Document downloaded from:

http://hdl.handle.net/10251/121007
This paper must be cited as:

Hervas-Marin, D.; Prats-Montalban, JM.; Lahoz Rodriguez, AG.; Ferrer, A. (2018). Sparse
N-way partial least squares with R package sNPLS. Chemometrics and Intelligent
Laboratory Systems. 179:54-63. https://doi.org/10.1016/j.chemolab.2018.06.005

The final publication is available at

http://doi.org/10.1016/j.chemolab.2018.06.005

Copyright E|sevier

Additional Information



Accepted Manuscript -

" CHEMOMETRICS
i " AND INTELLIGENT
N LABORATORY

Sparse N-way partial least squares with R package sNPLS

D. Hervas, J.M. Prats-Montalban, A. Lahoz, A. Ferrer

PII: S0169-7439(18)30238-7
DOI: 10.1016/j.chemolab.2018.06.005
Reference: CHEMOM 3641

To appearin:  Chemometrics and Intelligent Laboratory Systems

Received Date: 18 April 2018
Revised Date: 11 June 2018
Accepted Date: 16 June 2018

Please cite this article as: D. Hervas, J.M. Prats-Montalban, A. Lahoz, A. Ferrer, Sparse N-way partial
least squares with R package sNPLS, Chemometrics and Intelligent Laboratory Systems (2018), doi:
10.1016/j.chemolab.2018.06.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.chemolab.2018.06.005

Sparse N-way Partial Least Squares with R Packag®&®LS

Hervas, D* Prats-Montalban, J.Mi, Lahoz AS" and Ferrer, A.

a) Biostatistics Unit, Health Research InstitutefEe, Valencia, Spain
b) Multivariate Statistical Engineering Group, Ueigitat Politecnica de Valencia,
Valencia, Spain
c) Biomarkers and Precision Medicine Unit, HealtssRarch Institute La Fe, Valencia,

Spain

* Corresponding author: José M. Prats-Montalbampdd@mento de Estadistica e 10
Aplicadas y Calidad. Universidad Politécnica deeviaia. Cno. De Vera s/n, Edificio
7A, 46022, Valencia, Spain. TIf: +34.96.387.70.Q7. 4949, Fax: +34.96.387.74.99.

E-mail: jopramon@eio.upv.es

* Corresponding author: Agustin Lahoz. Biomarkersl &recision Medicine Unit,
Analytical Unit (Metabolomics). Health Researchtinge La Fe, Torre A-6-19. Avda.
Fernando Abril Martorell, 106. 46026, Valencia, Bparllf +34.96.124.66.52, Fax
+34.96.124.66.20. E-mail: agustin.lahoz@uv.es

Abstract

We introduce th&k packagesNPLS that performdN-way partial least squareSl-PLS)
regression and Sparse (L1-penaliz€dPLS regression in three-way array$-PLS
regression is superior to other methods for thrag-ghata based in unfolding, thanks to
a better stabilization of the decomposition. Thisvimles better interpretability and
improves predictions. The sparse version also addgble selection through L1
penalization. The sparse versionNsPLS is able to provide lower prediction errors and
to further improve interpretability and usability the N-PLS results. After a short
introduction to both methods, the different funogsoof the package are presented by
displaying their use in simulated and a real datase
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1. INTRODUCTION

N-way analysis refers to the analysis of data indexed arranged in M-dimensional
arrayX (I x I x K x ...), instead of the regular two modes, whichrespond to a two-
dimensional matriXX (I x J). Several methods have been developed for deualitig
three-way data, such as the Tucker3 (T3) model 18, Candecomp/Parafac (CP)
model [2] and théN-PLS model [3]. Of these, on)-PLS produces score vectors that
maximize covariance with any-way response array, so it is the only method that

can be considered for prediction purposes.

A lot of development efforts have been put in @ ears on improving and extending
the properties of L1-penalized regression model$J4These models perform variable
selection simultaneously to the fit, thus improvihg interpretability of the results and
also greatly reducing the variables involved inf@@ning new predictions from the

model.

