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Abstract 14 

LiDAR full-waveform (LFW) pulse density is not homogeneous along study areas due to overlap 15 

between contiguous flight stripes and, to a lesser extent, variations in height, velocity and 16 

altitude of the platform. As a result, LFW-derived metrics extracted at the same spot but at 17 

different pulse densities differ, which is called “side-lap effect”. Moreover, this effect is reflected 18 

in forest stand estimates, since they are predicted from LFW-derived metrics. This study was 19 
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undertaken to analyze LFW-derived metric variations according to pulse density, voxel size and 20 

value assignation method in order to reduce the side-lap effect. Thirty LiDAR samples with a 21 

minimum density of 16 pulses.m-2 were selected from the testing area and randomly reduced to 2 22 

pulses.m-2 with an interval of 1 pulse.m-2, then metrics were extracted and compared for each 23 

sample and pulse density at different voxel sizes and assignation values. Results show that LFW-24 

derived metric variations as a function of pulse density follow a negative exponential model 25 

similar to the exponential semivariogram curve, increasing sharply until they reach a certain 26 

pulse density, where they become stable. This value represents the minimum pulse density 27 

(MPD) in the study area to optimally minimize the side-lap effect. This effect can also be 28 

reduced with pulse densities lower than the MPD modifying LFW parameters (i.e. voxel size and 29 

assignation value). Results show that LFW-derived metrics are not equally influenced by pulse 30 

density, such as number of peaks (NP) and ROUGHness of the outermost canopy (ROUGH) that 31 

may be discarded for further analyses at large voxel sizes, given that they are highly influenced 32 

by pulse density. In addition, side-lap effect can be reduced by either increasing pulse density or 33 

voxel size, or modifying the assignation value. In practice, this leads to a proper estimate of 34 

forest stand variables using LFW data. 35 

 36 

1. Introduction 37 

LiDAR technologies have been widely used on forest applications during the last decades. 38 

Discrete LiDAR (LD) is the most common LiDAR data. Its success for estimating forest stand 39 

variables and classifying fuel models has been proven in several studies (Lim et al., 2003; 40 

Bortolot and Wynne, 2005; Mutlu et al., 2008; Ruiz et al., 2018; Guerra-Hernández et al., 2016; 41 

Hevia et al., 2016). LiDAR full-waveform (LFW) has also been used for estimating forest stand 42 
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variables (Cao et al., 2014; Hermosilla et al., 2014a), classifying tree species (Reitberger et al., 43 

2008; Heinzel and Koch, 2011; Cao et al., 2016) and segmenting single trees (Reitberger et al., 44 

2009). LFW registers the complete signal emitted from the system and backscattered from 45 

different vertical layers (Mallet and Bretar, 2009). The amplitude of the waveform in each bin is 46 

related to the physical properties of the object reached (Song et al., 2002; Guo et al., 2011; 47 

Hermosilla et al., 2014a) and to the angle of incidence (Kukko et al., 2008). Therefore, compared 48 

to the LD, it provides more information about the vertical distribution of the vegetation. 49 

However, LFW processing is more complex and time consuming, so it has been used much less 50 

frequently than LD. 51 

 52 

Both LD and LFW usually present heterogeneous pulse densities along the studied areas. This is 53 

due to the fact that side-lap areas, where two or more flight lines overlap, have higher pulse 54 

densities. These pulse density variations affect LD-derived metrics and the subsequent forest 55 

variables estimates and maps. Thus, a LD-derived metric may have different values in two 56 

samples with identical forest features but different pulse densities. Given that LD-derived metrics 57 

are used in regression models to estimate forest stand variables, the values of these variables will 58 

be influenced as well. 59 

 60 

The influence of LD pulse density on forest stand variable estimates was analyzed in several 61 

studies (Table 1). All of these studies present variations in forest stand estimates, however, since 62 

they were focused on different ecosystems and used different ranges of pulse densities, variations 63 

have different scales. Gobakken and Naesset (2008), Magnussen et al. (2010) and Jakubowski et 64 

al. (2013) observed that estimated variables were not significantly affected by density until 65 
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dropping 0.25 points.m-2 in the first study, and 1 pulse.m-2 in the last two. Analyzing specific 66 

groups of variables, Magnussen et al. (2010), González-Ferreiro et al. (2012), Strunk et al. 67 

