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Abstract 

We introduce the R package sNPLS that performs N-way partial least squares (N-PLS) 

regression and Sparse (L1-penalized) N-PLS regression in three-way arrays. N-PLS 

regression is superior to other methods for three-way data based in unfolding, thanks to 

a better stabilization of the decomposition. This provides better interpretability and 

improves predictions. The sparse version also adds variable selection through L1 

penalization. The sparse version of N-PLS is able to provide lower prediction errors and 

to further improve interpretability and usability of the N-PLS results. After a short 

introduction to both methods, the different functions of the package are presented by 

displaying their use in simulated and a real dataset.  

Keywords: N-PLS, LASSO, Sparse matrices 
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1. INTRODUCTION 

N-way analysis refers to the analysis of data indexed and arranged in a N-dimensional 

array X (I x J x K x ...), instead of the regular two modes, which correspond to a two-

dimensional matrix X (I x J). Several methods have been developed for dealing with 

three-way data, such as the Tucker3 (T3) model [1], the Candecomp/Parafac (CP) 

model [2] and the N-PLS model [3]. Of these, only N-PLS produces score vectors that 

maximize covariance with any N-way response array Y, so it is the only method that 

can be considered for prediction purposes. 

 

A lot of development efforts have been put in the last years on improving and extending 

the properties of L1-penalized regression models [4, 5]. These models perform variable 

selection simultaneously to the fit, thus improving the interpretability of the results and 

also greatly reducing the variables involved in performing new predictions from the 

model. 

 

The aim of this work is to show the different functions of the R package sNPLS for 

performing analysis of three-way data. In Section 2, we provide a methodological 

background for the N-PLS and sNPLS methods. Then, Section 3 presents the main 

functions sNPLS() and cv.SNPLS() and show how they work in a real dataset in 

Sections 4. We also present all the other supplementary functions of the package for 

plotting results and performing repeated cross-validation. Finally, we conclude with 

some remarks about the current status of the package and its future, as well as an 

external validation of the toolbox are made on Sections 5 and 6, respectively.  

 

2. METHODOLOGICAL BACKGROUND 

 

2.1. N-PLS 

N-PLS studies relationships between some three-way (or N-way) X data structure and 

any Y data structure. It is the natural extension of PLS to N-way structures, which tries 

to maximize the covariance between X and Y data arrays.  
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Considering X a three-way array of dimensions (I x J x K) and X (I x JK) its unfolded 

version, N-PLS tries to find latent spaces WJ and WK that maximize the covariance 

between X and Y, so it can be expressed as: 

 

�	 = 	�(��|⊗|�
)� + �                                            (1) 

 

Afterwards decomposing X from X using the improved N-PLS version expression [6], 

in order to obtain residuals with better statistical properties: 

 

�	 = 	���(�� ⊗�
)� + �′                                         (2) 

 

In the same way, Y can be decomposed by unfolding Y (I x L x M) into Y (I x LM) as: 

 

�	 = 	�(��|⊗|��)� + �′′                                         (3) 

 

In this case, WK and WJ refer to the weights of the third mode and of the second mode, 

respectively; whereas T matrix gathers the scores of the samples at each component 

extracted, in the 1st mode. |⊗| is the Khatri-Rao product and	⊗ the Kronecker product, 

which forbid or allow (respectively) to take interactions between the different modes 

components into account. Gu is the core array (unfolded) of a Tucker3 decomposition 

when using T, WK and WJ as loadings, in order to obtain a better (or at least not worse) 

approximation of the X array [7]. Finally, R’ incorporates the residuals. Analogously, U 

refers to the Y scores, and QM and QL to the loadings of the array Y, and R’’  the 

corresponding residuals. 

 

Finally, from the scores T and U, as well from the W weights, a BPLS regression matrix 

can be obtained [8] so 

 

�	 = 	����� + �′′′                                         (4) 

 

being R’’’  the final residuals. 