The aim of this work is to show the different fuoos of theR packagesNPLS for
performing analysis of three-way data. In Sectipnw2 provide a methodological
background for theN-PLS and sNPLS methods. Then, Section 3 presestsntin
functions sNPLS() and cv.SNPLS() and show how they work in a real dataset in
Sections 4. We also present all the other suppl@anefunctions of the package for
plotting results and performing repeated crossdasiion. Finally, we conclude with
some remarks about the current status of the packad its future, as well as an
external validation of the toolbox are made on i®est5 and 6, respectively.

2. METHODOLOGICAL BACKGROUND

2.1.N-PLS
N-PLS studies relationships between some three-eai{vay) X data structure and
anyY data structure. It is the natural extension of RhB-way structures, which tries

to maximize the covariance betwe¢randY data arrays.



ConsideringX a three-way array of dimensionsx(J x K) andX (I x JK) its unfolded
version,N-PLS tries to find latent spac&¥’ and W that maximize the covariance
betweenX andY, so it can be expressed as:

X = TWK|QWHT +R (1)

Afterwards decomposin¥ from X using the improved\-PLS version expression [6],

in order to obtain residuals with better statidtpr@aperties:

X = TGuWX® WHT + R’ (2)

In the same wayY can be decomposed by unfoldidl x L x M) into Y (I x LM) as:

Y = U(Q"I®IQ")T +R” 3)

In this caseW* andW refer to the weights of the third mode and ofsheond mode,
respectively; wherea$ matrix gathers the scores of the samples at eastpanent
extracted, in the*imode.|®| is the Khatri-Rao product ar® the Kronecker product,
which forbid or allow (respectively) to take intetimns between the different modes
components into accourfgu is the core array (unfolded) of a Tucker3 decontjors
when usingT, W* andW"” as loadings, in order to obtain a better (or ast@ot worse)
approximation of th& array [7]. Finally,R’ incorporates the residuals. Analogoudly,
refers to theY scores, andQ™ and Q" to the loadings of the array, andR” the
corresponding residuals.

Finally, from the score$ andU, as well from theV weights, aBp_s regression matrix

can be obtained [8] so

Y == XBPLS + R”’ (4)

beingR™ the final residuals.

2.2. Lasso



In linear models, where it first was developed fad penalization consists in
minimizing the usual sum of squared errors, withoand on the sum of the absolute
values of the coefficients [9]. It shrinks somefticents and sets others to 0, and hence
tries to retain the good features of both subskicten (interpretation) and ridge
regression (stability and precision in estimatiofi$le original LASSO for least squares

is as follows:

P

N
plasse = arg;nin Z(}’i = Bo — zxijﬁj)z
=1

j=1

()

Subject to the restriction:
p
NEEE
j=1

Increasing the penalization by reducisdorces the parameters to zero, producing a
simpler model by deselecting some features. Thesymaing data are standardized,

Lasso automatically selects the most relevant featand discards the others.
To introduce the L1 penalization in thePLS algorithm we follow the approach of Lé

Cao et al. [10] and make use of the soft-threshgldiperator, which can be derived as

a solution of the Lasso lagrangian form:

Bia%%0 = sgn(BE)(IBFS| — Y (6)
We introduce this operator at th@ andw’ determination right after the SVD to
achieve sparse versionswf andw”’. A more detailed description of the algorithm can
be found in [11].

3. MAIN FUNCTIONS IN THE R PACKAGE sNPLS

The packagaNPLS provides functions for fittingN-PLS and sNPLS models, tuning the

models using repeated cross-validation and plotting results. It also provides



functions for extracting coefficients and perforgnipredictions from new data. Below,

we discuss the different functions providing codd different examples of use.

3.1sNPLS function

FunctionsNPLS is used to fitN-PLS and sNPLS models to three-way data, depending
on the input settings of the algorithm. The follogZiR code shows an example of a

model fit to a simulated three-way dataset.

