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Abstract

The convergence analysis both local under weaker Argyros-type conditions and semilocal under

ω-condition is established using first order Fréchet derivative for an iteration of fifth order in

Banach spaces. This avoids derivatives of higher orders which are either difficult to compute

or do not exist at times. The Lipchitz and the Hölder conditions are particular cases of the

ω-condition. Examples can be constructed for which the Lipchitz and Hölder conditions fail

but the ω-condition holds. Recurrence relations are used for the semilocal convergence analysis.

Existence and uniqueness theorems and the error bounds for the solution are provided. Different

examples are solved and convergence balls for each of them are obtained. These examples

include Hammerstein-type integrals to demonstrate the applicability of our approach.
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Argyros-type conditions; Fréchet derivative.
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1. Introduction

Many challenging problems in science and engineering require obtaining solutions of nonlin-

ear equations. It is extensively studied as mathematical modeling of many real-world problems

[9, 10, 27] involves differential equations, difference equations, integral equations, etc. which

leads to solving these equations. Consider

F (x) = 0, (1.1)
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where, F : D ⊆ X → Y be twice differentiable nonlinear operator in an open convex region

D0 ⊆ D for Banach spaces X and Y . Generally, one point and multi points iterative methods

along with their convergence analysis and estimation of error bounds are used for solving (1.1).

Local convergence analysis [21, 23, 28, 29, 33] involves the information about the solution

whereas the semilocal convergence analysis [7, 15, 5, 6, 22, 25, 26, 30, 32] uses information

about the initial point. The quadratically convergent Newton’s method used for solving (1.1)

is given for n = 0, 1, 2, . . . by

xn+1 = xn − ΓnF (xn), (1.2)

where, Γn = F
′
(xn)−1 and x0 is the starting point. Kantorovich [27] established sufficient

conditions for its convergence by using either majorizing sequences or recurrence relations.

But recurrence relations are often used as problems in Banach spaces here are changed to

simpler problems with real sequences and functions. Higher order iterative methods and their

convergence analysis are also used for solving (1.1). It is worth mentioning that higher order

methods require higher computational cost. Also, they involve derivatives of higher order which

are either expensive to evaluate or become unbounded. Thus, they are only of theoretical

interest.

Recently, higher order iterative methods without using higher order derivatives for solving

(1.1) have also gained importance with the advancement of technology and development of fast

computers. Thus, they are useful for applications which require quick convergence. The local

convergence of a method of third order using Argyros-type conditions on F
′

is discussed in [17].

For a third order family of iterations, it is described in [18] for the Lipschitz condition on F
′
.

It is given for n ≥ 0, by

yn = xn − θΓnF (xn),

xn+1 = xn −
θ2 + θ − 1

θ2
ΓnF (xn)− 1

θ2
ΓnF (yn), (1.3)

where, θ ∈ R− {0} and x0 is the starting point. Its semilocal convergence analysis using same

condition is given in [19]. For θ = 1, its semilocal convergence is done in [31] under Hölder

condition on F
′
. For Halley-type iterations, it is performed under the Lipschitz condition on

F
′

in [13, 14]. For the variants of the Chebyshev-Halley iteration family, it is studied in [16]

under the Hölder condition on F
′
. The local convergence analysis of deformed Halley method

on F
′

under Hölder condition is developed in [24]. Likewise, a number of iterations of fourth

order with convergence analysis using recurrence relations are also developed for solving (1.1)

under various conditions. Hueso and Mart́ınez [12] performed the semilocal convergence of a

family of iterations of higher order under the Lipschitz condition on F
′′
. It is given for n ≥ 0,
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by

yn = xn − θΓnF (xn),

zn = yn − ΓnF (yn),

xn+1 = zn − ΓnF (zn), (1.4)

where, θ ∈ R− {0} and x0 is the starting point. For θ = ±1, it leads to fourth order iterative

methods. Its local convergence analysis is carried out assuming the Lipschitz condition on F
′

in [20].

Recently, Hernández and Mart́ınez [4] developed the semilocal convergence of (1.4) for

θ = 1 under the ω-condition on F
′
. This condition is given for a continuous and non-decreasing

function ω : R+ → R+ such that ω(0) ≥ 0 by ‖F ′(x)− F ′(y)‖ ≤ ω(‖x− y‖), ∀ x, y ∈ D. This

condition generalizes the Lipschitz/Hölder condition given by ω(x) = Nx and ω(x) = Nxα, α ∈
(0, 1].