(2012), Treitz et al. (2012), Jakubowski et al. (2013) and Varo-Martínez et al. (2017) did not find 68 

significant influence of pulse density on variables related to height, such as: mean, dominant, 69 

tree and Lorey’s height, and mean height to live crown. According to Strunk et al. (2012) and 70 

Treitz et al. (2012), variables related to tree density (i.e. number of stems and stem density) were 71 

not significantly affected either, however, Magnussen et al. (2010) observed on the reliability 72 

ratio that stem density was affected using low pulse densities. The reliability ratio was defined by 73 

Hansen et al. 2015 as the variance of a metric among sample plots divided by the total variance 74 

of the metric (i.e. the variance among sample plots plus the average variance within the plot). 75 

Regarding variables related to trunk size, such as quadratic mean diameter (Treitz et al., 2012), 76 

diameter at breast height (Jakubowski et al., 2013), and basal area (Magnussen et al., 2010; 77 

González-Ferreiro et al., 2012; Stunk et al., 2012; Treitz et al., 2012; Jakubowski et al., 2013; 78 

Ruiz et al., 2014; Varo-Martínez et al., 2017), had no significant differences between different 79 

pulse densities, except for the basal area in a tropical forest in a study carried out by Manuri et al. 80 

(2017). Among volume variables (i.e. volume over bark, stem volume, gross total and 81 

merchantable volume), only volume over bark in González-Ferreiro et al. (2012) was 82 

significantly affected by pulse density variations. Additionally, Jakubowski et al. (2013) for 83 

shrub cover and height variables, Ruiz et al. (2014) for canopy cover, and Silva et al. (2017) for 84 

aboveground carbon, observed that they were not significantly affected either. Lastly, stem 85 

biomass and aboveground biomass were influenced by LD pulse density in an Atlantic and a 86 

Tropical forest (González-Ferreiro et al., 2012; Manuri et al., 2017), but Treitz et al. (2012) did 87 

not find significant differences in aboveground biomass in a Boreal forest using different 88 
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densities. Overall, aboveground biomass is more influenced by pulse density than height 89 

variables, although another factor affecting tree density, basal area and volume is the type of 90 

ecosystem. 91 

 92 

While the influence of pulse density on forest stand variables estimated from LD-derived metrics 93 

has been widely studied in different ecosystems, less attention has been paid to how LD-derived 94 

metrics are influenced. Roussel et al. (2017) mentioned that even when the values of estimated 95 

variables are stable for different pulse densities, LD-derived metrics are affected, since they are 96 

measures and are not statistically fitted. Gobakken and Naesset (2008) and other authors, such as 97 

Hansen et al. (2015) and Roussel et al. (2017), analyzed the effects of pulse density on LD-98 

derived metrics. The first study computed height (e.g. percentiles, maximum, mean and 99 

coefficient of variation) and density metric differences between the initial point density (i.e. 1.13 100 

points.m-2) and thinned data (i.e. 0.25, 0.13 and 0.06 points.m-2) at different sample sizes. They 101 

observed that the maximum height metric had large variations between point densities, these 102 

variations being even larger when point density decreased. The remaining metrics did not have a 103 

clear pattern. Hansen et al. (2015) computed seven LD-derived metrics: mean, maximum, 104 

variance, percentiles 10 and 90 of the above ground heights, and the proportion of points above 105 

the ground and above the mean. They observed that most of the metrics were not influenced by 106 

pulse densities, except for the maximum elevations that decreased with lower pulse densities. 107 

However, the reliability ratio increased for all metrics when pulse density increased until 108 

reaching a threshold where it remained stable. A possible explanation for this might be that mean 109 

values of LD-derived metrics did not vary much due to pulse density. In contrast, the standard 110 

deviation increased for lower pulse densities, and hence the reliability ratio varied as well. 111 
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Roussel et al. (2017) also analyzed how maximum height varied for different pulse densities. 112 

They concluded that metric variations were not only subject to pulse density, but additionally to 113 

LiDAR footprint size and canopy shape. The flatter the top canopy (i.e. fewer singularities), the 114 

lesser difference between pulse densities. 115 

 116 

117 
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Table 1. Summary of existing studies about the influence of discrete LiDAR pulse density on forest stand estimates. 118 