R> library("sNPLS")

R> X _npls <- array(rpois(7500, 10), dim=c(50, 50, 3))

R> Y_npls <- matrix(2 + 0.4*X_npls[,5,1] + ©0.7*X_npls[,10,1] -

+ 0.9*X_npls[,15,1] + 0.6*X_npls[,20,1] - ©0.5*X npls[,25,1] +
+ rnorm(50), ncol=1)

R> fit <- sNPLS(X_npls, Y npls, ncomp=3, keepl = rep(2,3),

+ keepK = rep(1,3))

In this caseX is a three way array of dimension (50, 50, 3) fednby a Poisson

distribution of lamda=10. On the other hang,is a vector formed by a linear
combination fromX. Finally, sNPLS fits a SNPLS model with 3 components, with 2
variables per component retained in the second naodel variable per component

retained in the third mode.

Note that the functiosNPLS needs aN-way array forX and anyN-way array forY as
inputs. If data is in another format the functioill whrow an error. In the following, a
generic call with an explanation of each of theuangnts of the function is presented.
Arguments with a defined value in the generic oall take that value as default if no

other value is given when calling the function.

SNPLS(XN, Y, ncomp = 2, conver = le-16, max.iteration = 10000,
+ keepd = rep(ncol(XN),ncomp), keepK = rep(rev(dim(XN))[1], ncomp),
+ scale.X = TRUE, center.X = TRUE, scale.Y = TRUE, center.Y = TRUE,

+ silent = F)



XN N-dimensional array containing the predictors

Y Array containing the response(s)
Ncomp Number of components to use in the praacti
conver Convergence criterion

max.iteration Maximum allowed number of iteratidosachieve convergence
keepJ Number of variables to keep at each compoleaik variables are kept,
N-PLS regression is performed, if any variable moged then sNPLS is

performed.

keepK Number of elements of the third mode tqkateeach component.

scale.X Should unit variance scaling on X be penfedt?

center.X Should mean centering on X be performed?

scale.Y Should unit variance scaling on Y be pentd?

center.Y Should mean centering on Y be performed?

silent Allows to choose if information regardingmber of iterations should be
displayed

The functionsNPLS produces an SINPLS object with definectoef, predict and
plot methods that will be discussed later. The objecisists of a list containing the
following components: (1-6) th€, W’, WX, B (regression coefficients betwe¥nand
Y), Y and Q matrices, (7-8)P and Gu (the unfoldedG core array of the Tucker
decomposition), (9) The number of components, FEig¢d values, (11) Squared error,

(12) Scale and centering information performeXoandY .
3.2cv_snpls function

Selecting parameter values for teBPLS function requires choosing values for the
number of components, the number of variables lecsand the number of elements of
the third mode to select. An appropriate way oéstithg these parameters is performing
a grid search with cross-validation. The functiensnpls performs cross-validation on
a grid of differentncomp, keepJ and keepK values estimating RMSE (Root Mean
Square Error) for each combination of values arectiag the best set producing the
lowest RMSE.

R> X _npls <- array(rpois(7500, 10), dim=c(50, 50, 3))



R> Y_npls <- matrix(2 + 0.4*X_npls[,5,1] + ©0.7*X_npls[,10,1] -

+ 0.9*X_npls[,15,1] + 0.6*X_npls[,20,1] - ©0.5*X npls[,25,1] +
+ rnorm(50), ncol=1)

R> cvl <- cv_snpls(X_npls, Y npls, ncomp=1:2, keep]l = 1:10,

+ keepK = 1:3, parallel = FALSE)

The generic call focv_snpls is the following:

R> cv_snpls(X_npls, Y npls, ncomp = 1:3, keepl = 1:ncol(X npls),
+  keepK = 1:dim(X_npls)[3], nfold = 10, parallel = FALSE)

