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ARTICLE INFO ABSTRACT

Keywords: Irrigated agriculture is very important for securing food production for an increasing population over the next
Irrigation scheduling decades. Given scarcity of water resources, optimal irrigation management is needed to reduce water while re-
Data assimilation alizing maximal crop productivity. The new method of integrating soil water content measurements and the
Real-time control Community Land Model (CLM) using sequential data assimilation (DA) is promising to improve the prediction of

Citrus trees

soil water status and efficiently design irrigation strategies. Soil water content measured by FDR (Frequency Do-
Land surface model

main Reflectometry) was assimilated into CLM by LETKF (Local Ensemble Transform Kalman Filter) to improve
model predictions. Atmospheric input data from GFS (Global Forecast System) were used to force CLM in order
to predict short-term soil water contents. The irrigation amount was then calculated on the basis of the difference
between predicted and targeted soil water content over the root zone.

During the real-time irrigation campaigns in Picassent (Spain) in 2015 and 2016, there were 6 fields irrigated
according the data assimilation-optimization approach (CLM-DA), 2 further fields according the FAO (Food and
Agriculture Organization) water balance method and also 2 fields traditionally according the farmers preference.
The required amount of irrigation water for each citrus field was applied by SCADA (supervisory control and
data acquisition system). Compared with the traditionally irrigated fields by farmers, 24% less irrigation water
was needed for the CLM-DA scheduled fields averaged over both years from July to September, while the FAO
fields were irrigated with 22% less water. Stem water potential data and soil moisture recordings of the CLM-DA
scheduled fields did not indicate significant water stress during the irrigation period. The CLM-DA scheduled
fields received less irrigation water than traditionally irrigated fields, but the orange production was not signifi-
cantly suppressed.

Overall, our results show that the CLM-DA method is attractive given its water saving potential and auto-
mated approach, ease of incorporation of on-line measurements and ensemble based predictions of soil moisture
evolution.

Stem water potential method
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1. Introduction
1.1. Water scarcity and irrigation scheduling

The world’s population has exceeded 7 billion and will continue
to increase with a high rate (https://en.wikipedia.org/wiki/World_
population). To feed the increasing population, our agriculture must
produce more food. Irrigated agriculture accounts for 40% of food pro-
duction, and 70% of fresh water withdrawals are used by irrigation
(Vereechen et al., 2009; Playan and Mateos, 2006). Irrigation is impor-
tant for the food security of the world (McLaughlin and Kinzelbach,
2015).

Given climate change and increased groundwater pollution, we are
facing a global water crisis and stronger constraints on water resources
(Vorosmarty et al., 2000; Iglesias and Garrote, 2015). Groundwater
recharge in semi-arid areas is usually limited, resulting in unsustain-
able groundwater use for irrigation and groundwater depletion (Scanlon
et al., 2012). Therefore, efficient water use by irrigation scheduling is
needed to allocate irrigation water rationally.

Irrigation scheduling aims to minimize water use while maintaining
the agricultural production (Evans et al., 1991). Scheduling efforts can
have a long-term focus or short-term focus, which includes real-time
scheduling (Ticlavilca et al., 2013). With irrigation scheduling we de-
cide when and how much to irrigate. When to irrigate is related to
the sensitivity of crops to water stress, which determines the thresh-
old when yield and quality reduction occur under water shortage. How
much should be irrigated depends on the water deficit between the cur-
rent and targeted water status (Evans et al., 1991). In order to make de-
cisions regarding irrigation scheduling, the water stress condition needs
to be known. Depending on the type of water stress information avail-
able, the irrigation scheduling approaches can be divided into: soil mois-
ture measurements based, evapotranspiration (ET) based and plant wa-
ter stress based (Evans et al., 1991; Jones, 2004; Pardossi and Incrocci,
2011).

Many devices can give information on soil moisture status includ-
ing dielectric sensors using Time Domain Transmissivity (TDT) and Fre-
quency Domain Reflectometry (FDR) (Peters et al., 2013), tensiome-
ters (Smajstrla and Locascio, 1996), capacitance probes (Fares and Alva,
2000), neutron probes and cosmic-ray probes (Zreda et al., 2012). The
combination of soil moisture information from sensors and predictions
by a given model allows to calculate the future water deficit (Blonquist
et al., 2006):

The ET based irrigation scheduling calculates the irrigated water
amount by the difference between daily actual ET and precipitation
(Davis and Dukes, 2010). Evapotranspiration is defined as the sum of
evaporation from the soil surface and transpiration from the crop (Allen
et al., 1998).

Water stress information from crops can be obtained by different
indicators like sap flow (Fernandez et al., 2001), stem water potential
(Choné et al., 2001) (Fernandez and Cuevas, 2010), trunk diameter fluc-
tuation (Moriana et al., 2010), leaf stomata pressure, canopy temper-
ature (Clawson and Blad, 1982) and crop water stress index (CWSI)
(Moran et al., 1994).

1.2. Drip irrigation scheduling for citrus
Compared with all the major types of surface irrigation (furrow,

flood, or large scale sprinkler irrigation), drip irrigation is seen as
the most water-efficient and precise method

Agricultural Water Management xxx (2018) x¢x-xxx

(Provenzano, 2007). Lots of irrigation scheduling methods were tested
on drip irrigated fields on the base of measuring soil or plant water sta-
tus and evapotranspiration (Dabach et al., 2013). For the drip irriga-
tion of citrus trees, there are plenty of different indicators of plant water
stress like stem water potential and soil capacitance, and also several
ways to determine evapotranspiration like the FAO method, lysimeter
and eddy covariance (EC) method (Jiménez-Bello et al., 2015).