We shall describe the convergence analysis, both local and semilocal, for an iteration of

fifth order discussed in [8] using weaker Argyros-type and ω-conditions on first order Fréchet

derivative for solving (1.1) in Banach spaces. It is given for n = 0, 1, 2, . . ., by

yn = xn − ΓnF (xn),

zn = yn − 5ΓnF (yn), (1.5)

xn+1 = zn −
1

5
Γn[−16F (yn) + F (zn)],

where, x0 is the starting point. Using recurrence relations, its convergence under Lipschitz and

Hölder conditions on F
′

are provided in [1, 2, 3]. Clearly, the Lipschitz and Hölder conditions

on F
′

are not satisfied for the following nonlinear Hammerstein type [11] integral equation

x(r) +
m∑
i=1

∫ b

a
Ki(r, s)Si(x(s))ds = f(r), r ∈ [a, b], (1.6)

where functions f , Ki and Si for i = 1, 2, . . .m are known, the solution x is to be determined

and −∞ < a < b < +∞. In order to solve (1.6), we have to solve

F (x)(r) = x(r) +
m∑
i=1

∫ b

a
Ki(r, s)Si(x(s))ds− f(r). (1.7)

If S
′
i(x(s)) is (Mi, αi)- Hölder continuous in D, then, under max-norm, we have

‖F ′(x)− F ′(y)‖ ≤
m∑
i=1

Mi‖x− y‖αi , Mi ≥ 0, αi ∈ [0, 1], ∀ x, y ∈ D. (1.8)

For different αi, F
′

neither satisfies Lipschitz nor Hölder condition but satisfies the weaker

ω-condition.
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The rest of the paper is arranged as follows. In section 2, the local convergence under

weaker Argyros-type condition on F
′
for an iteration of fifth-order in Banach spaces is described.

The convergence is performed by deriving recurrence relations. The existence and uniqueness

theorems and the error bounds for the solution are provided. Different numerical examples

are also solved here. Section 3 is devoted to the semilocal convergence analysis under weaker

ω-condition on F
′

for the same iteration. Here also, the recurrence relations are used. The

existence and uniqueness theorems and error bounds for the solution are provided. Different

numerical examples are solved. Finally, conclusions are included in section 4.

2. Local convergence analysis

Here, we shall discuss the local convergence of (1.5) for solving (1.1) under weaker Argyros-type

condition on F
′

in Banach spaces. Let x∗ ∈ D, F (x∗) = 0, F
′
(x∗)−1 exists and F

′
satisfies

the following Argyros-type conditions for strictly increasing functions f0 and g0 defined on the

interval [0,∞) with values in [0,∞)

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ f0(‖x− y‖), x, y ∈ D. (2.1)

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ g0(‖x− x∗‖), x ∈ D. (2.2)

where f0(0) = 0, and g0(0) = 0. Define a parameter ρ0 by

ρ0 = {u ≥ 0; g0(u) < 1}.

For local convergence analysis, following theorem is given.

Theorem 2.1. Let x∗ ∈ D and F
′
(x∗)−1 exists such that (2.1) and (2.2) hold. If g0(ρ) < 1

then the sequence {xn} obtained by (1.5) is defined, conatined in B(x∗, ρ) and converges to x∗

for x0 ∈ B(x∗, ρ) = {x ∈ X : ‖x − x∗‖ < ρ} ⊂ D for some suitable radius ρ. Also, the error

bounds for all n ≥ 0 are

‖yn − x∗‖ ≤ h1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < ρ, (2.3)

‖zn − x∗‖ ≤ h2(‖xn − x∗‖)‖xn − x∗‖ < ρ, (2.4)

‖xn+1 − x∗‖ ≤ h3(‖xn − x∗‖)‖xn − x∗‖ < ρ, (2.5)

where, h1, h2 and h3 are the functions to be defined.

Proof. Using x0 ∈ D and from (2.2), we get

‖I − F ′(x∗)−1F ′(x0)‖ ≤ g0(‖x0 − x∗‖) ≤ g0(ρ) < 1.

Thus, Γ0 exists and using Banach Lemma for invertible operators, we get

‖Γ0F
′
(x∗)‖ ≤ 1

1− g0(‖x0 − x∗‖)
. (2.6)
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Therefore, y0 is well defined and hence z0 and x1 are well defined. For n = 0 and using (1.5),

we get

y0 − x∗ = −Γ0F
′
(x∗)

∫ 1

0
F
′
(x∗)−1[F

′
(x∗ + θ(x0 − x∗))− F

′
(x0)](x0 − x∗)dθ.

Taking norm on both sides and using (2.1) and (2.6), we get

‖y0 − x∗‖ ≤

∫ 1

0
f0(|1− θ|‖x0 − x∗‖)dθ

(1− g0(‖x0 − x∗‖))
‖x0 − x∗‖

≤ h1(‖x0 − x∗‖)‖x0 − x∗‖, (2.7)

where,

h1(u) =

∫ 1

0
f0(|1− θ|u)dθ

(1− g0(u))
.