It contains the same parameterss88LS but now admits vectors of values for each
parameter imcomp, keepJ andkeepK. The number of subsets for the cross-validation
is determined by the parameteffold. This nfold parameter allows the specification
of the number of folds of the cross-validation gawere, with 10-fold being the default
Since grid search can be computationally intensiveakes use of the parallel package
for R. Being able to perform computations in palatireatly reduces running times.
Parallel mode is activated by settipgrallel argument toTRUE and selecting a
suitable number of free cores. In the casewfsnpls, the parallelization applies to
the grid search, not to the different folds of #ress-validation. Figure 1 shows the
improvements in computing times by using paral&lan with different number of
cores. To further reduce computation times and av@memory use, sparse matrices
from the R package Matrix [12] are used wheneveasixbe in the matrix multiplication
steps of the function. Sparse matrices achieveetlyemls by using an alternative
representation to that of dense matrices: instdademg stored as two-dimensional
arrays, only their non-zero values are stored,lwith an index linking these values
with their location in the matrix. The functioev_snpls returns acvsnpls object
which is a list with a component containing thetlmsnbination parameters and other
components containing information about the gridl ats corresponding RMSE.
cv_snpls objects can be plotted for better interpretatibrthe results. The resulting
plot is a grid of scatterplots with the differertnebinations ofkeepl, keepK and

ncomp and their resulting cross-validation errors (Fegaj.

[INSERT FIG. 1 ABOUT HERE]



A known issue of cross-validation is the variantéts results [13] which, on one hand
entails that different runs of the cross-validatgmocedure can yield different results
regarding the estimated best set of parametergabilety) and, on another hand, that
the estimation of the best set of parameters i:mernm overfitting (bias-variance
tradeoff). A reasonable solution is performing @pe cross-validation and selecting
the most frequently selected set of parametersgadomound of different runs. The
function repeat_cv performs repeated cross-validation by calling fiu@ction
cv_snpls repeated times and storing each result data . frame object. The syntax
is the same as itv_snpls with an extra argumerttimes for specifying the number of
repetitions to perform. In the case oépeat_cv the parallelization applies to the
replicates instead of applying to the grid seaiide following code explains how to
perform repeated cross-validation witbpeat_cv (10 times in this case) varying from
1 to 2 components, and from 1 to 10 variables ensticond mode, and from 1 to 3 in
the third mode.

R> repcv <- repeat_cv(X_npls, Y _npls, ncomp=1:2, keepl = 1:10,
+ keepK = 1:3, parallel = FALSE, times=10)

[INSERT FIG. 2 ABOUT HERE]

The result of theeepeat_cv call is adata.frame storing the results of each cross-

validation repetition (Table 1).

[INSERT TABLE 1 ABOUT HERE]

This output can be presented as a cross-tabultdinle (Table 2) with the absolute
frequencies of each combination of the differemapeeters. In our example, the table
shows that the combinatiorcomp=2, keepJ=9 andkeepK=1 is the most recurrent (3

out of 10 repetitions).

[INSERT TABLE 2 ABOUT HERE]



Results of therepeat_cv function can also be plotted to obtain a kernelsdgrplot,
which can be one-, two- or three-dimensional dependf the number of constant
parameters obtained in the repeated cross-validptioacedure. This density plot depicts
the most frequently selected parameters (Figurdn3)his example, according to the
plot, the most likely combination after all repigtts of the cross-validation was
between 9 and 10 in the casekefep] and keepK=1. Since the optimal number of
components did not vary along all the repetitidhss parameter is not represented in
the plot. Instead, the messagecomp is(are) constant with a value of 2'

is returned by the function. The density plot ledolsa similar interpretation of the
results as the cross-tabulation table, but the #mmmgp can result in more sensible
estimates in the case of multiple and/or wide spreades. It also provides a visual
measure of the uncertainty in the selection ob& combination of parameters.

[INSERT FIG. 3 ABOUT HERE]

4. REAL DATASET ANALYSIS

To exhibit all package functionality, next we prdgia complete analysis of theead
dataset [14] included in theNPLS package. This dataset consists on data of five
different breads that were baked in duplicate gvan total of ten samples. Eight
different judges assessed the breads with respedéeven different sensorial attributes.
The data can be regarded as a three-way array {10xx8). The data are quite noisy as
opposed to, e.g., spectral data. The salt confezaah bread was also measured, and it

is considered as the response varigble

R> data(bread)

R> Xbread <- bread$Xxbread

R> Ybread <- bread$Ybread

R> cv_bread <- repeat_cv(Xbread, Ybread, ncomp=1:3, keepl = 1:11,
+ keepK = 1:8, parallel = TRUE, times=50, nfold=3)