 119 

Study Study Area Ecosystem 

Highest (HD) - lowest 

(LD) densities 

(pulses
.
m-2) 

Estimated variables Results: HD-LD 

Gobakken and Naesset 

(2008) 
Våler, Southeastern Norway Boreal forest 1.13 – 0.06 points.m-2 

Hl: Lorey’s height 

BA: basal area 

Vol: stand volume 

Estimate differences: 
Hl ≈ 0.2-0.6 m 

BA ≈ 0.0-2.5 m2.ha-1 

Vol ≈ 5-30 m2.ha-1 
 

Magnussen et al. (2010) 
Aurskog-Høland, Southeastern 

Norway 
Boreal forest 2 – 0.25 

Hl: Lorey’s height 

BA: basal area 

V: volume over bark 
SD: stem density 

 

R2 (%): 
BA ≈ 79-72 

V ≈ 85-80 

 
Reliability ratio: 

Hl ≈ 1.0-0.9 

BA ≈ 0.98-0.95 
V ≈ 0.96-0.92 

SD ≈ 0.96-0.81 

 

González-Ferreiro et al. 

(2012) 
Galicia, Northwestern Spain Atlantic forest 8 – 0.5 

Hm: mean height 
Hd: dominant height 

BA: basal area 

V: volume over bark 
Wcr: crown biomass 

Wst: stem biomass 

AGB: aboveground biomass 

R2 (%): 

Hm = 78.6-75.9 

Hd = 84.6-86.5 
BA = 67.8-69.2 

V = 69.1-79.4 

Wcr = 68.7-68.8 
Wst = 73.2-82.7 

AGB = 74.6-80.4 

Strunk et al. (2012) Western Washington State, USA 
Humid temperate – Pacific 

lowland mixed forest 
3 – 0.05 ST: number of stems 

nRMSE (%): 

ST ≈ 56-57 

Treitz et al. (2012) Ontario, Canada Boreal forest 3.2 – 0.5 

Hm: mean height 
TH: tree height 

QMD: quadratic mean diameter 

BA: basal area 

GTV: gross total volume 

GMV: gross merchantable volume 

AGB: aboveground biomass 
SD: stem density 

 

R2 (%): 

Black spruce (BS), Intolerant hardwood (IH). 

Hm = 95.1-93.6 (BS); 76.7, 77.3 (IH) 
TH = 92.3, 90.3 (BS); 94.1, 94.3 (IH) 

QMD = 83.8, 86.3 (BS); 84.2, 84.0 (IH) 

BA = 91.8, 93.5 (BS); 83.7, 82.3 
GTV = 94.9, 94.2 (BS); 83.7, 82.3 (IH) 

GMV = 91.6, 93.9 (BS); 87.3, 87.7 (IH) 

AGB = 92.5, 93.2 (BS); 78.8, 77.5 (IH) 
SD = 88.8, 86.1 (BS); 23.9, 24.8 (IH) 
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Table 1 (cont.). Summary of existing studies about the influence of discrete LiDAR pulse density on forest stand estimates. 120 
121 

Study Study Area Ecosystem 

Highest (HD) - lowest 

(LD) densities 

(pulses
.
m-2) 

Estimated variables Results: HD-LD 

Jakubowski et al. (2013) 
Tahoe National Forest. Northern 

California, USA 
Mediterranean-climate forest 9 – 0.01 

TH: tree height 

HTLCB: mean height lo live 
crown base 

BA: basal area 

DBH: diameter at breast height 
SC: shrub cover 

SH: shrub height 

R2 (%): 

TH = 86.8-52.4 
HTLCB = 76.8-28.8 

BA = 77.5-48.9 

DBH = 59.7-38.0 
SC = 53.1-11.9 

SH = 45.9-29.0 

Ruiz et al. (2014) 
La Serranía de Cuenca, Central 

Spain 
Mediterranean mountain forest 6 - 0.25 points.m-2 

V: volume 
AGB: aboveground biomass 

BA: basal area 

CC: canopy cover 
 

R2 (%) (with a plot radius of 16 m): 
V ≈ 90.5-86.0 

AGB ≈ 85.5-82.0 

BA ≈ 87.0-83.0 
CC ≈ 89.0-89.0 

Manuri et al. (2017) Central Kalimantan, Indonesia Tropical forest 2.8 – 0.01 points.m-2 
AGB: aboveground biomass 

