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Abstract:  Adaptive reuse of historic buildings as museums is an effective strategy for 14 

retaining heritage architectures while achieving environmental sustainability objectives. 15 

Building adaptation, retrofitting and preserving optimal environments for artwork and 16 

exhibit preservation are inherently complex, multifaceted tasks. However, indoor 17 

microclimates do not only affect collections; occupants and visitors must also be 18 

considered. The aim of this research is to explore whether artwork preservation 19 

constraints in reused historic building affect patrons. The authors thereby promote a 20 

more comprehensive approach, combining the objectives of exhibit conservation, 21 

preservation of heritage buildings and adequate indoor conditions, particularly thermal 22 

comfort. Data was gathered using the Post-Occupancy Evaluation process applied to a 23 

case study where a combination of microclimate monitoring and questionnaire surveys 24 

was carried out over a 12-month period. Results demonstrate that: i) the existing 25 

microclimate did not always provide visitors with adequate thermal conditions, showing 26 

dissatisfaction during the cooling season (July-September), with average TSV values 27 

ranging from -1.03 to -1.13; ii) TSV and PMV values were significantly divergent 28 

throughout the year, with TSV mainly included within the (-1, 0, +1) band and PMV 29 

mainly within the (0, -2) band; and iii) questionnaires show that visitor choice of clothing 30 
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is made according to outdoor conditions, with some gender-related variations in the clo 31 

level (higher for women), not ensuring thermal comfort inside the museum during the 32 

warm season. Results of this research highlight the limitations of  Fanger’s model when 33 

applied to such typology of buildings, emphasising the need for more research in this 34 

field. 35 

Keywords:  Post-Occupancy Evaluation, Thermal Comfort, Indoor Environmental 36 

Quality, Historic Buildings, Museum Buildings. 37 

1. Introduction and background 38 

The International Council of Museums (ICOM) defines a museum as a, “non-39 

profit, permanent institution in the service of society and its development, open to the 40 

public, which acquires, conserves, researches, communicates and exhibits the tangible 41 

and intangible heritage of humanity and its environment for the purposes of education, 42 

study and enjoyment” [1]. Buildings not specifically designed for this purpose host a 43 

significant portion of current culture-related activities, thereby serving as de facto 44 

museums. This use poses additional challenges not only from the artworks’ 45 

preservation perspective, but also from the viewpoint of architecture conservation, 46 

which is especially testing when heritage architecture is involved. Despite the added 47 

complexity, adaptive reuse is an effective strategy for the conservation of cultural 48 

heritage, as well as for the retention of redundant buildings, which can otherwise 49 

become obsolete and deteriorate due to insufficient funds for their upgrading and 50 

maintenance. As building adaptation could be an answer to functional obsolescence 51 

caused by societal, economic and environmental changes [2], the reconversion of such 52 

heritage into culture-related uses (e.g. museums, galleries, libraries, etc.) represents 53 

an important asset for starting positive regeneration processes and has been 54 

extensively investigated by scholars [3–6]. 55 
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Although the retrofit of historic buildings has become a recurrent choice when 56 

dealing with adaptive reuse for museum uses, the embedded heritage value could 57 

represent an additional constraint in the process due to preservation requirements that 58 

can limit the range of intervention from an architectural and technological point of view. 59 

However, it is to be noted that traditional constructions could also contribute to reduce 60 

indoor microclimate variability, particularly when thick walls and porous hygroscopic 61 

materials are present, contributing to the indoor environment with a mitigation effect [7]. 62 

Additionally, authors working with historic architectures have recognised the positive 63 

role played by traditional materials and constructions in passively controlled museums’ 64 

indoor environments [8,9]. The so-called ‘environmental metabolism’ of traditional 65 

buildings is not only related to the physical characteristics of building materials, but 66 

also to an architecture and layout, which promote the building’s self-control (through 67 

elements such as under-roof cavities or other transitional spaces acting as buffers) 68 

and, therefore, a more constant response to external climatic solicitations [10].  69 

The importance of a comprehensive assessment of indoor environmental 70 

conditions for the purpose of artworks’ preservation has been overtaken by a focus on 71 

energy performance, particularly when adapting a historic building such as a museum. 72 

For instance, Lucchi developed a simplified method for assessing and comparing 73 

“Environmental and Energy Quality” (EEQ) of museum buildings in order to support 74 

decision-making processes through preliminary evaluations of the identification of 75 

potential risks for future interventions [11]. The method defined “qualitative 76 

performance indicators” that have an impact on EEQ, which were tested on 50 case 77 

studies across eight European countries, evaluating both new and retrofitted buildings. 78 

The research shows that, in general, the focus is more on a building’s environmental 79 

performance than on the energy performance and reliance on active systems, which 80 

emphasises the interest towards the building and conservation of collections. With the 81 

aim of avoiding damage over time to collections and vulnerable objects exhibited in 82 

museum buildings, Corgnati, Fabi and Filippi pointed out the importance of 83 
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microclimate conditions and their medium/long-term monitoring, suggesting a 84 

“Performance Index” to examine different parameters at the same time [12]. The 85 

relevance of indoor microclimate conditions and the importance of environmental 86 

monitoring in museum spaces has also been underscored  by a number of guidelines 87 