In this case, the number of components tested frarg 1 to 3, whereas all possible
number of variables kept are considered both insteeond and in the third mode.
Repeated cross-validation is performed on the waslect the optimal parameters. 50
repetitions should be enough to get stable estsnaigt using such a large number of
repetitions can increase computing times dramégicdlherefore, using the option
parallel=TRUE when performing repeated cross-validation is revemded. Results
of this procedure yield a cross-tabulation tabléhwhe appearance frequencies for each
combination of parameters. One can also adjustntiraber of folds of the cross-
validation procedure with thefold parameter, with 10-fold being the default. Table 3

shows the frequency table derived from the datadrabtained in this case.

[INSERT TABLE 3 ABOUT HERE]

This table shows that there are two possible coatigins of parameters that are almost
equally selected by cross-validation. On@d®mp=1, keepJ=1 andkeepk=4 and the

other is ncomp=2, keepJ=3 and keepK=8, both with 4 appearances out of 50
repetitions. Also, most of the other combinatiore &lose to one of these two
mentioned ‘'hotspots’. A plot of thev_bread object (Figure 4) reveals a similar

information with a representation of a sliced thagmensional kernel density estimate.

[INSERT FIG. 4 ABOUT HERE]

Next step would be fitting the SNPLS model using4NPLS function with the selected
set of parameters. As discussed before, our regaita to two possible combinations
and, based on the density plot, the option withmp=1, keepJ=1 andkeepK=4 seems
more likely. Nevertheless, since we are using tita ébr demonstration of the different
functions of the package, we will use the comboratvith ncomp=2 to get working
examples of th@lot function (which needs, at least, two dimensiortsjs Important

to take into account thixkeepJ andkeepK have to be specified for each component, so
they must be a vector of length equal to the nundb@omponents. Note that, in this
case, we have chosen the same number of attribntbgudges for each component,

although this is not necessarily the case.

R> fit <- sNPLS(Xbread, Ybread, ncomp = 2, keepl = rep(3, 2),

10



+ keepK = rep(8, 2), silent = FALSE)

The summary of the fit (Table 4) shows the numbiecamponents, the estimated
squared error and a matrix with rows correspondingttributes (second mode) and
columns corresponding to judges (third mode). is thatrix there are five rows with
non-zero coefficients which correspond to the 8th,7th 8th and 9th attributes from all

the judges (no selection is performed on the timaodie).
[INSERT TABLE 4 ABOUT HERE]

To better understand and interpret the resultsplbiefunction can be used to display
different visualizations of the results. Valuestbé T (Figure 5),U (Figure 6),W’
(Figures 7 and 9), and/* (Figures 8 and 10) matrices can be plotted by gingnthe
type parameter of the function®&and 2 components are plotted by default, but they

can be changed using themps parameter.

R> plot(fit, type="T", cex.axis=1.2, cex.lab=1.2, cex=1.2, las=1,
+  bty="L")
R> plot(fit, type="U", cex.axis=1.2, cex.lab=1.2, cex=1.2, las=1,
+  bty="L")

[INSERT FIG. 5 ABOUT HERE]

Figure 5 shows how the 10 samples spread ovemhéinst components. It can be seen
how the samples evolve every two observations, ftefh to right, which seems
reasonable attending to their different compositiigure 6 is similar, but related to the

y scores.

[INSERT FIG. 6 ABOUT HERE]
R> plot(fit, type="Wj", cex.axis=1.2, cex.lab=1.2, cex=1.2, las=1,
+ bty="L")

R> plot(fit, type="Wk", cex.axis=1.2, cex.lab=1.2, cex=1.2, las=1,
+ bty="L")

11



[INSERT FIG. 7 ABOUT HERE]

On the other hand, Figure 7 presents the attribanesFigure 8 the judges that help in
predicting they variable, for each of the two components. It cansben that the first

component of the attributes mode is related tabaties 7, 8 and 6 (in descending order
in absolute values); whereas attributes 4, 9 aate@elated to the second component.
This can be also derived from Figure 9, which poeduan equivalent graph. In this
case, when trying to see what kind of relationshgse attributes have with the judges’

mode, Figure 10 provides easier-to-interpret rasult

[INSERT FIG. 8 ABOUT HERE]