Stem water potential (Sdoodee and Somjun, 2008) and daily trunk
shrinkage (Velez et al., 2007) were used to schedule irrigation for cit-
rus orchards world widely. Also the water balance method for drip ir-
rigation scheduling is popular. For example, Sammis et al. (2012) used
a two-dimensional soil water balance model for drip irrigation schedul-
ing.

The traditional way of drip irrigation scheduling was often based on
a simple water production function or water balance model, while ig-
noring the complex interaction between soil and vegetation (Barrett and
Skogerboe, 1980). A new development is the use of complex models
and weather data, combined with mathematical optimization methods
(Shang and Mao, 2006). Advanced modeling and programing technol-
ogy offers a new possibility to calculate soil water status. Various con-
trolling and decision support methods were introduced into irrigation
scheduling.

Simulated annealing (Brown et al., 2010), genetic algorithms (Irmak
and Kamble, 2009; Wardlaw and Bhaktikul, 2004) and computational
neural networks (CNN) (Pulido-Calvo and Gutiérrez-Estrada, 2009)
were used to support decisions concerning the irrigated water amount.
To predict short or medium scale soil water balance conditions, weather
forecast data are also important (Lorite et al., 2015).

In this work, the Community Land Model (CLM) (Oleson et al., 2010)
is used to estimate soil and crop water states. Data assimilation (DA)
combines direct and/or indirect measurements and dynamic models to
get optimal estimates of model states (Reichle, 2008). Han et al. (2016)
already illustrated the potential of sequential DA to improve irrigation
scheduling with CLM model predictions. In the past already hydrologi-
cal models like HYDRUS (Autovino et al., 2018) and simpler water bal-
ance models (Rallo et al., 2017) were used for irrigation scheduling, but
not a land surface model that couples the water and energy cycles. The
use of data assimilation in this context is also a novel contribution for
the irrigation scheduling of citrus or other fruit trees.

The main objective of this paper is to provide a new approach for ir-
rigation scheduling by introducing the combination of data assimilation
and land surface modeling, with the possibility of real-time on-line con-
trol and the possibility to ingest different types of measurement data.
The CLM-DA method combines model predictions by a land surface
model, weather prediction and soil moisture data measured by capaci-
tance probes.

We illustrate our approach for the near real-time irrigation sched-
uling of citrus trees near Picassent, Valencia (Spain). During the ir-
rigation campaign for the Picassent site (near Valencia, Spain) from
July to October in 2015 and June to October in 2016, three differ-
ent irrigation scheduling methods were tested for 10 citrus fields, in-
cluding the CLM-DA method proposed in this paper, the FAO wa-
ter balance model and a traditional method based on farmer’s expe-
rience. The CLM-DA method combines model predictions by a land
surface model, weather prediction and soil moisture data measured
by capacitance probes. These information sources are optimally com-
bined wusing sequential data assimilation, to predict drought
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stress for the next days and schedule irrigation accordingly. The applied
irrigation amounts were measured by a water meter, and then divided
by the irrigation area to get the water depth. Stem water potential and
citrus production indicating the possible water stress were also mea-
sured.

2. Materials and methods
2.1. Research site and experimental set-up

The research site is located near Picassent in Spain (39.38°N,
0.47°E), in a semi-arid region. Precipitation is concentrated in spring,
autumn and winter, and the yearly average precipitation amount is
453 mm, with an annual average daily maximum temperature of 22.3°C
and an annual average daily minimum temperature of 13.4°C (https://
en.wikipedia.org/wiki/Valencia#Climate). The crop growing at the test
site is citrus, with major management procedures like fertilization and
weeding carried out by the orchard owners. Although the citrus vari-
eties differ between the fields, there are no significant differences in
crop management, fertilization and tree ages. Information on field-spe-
cific tree ages were lacking, but all the trees were mature (older than
15 years) and in full-production stage. As precipitation during the main
growing period of citrus in summer is rare, the water demand of the cit-
rus trees almost entirely depends on irrigation. Drip irrigation is being
used in these citrus tree fields, with two pipelines and 8~10 emitters for
each tree. Detailed information about the types of citrus plant, spacing,
and vegetative growth character can be found in Table 1.

Within the area of Picassent, the meteorology observatory of IVIA
(Instituto Valenciano de Investigaciones Agrarias) provides meteorolog-
ical data (http://riegos.ivia.es/). Twelve FDR probes were installed in
the context of the EU-project AGADAPT since 2013, spreading over the
irrigation plots (see Fig. 1), measuring soil water content at four depths
(10cm, 30cm, 50cm, and 70 cm). During June and July 2015, 12 more
FDR probes were installed in the field to enhance the observation den-
sity. The FDR probes were installed close to drip emitter and a repre-
sentative tree of average size in the orchard. The FDR soil water content
measurements (10cm and 30cm) in the irrigated area were used in the
DA system for irrigation scheduling, because most roots of citrus trees
are located in the top 50cm. FDR measurements at 50cm and 70cm
depth were later used as independent verification data for possible wa-
ter depletion. During the irrigation period, the stem water potential was

Table 1

Agricultural Water Management xxx (2018) x¢x-xxx

also measured for each field, covering the different irrigation scheduling
methods.