Let g1(u) = h1(u) − 1. Then g1(0) = −1 and g1(ρ
−
0 ) → ∞. Therefore, g1(u) has a minimum

positive root r1 in [0, ρ0). Thus, for u ∈ [0, r1), we get 0 ≤ h1(u) < 1 and

‖y0 − x∗‖ ≤ h1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖. (2.8)

Again, for n = 0 and using (1.5), we get

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+ 5‖F ′(x∗)−1F (y0)‖‖Γ0F
′
(x∗)‖. (2.9)

Since,

‖F ′(x∗)−1F (y0)‖ ≤
∥∥∥∫ 1

0
F
′
(x∗)−1(F

′
(x∗ + θ(y0 − x∗))− F

′
(x∗))dθ + I

∥∥∥‖(y0 − x∗)‖
≤

(
1 +

∫ 1

0
g0(|θ|‖y0 − x∗‖)dθ

)
‖(y0 − x∗)‖, (2.10)

and on using (2.6) and (2.10), we get

‖z0 − x∗‖ ≤

(
1 + 5

(
1 +

∫ 1
0 g0(|θ|‖y0 − x

∗‖)dθ
1− g0(‖(x0 − x∗)‖)

))
‖y0 − x∗‖

≤

1 +
5
(

1 +
∫ 1
0 g0(|θ|h1(‖x0 − x

∗‖)‖x0 − x∗‖)dθ
)

1− g0(‖x0 − x∗‖)

h1(‖x0 − x∗‖)‖x0 − x∗‖

≤ h2(‖x0 − x∗‖)‖x0 − x∗‖. (2.11)

where,

h2(u) =

1 +
5
(

1 +
∫ 1
0 g0(|θ|h1(u)u)dθ

)
1− g0(u)

h1(u).
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Let g2(u) = h2(u) − 1. Then g2(0) = −1 and g2(ρ
−
0 ) → ∞. Therefore, g2(u) has a minimum

positive root r2 in [0, ρ0). Then for u ∈ [0, r2), we get 0 ≤ h2(u) < 1 and

‖z0 − x∗‖ ≤ h2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖. (2.12)

Again, from (1.5) for n = 0, and by using (2.6) and (2.10), we get

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+
1

5
‖Γ0F

′
(x∗)‖

(
16‖F ′(x∗)−1F (y0)‖+ ‖F ′(x∗)−1F (z0)‖

)
≤

(
h2(‖x0 − x∗‖) +

1

5

1

1− g0(‖x0 − x∗‖)

(
16(1 +

∫ 1

0
g0(|θ|h1(‖x0 − x∗‖)‖x0 − x∗‖)dθ)

h1(‖x0 − x∗‖) +
(
1 +

∫ 1

0
g0(|θ|h2(‖x0 − x∗‖)‖x0 − x∗‖)dθ

)
h2(‖x0 − x∗‖)

))
‖x0 − x∗‖

≤ h3(‖x0 − x∗‖)‖x0 − x∗‖, (2.13)

where,

h3(u) =

(
h2(u) +

1

5

1

1− g0(u)

(
16h1(u)

(
1 +

∫ 1

0
g0(|θ|h1(u)u)dθ

)
+

(
1 +

∫ 1

0
g0(|θ|h2(u)u)dθ

)
h2(u)

))
.

Let g3(u) = h3(u) − 1. Then g3(0) = −1 and g3(ρ
−
0 ) → ∞. Therefore, g3(u) has a minimum

positive root r3 in [0, ρ0). Then for u ∈ [0, r3), we get 0 ≤ h3(u) < 1 and

‖x1 − x∗‖ ≤ h3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖. (2.14)

Let ρ = min{r1, r2, r3}. Then, for u ∈ [0, ρ), we get 0 ≤ h1(u) < 1, 0 ≤ h2(u) < 1 and 0 ≤
h3(u) < 1. Thus, theorem is proved for n = 0. By replacing x0, y0, z0 and x1 by xn, yn, zn, xn+1

in the preceding way, we get the error bounds given by (2.3)-(2.5). Using the estimate ‖xn+1−
x∗‖ < ‖xn − x∗‖ < ρ, we get xn+1 ∈ B(x∗, ρ). Clearly, h3(u) is an increasing function in its

domain and since, h3(u) < 1 ∀ u ∈ [0, ρ), this gives

‖xn+1 − x∗‖ ≤ h3(u)‖xn − x∗‖ ≤ h3(u)h3(‖xn−1 − x∗‖)‖xn−1 − x∗‖

≤ h3(u)2h3(‖xn−2 − x∗‖)‖xn−2 − x∗‖ ≤ . . . ≤ h3(u)n+1‖x0 − x∗‖.

Thus, lim
n→∞

xn = x∗ as lim
n→∞

h3(u)n+1 = 0.

2.1. Numerical examples

In this subsection, we have worked out a number of examples to demonstrate the applica-

bility of our approach.

Example 2.1. Let X = Y = R and define F on D = (−1, 1) by F (x) = sinx+ x7/4.

It is obvious that x∗ = 0. For x, y ∈ D, we get ‖F ′(x∗)−1(F ′(x)−F ′(y))‖ ≤
(
‖x− y‖+ 7

4‖x− y‖
3/4
)
.

It is easy to see that neither Lipschitz nor Hölder conditions hold on F
′
. Clearly, f0(x) =

x + 7
4x

3/4 and g0(x) = x + 7
4x

3/4. Thus, weaker Argyros-type conditions hold on F
′
. By

applying Theorem 2.1, x∗ ∈ B(0, 0.023251).
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Example 2.2. Let X = Y = R and define F on D = (−1, 1) by F (x) = ex − 1.