[13–17] and by a variety of case studies [8,18–20], demonstrating the complexity of the 88 

subject. On the other hand, D’Agostino et al. argued that, since the monitoring of 89 

indoor environmental conditions and related controlling systems is not common in 90 

museum buildings, it is preferable to focus on a preventive strategy accounting for all 91 

the Indoor Environmental Quality (IEQ) factors and “aimed to the microclimatic 92 

assessment of museum environment, the quantification of factors responsible for the 93 

degradation processes and the choice of most appropriate interventions to improve the 94 

state of conservation” [21]. 95 

The literature cited above highlights the importance of microclimate conditions for 96 

museum facilities and the collections exhibited and conserved inside them. Monitoring 97 

environmental conditions therefore becomes essential for defining preservation or 98 

retrofit strategies, as well as activities for preventive conservation. In the first instance, 99 

when performing such monitoring in historic environments on either a short-term basis 100 

(few months) or as a part of a long-term, continuous campaign, particular care must be 101 

given to the installation of sensors, for the avoidance of damage to historic surfaces 102 

and to guarantee reliability of measurements over the entire period [22]. Positioning of 103 

measuring equipment can also potentially affect data collection, as the choice 104 

regarding the location of sensors can be complex when working with museums placed 105 

in historic buildings. For instance, installation could be limited by the exhibition or room 106 

layout, the presence of decorated, unstable or damaged surfaces, the presence of 107 

factors interfering with the monitoring (such as windows) and the position of power and 108 

sockets [23]. 109 

The existing literature shows a plethora of research focused on microclimate and 110 

environmental monitoring in historic buildings and, particularly, in museum facilities, 111 
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demonstrating the significant role of field investigations. In many cases, environmental 112 

monitoring has been performed with the ultimate goals of risk assessment and/or 113 

preventive conservation [24,25], as a base for short or long-term control over 114 

significant variations of the different environmental factors involved [12,26,27], for 115 

understanding causes of deterioration and defining remediation strategies [28], or for 116 

assessing and optimising the building’s thermal and energy performance and 117 

dimensioning HVAC systems accordingly [29,30]. The focus has only shifted to the 118 

visitors after the preservation of the buildings themselves and the collections they 119 

house was thoroughly addressed. Human presence and interaction has only been 120 

marginally considered and visitors’ satisfaction in historic museum facilities is a field of 121 

research not yet fully investigated. The challenge of building preservation, 122 

safeguarding museum objects and, at the same time, accounting for human comfort 123 

has often led to the heavy integration of HVAC systems, with an important impact on 124 

architecture. In this regard, this paper attempts to promote a shift from the building and 125 

collection perspective to the users’ perspective. This approach aligns well with the idea 126 

of a “dynamic museum” [31] where the visitor is central to the process and the recipient 127 

of the experiential activity. This view does not suggest that the building and its 128 

collections are less important than users and visitors, but that a balance between the 129 

two should be sought while defining effective strategies for conservation, retrofit and 130 

adaptation of historic museum buildings. A similar goal was pursued by Pisello et al. 131 

who performed a microclimate analysis that dealt with artwork preservation and 132 

occupants’ comfort as contextual objectives [32]. Jeong and Lee investigated effects of 133 

the physical environment of museums on visitors’ satisfaction [33]. They distributed 134 

questionnaires and observed people’s behaviours in 30 museums located in Seoul and 135 

its vicinities, collecting general information on visitors, actual circulation path through 136 

the exhibition and individual perception of the museum environments, including thermal 137 

comfort.  138 
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Although the recognised importance of thermal comfort assessment in historic 139 

buildings is increasing [34], museum buildings are still not amongst the most 140 

investigated uses [35] and literature on this regard is limited. This current gap is mainly 141 

related to the many challenges connected to the contextual presence of heritage 142 

values and pieces of art, whose importance tends to overcome the need to provide 143 

visitors with a comfortable environment. However, some researchers have tried to 144 

combine visitors’ thermal comfort evaluation with indoor microclimate monitoring in 145 

museums, mainly in the attempt to reach a balance with conservation needs and 146 

energy reduction by means of climate optimisation. This is the case of the investigation 147 

conducted by Silva et al. [36], who, by highlighting the limited applicability of ISO 7730 148 

[16] and ASHRAE 55 [37] for museum environments, defined a reduced thermal 149 

sensation scale according to typical clothing ensembles documented by observing the 150 

visitors. In fact, people visiting the museum were dressed according to the outdoor 151 

climate and not for the indoor environment and, additionally, the length of their visit 152 

indoors was limited. These considerations were used to assess Predicted Mean Vote 153 

(PMV) and Predicted Percentage of Dissatisfied (PPD) for visitors and this information 154 

was then used both to assess the current thermal comfort in the national museum 155 

building in Portugal and to optimise the indoor operative temperature and relative 156 

humidity [36]. The conflict between people's comfort and the preservation of works of 157 

art was also considered by La Gennusa et al. [38]. In this study, a comparison between 158 

indoor requirements relating to people's thermal comfort and those for preserving 159 

artefacts was performed, introducing a new “simultaneousness index” (IS), defined as 160 

“the ratio between the (possible) common area for people's comfort and preserving 161 

works of art, and the whole area representing the conditions of comfort” [38]. With the 162 

main aim of reducing the overall energy consumption of a museum building in the 163 

Netherlands, Kramer et al. [39] introduced visitors’ thermal comfort as a parameter 164 

affecting the definition of the optimum set-point strategy. They did this by implementing 165 

an adaptive model derived from ASHRAE 55, remarking on the lack of guidelines on 166 
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thermal comfort specifically defined for museums and taking into consideration 167 

people’s adaptability and expectations. Additionally, three relevant thermal comfort 168 

studies in buildings were conducted by Mishra et al. [40,41] and by Kotopouleas and 169 