Three different irrigation scheduling schemes were compared for
this site: irrigation scheduling according (i) CLM-DA calculation (CLM
fields), (ii) the FAO water balance model (FAO fields) and (iii) farm-
ers’ experiences (Farmer fields). The irrigation scheduling schemes were
assigned to different fields in the following way: (1) CLM-DA method:
fields CLM-A, CLM-B, CLM-C, CLM-D, CLM-E and CLM-F; (2) FAO water
balance: fields FAO-A, FAO-B; (3) farmers’ experience: fields Farmer-A,
Farmer-B. In June drip irrigation was applied on Monday, Tuesday,
Wednesday, Friday and Saturday night (five times per week). In July
and August also on Thursday there was irrigation. From September
and October onwards, depending on the weather and fruit matura-
tion process, irrigation frequency was reduced and finally stopped. All
the experimental fields share the same irrigation frequency while only
CLM-DA and FAO fields got suggested irrigation time from the calcula-
tions of different methods. The irrigation at the Farmer fields was con-
ducted according the farmer's experience. The irrigation time of Farmer
fields ranged from 1 to 2h depending on the flow speed and technician’s
evaluation of water demand for trees.

For the CLM-DA method, there are six fields involved in the irriga-
tion scheduling in 2015 and 2016. Compared with the experiment of
2015, the data assimilation and irrigation controlling process of 2016
were slightly modified to avoid problems which occurred in 2015. As
the applied irrigation water amounts in 2015 were affected by the vari-
able flow velocity of the drip line, in 2016 the flow velocity data were
retrieved every 3 days, which allowed more accurate irrigation duration
so that the truly applied irrigation amount was closer to the scheduled
irrigation amount. The needed irrigation amount (which was converted
in an irrigation duration) was sent to the technicians in Valencia twice
per week to do the real-time control of drip irrigation (period July 7-Oc-
tober 31 2015). In 2016, the irrigation scheduling was from June 1 to
October 31 and the corresponding irrigation time was applied directly
through SCADA (Supervisory Control And Data Acquisition system) for
each CLM-DA field. In 2016 the truly applied irrigation amounts were
available shortly after the irrigation was done.

2.2. FAO soil water balance based irrigation scheduling

The FAO56 procedure uses the following basic water balance model
(Rallo et al., 2011):

The types of citrus tree, spacing, ground cover, drip irrigation design including emitters per tree and flow rate (Q) for the different fields involved in the study (CLM-DA, FAO and Farmer).

Fields Area (m?) Citrus variety Ground Cover Row distance (m) Tree distance (m) Emitters per tree Q (I/h)
CLM-A 8210 Valencia Late 0.33 3.5 3.5 8 2.5
CLM-B 12375 Hernandina 0.70 4.5 5 10 3.5
CLM-C 4502 Clemenules 0.67 4.5 5 10 3.32
CLM-D 3031 Clemenules 0.48 5 5 12 5.6
CLM-E 9573 Navelina 0.45 6 5 10 1.9
CLM-F 8978 Hernanadina 0.46 6 4 10 3.7
FAO-A 3288 Lane Late 0.49 4.5 3.5 10 3.9
FAO-B 5340 Orogrande 0.60 5 5 10 4.5
Farmer-A 10583 Orogrande 0.60 5 5 10 4.4
Farmer-B 8670 Hernandina 0.60 5 5 10 2.3
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CLM-A
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Farmer-A

Fig. 1. The distribution of the fields (with their numbers listed) and indication of the irrigation scheduling method applied (red fields: CLM, green fields: FAO, purple fields: Farmer) for
each of the fields. The blue dots and red triangles are symbols of FDR probes which were installed in the irrigated and not irrigated area. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
Di=Di+ET¢—Fi—1;+ R+ DP; @

where D; is the water depletion at day i, D; . is water depletion at the
previous day i-1, ET¢ is crop evapotranspiration, P; is precipitation, I
is irrigation, R; is net runoff and DP; is deep percolation. Ideally, runoff
can be neglected in flat terrain, and deep percolation is set to zero to

avoid water losses (Davis and Dukes, 2010).
The actual crop evapotranspiration (ETg) can be calculated from the

reference evapotranspiration (ET() and the crop coefficient (K¢).
ETe=Kc-ETy @

Reference evapotranspiration is calculated by the FAO Pen-
mann-Monteith method (Allen et al., 1998). The crop coefficient may
change as function of the vegetation development and the evolution of
ground cover, the values of which are available from field experiments
or remote sensing (Bausch, 1995).

For the FAO water balance method applied in our fields, the irriga-
tion amount was set equal to the water depletion at previous day D;, and

the K¢ was taken to calculate ET (Castel, 2000):

KEe= Kc&vg * f cmonth (3)

Ko =0.2744+GC 0.005(20% < GT <70%)

g

where Kcayg depends on ground cover GC (Miralles et al., 2011) and the
femonth 1S @ correction factor which depends on the month of year and is

used by the Irrigation Advisory System of Valencia for fruit trees (http:
//riegos.ivia.es/).

2.3. Real-time drip irrigation scheduling by the help of CLM and data
assimilation

2.3.1. Land surface model

The Community land model (CLM4.0) is the land surface model of
the Community Earth System Model (CESM1.1.2), which describes the
ecological and hydrological processes relevant for irrigation optimiza-
tion and the interaction between the atmospheric boundary layer, soil
and vegetation, and is widely used in climate, hydrology and other envi-
ronmental research (Oleson et al., 2010). A modified Richards equation
and Monin-Obukhov similarity theory are used to simulate the soil wa-
ter flow and land-atmosphere exchange fluxes. The land surface hetero-
geneity of CLM is represented by 3 levels of sub-grid hierarchy including
land units (urban, glacier, lake, wetland and vegetated), columns and
16 plant functional types (PFT) (Oleson et al., 2010).

In this study, in order to use the irrigation model in CLM, each
grid cell has two columns: a bare soil non-irrigated column (67%) and
a vegetated irrigated column (33%). The plant functional type cho-
sen to represent the citrus tree in our model is evergreen broadleaf
tree, which has many similarities with citrus trees. The root distri-
bution parameters were modified as



D. Lietal

described by Han et al. (2016) so that most roots are located within
50cm soil depth, which is in correspondence with the shallow rooting
of irrigated citrus trees as detected by experimental data.