R> plot(fit, type="variables", cex.axis=1.2, cex.lab=1.2, cex=1.2,

+ las=1, bty="L", lwd=2)

R> plot(fit, type="time", cex.axis=1.2, cex.lab=1.2, cex=1.2, las=1,
+ bty="L", lwd=2, xlab="Judge")

[INSERT FIG. 9 ABOUT HERE]

It can be seen how, for the first component, theapproximately the same effect of all
judges with respect variables 7, 8 and 6 (thosateélto the first component in the
attributes mode) when trying to predict the saltteat. In this case, since the judges’
weights show positive values, the higher the valuattributes 7 and 6, and the lower
the value of attribute 8, the higher the salt contBor the second component, attributes
4, 9 and 6 are more influenced by judge 5, evenghdhe rest of judges also have a
similar effect on the salt content scoringvariable). Since the weights of the judges’
mode are all negative for the second componenthititeer the value of attributes 4, 9
and 6, the lower the salt content. In this casguié 8 is less interpretable. However,
depending on the case, one representation or anwilgat provide easier-to-interpret

results; so it is decided to keep both graphsenpidickage.

[INSERT FIG. 10 ABOUT HERE]
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As seen on these examples, all plots produced bypitot function are fully

customizable using basefRot parameters such ass, cex, bty, etc.

Thepredict function can be used to make predictions using det&a. Here we use it
to make a prediction from a nedv array with 6 new observations. This function also
has an optional parametecale which defaults tarRUE for controlling the final scale
of the predictions (original vs. scaled). Tablehows the prediction performed by the

model.
R> newX <- array(sample(@:5, 6*11*8, replace=TRUE), dim=c(6, 11, 8))
R> predict(fit, newX)
[INSERT TABLE 5 ABOUT HERE]
The output of the function is¥ matrix with the 8 predicted values.

4.1 StandardN-PLS analysis

For comparison, we also can perform a stand&fLS analysis on this dataset. By
calling the sNPLS function with its default arguments, no L1-penafian will be
applied to then’ andw" vectors and th&v’ andW* matrices will be dense. Table 6

shows the corresponding coefficients.

R> fit2 <- sNPLS(Xbread, Ybread, silent = F)
R> summary(fit2)

sNPLS model with 2 components and squared error of 0.077

[INSERT TABLE 6 ABOUT HERE]

13



As expected, the coefficients' matrix is now densiece no Ll-penalization was
applied. The different plots show also the samecgffwith no estimation being equal to
zero (Figure 11).

[INSERT FIG. 11 ABOUT HERE]

By comparing Figures 11(a) and 11(b) with Figs 8 &nvery similar evolution of the
scores along the first component (the one relevant)be seen, mostly in thescores
(Figs 5 and 11(b)). However, when inspecting Figltéc) or 11(e), the relevance of
the different attributes is not so easy. When caimgat with Fig 7 or 9, it can be seen
that the most relevant attributes are 7 and 6enpibsitive part of the plot, and 8 in the
negative part. Nevertheless, attribute 6 is quiieecto attribute 5, and 8 to 10, etc. So
interpretation or selection of attributes is natedt. In this case, for the judges, very
similar results are drawn from Figures 11(d) anff)Mhen compared to Figures 8 and
10. This is due to the fact that no selection wesady performed in the judges’ mode.