 

 

2.2. Lasso 
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In linear models, where it first was developed for, L1 penalization consists in 

minimizing the usual sum of squared errors, with a bound on the sum of the absolute 

values of the coefficients [9]. It shrinks some coefficients and sets others to 0, and hence 

tries to retain the good features of both subset selection (interpretation) and ridge 

regression (stability and precision in estimations). The original LASSO for least squares 

is as follows: 

 

�� ����� =	argmin
&

'(() − �+ −',)-�-).
/

-01

2

)01
 

(5) 

Subject to the restriction: 

'3�-3 ≤ 5
6

-01
 

 

Increasing the penalization by reducing s forces the parameters to zero, producing a 

simpler model by deselecting some features. Thus, assuming data are standardized, 

Lasso automatically selects the most relevant features and discards the others. 

 

To introduce the L1 penalization in the N-PLS algorithm we follow the approach of Lê 

Cao et al. [10] and make use of the soft-thresholding operator, which can be derived as 

a solution of the Lasso lagrangian form:  

 

��)����� = 578(��)9:)(3��)9:3 − ;)<                                   (6) 

 

We introduce this operator at the wK and wJ determination right after the SVD to 

achieve sparse versions of wK and wJ. A more detailed description of the algorithm can 

be found in [11]. 

 

3. MAIN FUNCTIONS IN THE R PACKAGE sNPLS 

 

The package sNPLS provides functions for fitting N-PLS and sNPLS models, tuning the 

models using repeated cross-validation and plotting the results. It also provides 
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functions for extracting coefficients and performing predictions from new data. Below, 

we discuss the different functions providing code and different examples of use. 

 

3.1 sNPLS function 

 

Function sNPLS is used to fit N-PLS and sNPLS models to three-way data, depending 

on the input settings of the algorithm. The following R code shows an example of a 

model fit to a simulated three-way dataset. 

 

R> library("sNPLS") 

R> X_npls <- array(rpois(7500, 10), dim=c(50, 50, 3)) 

R> Y_npls <- matrix(2 + 0.4*X_npls[,5,1] + 0.7*X_npls[,10,1] –  

+    0.9*X_npls[,15,1] + 0.6*X_npls[,20,1] - 0.5*X_npls[,25,1] +  

+    rnorm(50), ncol=1) 

R> fit <- sNPLS(X_npls, Y_npls, ncomp=3, keepJ = rep(2,3),  

+    keepK = rep(1,3)) 

 

In this case, X is a three way array of dimension (50, 50, 3) formed by a Poisson 

distribution of lamda=10. On the other hand, y is a vector formed by a linear 

combination from X. Finally, sNPLS fits a sNPLS model with 3 components, with 2 

variables per component retained in the second mode and 1 variable per component 

retained in the third mode. 

 

Note that the function sNPLS needs a N-way array for X and any N-way array for Y as 

inputs. If data is in another format the function will throw an error. In the following, a 

generic call with an explanation of each of the arguments of the function is presented. 

Arguments with a defined value in the generic call will take that value as default if no 

other value is given when calling the function. 

 

sNPLS(XN, Y, ncomp = 2, conver = 1e-16, max.iteration = 10000, 

+    keepJ = rep(ncol(XN),ncomp), keepK = rep(rev(dim(XN))[1], ncomp), 

+    scale.X = TRUE, center.X = TRUE, scale.Y = TRUE, center.Y = TRUE, 

+    silent = F) 
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XN  N-dimensional array containing the predictors 

Y  Array containing the response(s) 

Ncomp   Number of components to use in the projection 

conver  Convergence criterion 

max.iteration Maximum allowed number of iterations to achieve convergence 

keepJ Number of variables to keep at each component. If all variables are kept, 

N-PLS regression is performed, if any variable is removed then sNPLS is 

performed. 

keepK   Number of elements of the third mode to keep at each component. 

scale.X Should unit variance scaling on X be performed? 

center.X Should mean centering on X be performed? 

scale.Y  Should unit variance scaling on Y be performed? 

center.Y Should mean centering on Y be performed? 

silent   Allows to choose if information regarding number of iterations should be 

displayed 

 

The function sNPLS produces an S3 sNPLS object with defined coef, predict and 

plot methods that will be discussed later. The object consists of a list containing the 

following components: (1-6) the T, WJ, WK, B (regression coefficients between X and 

Y), Y and Q matrices, (7-8) P and Gu (the unfolded G core array of the Tucker 

decomposition), (9) The number of components, (10) Fitted values, (11) Squared error, 

(12) Scale and centering information performed on X and Y. 