The vertical soil profile in CLM is divided into 15 layers, while only
for the upper 10 layers soil water content is calculated. Only these 10
layers will be considered for state updating by data assimilation. The
thickness of the CLM layers varies between 1.75cm for the first layer
and 1.51m for the 10th layer (Han et al., 2014). We took the bottom
of the third layer (9.06 cm depth) and 5th layer (28.91 cm depth) as the
counterparts for FDR measurements at 10cm and 30 cm depth.

In CLM, soil hydraulic parameters and soil matric potential are cal-
culated from the sand and clay fractions and in-situ measurement data
of soil texture were used for the site (silty clay: silt 33%, clay 32% and
sand 35%). The soil hydraulic parameters like saturated hydraulic con-
ductivity are calculated from the Clapp-Hornberger pedotransfer func-
tion using as input sand and clay content, as well as organic properties
of each soil layer.

2.3.2. Data assimilation

Data assimilation is applied in this work to use available soil mois-
ture data to correct predictions by the Land Surface Model CLM in a
probabilistic manner. It updates the current system states and should
give better estimates of future system states, together with a characteri-
zation of the uncertainty of the estimates (Evensen, 2003).

Ensemble Kalman Filter (EnKF) is the Monte Carlo approximation of
the Kalman filter that estimates state variables through a forecast and
analysis process, where the model covariance matrix is estimated from
a limited number of ensemble member which avoids the very expensive
explicit computation of the model covariance matrix (Evensen, 2003).
In this work, the Local Ensemble Transform Kalman Filter (LETKF) is
used, which is a deterministic variant of the Ensemble Kalman Filter. It
has been widely used by scientists in land surface hydrology and meteo-
rology (Hunt et al., 2007; Miyoshi et al., 2007; Han et al., 2014, 2015).
More details of LETKF can be found in Hunt et al. (2007).

Compared with traditional ensemble Kalman filters, LETKF is more
efficient. In LETKEF, the global state and observation matrices are only
prepared once in a forecast step, then each model grid is updated sep-
arately along with the local analysis error covariance matrix, avoiding
the calculation of a large error covariance matrix (Han et al., 2014). By
dividing the global model grid into separate local patches, each grid cell
of the model is updated separately which can be easily exploited in par-
allel computations (Miyoshi et al., 2007).

In the global operation step of LETKF, two global matrices X and Y
are constructed based on soil water content modeled by CLM for each
grid cell.

XP— [ — %0 Xy — %] 5)
[ h _b 1] _h
Y =[w—-¥F....vu—F | ©®)
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where Xll’ XK,[ contain the modeled states for the M ensemble mem-

bers (M = 20 in this work), P is the ensemble mean; ytf yk,l are vec-
tors containing the model states at the observation locations for each
of the M ensemble members, §° is the vector of the corresponding en-
semble means and H is the observation operator that maps between the
model space and the observation space, which is the identity matrix in

our case because of the direct observation. The model state vector xb is
constructed as:

Xb = [61,62...910]T (8)

where 01,05...01¢ are modeled soil water contents for the ten CLM lay-
ers.

In the local analysis step, the analysis error covariance matrix p° is
calculated as:

— T _ —1
P“:[(M—l)l—l—(‘i‘h) R IYL"] ©

where R is the observation error matrix, with values equal to (0.01)? on
the diagonals and zero values for the other matrix elements as correla-
tions between measurement errors are not considered; I is the identity
matrix.

The perturbations matrix W” and analysis mean w* are calculated
as:

~a1l/2
W“=[(M—1)P] a10)
-2 _ B2 vt \Tp-1,0  =b
w'=P(Y’) Ry’ -§" an

0. . .. .
where y is the observation vector containing soil water content mea-
sured by the FDR sensors and for the different layers.

Finally the new analysis matrix X° that contains the updated ensem-
bles in model space is obtained by:

X = %% + XP(W? + wd) (12)

Localization implementation implies that each model grid cell is only
updated by the closest FDR sensor observation. Ensemble inflation is
also used in LETKF to prevent filter divergence (Han et al., 2014). In this
work, only the model grid cells with FDR observations were updated by
data assimilation while soil and vegetation parameters are pre-defined
and taken from in-situ measurements and LAI data respectively. The LAI
values were calculated based on the ground coverage (GC) and an em-
pirical function derived from field measurements. A more detailed de-
scription of the data assimilation with LETKF and CLM can be found in
Han et al (2015, 2016).

1-G0O)

LAI = —13 e log(-—— 22
S wers

) 13)

2.3.3. CLM-DA irrigation scheduling
After the data assimilation analysis, the updated initial model states
in the form of soil water content values are used
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as input for predicting the evolution of soil water content values for the
next 3 or 4 days. This is done for each of the model ensemble mem-
bers so that also the uncertainty of the predictions can be characterized.
These predictions use weather forecasts as input. On the other hand, a
target soil water status is defined to sustain crop growth and yield. The
difference between the predicted soil water status and the target soil
water status is the water deficit, and irrigation scheduling is planned on
the basis of the calculated water deficit. In CLM, the target soil water
content can be defined for the irrigation needs of different crops (Oleson
et al., 2010):

Gtarget = (1 - 07) A Hmin +0.7. Hmax 14)

where Op,;, is the minimum needed soil water content to sustain com-
pletely open stomata and 6,4, is soil saturation. They are defined sep-

arately for each soil layer. The empirical parameter 0.7 was set in CLM
to match the calculated global irrigation demand for the year 2000 with
the observation data (Oleson et al., 2010).