BA: basal area 

R2 (%): 
AGB ≈ (90.0)-(80.0,60.0) 

BA ≈ (90.0)-(70.0,40.0) 

Silva et al. (2017) Paraíba Valley, São Paulo, Brazil Humid subtropical forest 10 - 5 AGC: aboveground carbon 
R2 (%): 

AGC = 82.17-81.79 

Varo-Martínez et al. 

(2017) 

Sierra de Los Filabres, 

Southeastern Spain 
Semi-arid Mediterranean forest 10 – 0.5 

Hd: dominant height 

BA: basal area 

R2 (%): 
Hd = (97.0,94.0)-(95.0,93.0) 

BA = (92.0,88.0)-(93.0,87.0) 
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Differences in data characteristics between LD and LFW requires different pre-processing. While 122 

LD-derived metrics can be recomputed by simply varying the number of points (i.e. pulse 123 

density), LFW data pre-processing is more complex and there are other parameters that may also 124 

be considered. This complexity can explain why the influence of pulse density on LFW-derived 125 

metrics and forest stand variable estimates has received less attention (Crespo-Peremarch et al., 126 

2016). Furthermore, few published studies have analyzed the evolution of FW-derived metrics 127 

by artificially reducing the pulse density. Crespo-Peremarch et al. (2016) observed LFW-derived 128 

metric differences (namely “side-lap effect”) in adjacent areas that were compared pairwise, with 129 

similar forest features but having different densities. It was found that LFW-derived metrics were 130 

influenced by density variations caused by flight stripe side-lap areas. A standard pre-processing 131 

method for LFW-derived metric extraction is voxelization (Hermosilla et al., 2014b). LiDAR 132 

return pulses are clustered into voxels (e.g. rectangular prisms), whose values are computed as 133 

the statistics (i.e. maximum, mean, median, etc.) of return pulse amplitude values of waveforms 134 

within the voxels. These voxel columns of values from the top tree to the ground describe the 135 

pseudo-vertical waveform, which corrects the registered scan angle (Hermosilla et al., 2014b). 136 

Once pseudo-vertical waveform is generated, LFW-derived metrics can be extracted. Changing 137 

the voxel size and the assignation value may diminish the side-lap effect without modifying the 138 

pulse density. As mentioned above, increasing the voxel size reduces the number of empty 139 

voxels, avoiding gaps in the pseudo-vertical waveforms. On the other hand, changing the 140 

assignation value can avoid outliers from amplitude values, which is more likely when the voxel 141 

size increases. 142 

 143 
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Crespo-Peremarch et al. (2016) and Crespo-Peremarch and Ruiz (2018) observed that the side-144 

lap effect in LFW-derived metrics had an effect on forest stand variable estimates as well, given 145 

that the latter are estimated through LFW-derived metrics. The first study visually observed these 146 

differences for a large area, while the latter observed that R2 values of aboveground biomass and 147 

canopy base height between different pulse densities differed by 3% and 5%, respectively, for a 148 

voxel size of 0.25 m. Therefore, forest stand variables were wrongly mapped with the side-lap 149 

effect due to pulse density variation. Therefore, correcting side-lap effect is essential to properly 150 

estimate forest stand variables. Comparing LFW-derived metrics obtained using different pulse 151 

densities may help to better understand how metrics are influenced and to reduce side-lap effect. 152 

 153 

The aim of this paper is to analyze LFW-derived metric variations when pulse density, voxel size 154 

and assignation value are modified. To do this, we randomly diminished pulse density from 16 to 155 