Clearly, x∗ = 0. For x, y ∈ D, we have ‖F ′(x∗)−1(F ′(x) − F ′(y))‖ ≤ e‖x − y‖. Thus, F
′

satisfies both Lipschitz and Hölder conditions. Clearly, f0(x) = ex and g0(x) = (e− 1)x. Thus,

weaker Argyros-type conditions also hold. By applying Theorem 2.1, x∗ ∈ B(0, 0.05708).

Example 2.3. Consider the nonlinear Hammerstein type integral equation given by

F (x)(r) = x(r)− 5

∫ 1

0
r s x(s)1+αds, α ∈ (0, 1), (2.15)

with x(r) in C[0, 1].

Clearly, x∗ = 0. For x, y ∈ D, we have ‖F ′(x∗)−1(F ′(x) − F ′(y))‖ ≤ 2.5(1 + α)‖x − y‖α.

Thus, Hölder condition holds on F
′
. Clearly, f0(x) = 2.5(1 + α)xα and g0(x) = 2.5(1 + α)xα.

Thus, weaker Argyros-type conditions also hold. Taking α = 1/2 and by applying Theorem

2.1, x∗ ∈ B(0, 0.00087).

3. Semilocal convergence

Here, we shall discuss the semilocal convergence analysis using recurrence relations of (1.5)

for solving (1.1) under weaker ω-condition on F
′
in Banach spaces. First of all, some preliminary

results are given. Next, recurrence relations are derived. The existence, uniqueness theorems

and error bounds for the solution are also provided. Finally, different examples are solved to

demonstrate the efficacy of our approach.

3.1. Preliminary results

In this subsection, we shall describe some preliminary results used for the convergence of (1.5)

for solving (1.1). Let x0 ∈ D and Γ0 = F
′
(x0)

−1 ∈ L(Y,X) exists, where L(Y,X) denotes the

set of bounded linear operators from Y to X. Let the following conditions hold.

(1) ‖Γ0‖ ≤ β,

(2) ‖Γ0F (x0)‖ ≤ η,

(3) ‖F ′(x) − F ′(y)‖ ≤ ω(‖x − y‖), x, y ∈ D, for a continuous non-decreasing real function

ω(x), x > 0, ω(0) ≥ 0 such that, ω(tx) ≤ tαω(x) for t ∈ [0, 1], x ∈ (0,∞) , α ∈ [0, 1].

Let b0 = βw(η), and define the sequence {bn}, where,

bn+1 = bnφ(bn)1+αψ(bn)α, n ≥ 0, (3.1)

φ(u) =
1

1− u(1 + ψ(u))α
, (3.2)

ψ(u) =

(
u

1 + α
+ (u+ 1)ξ(u) +

(
u

1 + α

)
ξ(u)1+α

)
, (3.3)
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and

ξ(u) =

(
4u

5(1 + α)
+

u

5(1 + α)

(
1 +

5u

1 + α

)1+α
)
. (3.4)

In order to investigate the convergence of {xn} generated by (1.5) to a solution of (1.1), we

have to show that {xn} is a Cauchy sequence. For this, we have to study the properties of {bn}.
The following lemmas are proved to study the properties of the sequence {bn}.

Lemma 3.1. Let φ(u), ψ(u) and ξ(u) be the functions given by (3.2)-(3.4) and s0 is the mini-

mum positive root of h(u) = u(1 + ξ(u))α − 1 in (0, 1). Then

(i) φ(u) is increasing and φ(u) > 1 for u ∈ (0, s0),

(ii) ψ(u) and ξ(u) are the increasing functions for u ∈ (0, s0).

Proof. The proof is trivial.

Consider the auxiliary function

r(u) =

(
u

1 + α
+ (u+ 1)ξ(u) +

u ξ(u)1+α

1 + α

)α
− ( 1− u(1 + ξ(u))α)1+α .

Clearly, r(0) < 0, r(s0) > 0 and r
′
(u) > 0. Thus, r(u) has a real root s1 in (0, s0).

Lemma 3.2. Let φ(u), ψ(u) and ξ(u) be the functions defined by (3.2)-(3.4), respectively. If

b0 ∈ (0, s1), then

(i) φ(b0)
1+αψ(b0)

α < 1,

(ii) φ(b0)ψ(b0) < 1,

(iii) The sequence {bn} is decreasing and bn < s1 for all n ≥ 0,

(iv) bn(1 + ξ(bn))p < 1.

Proof. Taking u = b0 in r(u), we get φ(b0)
1+αψ(b0)

α < 1 for all b0 ∈ (0, s1). Since φ(b0) > 1,

this gives (φ(b0)ψ(b0))
α < 1, and hence φ(b0)ψ(b0) < 1. To prove (iii), we use mathematical

induction on (3.1). For n = 0, we get b1 = b0φ(b0)
1+αψ(b0)

α < b0. Assume that bk < bk−1

for k ≤ n. Since φ(u) and ψ(u) are increasing functions, we get bn+1 = bnφ(bn)1+αψ(bn)α <

bn−1φ(bn−1)
1+αψ(bn−1)

α = bn. Hence, {bn} is a decreasing and bn < s1 for all n ≥ 0. Since

ξ(u) is an increasing function, we get bn(1 + ξ(bn))α < bn−1(1 + ξ(bn−1))
α < b0(1 + ξ(b0))

α <

1 ∀ b0 ∈ (0, s1). This proves (iv) as bn(1 + ξ(bn))α < 1 for all n ≥ 0 and b0 ∈ (0, s1).