However, in other problems, this might not be tasec

5. FINAL REMARKS

The most relevant features of the R package sNRWS® been presented. The package
offers a complete set of functions for tuning,iriigt and interpretingN-PLS and sNPLS
models. As tuning is a computationally intensivethmod, all cross-validation functions
in the package allow the use of parallelizatiomtigh the parallel package and also use
sparse matrices from the Matrix package. Thesedmionizations allow for speedups
of up to 20 times faster computation times compaoedon-parallelized computations
with dense matrices. This paper refers to the weré.3.31 of the sSNPLS package,
which is available at CRAN (The Comprehensive Rhive Network). Future versions
of the package will implement different regularinat methods apart frorhl-penalty

and also provide more tools to analyze three-wag.da

6. VALIDATION

Dr. Marco Calderisi. Administratore unico. Kode Srl. Via Nino Pisano 1466124

Pisa.
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ThesNPLSR package introduced in this article allows fag #pplication of thé&\-way
partial least squares algorithm to three way arnajth the addition of the possibility to
use sparse (L1 penalized) models. The packagerysstmightforward to install and
use. All the functions are well documented, andek@mples provided make it easy to
understand how to use all of the functionality leé package. The main function of the
packagesNPLY)), can be used to perform a regularized L1-peadId-PLS analysis
on a given three way dataset. If the optimal camigjon of the model parameters is not
known, the package also provides the functions pls(hand repeat_cv(), that can be
used to perform cross validation on the data, aotbnaatically pick the best
combination of those parameters. Furthermore, thasetions allow for the parallel
computation of the parameter grid search, which lsanvery advantageous, as this
operation can quickly become computationally expenen real world problems. The
package also comes with a large set of plottingtfons, which proved to be very
useful when interpreting the modelling and crodglation outputs.

Dr. Leonardo Ramirez-Lopez. NIR Data Analytics Manager, BUCHI Labortechnik
AG. Meierseggstr. 40, 9230 Flawil, Switzerland.

In the context of the R programming language, thigueness of the packagblPLS
lies on the fact that it offers tools to performed+way PLS regression in conjunction
with L1 regularization in the cases where variads&ection is required. Following the
spirit of R, this new package is publicly availalaled it can be downloaded from the
CRAN repository. The main functions are implementeda user-friendly way by
keeping only the arguments that are unquestionabdyant. | installed the package on
my personal computer and used it to build three-®B$ models. For this, | used two
datasets (which were provided by the authors): rghgyic one and the bread data
described in Bro (1996, also included in the paekaghe modeling results | obtained
were easily interpretable especially with the hefighe plotting functions included in
the package. The computational time seems not inkiesue since the main functions
include parallel computing functionality. In thisspect, the package would be suitable
for processing large datasets. | believe this pgeksa a worthy contribution to R and to

the expansion of the continuously growing chemoitettommunity of R users!
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Figure Captions

Figure 1: Computing times ofv_snpls under different conditions of grid length and
number of cores. The function scales efficientlyungil 8 cores.

Figure 2: Results of cross-validation. Lines depicting thessrvalidated error (CVE)
for each combination of the parameters are predenta grid layout combining KeepJ
values (number of variables selected), KeepK valoember of elements of the third
mode) and Ncomp values (number of components).

Figure 3: Kernel density plot with the result of the repeateass-validation. Highest
density lies around keepJ=9 and keepK=1. Poiniledda size by frequency of
appearance are additionally included on top ofiesity plot. The number of
components is not represented since it was conagtanin all repetitions of the cross-
validation.

Figure 4: Results of the repeated cross-validation functieriggmed on the bread
dataset. The plot consists on the faceted reps@mof a three-dimensional density
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plot sliced in different planes (one per numbecahponents). The kernel density
estimation is created with the observed frequermi¢ise combinations of the different
parameters. Additionally, points scaled in sizdreguency of appearance are added to
the density plots.

Figure 5: Score plot of the two first components in thenatrix.
Figure 6: Score plot of the two first components in thenatrix
Figure 7: Weights Plot of th&V’ weights matrix

Figure 8: Weights Plot of th&VX weights matrix

Figure 9: Plot of the second mode

Figure 10: Plot of the third mode

Figure 11: Plots of the standafd-PLS model

18



Table 1. Results of each cross-validation repetition gathered in the data.frame structure.

R> repcv

ncomp keepl keepK
2 9

9
10
9
11
12
7
10
8
12

W 00 N O U D W N R
NN NN NN NDNN
N P R R R N PR R R PR

=
(W]



Table 2. Frequency table derived from the data.frame structure.