2 pulses.m-2 every 1 pulse.m-2 in a set of 30 samples. In addition, for each density we computed 156 

six LFW-derived metrics using five different assignation values (i.e. maximum, mean, median, 157 

percentiles 90 and 95) and voxel sizes from 0.25 to 1.55 m every 0.10 m. Moreover, the LFW-158 

derived metric values obtained at every pulse density for the different combinations of LFW 159 

parameters was analyzed. Results will lead to a better understanding of the relation between LFW 160 

methodological parameters and pulse density in order to improve the use of these data and 161 

techniques. 162 

 163 
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2. Methods 164 

2.1. Study area 165 

The study area (2,258 ha) is located in Panther Creek (Oregon, USA) (Fig. 1a), in the Cascade 166 

mixed forest ecoregion (Bailey, 1980). The dominant species is Douglas-fir (Pseudotsuga 167 

menziesii) very occasionally mixed with other conifers such as western red cedar (Thuja plicata), 168 

western hemlock (Tsuga heterophylla) and grand fir (Abies grandis), and broad-leaved species 169 

such as bigleaf maple (Acer macrophyllum) and red alder (Alnus rubra). Tree heights are 170 

variable due to harvesting, being up to 60 m. Altitudes in the total extent of the study area range 171 

from 100 to 700 m. 172 

 173 

 174 

Fig. 1. (a) Study area location in the USA Pacific Northwest, (b) flight trajectories and sample 175 
locations (green) within the study area limits (red), and (c) pulse density. 176 
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 177 

2.2. LiDAR full-waveform Data 178 

2.2.1.  Data acquisition 179 

LFW data were acquired in July 2010 using a Leica ALS60 over 3,264.51 ha, with a pulse density 180 

ranging from 2 to 168 pulses.m-2, and an average of 10.4 pulses.m-2 (Fig. 1c). Data were 181 

registered at an average flight altitude of 900 m above ground level, at 105 kHz pulse frequency, 182 

and with a scan angle of ±14º from nadir. The study area was covered with flight stripe side-lap 183 

of ≥ 50% (≥ 100% overlap). Waveform amplitudes were recorded in 256 bins with a temporal 184 

sample spacing of 2 ns (i.e. 0.3 m) and a footprint size of ≈ 0.25 m. In addition, a digital terrain 185 

model (DTM) with 1 m spatial resolution was provided by the company that registered LFW data, 186 

and its vertical accuracy assessed using 33 GPS ground control points, obtaining a RMSE of 0.19 187 

m. 188 

 189 

2.2.2. Radiometric calibration and waveform denoising 190 

The overall processing followed in this paper is described in Fig. 2, and this is as follows: 191 

Radiometric calibration is an essential pre-processing step of LFW data, since most of the metrics 192 

depend on the amplitude values. There are two main approaches of radiometric calibration: 193 

relative and absolute. While the former reduces radiometric differences between flight stripes 194 

without ground data, the latter reduces differences related to acquisition day conditions and 195 

sensors using target properties (Wagner, 2010). In this study, we applied a relative radiometric 196 

calibration, given that target properties from ground data were not available, and there were no 197 

paved roads with known radiometric values in the study area. Therefore, we corrected the 198 

amplitude values along the waveform using Eq. (1) described by Kashani et al. (2015) for non-199 
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extended objects, which corrects amplitude values taking into account the range from sensor to 200 

object and the local incidence angle. 201 

 202 

     (1) 203 

 204 

where AC = corrected amplitude, 205 

 A = amplitude to be corrected, 206 

Ri = range from the sensor to the object, 207 

Rref = reference range set to 1000 m for this study, 208 

α = local incidence angle. 209 

 210 

Once waveforms were radiometrically corrected, noise was still present. In order to remove it, 211 

we followed the denoising process described by Hermosilla et al. (2014b), consisting of applying 212 

a noise threshold defined as the mean plus four times the standard deviation of the waveform 213 

amplitude values (Lefsky et al., 2005), removing all lower values below the threshold. 214 

Additionally, a Gaussian filter was used to reduce any remaining noise. 215 

 216 
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 217 

Fig. 2. Overall processing flowchart. 218 
 219 

2.2.3. Sample selection and pulse density reduction 220 

In order to carry out the analysis, a total of 30 samples were selected from the study area where 221 

conifers were dominant (Fig. 1b). These samples were located where pulse density was higher in 222 

order to be able to test a higher number of density variations. The polygon samples were square-223 
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shaped with an area of 804.25 m2 each, this is the equivalent area of 16 m radius circular plots. 224 

The pulse density was reduced from 16 to 2 pulses.m-2 with an interval of 1 pulse.m-2, resulting in 225 