3.2. Recurrence relations

In this subsection, we shall establish the recurrence relations for (1.5) under the assumptions

(1),(2) and (3) described in previous subsection. The existence of Γ0 gives the existence of y0

and hence ‖Γ0‖ω(‖y0 − x0‖) ≤ βω(η) = b0. Taking n = 0, in (1.5), we get

z0 − x0 = y0 − x0 − 5Γ0

∫ 1

0

(
F
′
(x0 + t(y0 − x0))− F

′
(x0)

)
(y0 − x0)dt.
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Using norm, we get

‖z0 − x0‖ ≤
(

1 +
5b0

1 + α

)
‖y0 − x0‖. (3.5)

Similarly, ‖z0 − y0‖ ≤ 5b0
1+α‖y0 − x0‖. Now

x1 − x0 = −Γ0F (x0)−
9

5
Γ0F (y0)−

1

5
Γ0F (z0).

Using Taylor’s expansion of F (y0) and F (z0) about x0 and taking norm on both sides, we get

‖x1 − x0‖ ≤ ‖Γ0F (x0)‖+
4

5
‖Γ0‖

∫ 1

0

∥∥∥F ′(x0 + t(y0 − x0))− F
′
(x0)

∥∥∥ ‖y0 − x0‖dt
+

1

5
‖Γ0‖

∫ 1

0

∥∥∥F ′(x0 + t(z0 − x0))− F
′
(x0)

∥∥∥ ‖z0 − x0‖dt. (3.6)

Substituting (3.5) in (3.6), we get

‖x1 − x0‖ ≤

(
1 +

4b0
5(1 + α)

+
b0

5(1 + α)

(
1 +

5b0
1 + α

)1+α
)
‖y0 − x0‖

≤ (1 + ξ(b0))‖y0 − x0‖. (3.7)

Assuming that xn, yn, zn ∈ D and b0 < s0, then, recurrence relations given below can be easily

shown by mathematical induction for n ≥ 1.

(I) ‖Γn‖ ≤ ψ(bn−1)‖Γn−1‖,
(II) ‖yn − xn‖ ≤ ‖φ(bn−1)ψ(bn−1)‖yn−1 − xn−1‖,
(III) ‖zn − yn‖ ≤ 5

1+αbn‖yn−1 − xn−1‖,
(IV) ‖Γn‖ω(‖yn − xn‖) ≤ bn,
(V) ‖xn − xn−1‖ ≤ (1 + ξ(bn−1))‖yn−1 − xn−1‖.
Consider

‖I − Γ0F
′
(x1)‖ ≤ ‖Γ0‖‖F

′
(x1)− F

′
(x0)‖ ≤ βω(‖x1 − x0‖).

Using (3.7), we get ‖I − Γ0F
′
(x1)‖ ≤ β(1 + ξ(b0))

αω(η) ≤ b0(1 + ξ(b0))
α < 1. From Banach

Lemma, we get Γ1 exists and

‖Γ1‖ ≤
1

1− b0(1 + ξ(b0))α
‖Γ0‖ = φ(b0)‖Γ0‖. (3.8)

Using Taylor’s expansion of F (x1), we get

F (x1) = F (y0) + F
′
(y0)(x1 − y0) +

∫ x1

y0

(F
′
(x)− F ′(y0))dx. (3.9)

Now,

‖F (y0)‖ ≤
1

1 + α
ω(η)‖y0 − x0‖, (3.10)

9



‖F ′(y0)(x1 − y0)‖ ≤ (b0 + 1)

∥∥∥∥9

5
F (y0) +

1

5
F (z0)

∥∥∥∥
≤ (b0 + 1)

β
ξ(b0)‖y0 − x0‖, (3.11)

and ∥∥∥∥∫ x1

y0

(F
′
(x)− F ′(y0))dx

∥∥∥∥ ≤ 1

1 + α
ξ(b0)

1+αω(‖y0 − x0‖)‖y0 − x0‖. (3.12)

Taking norm on (3.9) and using (3.10),(3.11) and (3.12), we get

‖F (x1)‖ ≤
1

β

(
b0

1 + α
+ (1 + b0)ξ(b0) +

b0ξ(b0)
1+α

1 + α

)
‖y0 − x0‖

≤ 1

β
ψ(b0)‖y0 − x0‖. (3.13)

Using (3.8) and (3.13), we get

‖y1 − x1‖ ≤ ‖Γ1‖‖F (x1)‖ ≤ φ(b0)‖Γ0‖‖F (x1)‖ ≤ φ(b0)ψ(b0)‖y0 − x0‖. (3.14)

Now,

‖z1 − y1‖ ≤ 5‖Γ1‖F (y1)‖‖ ≤ 5‖Γ1‖
∫ 1

0

∥∥∥F ′(x1 + t(y1 − x1))− F
′
(x1)

∥∥∥ ‖y1 − x1‖dt
≤ 5φ(b0)‖Γ0‖

1

1 + α
ω(‖y1 − x1‖)‖y1 − x1‖

≤ 5

1 + α
βφ(b0)φ(b0)

αψ(b0)
αω(‖y0 − x0‖)‖y1 − x1‖

≤ 5

1 + α
βω(‖y0 − x0‖)φ(b0)

1+αψ(b0)
α‖y1 − x1‖

≤ 5

1 + α
b0φ(b0)

1+αψ(b0)
α‖y1 − x1‖.