The irrigation amount (Wgeficje) is calculated by the integrated water

deficit over the root zone (Oleson et al., 2010):
N

I/I/:ieficit = ZRi * max (etarget - 61” 0) (15)
i

where 6; is the soil water content for layer i, R; is the root fraction for

that layer, and N is the number of CLM-layers with roots, which are de-
pendent on the plant functional type (PFT) in CLM.

EXp [_raz.&i—l ) +exp [_’"ézﬂi—l)
—eXp [—raEM) +exEp [_%Za,z‘)
P A R

127« &V
R =

where Zp ; (m) is the depth from the surface to the interface between soil
layersiand i + 1, rq and rp, (both are 8.992 for citrus) are root distribu-

tion parameters for different plants (Zeng, 2001).

Forecasted weather data were used as input to the land surface
model for soil water status predictions. The T1534 Semi-Lagrangian
grid weather forecast data (0.25°) were downloaded from the NCEP
Global Forecast System (GFS) product (http://www.nco.ncep.noaa.gov/
pmb/products/gfs/) inventory twice per week. For land surface model
predictions and irrigation scheduling from Monday to Wednesday the
GFS-forecast from Sunday was used, whereas for land surface model
predictions and irrigation scheduling from Thursday to Sunday the fore-
cast from Wednesday was taken. One GFS-pixel covers our complete
simulation domain and was therefore applied to all CLM grid cells. The
original GFS data were interpolated from 3-h intervals to 1-h intervals.
In the irrigation scheduling campaign of 2016, irrigation was not ap-
plied if the forecasted precipitation amount was larger than 5mm.

2.4. Stem water potential, deep soil water content measurements and
production data

We had three independent data sources to evaluate water stress
by the trees: (i) stem water potential measurements; (ii)
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deep soil water content measurements, and (iii) production data. These
sources of information will be discussed in addition.

During the irrigation campaign, stem water potential (SWP) was
measured with pressure chamber equipment (Model 600 Pressure
Chamber, PMS Instrument Company, Albahy, USA) by following the
method descried by Turner (1981). Even though the stem water poten-
tial has no direct quantitative relation with the soil water content, it is a
sensitive indicator of crop water stress and can be used to evaluate the
water deficit condition of the fields. In the irrigation periods, stem water
potential was measured every 2 weeks at noon with a sample of 5 trees
per field and 4 leaves per tree. They were chosen from at least three dif-
ferent emitter lines and always including the tree where the FDR probe
was placed. After 2h in the plastic bag, leaf water potential will be equal
to the stem water potential. Then the leaves were sealed into the air
chamber with a part of petiole exposed outside. The increased air pres-
sure that makes water coming out from the cut surface of petiole is con-
sidered as the water tension within the leaves. The measured value of
water potential is normally negative, which symbolizes the level of wa-
ter stress and water deficit of the plants. Low stem water potential may
cause the closure of stomata, the commonly used threshold is —1.5MPa
(Blonquist et al., 2006).

Soil water content measured by FDR sensors at 50cm and 70cm
depth was not used in the data assimilation, but was used as a further
indicator of possible water stress. The drop of deep soil water content
in the irrigation season is linked to the possibility that not enough drip
irrigation is applied.

The fruit production data for each field were also collected at the
end of the season to support the evaluation. The production is the com-
mercial yield that farmers sold to cooperatives. Unfortunately, not for
all fields production data could be obtained as not all farmers collected
this information. Reduced fruit production can be another indicator of
the existence of water stress during the past growing season, but there
are other possible explanations for a relatively small fruit production
not related to drought stress.

2.5. Statistical analysis of the performance of the irrigation scheduling
methods

The predictions by the models were evaluated by the Root Mean
Square Error (RMSE) according to:

RMSE = 17)

where 6,, is the CLM modeled soil water content, 6, soil water content

measured by FDR probes and n is the number of time steps within the
modeling period.

In order to explore the efficiency of the CLM-DA based irrigation,
the irrigation amounts for the different fields (CLM-DA method,
FAO-method and Farmer approach) were compared. The applied water

volume was divided by the area (mz) of each field, and the water depth
(mm) for each irrigation day was calculated. Possible drought stress was
analyzed with help of the data from the stem water potential campaigns,
fruit production measured at the end of the season and measured soil
water content at 50cm and 70 cm depth, which were not assimilated.

Integrated stem water potential (ISWP) was calculated based on the
following function (Garcia-Tejero et al., 2010):
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i=t
1
ISWP = ZPi+1 (ni+1 _”i) + ) (Pi_Pi+1) ("i+1 —ni) (18)
i=1

where P; and P; 4 1 are midday stem water potential measurements at
day i and day i+1 day, (n; 4+ 1 - n) is the interval in days between two

measurements (14 days for our fields), t is the integration time.

We also calculated the Seasonal Irrigation Performance Indicator
(SIPI) for the period July-September, which is potentially most affected
by drought stress, for the years 2015 and 2016. SIPI is an indicator for
the water saving performance of each irrigation method. It was calcu-
lated as ratio between actual evapotranspiration (ET¢) and the incoming

water flux (irrigation water and rainfall) in the same period. Therefore,
irrigation amount and ET and ET; were determined for these periods,

with K¢ factor derived by the method in Section 2.2.

A statistical analysis was performed on the basis of measured in-
tegrated stem water potentials, soil water contents, irrigation amount,
commercial fruit production and irrigation performance index. We cal-
culated Pearson correlation coefficients between variables, and analyzed
(linear) relationships between variables.