 

3.2 cv_snpls function 

 

Selecting parameter values for the sNPLS function requires choosing values for the 

number of components, the number of variables to select and the number of elements of 

the third mode to select. An appropriate way of selecting these parameters is performing 

a grid search with cross-validation. The function cv_snpls performs cross-validation on 

a grid of different ncomp, keepJ and keepK values estimating RMSE (Root Mean 

Square Error) for each combination of values and selecting the best set producing the 

lowest RMSE. 

 

R> X_npls <- array(rpois(7500, 10), dim=c(50, 50, 3)) 
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R> Y_npls <- matrix(2 + 0.4*X_npls[,5,1] + 0.7*X_npls[,10,1] – 

+    0.9*X_npls[,15,1] + 0.6*X_npls[,20,1] - 0.5*X_npls[,25,1] +  

+    rnorm(50), ncol=1) 

R> cv1 <- cv_snpls(X_npls, Y_npls, ncomp=1:2, keepJ = 1:10,  

+    keepK = 1:3, parallel = FALSE) 

 

The generic call for cv_snpls is the following: 

 

R> cv_snpls(X_npls, Y_npls, ncomp = 1:3, keepJ = 1:ncol(X_npls), 

+   keepK = 1:dim(X_npls)[3], nfold = 10, parallel = FALSE) 

 

It contains the same parameters as sNPLS but now admits vectors of values for each 

parameter in ncomp, keepJ and keepK. The number of subsets for the cross-validation 

is determined by the parameter nfold. This nfold parameter allows the specification 

of the number of folds of the cross-validation procedure, with 10-fold being the default 

Since grid search can be computationally intensive, it makes use of the parallel package 

for R. Being able to perform computations in parallel greatly reduces running times. 

Parallel mode is activated by setting parallel argument to TRUE and selecting a 

suitable number of free cores. In the case of cv_snpls, the parallelization applies to 

the grid search, not to the different folds of the cross-validation. Figure 1 shows the 

improvements in computing times by using parallelization with different number of 

cores. To further reduce computation times and improve memory use, sparse matrices 

from the R package Matrix [12] are used whenever possible in the matrix multiplication 

steps of the function. Sparse matrices achieve these goals by using an alternative 

representation to that of dense matrices: instead of being stored as two-dimensional 

arrays, only their non-zero values are stored, along with an index linking these values 

with their location in the matrix. The function cv_snpls returns a cvsnpls object 

which is a list with a component containing the best combination parameters and other 

components containing information about the grid and its corresponding RMSE. 

cv_snpls objects can be plotted for better interpretation of the results. The resulting 

plot is a grid of scatterplots with the different combinations of keepJ, keepK and 

ncomp and their resulting cross-validation errors (Figure 2). 

 

[INSERT FIG. 1 ABOUT HERE] 
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A known issue of cross-validation is the variance in its results [13] which, on one hand 

entails that different runs of the cross-validation procedure can yield different results 

regarding the estimated best set of parameters (variability) and, on another hand, that 

the estimation of the best set of parameters is prone to overfitting (bias-variance 

tradeoff). A reasonable solution is performing repeated cross-validation and selecting 

the most frequently selected set of parameters along a round of different runs. The 

function repeat_cv performs repeated cross-validation by calling the function 

cv_snpls repeated times and storing each result in a data.frame object. The syntax 

is the same as in cv_snpls with an extra argument times for specifying the number of 

repetitions to perform. In the case of repeat_cv the parallelization applies to the 

replicates instead of applying to the grid search. The following code explains how to 

perform repeated cross-validation with repeat_cv (10 times in this case) varying from 

1 to 2 components, and from 1 to 10 variables in the second mode, and from 1 to 3 in 

the third mode. 