This gives,

‖z1 − y1‖ ≤
5

1 + α
b1‖y1 − x1‖. (3.15)

Using (3.8) and (3.14), we get

‖Γ1‖ω(‖y1 − x1‖) ≤ φ(b0)‖Γ0‖φ(b0))
αψ(b0)

αω(‖y0 − x0‖)

≤ βω(‖y0 − x0‖)φ(b0))
1+αψ(b0)

α

≤ b0φ(b0)
1+αψ(b0)

α = b1.

This gives,

‖Γ1‖ω(‖y1 − x1‖) ≤ b1. (3.16)

Thus, the recurrence relations (I)-(IV) are proved for n = 1 by (3.8), (3.14), (3.15) and (3.16)

respectively. The recurrence relation (V) is already proved in (3.7) for n = 1. Suppose that

xk, yk, zk ∈ D, and (I)-(V) holds for n = k. In a similar manner, we can prove all the recurrence

relations (I)-(IV) by mathematical induction for n ≥ 1.
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3.3. Convergence Theorem

In this subsection, we shall give existence and uniqueness theorems for the convergence of

the sequence generated by (1.5) to the solution x∗ of (1.1). The estimation of error bounds are

also provided.

Theorem 3.1. Let x0 ∈ D and the conditions (1), (2) and (3) hold. Let b0 = βω(η) satisfies

b0 < s0 where, s0 is the smallest positive root of u(1 + ξ(u))α − 1, α ∈ [0, 1] and ξ(u) is given

by (3.4). Then, starting with x0, the sequence {xn} generated by (1.5) converges to x∗ of (1.1)

with xn, yn, zn, x
∗ ∈ B(x0, Rη) where, B(x0, Rη) = {x ∈ X : ‖x − x0‖ < R} ⊂ D, where

R = 5
1+αb0 + (1+ξ(b0))

1−φ(b0)ψ(b0) .

Proof. First of all, we have to prove that yn and zn ∈ B(x0, Rη) ⊂ D. Using recurrence relation

(V), we get

‖xn − x0‖ ≤ ‖xn − xn−1‖+ . . .+ ‖x1 − x0‖

≤ (1 + ξ(bn−1))‖yn−1 − xn−1‖+ · · ·+ (1 + ξ(b0))‖y0 − x0‖

≤ (1 + ξ(b0))
n−1∑
k=0

(φ(b0)ψ(b0))
k‖y0 − x0‖. (3.17)

Now, using recurrence relation (II) and (3.17), we get

‖yn − x0‖ ≤ ‖yn − xn‖+ ‖xn − x0‖

≤ φ(bn−1)ψ(bn−1)‖yn−1 − xn−1‖+ (1 + ξ(b0))

n−1∑
k=0

(φ(b0)ψ(b0))
k‖y0 − x0‖

≤ (φ(b0)ψ(b0))
n‖y0 − x0‖+ (1 + ξ(b0))

n−1∑
k=0

(φ(b0)ψ(b0))
k‖y0 − x0‖

≤ (1 + ξ(b0))

n∑
k=0

(φ(b0)ψ(b0))
k‖y0 − x0‖

≤ (1 + ξ(b0))
1− (φ(b0)ψ(b0))

n+1

1− φ(b0)ψ(b0)
‖y0 − x0‖ < Rη. (3.18)

Using recurrence relation (III) and (3.18), we get

‖zn − x0‖ ≤ ‖zn − yn‖+ ‖yn − x0‖

≤ 5

1 + α
b0(φ(b0)ψ(b0))

n‖y0 − x0‖+ (1 + ξ(b0))
α 1− (φ(b0)ψ(b0))

n+1

1− φ(b0)ψ(b0)
‖y0 − x0‖

≤
(

5

1 + α
b0 + (1 + ξ(b0))

α 1− (φ(b0)ψ(b0))
n+1

1− φ(b0)ψ(b0)

)
‖y0 − x0‖ < Rη.
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Now,

‖xn+1 − xn‖ ≤ (1 + ξ(bn))‖yn − xn‖

≤ (1 + ξ(bn))φ(bn−1)ψ(bn−1)‖yn−1 − xn−1‖

≤ · · · ≤ (1 + ξ(bn))

n−1∏
j=0

φ(bj)ψ(bj)

 ‖y0 − x0‖.
Now, to ensure the convergence of {xn}, we show that {xn} is a Cauchy sequence. Consider

‖xn+k − xn‖ ≤ ‖xn+k − xn+k−1‖+ . . .+ ‖xn+1 − xn‖

≤ (1 + ξ(bn+k−1))

n+k−2∏
j=0

φ(bj)ψ(bj)

 η + . . .+ (1 + ξ(bn))

n−1∏
j=0

φ(bj)ψ(bj)

 η

≤ (1 + ξ(b0))
k−1∑
l=0

n+l−1∏
j=0

φ(bj)ψ(bj)

 η

≤ (1 + ξ(b0))

k−1∑
l=0

(φ(b0)ψ(b0))
l+n η.