3. Results and discussion
3.1. Selection of the fields for evaluation in 2015 and 2016

Three CLM fields (CLM-D, CLM-E, CLM-F) were excluded from the
analysis in 2015, as for those fields the scheduled irrigation scheme
was not followed. Fig. 2 illustrates the comparison between sched-
uled and real-applied irrigation amounts, including the three incon-
sistent CLM fields. In two cases the farmers did not follow the rec-
ommended irrigation amount, and in one case flow velocity in the
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significantly from the anticipated value. In all cases, more irrigation was
applied than planned as shown in Fig. 2.

For the irrigation period 2016, again three CLM fields (CLM-A,
CLM-C, CLM-F) were excluded from the analysis. The soil moisture sen-
sor for field CLM-C showed permanently saturated conditions and the
FDR sensor for field CLM-A broke one month after the start of irrigation
scheduling. The experiment in field CLM-F was aborted by the request of
the field owner in the middle of August, as he was worried that our irri-
gation scheduling scheme could compromise the production. However,
neither stem water potential measurements nor visual inspections at site
indicated drought stress. The other three CLM fields (CLM-B, CLM-D,
CLM-E) followed the CLM-DA irrigation scheduling scheme, with ap-
plied irrigation amounts close to the calculated amounts most of the
time. This is also related to the fact that in 2016 water flow speeds were
re-calculated on the basis of a near real-time comparison of scheduled
and applied irrigation amounts, and corrected if necessary. The real ap-
plied irrigation amounts for field CLM-D in June and July were smaller
than the calculated one, as the administrator of the irrigation system ac-
cidentally stopped the irrigation on some days in this period.

3.2. The forecasted precipitation

The irrigation prediction for the next few days is also dependent on
the accuracy of the weather forecast, in particular the amount of pre-
cipitation. Fig. 3 compares the forecasted and observed precipitation for
the site. Mostly, the forecasted precipitation is higher than the observed
one. Nevertheless, most of the precipitation events were predicted by
GFS. In the irrigation period from July to October in 2015, the sum of
the forecasted precipitation amount was 328 mm, compared to a mea-
sured amount of 193 mm. From June to October 2016, the sum of the
forecasted precipitation amount was 156 mm, compared to a measured
amount of 100 mm.

irrigation system differed
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Fig. 2. Comparison of irrigation amounts calculated for CLM-DA and truly applied irrigation amounts for all CLM-DA (A~F) fields in 2015 and 2016.
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Fig. 3. Comparison of forecasted and measured monthly precipitation for 2015 and 2016.

In October (both in 2015 and 2016) the forecasted precipitation was
much higher than the observed one. The forecast biases in 2015 and
2016 were mainly related to October. In October, larger precipitation
amounts are related to mesoscale systems which form over the relatively
warm Mediterranean Sea and it seems that the prediction of the precip-
itation associated with those systems was more difficult.

3.3. Stem water potential and deep layer soil water centent data for the
evaluation of water stress

Previous research for citrus trees suggested that the minimum wa-
ter potential value at wilting point can be down to —1.7MPa for
young leaves, and —1.9MPa to — 2.6 MPa for mature leaves (Syvertsen
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also reported that citrus trees under regulated deficit irrigation can have
a threshold stem water potential of —1.84MPa (Ballester et al., 2014).
So we got the conclusion that if stem water potential is lower than
— 1.8 MPa a negative impact on citrus trees is expected. As shown in Fig.
4, in 2015 two of the CLM-DA fields (CLM-A, CLM-B) may have experi-
enced water stress at one measurement day in August, and this was also
the case for one FAO field (FAO-B). This water stress might be related
to the high water vapor pressure deficit that day, which might have re-
sulted in stomata closure irrespective of irrigation amount and soil wa-
ter status (Ballester et al., 2011). From June to October in 2016, Fig. 4
indicates the possible water stress in July for field CLM-D, related to ir-
rigation scheduling which did not follow the CLM-DA suggestions and
was too low. At the end of October, with the harvest season coming for
some fields and given predicted precipitation events, the irrigation was
stopped by the technicians resulting again in drought stress. In all other
cases there was no drought stress according to these measurements.

As shown in Fig. 5, soil water measured at 50cm and 70cm depth
for the three CLM fields did not show a decreasing trend over the irri-
gation season in 2016, which implies that irrigation was not too small,
which would cause decrease of soil water contents. Soil water contents
measured at 50 cm and 70 cm depth for the fields irrigated according the
FAO and Farmer methods did not show a decreasing trend either.

3.4. Statistical analysis

3.4.1. Validation of the CLM-DA system

The observed and modeled soil water contents (SWC) at 10 and
30cm depth for one of the CLM fields are shown in Fig. 6. The as-
similation of FDR measurements significantly improved the SWC-char-
acterization at 10 and 30cm depth. Table 2 illus-
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Fig. 4. Stem water potential measurements (including error bars for standard deviation) for CLM fields, FAO fields and Farmer fields in 2015 and 2016.
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Fig. 5. Soil water content (SWC) measurements at 50 cm (green line) and 70cm (blue line) depth for the CLM fields, FAO fields and Farmer fields in 2016. These measurements were not
used in the assimilation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Comparison of soil water content modeled by CLM and measured by FDR (field CLM-B) at 10 and 30 cm depth for the year 2016.

Table 2

Comparison of RMSE (cm®/cm?®) between simulated and measured SWC for the CLM fields (N.A. is no data).