Nikolopoulou [42], where authors also examined transitional thermal responses of 170 

visitors and travellers. 171 

The aforementioned studies agree on the lack of research related to thermal 172 

comfort evaluation in historic museum buildings and the consequential need to adapt 173 

existing standards and guidelines for such conditions, rather than specifically 174 

addressing this issue. This research attempts to contribute to this field by implementing 175 

a Post-Occupancy Evaluation (POE) process that will enable the collection of 176 

qualitative and quantitative data on heritage museum buildings. Although a shared 177 

definition of POE does not exist (as it is actually a very flexible methodology), it is 178 

intended as “the process of ascertaining the quality and standards of design and 179 

construction” [43], or “the process of evaluating any type of buildings in a systematic 180 

and rigorous approach after they have been built and occupied” [44]. POE is a very 181 

useful method for collecting data on redundant buildings in order to inform their 182 

improvement and enhancement. In the case of historic museum facilities, POE is often 183 

implemented to assess thermal comfort or, more widely, the overall IEQ, mainly 184 

through quantitative monitoring [32,45] and, only in very few studies, with the support 185 

of qualitative investigations such as questionnaires [34,46]. 186 

2. Goals of the research and methodology 187 

This research paper aims at verifying the relationship between human thermal 188 

comfort and indoor microclimate in historic buildings adaptively reused as museums, 189 

thus contributing to the current disciplinary conversation regarding the achievement of 190 

a balance between preservation issues and visitors’ satisfaction by promoting a shift 191 

from a conservation-centric approach to an integrated approach which includes the 192 

people’s perspective as well.  193 
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A case study building was used for this study, which is the Museu de la Història 194 

de València (Valencia History Museum) in Spain. The research rationale was grounded 195 

within the investigation on issues related to the thermal environment inside the historic 196 

building, as some visitors claimed thermal discomfort during both summer and winter 197 

seasons. 198 

The research implemented a POE methodology, combining quantitative 199 

(measurement of indoor microclimate parameters) and qualitative (questionnaires to 200 

visitors) investigations to assess and verify visitors’ satisfaction with the thermal 201 

environment. Field measurements and thermal comfort questionnaires were carried out 202 

throughout a full year to capture figures during both heating and cooling seasons. The 203 

indoor thermal satisfaction questionnaires were thus handed to the visitors while the 204 

indoor and environmental monitoring campaign was simultaneously ongoing. Collected 205 

data were analysed in order to: 206 

� assess the visitors’ Thermal Sensation Vote (TSV); 207 

� compare the visitors’ TSV with the visitors’ Predicted Mean Vote (PMV) by using 208 

Fanger’s model; 209 

� assess the visitors’ clothing insulation pattern in relation to indoor and outdoor 210 

temperatures. 211 

3. Case study description 212 

This research was carried out in a museum building in Valencia (39’28 N – 0’22 213 

W), a city on the Mediterranean coast of Spain. According to the Köppen-Geiger 214 

classification system [47], Valencia has a hot Mediterranean/dry-summer sub-tropical 215 

climate (Csa-Mediterranean Climate). The evaluated building is approximately 8 km 216 

away from the Mediterranean Coast and 30 m above the sea level. Monthly 217 

temperatures range from a mean of 22ºC during the hottest month and a mean of 10ºC 218 

during the coldest months. The annual mean temperature is 18.4ºC with low levels of 219 

precipitation, mostly occurring in fall. 220 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 
 

The building was built in 1850 as a main potable water reservoir for the city of 221 

Valencia (9,000 m3 of water could be contained inside the construction) and was used 222 

as such for over a century (Figure 1). In 1998, the local government began a process 223 

of restoration and adaptation of the building in order to transform it into what today is 224 

the Valencia History Museum. The museum is not listed but it is considered as a 225 

‘building of cultural interest’.  226 

 227 
Figure 1. Construction site photo (above) and original building plan (below). Source: Ministry of 228 

Development of Spain 229 

The construction has a flat roof supported by a brick structure composed of 11 230 

barrel vaults and a grid of 200 masonry columns. The building is developed on one 231 

floor only with no openings in the side walls or in the roof, except for five auxiliary 232 

metallic doors and the main entrance. The lack of fenestrations is derived by the 233 

original use of the building as a cistern and has been preserved in the adaptive reuse 234 
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project as a distinctive quality of the historic construction. The building envelope is 235 

composed of 95 cm thick uninsulated masonry external walls, an 18 cm thick air cavity 236 

and an 18 cm thick external layer of brick veneer. The main façade of the museum has 237 

a ceramic tile finishing underneath a waterfall, which falls from the roof to the side of 238 

the building (Figure 2). The flat roof is composed of a 20 cm waterproof reinforced 239 

concrete slab.  240 

 241 
Figure 2. Internal (above) and external (below) building appearance. Source: Valencia History Museum 242 

From the thermal perspective, the most important characteristic of this building is 243 

its underground development for over 50% of the volume. Moreover, on top of the flat 244 

roof there is a public green area with a small garden, a fountain and two basketball 245 

courts. Table 1 summarises the thicknesses and thermal transmittance of the building 246 

envelope. Because the building is partially underground and without any fenestrations, 247 

natural ventilation does not exist and the building is therefore ventilated continuously 248 

(24 hours a day, seven days a week) by means of a mechanical system of ceiling 249 

ducting (Figure 3).  250 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 
 

Most of the building’s central area (main cistern’s volume) is used for the 251 

exhibition, although the perimeter area is used for small rooms such as storages, 252 

toilets and other service rooms. Connected internally to the west side of the main 253 

museum building is a newly added office where the administrative personnel work. 254 

Museum opening hours are from 9:30am to 7:00pm, Tuesday through Saturday, and 255 

9:30am to 3:00pm on Sundays.  256 

Table 1. Thickness and thermal transmittance of the building envelope and openings 257 

Building Component Thickness [m] U-value [W/m2K] 
External walls*  1.240 0.623 

Flat roof 1.100 0.150 
Ground slab 0.850 0.263 
Side doors 0.160 3.124 
Main door 0.020 5.207 

*Weighted average value between the wall above the ground and the wall below the ground. 