This gives,

‖xn+k − xn‖ ≤ (1 + ξ(b0))
1− (φ(b0)ψ(b0))

k

1− φ(b0)ψ(b0)
(φ(b0)ψ(b0))

nη.

Hence {xn} is a Cauchy sequence since, φ(b0)ψ(b0) < 1 from Lemma 3.2 and hence, it is

convergent. For n = 0 and k ≥ 1, we get

‖xk − x0‖ ≤ (1 + ξ(b0))
1− (φ(b0)ψ(b0))

k

1− φ(b0)ψ(b0)
< Rη. (3.19)

Thus, xk ∈ B(x0, Rη). Taking k → ∞ in (3.19), we obtain x∗ ∈ B(x0, Rη). Now, it is to be

shown that x∗ is a solution of (1.1). From (1.5), we have yn = xn − ΓnF (xn). This gives

‖F (xn)‖ ≤ ‖F ′(xn)‖‖yn − xn‖

≤ ‖F ′(xn)‖φ(bn−1)ψ(bn−1)‖yn−1 − xn−1‖

≤ ‖F ′(xn)‖ (φ(b0)ψ(b0))
n ‖y0 − x0‖. (3.20)

Now,

‖F ′(xn)‖ ≤ ‖F ′(xn)− F ′(x0)‖+ ‖F ′(x0)‖

≤ ω(‖xn − x0‖) + ‖F ′(x0)‖

< Rαω(η) + ‖F ′(x0)‖.

Therefore, ‖F ′(xn)‖ is bounded. Hence from (3.20), we obtain that ‖F (xn)‖ → 0 as n → ∞.

Thus by using continuity of F in D, we get F (x∗) = 0.
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Next theorem gives the uniqueness of x∗.

Theorem 3.2. If r be a positive root of

2β

1 + α
ω(R+ r)

(
1− 1

21+α

)
= 1, (3.21)

then from theorem 3.1, the solution x∗ is unique in B(x0, r) ∩D.

Proof. In order to prove the uniqueness part, suppose there exists s∗ ∈ B(x0, r) such that

F (s∗) = 0, s∗ 6= x∗. Then

0 = F (s∗)− F (x∗) =

∫ 1

0
F
′
(x∗ + θ(s∗ − x∗))dθ(s∗ − x∗) = T (s∗ − x∗),

where T =
∫ 1
0 F

′
(x∗ + θ(s∗ − x∗))dθ. Consider

‖I − Γ0T‖ ≤ ‖Γ0‖
∫ 1

0

∥∥∥(F ′(x∗ + θ(s∗ − x∗))− F ′(x0)
)∥∥∥ dθ

≤ β

∫ 1

0
ω(‖x∗ + θ(s∗ − x∗)− x0‖)dθ

≤ β

∫ 1

0
ω(‖(1− θ)(x∗ − x0) + θ(s∗ − x0)‖)dθ

< β

∫ 1/2

0
(1− θ)αω(R+ r)dθ + β

∫ 1

1/2
θαω(R+ r)dt

= 2βω(R+ r)

∫ 1

1/2
θαdt

=
2β

1 + α
ω(R+ r)

(
1− 1

21+α

)
= 1.

Thus, ‖I − Γ0T‖ < 1. Therefore, T−1 exists and hence s∗ = x∗.

3.4. Numerical examples

In this subsection, examples are solved to demonstrate the applicability of our work.

Example 3.1. Consider the following nonlinear Hammerstein type integral equation

x(r) = 1 +

∫ 1

0
K(r, s)

(
x(s)7/5 +

x(s)2

10

)
ds, (3.22)

where, K(r, s) denotes Green’s function given by

K(r, s) =

{
r(1− s), r ≤ s,
s(1− r), s ≤ r.
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From (3.22), we get,

F (x)(r) = x(r)− 1−
∫ 1

0
K(r, s)

(
x(s)7/5 +

x(s)2

10

)
ds, (3.23)

where F : D ⊆ C[0, 1]→ C[0, 1]. Therefore

F
′
(x)y(r) = y(r)−

∫ 1

0
K(r, s)

(
7

5
x(s)2/5 +

x(s)

5

)
y(s)ds.

This gives

‖F ′(x)− F ′(y)‖ ≤ 1

40

(
7‖x− y‖2/5 + ‖x− y‖

)
.

One can easily show the failure of Lipschitz and Hölder conditions and the success of ω-condition.

Here, ω(x) = 1
40

(
7x2/5 + x

)
. For x0(r) = 1, we obtain β = 5/4, η = 11/64 and α = 2/5. Thus,

the conditions of Lemma 1, Lemma 2 and Theorem 2.1 are satisfied. Hence the existence of x∗

is guaranteed in B(x0, 0.30701) and the uniqueness in B(x0, 15.14198).