Fields CLM-A CLM-B CLM-C CLM-D CLM-E CLM-F
2015 0.02 0.022 0.04 0.034 0.03 0.025
2016 N.A. 0.037 N.A. 0.021 0.031 N.A.

trates that the RMSE for SWC at 10 and 30cm depth is smaller than
0.04 cm3/cm?3 for all the 6 fields in 2015. However, some of the fields
high RMSE compared to others.

show a relatively

As only states but no parameters were updated, a systematic bias of soil
properties can be expected, affecting also soil water contents.
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Unfortunately, for the experiments in 2016 three CLM-DA experi-
ments could not be considered in the analysis as discussed in Section
3.1. Therefore, the RMSE of SWC for those fields could not be calculated
and is symbolized as N.A. in Table 2.

3.4.2. Water consumption data and irrigation performance

Irrigation records for the three irrigation scheduling methods are
presented in Table 3 and Figs. 7 and 8. Overall, the CLM fields were
irrigated with a smaller water amount than the Farmer fields. In 2015
the water saving performance was even better than the FAO method
(9% less irrigation water for CLM than for FAO and 21% less for CLM
than for Farmer fields). Table 3 shows that in average the accumu-
lated irrigation depths in 2016 are slightly larger for the CLM-DA fields
(341 mm) than for the fields following the FAO method (337 mm), but
again smaller than for the Farmer fields (424mm). The averaged sea-
sonal irrigation performance index (SIPI) for 3 CLM fields in 2015 was
larger than for the FAO fields (0.71 for CLM and 0.64 for FAO), suggest-
ing better water saving performance. In 2016 the averaged SIPI for CLM
and FAO fields showed no differences (both are 0.66), and were both
larger than for the Farmer fields (0.56).

Taking the average over both years and the three months of July,
August and September, the CLM fields received 24% less irrigation wa-
ter than the fields irrigated according the Farmer method, while the
FAO fields were irrigated with 22% less water than the Farmer method.
Meanwhile, the fruit production data showed that the CLM fields had
a slightly smaller production, but given the large variation between the
fields this is not significant. In 2016, due to heavy precipitation and
strong winds in the harvest period (November and December), all the
fields suffered production loss irrespective of the irrigation method.

Fig. 7 shows that the irrigation amounts vary less between the differ-
ent months for the CLM fields than for the FAO fields. Although the dif-
ferences in irrigation amount between the fields are large, all the fields
show a similar trend in the monthly irrigation amounts, with largest ir-
rigation amounts for the months of June until August.

The temporal dynamics of irrigation depth, ET,, ET¢ and precipita-

tion for the different fields which are irrigated according different meth-
ods are displayed in Fig. 8 (except CLM-fieds which were excluded from
the analysis, see Section 3.1). The daily maximum temperature (T,,.,),
minimum temperature (T,,;,), ETy and precipitation were also shown in

Fig. 8. The ET¢ was calculated by meteorological data assuming a K¢

factor of 0.68, a typical value for citrus tree. Precipitation amounts were
higher in 2015 resulting in a higher irrigation demand than in 2016 for
all fields, irrespective of the irrigation method. In particular the larger
amounts of precipitation in September and October 2015 resulted in
a temporary irrigation stop and the overall smaller applied irrigation
amounts than in 2016.

3.4.3. Correlations between different environmental variables

Table 4 shows the correlations between different variables deter-
mined at the irrigated fields. The table shows that only two pairs of vari-
ables show larger absolute correlation coefficients: (i) SWC and ISWP,
and (ii) SIPI and accumulated water depth, simply because SIPI was cal-
culated based on incoming water depth and ET.

10
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We could not find significant correlations between fruit production
and other environmental variables. This shows that SWC and ISWP were
still in a range without or very limited drought stress, so that produc-
tion is not affected by those conditions. In addition, commercial fruit
production was affected by other conditions like heavy rain and wind
late in the season in 2016, which might have impacted the different
fields to a different degree, and which adds additional noise in the re-
lation between fruit production and other variables. Further variables
of relevance are the citrus variety and the management by the farm-
ers which differed between the fields and also might have affected pro-
duction. In summary, it can be concluded that irrigation according the
CLM-DA methodology did not reduce fruit production, and fruit produc-
tion showed larger variations between fields related to other variables
than SWC and ISWP.

3.4.4. Soil water content - stem water potential relation

As shown in Fig. 9, the soil water contents at 10cm and 30 cm depth,
show a significant linear correlation (r = 0.61) with integrated stem wa-
ter potential. This implies that plant water stress can be monitored with
help of soil water content measurements at 10cm and 30 cm depth.

3.4.5. Soil water content - incoming water depth relation

The incoming water depth is the applied irrigation plus the precipita-
tion and it is calculated for each field. Fig.10 shows that for the CLM and
FAO-fields there is a relation between average SWC and incoming water
depth. The incoming water depth is higher for fields with a low SWC,
which illustrates that irrigation is especially needed for drier fields. It
also illustrates that the irrigation amount was not too large, as the fields
which are most intensively irrigated still have an average SWC smaller
than other fields. This is not the case for the Farmer fields where aver-
age SWC is very high and the incoming water depth is also very high. It
is clear that for those fields the high irrigation amounts resulted in high
SWC reaching saturation.

4. Conclusions and outlook

During the irrigation campaign for the Picassent site (near Valen-
cia, Spain) from July to October in 2015 and June to October in 2016,
three different irrigation scheduling methods were tested for 10 citrus
fields, including the CLM-DA method proposed in this paper, the FAO
water balance model and a traditional method based on farmer’s ex-
perience. The CLM-DA method combines model predictions by a land
surface model, weather prediction and soil moisture data measured by
capacitance probes. These information sources are optimally combined
using sequential data assimilation, to predict drought stress for the next
days and schedule irrigation accordingly.