 

R> repcv <- repeat_cv(X_npls, Y_npls, ncomp=1:2, keepJ = 1:10,  

+    keepK = 1:3, parallel = FALSE, times=10) 

 

[INSERT FIG. 2 ABOUT HERE] 

 

The result of the repeat_cv call is a data.frame storing the results of each cross-

validation repetition (Table 1). 

 

[INSERT TABLE 1 ABOUT HERE] 

 

This output can be presented as a cross-tabulation table (Table 2) with the absolute 

frequencies of each combination of the different parameters. In our example, the table 

shows that the combination ncomp=2, keepJ=9 and keepK=1 is the most recurrent (3 

out of 10 repetitions). 

 

[INSERT TABLE 2 ABOUT HERE] 
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Results of the repeat_cv function can also be plotted to obtain a kernel density plot, 

which can be one-, two- or three-dimensional depending of the number of constant 

parameters obtained in the repeated cross-validation procedure. This density plot depicts 

the most frequently selected parameters (Figure 3). In this example, according to the 

plot, the most likely combination after all repetitions of the cross-validation was 

between 9 and 10 in the case of keepJ and keepK=1. Since the optimal number of 

components did not vary along all the repetitions, this parameter is not represented in 

the plot. Instead, the message 'ncomp is(are) constant with a value of 2' 

is returned by the function. The density plot leads to a similar interpretation of the 

results as the cross-tabulation table, but the smoothing can result in more sensible 

estimates in the case of multiple and/or wide spread modes. It also provides a visual 

measure of the uncertainty in the selection of the best combination of parameters. 

 

 

[INSERT FIG. 3 ABOUT HERE] 

 

 

4. REAL DATASET ANALYSIS 

 

To exhibit all package functionality, next we provide a complete analysis of the bread 

dataset [14] included in the sNPLS package. This dataset consists on data of five 

different breads that were baked in duplicate giving a total of ten samples. Eight 

different judges assessed the breads with respect to eleven different sensorial attributes. 

The data can be regarded as a three-way array (10 × 11 × 8). The data are quite noisy as 

opposed to, e.g., spectral data. The salt content of each bread was also measured, and it 

is considered as the response variable y. 

 

R> data(bread) 

R> Xbread <- bread$Xbread 

R> Ybread <- bread$Ybread 

R> cv_bread <- repeat_cv(Xbread, Ybread, ncomp=1:3, keepJ = 1:11,    

+    keepK = 1:8, parallel = TRUE, times=50, nfold=3) 
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In this case, the number of components tested vary from 1 to 3, whereas all possible 

number of variables kept are considered both in the second and in the third mode. 

Repeated cross-validation is performed on the data to select the optimal parameters. 50 

repetitions should be enough to get stable estimates, but using such a large number of 

repetitions can increase computing times dramatically. Therefore, using the option 

parallel=TRUE when performing repeated cross-validation is recommended. Results 

of this procedure yield a cross-tabulation table with the appearance frequencies for each 

combination of parameters. One can also adjust the number of folds of the cross-

validation procedure with the nfold parameter, with 10-fold being the default. Table 3 

shows the frequency table derived from the data.frame obtained in this case. 

 

[INSERT TABLE 3 ABOUT HERE] 

 

This table shows that there are two possible combinations of parameters that are almost 

equally selected by cross-validation. One is ncomp=1, keepJ=1 and keepK=4 and the 

other is ncomp=2, keepJ=3 and keepK=8, both with 4 appearances out of 50 

repetitions. Also, most of the other combinations are close to one of these two 

mentioned 'hotspots'. A plot of the cv_bread object (Figure 4) reveals a similar 

information with a representation of a sliced three-dimensional kernel density estimate. 

 

[INSERT FIG. 4 ABOUT HERE] 

 

Next step would be fitting the sNPLS model using the sNPLS function with the selected 

set of parameters. As discussed before, our results point to two possible combinations 

and, based on the density plot, the option with ncomp=1, keepJ=1 and keepK=4 seems 

more likely. Nevertheless, since we are using the data for demonstration of the different 

functions of the package, we will use the combination with ncomp=2 to get working 

examples of the plot function (which needs, at least, two dimensions). It is important 

to take into account that keepJ and keepK have to be specified for each component, so 

they must be a vector of length equal to the number of components. Note that, in this 

case, we have chosen the same number of attributes and judges for each component, 

although this is not necessarily the case. 