Example 3.2. Consider the following nonlinear Hammerstein type integral equation

x(r) = 1 +

∫ 1

0
K(r, s)x(s)3/2ds, (3.24)

where, K(r, s) denotes the Green’s function in [0,1]. Therefore,

F (x)(r) = x(r)− 1−
∫ 1

0
K(r, s)x(s)3/2ds. (3.25)

Clearly,

F
′
(x)y(r) = y(r)− 3

2

∫ 1

0
K(r, s)x(s)1/2y(s)ds.

This gives

‖F ′(x)− F ′(y)‖ ≤ 3

16
‖x− y‖1/2.

Thus, Lipschitz condition on F
′

fails but Hölder and ω-conditions hold. Here, ω(x) = 3
16x

1/2.

For x0(r) = 1, we obtain β = 16
13 , η = 2

13 and α = 1
2 . Therefore, the conditions of Lemma

3.1, Lemma 3.2 and Theorem 3.1 are satisfied. Hence x∗ exists in B(x0, 0.23879) and unique

in B(x0, 25.03679). To get numerical solution, we approximate the following integral by using

thee Gauss-Legendre formula given by∫ 1

0
ζ(t)dt ' 1

2

m∑
j=1

βjζ(tj),
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where βj and tj denote the weights and nodes respectively and are to be determined. If xi

stands for x(ti) , i = 1, 2, . . . n, then (3.24) gives

xi = 1 +

n∑
j=1

aijx
3/2
j , i = 1, 2, . . .m (3.26)

where,

aij =

{
1
2βjtj(ti − 1) if j ≤ i,
1
2βjti(tj − 1) if j > i.

Thus, (3.26) gives

x = 1 +Bx3/2,

where, B = (bij), x = (x1, x2, . . . , xn)T and x3/2 = (x
3/2
1 , x

3/2
2 , . . . , x

3/2
n )T . The Table 1 gives

the value of weights and nodes for m = 8.

Table 1: Value of weights and nodes for m =8

j 1 2 3 4 5 6 7 8

βj 0.1012 0.2238 0.3137 0.3627 0.3627 0.3137 0.2238 0.1012

tj 0.0198 0.1016 0.2372 0.4083 0.5917 0.7627 0.8983 0.9801

Table 2: Solution of (3.26)

j 1 2 3 4 5 6 7 8

xj 0.9911 0.9587 0.9192 0.8930 0.8930 0.9192 0.9587 0.9911.

Starting with x0, we can approximate the solution by (1.5) in the following manner.

F
′
(xn)an = −F (xn)

yn = xn + an

F
′
(xn)cn = −F (yn)

zn = yn + 5cn

F
′
(xn)dn = −F (zn)

xn+1 = zn −
16

5
cn +

1

5
dn.

Figure 1: Approximate solution of (3.26)

The numerical solution is displayed in the Table 2 for x0 = (1, 1, . . . , 1)T and m = 8. In the

Figure 1, interpolating function passing through (ti, xi), is an approximate solution of (3.26).
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4. Conclusions

Local and semilocal convergence of an iteration of fifth order is established under weaker

Argyros-type and ω-conditions on F
′

for finding the solutions of nonlinear equations in Ba-

nach spaces. This avoids derivatives of higher order which are either expensive to compute or

are unbounded. Existence and uniqueness theorems and the error bounds for the solution are

provided. A number of examples including Hammerstein type nonlinear integral equation are

tested to demonstrate the applicability of our approach.
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[19] C. Chun, P. Stănică, B. Neta, Third-order family of methods in Banach spaces, Comput.

Math. Appl. 61 (2011) 1665-1675.

[20] I.K. Argyros, P. Jidesh, S. George, Ball Convergence for Second Derivative Free Methods

in Banach Space, Int. J. Appl. Comput. Math (2015) DOI 10.1007/s40819-015-0125-8.

[21] I.K. Argyros, A. S. Hilout, On the local convergence of fast two-step Newton-like methods

for solving nonlinear equations, J. Comput. Appl. Math. 245 (2013) 1-9.

[22] M.A. Hernández, The Newton method for operators with Holder continuous first derivative,

J. Optim. Theory Appl. 109 (2001) 631-648.

[23] I.K. Argyros, S. George, Local convergence for deformed Chebyshev-type method in Ba-

nach space under weak conditions, Cogent Mathematics 2 (2015) 1-12.

[24] I.K. Argyros, S. George, Local convergence of deformed Halley method in Banach space

under Holder continuity conditions, J. Nonlinear Sci. Appl. 8 (2015) 246-254.

[25] S.K. Parhi, D.K. Gupta, Relaxing convergence conditions for Stirling’s method, Math.

Methods Appl. Sci. 32 (2010) 224-232.

17



[26] S.K. Parhi, D.K. Gupta, Convergence of a third order method for fixed points in Banach

spaces, Numer. Algorithms 60 (2012) 419-434.

[27] L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford,1982.
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