 258 

 259 
Figure 3. Museum plan with data loggers’ locations (red spots) and HVAC units and ducting placement 260 

and distribution (blue boxes and lines) 261 

4. Environmental monitoring 262 

To assess thermal aspects of the building’s Indoor Environmental Quality (IEQ), 263 

a meticulous monitoring campaign was carried out by measuring indoor air 264 
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temperature and relative humidity, as well as external environmental parameters 265 

(Table 2). More detailed probabilistic results are shown later in Figure 7 which gives a 266 

comprehensive overview of the indoor environmental conditions. 267 

Table 2. Indoor and outdoor average conditions during the survey period for the days analysed 268 

Month 

Indoor Conditions Outdoor Conditions 
Air 

Temperature 
[°C] 

Relative 
Humidity 

[%] 

Air 
Temperature 

[°C] 

Relative 
Humidity [%] 

Solar 
Radiation 

[W/m2] 
August 2015 22.44 64.23 26.00 63.00 253 

September 2015 22.15 64.28 22.00 62.00 197 
October 2015 21.97 63.75 19.00 65.00 133 

November 2015 21.74 55.65 15.00 61.00 121 
December 2015 21.28 51.81 13.00 69.00 82 
January 2016 21.34 46.74 13.00 56.00 85 
February 2016 21.48 43.51 13.00 48.00 131 

March 2016 21.77 41.89 14.00 49.00 198 
April 2016 22.12 49.39 16.00 56.00 250 
May 2016 21.81 56.85 18.00 58.00 280 
June 2016 22.21 63.74 22.00 59.00 316 
July 2016 22.21 67.53 25.00 60.00 296 

 269 

The monitoring period was a full calendar year, from August 2015 to July 2016, 270 

and data were collected hourly. Internal monitoring was carried out with the use of a 271 

network of data loggers evenly distributed throughout the building (Figure 3). Each 272 

device was installed at a height of 1.10 m from the ground and at least 1 m away from 273 

any external walls, thereby meeting the requirements of ASHRAE 55 [37] for standing 274 

occupants (Figure 4). Regarding the external environment, data were collected from a 275 

meteorological station located 3 km away from the building. Specifications of the 276 

instruments for data gathering are presented in Table 3. 277 

 278 
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Figure 4. Data loggers placed inside the building (as per the red spots in Figure 3) 279 

Table 3. Characteristics of monitoring devices 280 

Measured Physical 
Variable 

Brand & Model Measuring Range Precision Response 

Indoor Air Temperature Siemens-Symaro -30ºC to 50ºC ±0.2 ºC 60 s 
Indoor Relative 

Humidity 
Siemens-Symaro 0% to 100% RH ±5%RH 60 s 

Indoor Air Speed 
Testo – 435-2 Hot 

Wire Probe 
0m/s to 20m/s 0.03m/s 0.5 s 

Outdoor Air 
Temperature 

Vantage Pro2 -40ºC to 65ºC - 2.5 s 

Outdoor Relative 
Humidity 

Vantage Pro2 1% to 100% RH ±2%RH 2.5 s 

Outdoor Wind Speed & 
Direction 

Vantage Pro2 1 to 320Km/h ±1Km/h 2.5 s 

Solar Radiation Vantage Pro2 0 to 1800W/m2 ±5% 50 s 
Rain Vantage Pro2 - ±0.2mm - 

 281 

Temperature and Relative Humidity values (minimum, average and maximum) in 282 

Valencia during the study are represented in Figure 5. Additionally, Figure 5 shows the 283 

indoor and outdoor temperatures and solar radiation during the same period of time. 284 

 285 
Figure 5. Solar radiation, outdoor temperature (T) and relative humidity (RH) values (minimum, average 286 

and maximum) in Valencia during the study 287 

5. Thermal comfort survey 288 
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To evaluate the subjective opinions on the occupants’ thermal comfort, 289 

questionnaire surveys were designed following the parameters of ASHRAE 55 [37] and 290 

Fanger’s Model [48]. Questionnaires were handed out to the visitors by the museum 291 

staff who also provided a brief description of the study in order to clarify the purpose of 292 

the questionnaire and to obtain more reliable answers. 293 

5.1. Questionnaire 294 

The questionnaire was designed with the goal of extracting honest and reliable 295 

responses with the following considerations in mind: brevity and simplicity. Indeed, it 296 

was unlikely that visitors would have filled out the questionnaires if they were too long 297 

to complete or too difficult to understand, and responses would not have reflected the 298 

real experience. Additionally, the survey was translated into four languages: Spanish, 299 

Valencian, English and Italian, as these are the main languages spoken by the visitors 300 

of the museum. Questionnaires were offered to adults only (aged 18+ years), in order 301 

to avoid problems related to the understanding of thermal comfort conditions, which 302 

can be an issue for young people and children [34]. Visitors were given the 303 

questionnaire at the entrance and had to return it at the end of their visit, in order to 304 

capture their full experience inside the museum. 305 

 The filled questionnaires received were 440 out of 18,483 visitors within the 306 

study period. However, before the study started, a trial period was set up during which 307 

105 questionnaires were filled by the museum staff over a two-month span (June and 308 