 

R> fit <- sNPLS(Xbread, Ybread, ncomp = 2, keepJ = rep(3, 2),  
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+    keepK = rep(8, 2), silent = FALSE) 

 

The summary of the fit (Table 4) shows the number of components, the estimated 

squared error and a matrix with rows corresponding to attributes (second mode) and 

columns corresponding to judges (third mode). In this matrix there are five rows with 

non-zero coefficients which correspond to the 4th, 6th 7th 8th and 9th attributes from all 

the judges (no selection is performed on the third mode). 

 

[INSERT TABLE 4 ABOUT HERE] 

 

To better understand and interpret the results, the plot function can be used to display 

different visualizations of the results. Values of the T (Figure 5), U (Figure 6), WJ 

(Figures 7 and 9), and WK (Figures 8 and 10) matrices can be plotted by changing the 

type parameter of the function. 1st and 2nd components are plotted by default, but they 

can be changed using the comps parameter. 

 

R> plot(fit, type="T", cex.axis=1.2, cex.lab=1.2, cex=1.2, las=1,  

+    bty="L") 

R> plot(fit, type="U", cex.axis=1.2, cex.lab=1.2, cex=1.2, las=1,  

+    bty="L") 

 

[INSERT FIG. 5 ABOUT HERE] 

 

Figure 5 shows how the 10 samples spread over the two first components. It can be seen 

how the samples evolve every two observations, from left to right, which seems 

reasonable attending to their different composition. Figure 6 is similar, but related to the 

y scores. 

 

[INSERT FIG. 6 ABOUT HERE] 

 

R> plot(fit, type="Wj", cex.axis=1.2, cex.lab=1.2, cex=1.2, las=1, 

+    bty="L") 

R> plot(fit, type="Wk", cex.axis=1.2, cex.lab=1.2, cex=1.2, las=1,  

+    bty="L") 
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[INSERT FIG. 7 ABOUT HERE] 

 

On the other hand, Figure 7 presents the attributes and Figure 8 the judges that help in 

predicting the y variable, for each of the two components. It can be seen that the first 

component of the attributes mode is related to attributes 7, 8 and 6 (in descending order 

in absolute values); whereas attributes 4, 9 and 6 are related to the second component. 

This can be also derived from Figure 9, which produces an equivalent graph. In this 

case, when trying to see what kind of relationship these attributes have with the judges’ 

mode, Figure 10 provides easier-to-interpret results. 

 

[INSERT FIG. 8 ABOUT HERE] 

 

 

R> plot(fit, type="variables", cex.axis=1.2, cex.lab=1.2, cex=1.2,  

+    las=1, bty="L", lwd=2) 

R> plot(fit, type="time", cex.axis=1.2, cex.lab=1.2, cex=1.2, las=1,  

+    bty="L", lwd=2, xlab="Judge") 

 

[INSERT FIG. 9 ABOUT HERE] 

 

It can be seen how, for the first component, there is approximately the same effect of all 

judges with respect variables 7, 8 and 6 (those related to the first component in the 

attributes mode) when trying to predict the salt content. In this case, since the judges’ 

weights show positive values, the higher the value of attributes 7 and 6, and the lower 

the value of attribute 8, the higher the salt content. For the second component, attributes 

4, 9 and 6 are more influenced by judge 5, even though the rest of judges also have a 

similar effect on the salt content scoring (y variable). Since the weights of the judges’ 

mode are all negative for the second component, the higher the value of attributes 4, 9 

and 6, the lower the salt content. In this case, Figure 8 is less interpretable. However, 

depending on the case, one representation or another might provide easier-to-interpret 

results; so it is decided to keep both graphs in the package. 

 

[INSERT FIG. 10 ABOUT HERE] 
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As seen on these examples, all plots produced by the plot function are fully 

customizable using base R plot parameters such as las, cex, bty, etc. 

