the KDR algorithm four false positives where highlighted into batch 9 together 417 

with vials number 51, 52, 56, 58, 60. The T2 control charts detected vials 51 to 60 (the whole 418 

batch number 6) and 81, 88 and 90  as false positives but no false negatives.  419 

 420 

 The anomalous behavior of vials 51, 60, 81 and 90 appears to prove what has been 421 

stated about the effect of the radiation from the surrounding. The appearance of vials 56 422 

could be due to either the effect of the thermocouple used also in this batch, or to a greater 423 

amount of radiation from the surrounding due to the absence of vial 57 after it felt down. A 424 
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possible explanation of the anomalous behavior of some vials in position 8 and 9 is the 425 

presence of the cold led, required for the illumination of the rgb camera field of view, right in 426 

front of them.  427 

In general, we could state that the trimmed score regression algorithm gives back a 428 

better SPEI control chart, probably because of the lower error in the estimation of the 429 

variables, while the known data regression algorithm gave back better T2 control charts, 430 

which could be a direct consequence of the better score estimate we discussed. The KDR 431 

requires 13 times the computational time required for a simulation using the TSR. 432 

 433 

5.3 Classification performance - BW approach  434 

Since we segmented and extracted features from each one of the different vials in the images, 435 

the most natural way to treat the data was the vial-wise approach. The idea to organize the 436 

data including the potential effect of the vial position on the shelf was conceived when we 437 

noticed the periodicity in the results just discussed in the previous subsection. There is also a 438 

matter of variables and matrix dimension, i.e. in the BW approach we have only 5 batches, 439 

but for each image we obtain forty new columns and the resulting matrix is ten times wider 440 

than the VW one. The computational time required was 28 times greater when TSR is used 441 

and lasted almost 10 days (instead of a few minutes) with the KDR. In this last case (use of 442 

the KDR algorithm for a matrix organized taking the single batch as an observation) the time 443 

required for the analysis of a single image is greater than the 5 minutes required for each data 444 

acquisition, thus jeopardizing the possibility of a real time application of the algorithm. After 445 

matching the desired OTI, both TSR and KDR presented three false positives (batches 3, 4 446 

and 5) in the SPEI control chart; the three batches of the training set that had no 447 

thermocouples inside the central vials. Again, a 5% threshold was set to correctly 448 
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discriminate the false positives in the SPEI, although just raising the control limits would 449 

have fit the purpose. 450 

As for the VW approach, we tested the behavior of the monitoring scheme by 451 

projecting all the batches of the test set on the plane defined by the two principal components. 452 

Also in this case tuned empirical limits performed better and were preferred.  453 

Figure 8 shows the control charts of both SPEI and T2 for three of the seven batches 454 

that constitute the test set. Batch 12 was always perfectly classified by both algorithms, batch 455 

8 was always clearly signaled as an outlier, and batch 10 was detected only by the T2 control 456 

charts.  457 

Neither false positive nor false negative were detected with both the TSR and the KDR 458 

by the SPEI control charts. No false positive where detected in the T2 control charts when 459 

using either the TSR or the KDR algorithm. In both cases only batches 6 and 8 were detected 460 

as faults. Even after the limits in the T2 control chart were retuned, it was impossible to set 461 

apart the faulted batch 7, 9 and 10 from the NOC data set.  462 

These three batches have a common characteristic: they all simulated faults mainly 463 

concerning the mass transfer. In the VFD process mass and heat transfer are intimately 464 

coupled that is, any deviation in the mass transfer affects also the evolution of the 465 

temperature profiles in the products, but it will always be an indirect and weaker effect. 466 

Being a weaker effect, also the breakage into the correlation structure of the data will be less 467 

pronounced. Moreover, the glass of the vials is almost opaque to infrared radiation 468 

(emissivity 0.9) thus, the temperature we measure is that of the vial wall. The two values 469 

were proved to be quite similar, but it might partially mask some slight variation in the 470 

thermal history of the product. The effects on the heat transfer are strong enough to be read 471 

by the SPEI chart, but not to raise an alarm into the T2 chart. On the other side, in batch 6 a 472 



21 

 

vial felt down, and the camera measured the temperature of the front door of the dryer, which 473 

is warmer than a normal vial and almost constant during the whole process. This single vial 474 

misbehavior was strong enough to completely compromise the data structure. In batch 8 the 475 

whole shelf was set at a higher temperature. Thus, also the glass of the vial, which is always 476 

in contact with the shelf, is directly heated and both the average temperature as well as the 477 

whole temperature distribution change. This direct effect is strong enough to be detected also 478 

by the less responsive of the control charts. 479 

This lower detection ability of the T2 control charts in batch processes monitoring has 480 

already been reported in the literature and is basically due to the strong auto-correlation in the 481 

data [38].  482 

As the position of the vial on the batch is, in this approach, part of the model, any 483 

harmful effect of the position should be highlighted into the contribution plot. In Figure 9 we 484 

reported the contribution plots of batch 6 (a), 8 (b) and 11 (c), respectively, for SPEI when 485 