July 2015). This testing period was very useful for setting up the protocol and for fine-309 

tuning the questionnaire before distributing it to the visitors, thus minimising any 310 

potential misunderstandings of the questions and ensuring trustworthy and sincere 311 

answers. Questions aimed at obtaining as much information as possible about the 312 

subjective thermal comfort opinion of each visitor during their visit indoors, in addition 313 

to collecting the necessary data to calculate the Predicted Mean Vote (PMV) according 314 

to Fanger’s method. The questionnaire included questions about: 315 
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� date and time of arrival to the museum and time of the answer to the questionnaire; 316 

� age (bands arranges as 18-30, 31-40, 41-50, 51-60 or +61), origin (from Spain or 317 

from other country) and gender of the visitor (male or female); 318 

� indoor and outdoor Thermal Sensation Vote (TSV), according to ASHRAE 55’s 319 

seven-point sensation scale (-3, -2, -1, 0, +1, +2, +3); 320 

� clothing insulation, with the most typical fourteen articles of clothing (based on 321 

ASHRAE 55) included as choices in the answer options, to help fill the 322 

questionnaire; 323 

� visitors’ domestic experience with HVAC units (whether he/she owned an HVAC unit 324 

at home and whether he/she typically had used it before the visit); 325 

� visitors’ Metabolic Rate based on transportation method (walking, running, biking or 326 

motorized transportation), and indoor air quality (very good, good, neutral, bad, very 327 

bad) and humidity (very dry, dry, neutral, humid, very humid) through a series of 328 

simplified questions; 329 

� visitor´s preference for the indoor temperature (much cooler, cooler, slightly cooler, 330 

neither warmer nor cooler, slightly warmer or warmer much warmer); 331 

� visitors’ opinion about any other aspect regarding their thermal comfort that they 332 

might wanted to highlight.  333 

5.2. Clothing Insulation and Metabolic Rate 334 

Clothing insulation (clo) and metabolic rate (met) are the two human factors in 335 

Fanger’s method; the other measurements collected during the monitoring campaign 336 

were considered to be environmental aspects. A set of garments that are typically worn 337 

in a mild climate was used to create the different options comprising in the survey 338 

taker’s outfit (Table 4), according to ASHRAE 55. In an effort to streamline the survey 339 

answers, the available garment selections were simplified and stripped down to the 340 

basics. Afterwards, clothing insulation was calculated for each filled survey on the clo 341 

values given by ASHRAE 55. 342 
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Table 4. Garment Insulation Options Iclu [clo] included in the questionnaire, according to ASHRAE 55 343 

Garment item Iclu [clo] 
Underwear 

Panties 0.03 
T-shirt 0.08 

Sweaters 
Long-sleeve (thin) 0.25 
Long-sleeve (thick) 0.36 

Blazer 0.44 
Shirts and Blouses 

Sleeveless/scoop-neck blouse 0.12 
Short-sleeve dress shirt 0.19 
Long-sleeve dress shirt 0.25 
Long-sleeve sweatshirt 0.34 

Trousers 
Short shorts 0.06 

Straight trousers 0.24 
Skirt 0.23 

Footwear 
Shoes 0.02 0.02 

Boots 0.10 
 344 

Since the average visitor spend 1-2 hours per visitation, the authors followed 345 

ASHRAE 55’s directions (Table 5) and did not take into account the method of 346 

transportation to the museum. Instead, a 2.0 met rate (walking slowly throughout the 347 

museum) was applied for the purpose of PMV calculations.  348 

Table 5. Comparison between the standard activities (and metabolic rates) based on ASHRAE 55 and the 349 

methods of transportation monitored in the case study during the survey 350 

Activity  
(surveyed methods of 

transportation) 

Activity  
(according to ASHRAE 55) 

Metabolic Rate  
(according to ASHRAE 55) 

[W/m2] [met] 

Walking Walking (0.9 m/s, 3.2 Km/h, 2.0 mph) 115 2.0 

Running Calisthenics/Exercise 175 - 235 3.0 - 4.0 
Biking Calisthenics/Exercise 175 - 235 3.0 - 4.0 

Motorised Transport 
Driving  

Public transportation 
60 - 115 1.0 - 2.0 

6. Results of the research 351 

This section presents the findings of the quantitative full-year monitoring 352 

campaign and the results of the qualitative data gathered through questionnaires, 353 

which were used to evaluate visitors’ opinions on indoor environmental conditions. The 354 

recorded data were used to calculate and evaluate Fanger’s thermal comfort values 355 
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based on ASHRAE 55 [49] by using MATLAB, and following ISO 7730, Annex D [50]. 356 

In this research, indoor environmental conditions such as air temperature, air speed 357 

and relative humidity data were measured [51]. Due to the building’s very high thermal 358 

mass, radiant temperature was estimated based on the approximation that air 359 

temperature is close enough to radiant temperature (Tair = Tradiant). Human factors 360 

identified in Fanger’s method, such as metabolic rate and mechanical power, were also 361 

estimated based on the answers to the questionnaires (according to ASHRAE 55 [49]). 362 

Finally, clothing insulation was calculated for each answer based on visitors’ replies, 363 

according to ISO 7730 [50]. 364 

Figure 6 summarises indoor and outdoor temperature and relative humidity 365 

values monitored during the study, showing a mainly stable average indoor 366 

temperature, possible thanks to the building’s high thermal mass, hypogeum space 367 

and absence of windows. Figure 7 illustrates a histogram of operative temperatures 368 

recorded in the museum, over the complete survey campaign. It shows that indoor 369 

temperatures vary within a very narrow range of ~3 ºC. Figure 7 also illustrates the 370 

cumulative probability distribution curve of the indoor operative temperatures. This 371 

curve shows a more detailed distribution of temperatures and was obtained using the 372 

cumulative values (temperatures in ºC) that are equal to or lower than the operative 373 

temperature value at each particular plots on the curve.   374 
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Figure 6.  Indoor and outdoor relative humidity and air temperature average values during the study in 376 