 

The predict function can be used to make predictions using new data. Here we use it 

to make a prediction from a new X array with 6 new observations. This function also 

has an optional parameter scale which defaults to TRUE for controlling the final scale 

of the predictions (original vs. scaled). Table 5 shows the prediction performed by the 

model. 

 

R> newX <- array(sample(0:5, 6*11*8, replace=TRUE), dim=c(6, 11, 8)) 

R> predict(fit, newX) 

 

 

[INSERT TABLE 5 ABOUT HERE] 

  

The output of the function is a Y matrix with the 8 predicted values. 

 

4.1 Standard N-PLS analysis 

 

For comparison, we also can perform a standard N-PLS analysis on this dataset. By 

calling the sNPLS function with its default arguments, no L1-penalization will be 

applied to the wJ and wK vectors and the WJ and WK matrices will be dense. Table 6 

shows the corresponding coefficients. 

 

R> fit2 <- sNPLS(Xbread, Ybread, silent = F) 

R> summary(fit2) 

 

sNPLS model with 2 components and squared error of 0.077  

 

[INSERT TABLE 6 ABOUT HERE] 
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As expected, the coefficients' matrix is now dense, since no L1-penalization was 

applied. The different plots show also the same effect, with no estimation being equal to 

zero (Figure 11). 

 

[INSERT FIG. 11 ABOUT HERE] 

 

By comparing Figures 11(a) and 11(b) with Figs 5 and 6, very similar evolution of the 

scores along the first component (the one relevant) can be seen, mostly in the U scores 

(Figs 5 and 11(b)). However, when inspecting Figure 11(c) or 11(e), the relevance of 

the different attributes is not so easy. When comparing it with Fig 7 or 9, it can be seen 

that the most relevant attributes are 7 and 6 in the positive part of the plot, and 8 in the 

negative part. Nevertheless, attribute 6 is quite close to attribute 5, and 8 to 10, etc. So 

interpretation or selection of attributes is not direct. In this case, for the judges, very 

similar results are drawn from Figures 11(d) and 11(f) when compared to Figures 8 and 

10. This is due to the fact that no selection was already performed in the judges’ mode. 

However, in other problems, this might not be the case. 

 

5. FINAL REMARKS 

 

The most relevant features of the R package sNPLS have been presented. The package 

offers a complete set of functions for tuning, fitting and interpreting N-PLS and sNPLS 

models. As tuning is a computationally intensive method, all cross-validation functions 

in the package allow the use of parallelization through the parallel package and also use 

sparse matrices from the Matrix package. These two optimizations allow for speedups 

of up to 20 times faster computation times compared to non-parallelized computations 

with dense matrices. This paper refers to the version 0.3.31 of the sNPLS package, 

which is available at CRAN (The Comprehensive R Archive Network). Future versions 

of the package will implement different regularization methods apart from L1-penalty 

and also provide more tools to analyze three-way data. 

 

6. VALIDATION 

 

Dr. Marco Calderisi. Administratore unico. Kode Srl. Via Nino Pisano 14 - 56124 

Pisa.  
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The sNPLS R package introduced in this article allows for the application of the N-way 

partial least squares algorithm to three way arrays, with the addition of the possibility to 

use sparse (L1 penalized) models. The package is very straightforward to install and 

use. All the functions are well documented, and the examples provided make it easy to 

understand how to use all of the functionality of the package. The main function of the 

package, sNPLS(), can be used to perform a regularized L1-penalized N-PLS analysis 

on a given three way dataset. If the optimal configuration of the model parameters is not 

known, the package also provides the functions cv_npls() and repeat_cv(), that can be 

used to perform cross validation on the data, and automatically pick the best 

combination of those parameters. Furthermore, these functions allow for the parallel 

computation of the parameter grid search, which can be very advantageous, as this 

operation can quickly become computationally expensive on real world problems. The 

package also comes with a large set of plotting functions, which proved to be very 

useful when interpreting the modelling and cross validation outputs. 