The applied irrigation amounts were measured by a water me-
ter. Stem water potential and citrus production indicating the possi-
ble water stress were also measured. The results illustrate the water
saving potential of the CLM-DA method compared to traditional ir-
rigation by farmers. The data from the different fields indicate that
18.5% less irrigation water was needed than the irrigation schedul-
ing according the Farmer method. The stem water potential and deep
soil water content data showed that during most of the irrigation pe-
riod, CLM fields were not suffering from water stress. Although us-
ing less water than the farmer fields, no significant production loss
was detected. The FAO method is also an efficient irrigation sched-



Table 3
The summary of accumulated water depth (including irrigation and precipitation), integrated stem water potential (ISWP), FDR soil water content averaged by 10cm and 30 cm measurements (SWC), seasonal irrigation performance index (SIPI) and commer-
cial fruit production (Yield) for 3 CLM fields, 2 FAO fields and 2 Farmer fields in both year of 2015, 2016 (N.A. is no data).

Fields SWC15 SWC16 ISWP15 ISWP16 water depthl5 water depth16 SIPI 15 SIPI 16 Yield (ton/h)15 Yield (ton/h)16
(cm®/cm®) (cm3/cm?) (MPa) (MPa) (mm) (mm)

CLM-A 0.29 0.28 —90.78 —83.80 308.96 421.41 0.56 0.42 43.85 35.32
CLM-B 0.3 0.32 —93.06 —-92.01 312.42 311.57 0.79 0.81 38.78 14.54
CLM-C 0.36 0.37 —78.29 —-74.75 312.74 264.8 0.77 0.93 29.32 28.88
CLM-D 0.21 0.25 —88.94 —104.71 370.35 329.44 0.55 0.64 11.55 N.A.
CLM-E 0.22 0.23 —90.70 —86.49 354.9 380.86 0.56 0.53 19.54 N.A.
CLM-F 0.34 0.35 —60.66 —68.98 398.76 419.95 0.5 0.49 27.53 25.85
FAO-A 0.28 0.31 —83.61 —69.91 318.37 324.87 0.65 0.65 36.5 35.01
FAO-B 0.2 0.22 —92.54 —83.88 361.15 348.48 0.63 0.67 50.37 N.A.
Farmer-A 0.36 0.37 —=79.21 —80.71 369.03 356.58 0.61 0.65 30.61 30.71

Farmer-B 0.34 0.36 —76.96 —83.40 509.16 490.77 0.45 0.48 27.68 14.99
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uling approach but it is highly dependent on site-specific empirical pa-
rameters.

A statistical analysis of all data collected in the field campaign re-
vealed a positive correlation between SWC and integrated stem wa-
ter potential data. This illustrates that SWC-data

12

measured at 10cm and 30cm depth are useful to detect plant drought
stress and can be used as basis to schedule irrigation. It was also
found that for the CLM and FAO-fields, the applied amount of irri-
gation correlated negatively with SWC, illustrating that drier fields
needed more irrigation and that it was the
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Correlation matrix between different variables determined at the irrigated fields: average FDR soil water content measured at 10cm and 30cm depth (SWC), integrated stem water poten-
tial (ISWP), accumulated incoming water depth, seasonal irrigation performance index (SIPI) and commercial fruit production (Yield).

SWC ISWP water depth SIPL Yield
SWC 1.00 0.61 —-0.26 0.37 —-0.07
ISWP 0.61 1.00 0.26 -0.12 —-0.09
water depth -0.26 0.26 1.00 -0.87 -0.11
SIPI 0.37 -0.12 —-0.87 1.00 —0.03
yield —-0.07 —0.09 —-0.11 —0.03 1.00
=50,
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Fig. 9. Relation between integrated stem water potential (ISWP) and soil water content measurements at 10cm and 30 cm (Average SWC) depth for all fields and both the years 2015 and

2016.

low SWC that governed irrigation amounts. On the contrary, for the
fields that were irrigated according the Farmers method high average
SWC was associated with very high irrigation amounts, indicating that
for those fields the causal relation was different from the CLM- and
FAO-fields; for the Farmer fields the high irrigation resulted in high
SWC close to saturation. The statistical analysis also revealed no signifi-
cant relation between SWC and ISWP on one hand and fruit production
on the other hand, indicating that for the range of SWC and ISWP in this
study, SWC and drought stress were not limiting factors for fruit produc-
tion.

Comparing the CLM-DA, and FAO-methods, a similar performance
was found in this study. It should be taken into account that the
FAO-method was an established methodology for these fields and pa-
rameter settings were already tuned for this approach. Therefore the
performance of the CLM-DA approach can be considered satisfying.
The main differences between the two methods are the more complex
and biophysically based model used in the CLM-DA method, the use
of measurements in near real time to actualize the model state (while
the FAO-method does not include those) and the use of a weather
forecast. It is expected that the CLM-DA method will outperform
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the FAO-method if more measurements and better weather forecast data
are available, if weather conditions are less stable and if the model is
well calibrated on the basis of locally available data.

In summary, a rational, automated approach for irrigation schedul-
ing was formulated with high potential in terms of integrating on-line
data from sensors. The advantage of the CLM-DA method is automatic
remote control, real time response, and the possibility to integrate all
kinds of soil moisture and other data into a model. For example, this
approach would also allow the integration of land surface temperature
measured at high resolution by drones.

Nevertheless, the real-world application of this method is challeng-
ing. The accurate application of the calculated irrigation water to the
fields was one of the challenges requiring intensive cooperation with
farmers and continuous maintenance of the measurement infrastructure
(e.g. soil moisture sensors). Irrigation scheduling could have been fur-
ther improved with additional data which would have allowed the esti-
mation of parameters specific for citrus trees as well as a better defini-
tion of the critical soil moisture threshold.
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