Valencia 377 

 378 
Figure 7. Histogram and cumulative probability distribution curve of the indoor operative temperatures 379 

recorded in the museum. 380 

6.1. Thermal Sensation Vote (TSV) values assessment 381 

Results show that there was a negative correlation between outdoor and indoor 382 

temperature, and thermal sensation. As Figure 8 shows, the warmer the outdoor 383 

temperatures, the colder the visitors felt inside the museum and vice versa. This 384 

means that visitors felt discomfort inside the museum due to the temperature gap 385 

during the summer and winter seasons. Although the same correlation existed between 386 

indoor temperature values and thermal sensation, it should be noted that the real 387 

indoor temperature values were practically always constant. This is due to the building 388 

being mechanically ventilated 24/7, as thermal consistency is necessary for artwork 389 

and artefact preservation. Hence, we can assume that the differences in the visitors’ 390 

answers were affected only by outdoor temperatures and, therefore, by the difference 391 

between indoor and outdoor temperatures (thermal leap).  392 
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 393 
Figure 8. TSV ranges against average indoor and outdoor temperatures 394 

To further support this consideration, there is a clear correlation between outdoor 395 

and indoor temperatures and the visitors’ answers ranges (>1, 1 - -1, <-1).  Figure 8 396 

also proves the theory that the warmer the outdoor temperatures, the colder the visitors 397 

feel. The difference between the visitors who felt neutral and hot is very limited and it is 398 

therefore considered negligible. On the other hand, individuals who felt cold were more 399 

affected by outdoor temperatures than the other two groups, following the tendency 400 

previously presented.  401 

Environmental temperatures and Thermal Sensation Votes (TSV) were evaluated 402 

by using Pearson product moment correlation [40]. If p is smaller than the significance 403 

level (default is 0.05), then the corresponding correlation in r is considered significant. 404 

As such, TSV had a significant correlation with the indoor temperature (r= -0.34, p < 405 

0.001). This correlation, although statistically significant, is quite weak. The plots for 406 

TSV VS operative temperature for a whole period (1 year) are shown in Figure 9. It 407 

may be observed that the correlation, although significant, is still quite weak. 408 
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 409 
Figure 9. Correlation between Thermal Sensation Vote (TSV) VS outdoor and average indoor 410 

temperatures. 411 

The influence of gender in indoor thermal comfort opinions can be seen 412 

seasonally in Figure 10. Generally, gender did not prove to be very influential on 413 

thermal comfort perceptions, but there was a seasonal caveat. During summer months, 414 

the answers within the middle range (-1, 0, +1) were different, with an 82% satisfaction 415 

for males and only a 68% satisfaction for females across the band. Additionally, during 416 

the same period, answers showed gender-based differences with 17% of males and 417 

27% of females who reported feeling either cool or cold. Some gender variations were 418 

noticeable in winter and spring, although values remained in the central comfort band: 419 

a 15% gap was present in correspondence to the ‘neutral’ value in winter and in the 420 

‘slightly cool’ in spring, with men feeling slightly warmer than women in winter and 421 

women feeling slightly cooler than men in spring. During the remaining periods, values 422 

by gender varied only slightly and thermal comfort ranges values were very similar. In 423 

addition to providing a gender perspective, Figure 10 supports the earlier finding of a 424 

negative correlation between warmer outdoor temperatures and visitors’ cooler thermal 425 

sensations. 426 
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 427 
Figure 10. Comparison between male and female TSV values by season 428 

Figure 11 depicts the Thermal Sensation Votes of visitors. Data were 429 

summarised monthly, using the average and the standard deviation values. Even 430 

though the mean values showed that occupants felt comfortable almost the entire year 431 

(a part from July, August and September when average values move below the -1 432 

band), the standard deviation demonstrated a wider amplitude of values during the 433 

cooling season (particularly June, August and September), with visitors feeling 434 

uncomfortable (cool or cold), while, during the heating season (December, January and 435 

February), visitors did report feeling comfortable. 436 
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 437 
Figure 11. Average and standard deviation of overall TSV values by month 438 

6.2. Comparison between Thermal Sensation Vote (TSV) values and Predicted 439 

Mean Vote (PMV) values 440 

Figure 12 compares the calculated Predicted Mean Vote (PMV) average values 441 

and measured Thermal Sensation Vote (TSV) average values, by month. While TSV 442 

values were mainly concentrated in the neutral area (-1, 0, +1), PMV values were 443 

mainly lower than TSV values and shifted towards the cooler bands, except for the 444 

cooling session months (May-September) during which occupants reported to be 445 

colder. According to Fanger’s model, visitors should feel uncomfortable due to the 446 

HVAC system performance; however, since the results in this investigation exhibited 447 

fairly stable TSV values in the comfort zone, Fanger’s model does not prove to be 448 

reliable in this case.  449 
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 450 
Figure 12. Comparison between PMV and TSV average values by month 451 

As argued by other researchers [36], visitor metabolic rate is a critical factor 452 

when using Fanger’s model for museum buildings. In order to take as many factors as 453 

possible into consideration, the transportation method employed by each visitor to 454 

arrive at the museum was considered according to the options as directed in the 455 