 

Dr. Leonardo Ramirez-Lopez. NIR Data Analytics Manager, BUCHI Labortechnik 

AG. Meierseggstr. 40, 9230 Flawil, Switzerland. � 

 

In the context of the R programming language, the uniqueness of the package sNPLS 

lies on the fact that it offers tools to perform three-way PLS regression in conjunction 

with L1 regularization in the cases where variable selection is required. Following the 

spirit of R, this new package is publicly available and it can be downloaded from the 

CRAN repository. The main functions are implemented in a user-friendly way by 

keeping only the arguments that are unquestionably relevant. I installed the package on 

my personal computer and used it to build three-way PLS models. For this, I used two 

datasets (which were provided by the authors): a synthetic one and the bread data 

described in Bro (1996, also included in the package). The modeling results I obtained 

were easily interpretable especially with the help of the plotting functions included in 

the package. The computational time seems not to be an issue since the main functions 

include parallel computing functionality. In this respect, the package would be suitable 

for processing large datasets. I believe this package is a worthy contribution to R and to 

the expansion of the continuously growing chemometrics community of R users. � 
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Figure Captions 

 

Figure 1: Computing times of cv_snpls under different conditions of grid length and 
number of cores. The function scales efficiently up until 8 cores. 
 

Figure 2: Results of cross-validation. Lines depicting the cross-validated error (CVE) 
for each combination of the parameters are presented in a grid layout combining KeepJ 
values (number of variables selected), KeepK values (number of elements of the third 
mode) and Ncomp values (number of components). 

 
Figure 3: Kernel density plot with the result of the repeated cross-validation. Highest 
density lies around keepJ=9 and keepK=1. Points scaled in size by frequency of 
appearance are additionally included on top of the density plot. The number of 
components is not represented since it was constant at 2 in all repetitions of the cross-
validation. 

Figure 4: Results of the repeated cross-validation function performed on the bread 
dataset. The plot consists on the faceted representation of a three-dimensional density 
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plot sliced in different planes (one per number of components). The kernel density 
estimation is created with the observed frequencies of the combinations of the different 
parameters. Additionally, points scaled in size by frequency of appearance are added to 
the density plots. 

Figure 5: Score plot of the two first components in the T matrix. 
 
Figure 6: Score plot of the two first components in the U matrix 
 
Figure 7: Weights Plot of the WJ weights matrix 
 
Figure 8: Weights Plot of the WK weights matrix 
 
Figure 9: Plot of the second mode 
 
Figure 10: Plot of the third mode 
 
Figure 11: Plots of the standard N-PLS model 
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Table 1. Results of each cross-validation repetition gathered in the data.frame structure. 

R> repcv 

 

   ncomp keepJ keepK 

1      2     9     1 

2      2     9     1 

3      2    10     1 

4      2     9     1 

5      2    11     2 

6      2    12     1 

7      2     7     1 

8      2    10     1 

9      2     8     1 

10     2    12     2 
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Table 2. Frequency table derived from the data.frame structure. 

 

R> ftable(table(repcv)) 

 

            keepK 1 2 

ncomp keepJ           

2     7           1 0 

      8           1 0 

      9           3 0 

      10          2 0 

      11          0 1 

      12          1 1 
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Table 3. Frequency table derived from the data.frame structure. 

 

R> ftable(table(cv_bread))  

 

            keepK 1 2 3 4 5 6 7 8 

ncomp keepJ                       

1     1           1 2 2 4 3 3 1 1 

      2           0 0 1 1 2 1 0 2 

2     1           0 0 0 0 0 0 0 1 

      2           0 0 0 0 0 0 0 2 

      3           0 0 0 0 0 1 0 4 

      4           0 0 0 0 0 0 1 1 

      5           1 0 0 0 0 0 0 1 

      6           0 0 0 0 0 0 1 0 

      7           0 0 0 0 0 0 1 0 

      8           0 0 0 0 0 0 0 2 

      9           0 0 0 0 0 0 0 1 

3     1           0 0 1 0 0 2 0 1 

      2           0 0 0 0 0 0 1 1 

      3           0 0 0 0 0 0 0 1 

      5           0 0 0 0 0 0 0 1 

      8           0 0 0 0 0 0 0 1 
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Table 4. Summary of the sNPLS model fitted with the finale selection (2 components, 3 variables per 

component in the second mode and 8 in the third mode) 