TSR is used, after 6.7 hours of drying. Batch 11 is the reference, a good batch correctly 486 

discriminated (note the small value of the contributions). In case of batch 6 the bars 487 

corresponding to the variables in position 7 (variables 25 to 28) are three orders of magnitude 488 

greater than the others as well as those of batch 11 (I can´t see it!), denoting that something in 489 

that vial is going wrong. In batch 8 all the forty variables are higher than expected, 490 

betokening an unconventional processing.  491 

 492 

 493 

6. Conclusions 494 

 495 

In this work a PAT for MIA based real time monitoring of vacuum freeze-drying has been 496 
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developed and tested. The sensor uses an infrared camera to get thermal images of the 497 

ongoing process. These images are segmented, after optical aberration correction, and global 498 

features of these regions are extracted and used to detected unusual behavior in the new 499 

observations.  500 

Two different approaches of data unfolding and missing data estimation have been 501 

tested and compared, with the aim to obtain the best combination for addressing the problem 502 

at hand. The TSR algorithm appears to better forecast the missing values and this gives back a 503 

slightly more responsive SPEI control chart. On the other side, the KDR algorithm better 504 

estimates the scores of the future observation that ensures better, although non-optimal, 505 

performances of the T2 control chart. In any case the nature of batch data makes the T2 506 

statistics not reliable. The main drawback of the known data regression algorithm is the time 507 

required for the data analysis, basically due to the need to invert the partial covariance matrix 508 

of the training data set (S**), whose dimensions increase in time and is normally very ill-509 

conditioned. For matrix with a great number of columns, the long time required jeopardizes 510 

the possibility to apply this algorithm on-line.  511 

Both modeling approaches guarantee a fine fault detection. In a BW approach, 512 

detection of a fault related to a single vial is deputed to the analysis of the contribution plots, 513 

and thus less immediate. Using the single vials as an observation, the algorithm is more prone 514 

to type II (false negative) errors since the effects related to the spatial position of the vial on 515 

the shelf are not included in the model and could mask a deviation of the same amplitude in 516 

the control charts; although we did not face this kind of problem. Given the lower number of 517 

columns, the computational time is dramatically lower in this second case. 518 

This PAT could be used to assess whether the variation of freeze-drying process is 519 

only due to common causes, that is the process is in statistical control, or some special cause 520 



23 

 

might affect the product quality. Since this information is available on-line it might strongly 521 

reduce the failure rate of the process, the waste production, the laboratory tests to be 522 

performed at the end of the batch, and the time required from the end of the process to the 523 

release of the batch. Anyway, before considering any industrial application, the algorithm 524 

developed should be, indeed, validated on larger industrial data sets. 525 

The performance of this algorithm could be further improved including in the data set 526 

other variables available and currently measured during the process, especially those directly 527 

related with the mass transfer inside the chamber (e.g. chamber pressure, vapor flow, etc.). 528 

Future works will aim to prove the possibility to apply other multivariate techniques and the 529 

infrared imaging technology for process optimization and control. 530 

  531 
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Figure 4. Comparison of the score of the first principal component obtained by TSR 670 

(graphs A and C) and KDR (graphs B and D) method on both vial-wise 671 

(graphs A and B) and batch-wise (graphs C and D) unfolding approach.  672 

 673 

Figure 5. Comparison of FPRESS (graphs A and B) and FPMSE (graphs C and D) 674 

obtained with KDR (graphs B and D) and TSR (graphs A and C) methods 675 

for the vial-wise approach. Gray lines: value for each one of the single 676 
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Figure 6. Comparison of FPRESS (graphs A and B) and FPMSE (graphs C and D) 679 
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obtained with KDR (graphs B and D) and TSR (graphs A and C) methods 680 

for the batch-wise approach. Gray lines: value for each one of the single 681 
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Figure 7. Control charts for vial 105, batch 11 (dark gray line), 51, batch 6 (signaling 684 

only in SPEI, light gray line), and 75, batch 8 (signaling in both SPEI and 685 

T2, light gray). Thick black line: tuned empirical UCLs. 686 
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Figure 8. Control charts for 3 batches of the test set when using the BW approach. 688 

Gray lines: batch 12 (NOC); dark gray lines: batch 8 (test set, clearly 689 

highlighted as an outlier in all cases); light gray lines: batch 10 (test set, 690 
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Figure 9. Contribution plot obtained for batch 6 (A), 8 (B), and 11 (C) simulated in 694 

the batch-wise configuration using the TSR algorithm. 695 