ASHRAE 55 [49] and listed in  456 

Since the average visitor spend 1-2 hours per visitation, the authors followed 457 

ASHRAE 55’s directions (Table 5) and did not take into account the method of 458 

transportation to the museum. Instead, a 2.0 met rate (walking slowly throughout the 459 

museum) was applied for the purpose of PMV calculations.  460 

Table 5. Since the average visiting time was between 1 and 2 hours, a fixed 461 

value for metabolic rate has been assigned for all visitors to calculate PMV values 462 

(slowly walking 2.0 met). Therefore, PMV and TSV average values were calculated 463 

and measured, respectively. As depicted in Figure 13, while TSV values remained 464 

within the neutral range (-1, 0, +1) throughout the year, PMV values had diverse 465 

results. TSV values lingered between 0 and -1, independent of the transportation 466 

method, in accordance to Mishra et al.’s [40] results, while PMV values were quite 467 

different. In particular, visitors who used motorised transportation had average PMV 468 
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values of +2.1, whereas the PMV values for methods of transportation with higher 469 

metabolic rates were as follows: biking +1.0, walking +1.3 and running +1.2.  470 

 471 
Figure 13. PMV and TSV average values comparison between transportation methods for visitors staying 472 

less than one hour. 473 

6.3. Clothing insulation assessment 474 

In public buildings, such as museums, occupants do not have any control over 475 

indoor temperature or natural ventilation, therefore adding or removing garments is the 476 

only adaptive choice that is available to them. The type and amount of clothing worn is 477 

thus a very important factor to consider while assessing subjective thermal comfort. 478 

Figure 14 shows the average clothing levels and standard deviations for each month of 479 

the monitoring campaign. It is very clear that during colder months, visitors’ clothing 480 

level was much higher than during the warmer ones. Looking at the standard deviation, 481 

values were very stable, reaching a gap between the highest and lowest values around 482 

0.30 clo or even 0.40 clo. There was a slight reduction in this standard deviation 483 

amplitude during the coldest months (January and February) which may have been 484 

due to the very uncertain weather conditions. 485 
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 486 
Figure 14. Average and standard deviation of clothing levels by month 487 

Figure 15 displays the correlation between clothing levels and outdoor 488 

temperature by gender. Outdoor temperatures are obviously very unstable. Clothing 489 

levels, as expected, decreased when outdoor temperatures increased. Finally, male 490 

and female choices were slightly different when considering the same outdoor 491 

temperatures, with females choosing a slightly warmer clothing combination.   492 

 493 

Figure 15. Correlation between clothing level and outdoor temperatures by gender for each survey answer. 494 
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7. Discussion 495 

The case study investigated in this research offers an opportunity to understand 496 

occupants’ satisfaction with a thermal environment in which their stay is limited to a 497 

short amount of time (1-2 hours), but yet affects their overall experience. Being mainly 498 

a hypogeum space with no windows, which is an important component of the building’s 499 

heritage value that has been preserved and integrated in the adaptation project, the 500 

building offers a peculiar environment for art collection and for visitors at the same 501 

time. On one side, more stable conditions in terms of air temperature and relative 502 

humidity offer the most suitable microclimate conditions for the preservation of 503 

artefacts and the building itself; on the other, the few times that visitors reported 504 

discomfort, this discomfort was generated by the gap between indoor and outdoor 505 

temperatures. In order to guarantee indoor microclimate stability for conservation 506 

purposes while providing the airflow rates suitable for its use, the building is equipped 507 

with a mechanical system working on a 24/7 basis which generates more challenging 508 

situations for human thermal comfort, mainly due to the temperature gap between the 509 

inside and outside. Therefore, the negative thermal leap affects visitors’ satisfaction 510 

with the thermal environment, while the positive gap does not, as participants did not 511 

express any discomfort during the winter season.  512 

Some minor fluctuations in the indoor air temperatures were, however, registered 513 

during the field monitoring, mainly during the winter season (November-March), with a 514 

drop of 1.2ºC (Figure 6). This demonstrates the effectiveness of the building’s thermal 515 

masses (roof and walls), along with the hypogeum development of the building, 516 

producing a positive effect in mitigating the heat transfer and in keeping the indoor 517 

temperatures more stable, despite the combined effect of: i) the heat transfer through 518 

the uninsulated extended flat roof surface; ii) the almost absence of winds cooling 519 

down the roof’s surface; and iii) the unobstructed surrounding environment, with no 520 

shadows from adjacent buildings. If the thermal mass is an effective hygrothermal 521 
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barrier during the warm and hot seasons, it appears to affect the indoor environment 522 

negatively in the cold season.  523 

An interesting point worth-discussing is the divergence between TSV and PMV, 524 

as shown in Figure 14. The PMV values calculated according to Fanger’s model 525 

suggest that visitors should have expressed satisfaction with the thermal environment 526 

between May and November only, with a limit condition in August shifted towards the 527 

warmer side of the central band (-1,0,+1), and feeling cool or cold for the rest of the 528 

monitored period. In reality, visitors expressed a different opinion, as the average 529 

calculated TSV sits within the central band for almost the entire year, with the 530 

exception of the summer season, as discussed before. This worth-mentioning 531 

difference points out the fact that the metabolic rate does not have a significant impact 532 

on the visitors’ thermal comfort sensation in this building. The divergence between TSV 533 

and PMV is clear when analysing the method of transportation utilised by the visitors to 534 

arrive at the museum (even though PMV values were calculated with the same met 535 

rate of 2.0 met) (Figure 13). Once again, PMV show values out of the neutral band, 536 

while TSV values are within the neutral band. The most relevant result is related to the 537 

use of motorised transportation, where metabolism levels are very low and, according 538 

to PMV results, people should feel cool or cold in fall, winter and spring, and 539 

comfortable in summer, a result in contrast with TSV values. Overall, results 540 

demonstrate the limits of Fanger’s model when used in museum environments and in 541 

mechanically controlled climates, as in the case study investigated in this research. 542 