 

R> summary(fit) 

 

sNPLS model with 2 components and squared error of 0.047  

  

Coefficients:  

        Z.1    Z.2    Z.3    Z.4    Z.5    Z.6    Z.7    Z.8 

X.1   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

X.2   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

X.3   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

X.4  -0.041 -0.041 -0.043 -0.049 -0.074 -0.040 -0.042 -0.029 

X.5   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

X.6   0.019  0.026  0.024  0.027  0.021  0.025  0.018  0.036 

X.7   0.070  0.089  0.086  0.095  0.087  0.088  0.069  0.115 

X.8  -0.030 -0.038 -0.037 -0.041 -0.038 -0.038 -0.030 -0.050 

X.9  -0.009 -0.009 -0.010 -0.011 -0.017 -0.009 -0.009 -0.006 

X.10  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

X.11  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
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Table 5. Predictions performed by the sNPLS model 

 

            Y.1 

 [1,] 1.4196482 

 [2,] 0.7819288 

 [3,] 0.9619593 

 [4,] 1.0523621 

 [5,] 1.2585099 

 [6,] 0.7243910 
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Table 6. Summary of the standard NPLS model fitted with 2 components. 

 

Coefficients:  

        Z.1    Z.2    Z.3    Z.4    Z.5    Z.6    Z.7    Z.8 

X.1   0.015  0.017  0.017  0.017  0.017  0.015  0.014  0.021 

X.2  -0.019 -0.019 -0.020 -0.017 -0.023 -0.014 -0.019 -0.021 

X.3  -0.006 -0.008 -0.008 -0.011 -0.005 -0.010 -0.004 -0.012 

X.4  -0.025 -0.024 -0.026 -0.022 -0.030 -0.018 -0.025 -0.027 

X.5   0.010  0.013  0.013  0.016  0.009  0.015  0.007  0.019 

X.6   0.024  0.028  0.028  0.031  0.026  0.028  0.020  0.036 

X.7   0.054  0.058  0.061  0.060  0.061  0.053  0.049  0.073 

X.8  -0.023 -0.027 -0.028 -0.030 -0.024 -0.028 -0.019 -0.036 

X.9  -0.034 -0.034 -0.037 -0.033 -0.039 -0.028 -0.032 -0.040 

X.10 -0.007 -0.010 -0.009 -0.013 -0.006 -0.013 -0.004 -0.015 

X.11  0.017  0.019  0.020  0.020  0.020  0.017  0.016  0.024 
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Figure 1: Computing times of cv_snpls under 

different conditions of grid length and number 

of cores. The function scales efficiently up until 

8 cores.
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Figure 2: Results of cross-validation. Lines depicting the cross-validated 

error (CVE) for each combination of the parameters are presented in a grid 

layout combining KeepJ values (number of variables selected), KeepK values 

(number of elements of the third mode) and Ncomp values (number of 

components).
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Figure 3: Kernel density plot with the result of the repeated cross-validation. Highest 

density lies around keepJ=9 and keepK=1. Points scaled in size by frequency of 

appearance are additionally included on top of the density plot. The number of 

components is not represented since it was constant at 2 in all repetitions of the cross-

validation.
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Figure 4: Results of the repeated cross-validation function performed on the bread 

dataset. The plot consists on the faceted representation of a three-dimensional 

density plot sliced in different planes (one per number of components). The kernel 

density estimation is created with the observed frequencies of the combinations of 

the different parameters. Additionally, points scaled in size by frequency of 

appearance are added to the density plots.
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Figure 5: Score plot of the two first components in the T matrix.
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Figure 6: Score plot of the two first components in the U matrix
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Figure 7: Weights Plot of the WJ weights matrix
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Figure 8: Weights Plot of the WK weights matrix
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Figure 9: Plot of the second mode
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Figure 10: Plot of the third mode
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Figure 11: Plots of the standard N-PLS model