R> ftable(table(repcv))

keepK 1 2
ncomp keep]
2 7

8
9
10
11
12

P ® N W R R
R R ® ® ® O



Table 3. Frequency table derived from the data.frame structure.

R> ftable(table(cv_bread))

keepKk 1 2 34567 8

ncomp keep]

1 1 12243311
2 606112102
2 1 00000001
2 00000002
3 ©O0000104
4 000000011
5 lo0000001
6 00000010
7 ©Oo0oO0000O010
8 00000002
9 00000001
3 1 00100201
2 00000011
3 00000001
5 00000001
8 000000001



Table 4. Summary of the SNPLS model fitted with the finale selection (2 components, 3 variables per

component in the second mode and 8 in the third mode)

R> summary(fit)

sNPLS model with 2 components and squared error of 0.047

Coefficients:

Z.1 Z.2 Z.3 Z.4 Z.5 Z.6 .7 Z.8

X.1 ©0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
X.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
X.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
X.4 -0.041 -0.041 -0.043 -0.049 -0.074 -0.040 -0.042 -0.029
X.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
X.6 0.019 0.026 0.024 0.027 0.021 0.025 0.018 0.036
X.7 ©0.070 0.089 0.086 0.095 0.087 0.088 0.069 0.115
X.8 -0.030 -0.038 -0.037 -0.041 -0.038 -0.038 -0.030 -0.050
X.9 -0.009 -0.009 -0.010 -0.011 -0.017 -0.009 -0.009 -0.006
X.10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
X.11 ©0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000



[1,]
[2,]
[3,]
[4,]
[5,]
[6,]

®© R B &0 ® B

Y.1

.4196482
.7819288
.9619593
.0523621
.2585099
.7243910

Table 5. Predictions performed by the SNPL S model



Table 6. Summary of the standard NPLS model fitted with 2 components.

Coefficients:

X X X X X X X X X X X

O 00 N O U1 A W N R
()

[

R ®
1

o ©

Z.1

.015
.019
. 006
.025
.010
.024
.054
.023
.034
. 007
.017

Z.2

.017
.019
.008
.024
.013
.028
.058
.027
.034
.010
.019

Z.3

.017
.020
.008
.026
.013
.028
.061
.028
.037
.009
.020

Z.4

.017
.017
.011
.022
.016
.031
.060
.030
.033
.013
.020

Z.5

.017
.023
.005
.030
.009
.026
.061
.024
.039
. 006
.020

Z.6

.015
.014
.010
.018
.015
.028
.053
.028
.028
.013
.017

Z.7

.014
.019
.004
.025
.007
.020
.049
.019
.032
.004
.016

Z.8

.021
.021
.012
.027
.019
.036
.073
.036
.040
.015
.024
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Figure 1: Computing times of cv_snpls under
different conditions of grid length and number
of cores. The function scales efficiently up until
8 cores.
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Figure 2: Results of cross-validation. Lines depicting the cross-validated
error (CVE) for each combination of the parameters are presented in a grid
layout combining KeeplJ values (number of variables selected), KeepK values
(number of elements of the third mode) and Ncomp values (number of
components).
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Figure 3: Kernel density plot with the result of the repeated cross-validation. Highest
density lies around keepJ=9 and keepK=1. Points scaled in size by frequency of
appearance are additionally included on top of the density plot. The number of

components is not represented since it was constant at 2 in all repetitions of the cross-
validation.
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Figure 4: Results of the repeated cross-validation function performed on the bread
dataset. The plot consists on the faceted representation of a three-dimensional
density plot sliced in different planes (one per number of components). The kernel
density estimation is created with the observed frequencies of the combinations of
the different parameters. Additionally, points scaled in size by frequency of
appearance are added to the density plots.
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Figure 5: Score plot of the two first components in the T matrix.
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Figure 6: Score plot of the two first components in the U matrix
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Figure 7:

Weights Plot of the W’ weights matrix
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Figure 8: Weights Plot of the WK weights matrix
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Figure 9: Plot of the second mode
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Figure 10: Plot of the third mode
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Figure 11: Plots of the standard N-PLS model