A possible direction for mitigating summer discomfort could be working with 543 

indoor temperatures in summer, currently ranging between 22.21ºC and 22.44ºC, by 544 

moving the set-point towards the upper threshold of the temperature range 545 

recommended for artwork conservation (21ºC-24ºC), in order to reduce the 546 

temperature gap between outdoors and indoors. This will have a positive effect not 547 

only on visitors’ thermal comfort, but also on the museum’s management due to the 548 

energy savings resulting from a lower pressure on the cooling system during the hot 549 
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season. However, moving forwards from Fanger’s model, considering seasonal 550 

temperature variations in the set-up of optimal temperature conditions in indoor 551 

environments would produce positive effects on occupants’ comfort, artwork 552 

preservation and museum environments. In fact, the application of an adaptive 553 

approach would account for the human response to fluctuations related to different 554 

seasons [52], establishing a direct connection between outdoor and indoor thermal 555 

conditions that would not necessarily affect the requirements for the preservation of art 556 

and the built heritage in a negative way, as long as it is associated with the extension 557 

of the temperature bandwidth, producing positive effects on overall energy savings as 558 

well [39,53]. 559 

A final reflection should be made on the visitors’ participation in the survey. If 560 

compared to the total amount of people visiting the museum during the research period 561 

(18,483), those who accepted to undertake the questionnaire (440) were only 2.4%. 562 

This means that the issue of visitors’ thermal comfort in museum buildings is still 563 

understood as a secondary aspect and people do not engage with this enough. 564 

Considering the scarcity of resources on this topic, more research needs to be done, in 565 

order to contribute to the development of an integrated approach towards a combined 566 

conservation and human comfort based adaptive reuse and building retrofit. 567 

8. Conclusions 568 

This paper investigated the relationship between human thermal comfort and 569 

indoor microclimate in a historic building in Valencia, which has been adaptively reused 570 

as the Valencia History Museum. The research implemented a Post-Occupancy 571 

Evaluation methodology, performing a field monitoring on indoor microclimate 572 

conditions and a questionnaire survey to visitors over a period of one year, in order to 573 

assess the level of comfort perceived by the visitors during their stay inside the 574 

heritage building. 575 

The main results of the research are: 576 
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� TSV assessment: visitors showed more dissatisfaction with the indoor thermal 577 

environment during the cooling season (July-September), possibly because of the 578 

gap between indoor and outdoor temperatures, with males and females generally in 579 

agreement on this; 580 

� comparison between TSV and PMV: Fanger’s model for calculating PMV does not 581 

prove to be representative of the real thermal environment as perceived by visitors 582 

in this case study, as TSV and PMV values were significantly divergent across the 583 

year, also in regard to metabolic rates; 584 

� clothing assessment: visitors choose a clothing combination according to outdoor 585 

conditions; however, this choice does not appear to be successful during their visit 586 

in the museum, mainly during the summer season, contributing to discomfort. 587 

The paper suggests that the conservation criteria of artworks should not be the 588 

only parameters to be taken into account, rather, a more comprehensive approach 589 

should be considered that also includes human thermal comfort. The resulting 590 

integrated approach should assess the suitability of the indoor microclimate to foster 591 

artwork preservation, heritage adaptation and indoor environmental quality for 592 

occupants. Also, when retrofitting heritage buildings and adapting them to new uses, 593 

this combination could have a significant impact on existing historic structures. Similar 594 

to the role of structural monitoring for the upgrade of existing structures, environmental 595 

monitoring should be performed in historic buildings to understand their indoor 596 

microclimate and its variations compared to the external environment, in order to 597 

inform the retrofit project. Monitoring techniques should be non-invasive and, possibly, 598 

contactless, in order to avoid any damages to the existing materials and surfaces. 599 

Historically, the adaptation of heritage buildings into museums has been driven 600 

by the goal of achieving optimal environmental conditions for artwork conservation. 601 

This single objective has often resulted in the integration of very intrusive plant systems 602 

in the building in order to provide the required hygro-thermal conditions, to the 603 

detriment of existing materials and to the neglect of the cultural value of the building 604 
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itself. This approach has exacerbated the loss of materials in buildings originally 605 

constructed for different uses and later adapted to museums, as adaptive reuse itself 606 

can have high impacts on building fabrics due to compliance with mandatory 607 

requirements (such as structural, mechanical, fire protection, etc.). On the contrary, 608 

more recent approaches [54] promote a convergence between the conservation of the 609 

building and the conservation of artefacts by taking fully advantage of both passive and 610 

active systems, thus limiting the loss of materials and, consequently, of heritage value. 611 

Ultimately, this approach will improve the level of sustainability of the overall 612 

intervention, from an environmental (reduced energy consumption and improved indoor 613 

environmental quality), social (reduced impact of heritage value as manifestation of a 614 

social responsibility) and economic (reduced operation costs) point of view, in an 615 

attempt of achieving a comprehensive, yet respectful adaptation process [55,56]. 616 
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 A Post-Occupancy Evaluation of a museum in a historic reused building is performed. 

 Quantitative monitoring and qualitative assessment are used for one year. 

 Customized questionnaires for visitors are developed to assess visitors' thermal comfort. 

 Artwork conservation, heritage adaptation and indoor environmental quality are considered. 