15 different density values. The initial pulse density was selected considering the maximum and 226 

common pulse density value found in the 30 plots. 227 

Pulse density was reduced randomly (Fig. 2) (i.e. from 16 to 2 pulses.m-2 with an interval of 1 228 

pulse.m-2) and computed as the number of pulses contained in the polygon sample divided by the 229 

area. To reduce pulse density, we calculated the number of pulses (n) required in an area of 230 

804.25 m2 to obtain a pulse density equal to p. Then, n random pulses were kept for the analysis 231 

and the rest were discarded. 232 

 233 

2.2.4. Metrics extraction 234 

Once pulses were denoised and randomly filtered based on established pulse densities, a height 235 

normalization and a voxelization process from the waveform bins was carried out. The DTM 236 

described above and generated from the original pulse densities was used for height 237 

normalization. Regarding the voxelization process, we tested 14 voxel size variations in XY 238 

dimensions (Fig. 2): 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25, 1.35, 1.45 and 239 

1.55 m. The minimum voxel size was equal to the footprint size. The voxel size in Z dimension 240 

was not modified, and the vertical distance between waveform bins, based on the temporal 241 

sample spacing of the LiDAR system, was respected. Therefore, the voxel size in Z dimension 242 

was 0.3 m, equal to the temporal sample spacing. In addition, the voxel value was computed 243 

(Fig. 2) using five different statistics (maximum, mean, median, percentiles 90 and 95) for all the 244 

waveform bins within each voxel. As a result, every voxel had a value for these five statistics. 245 

Afterwards, each column of voxels was computed separately. Voxel values from the top tree to 246 

the ground describe a new waveform corrected from scan angle and called “pseudo-vertical” 247 
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waveform (Hermosilla et al., 2014b) (Fig. 2). LFW-derived metrics were extracted from the 248 

pseudo-vertical waveform (Fig. 2). The six LFW-derived metrics used in this paper were 249 

introduced by Duong (2010): HOME, WD, NP, ROUGH, RWE and FS (Table 2). 250 

 251 

Table 2. Description of LFW-derived metrics used in this study. 252 

 253 

Metric Description 

HOME 
Height Of Median Energy: height where  

the median of the return energy is reached 

WD 
Waveform Distance: height from  

the ground to the beginning of the waveform 

NP Number of Peaks: number of peaks of the waveform 

ROUGH 
ROUGHness of outermost canopy: distance from 

 the beginning of the waveform to the first peak 

RWE Return Waveform Energy: sum of waveform amplitudes 

FS 
Front Slope angle: vertical angle from  

the beginning of the waveform and the amplitude of the first peak 

 254 

As a result, each column of voxels had a pseudo-vertical waveform, and therefore a value for 255 

each LFW-derived metric. Finally, the LFW-derived metric value for each sample was computed as 256 

the average of all the voxel columns within each polygon sample (Fig. 2). 257 

 258 

2.3. Analysis of metrics variation 259 

2.3.1. LFW-derived metric variation related to pulse density 260 

Once LFW-derived metrics were computed for every sample, voxel size, assignation value and 261 

pulse density, we analyzed its variation related to the pulse density (Fig. 2). The goal was to 262 

analyze LFW-derived metric variations modifying the three mentioned parameters (i.e. voxel size, 263 

assignation value and pulse density). We first observed the variation related to pulse density for 264 
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several samples at different voxel sizes and assignation values. As this variation followed a 265 

negative exponential distribution, we used the least squares method to find the most appropriate 266 

parameter values, fitting a negative exponential model (Eq. (2)). In this model, based on the 267 

exponential semivariogram model (David, 1977), LFW-derived metric values (y=dependent 268 

variable) tend to remain stable around a sill with a slight positive slope at a given pulse density 269 

(x=independent variable). The formula of the negative exponential function is as follows: 270 

 271 

    (2) 272 

 273 

where x = value of density in pulses.m-2, 274 

 y = value of the LFW-derived metric, 275 

a = value of y at which x=0 in the negative exponential model, 276 

 b = value of x where y reaches the 95% of the sill value,  277 

c = range of y between a and the value of y at which the function is stabilized then, 278 

a + c = y value of the sill. 279 

 280 

On the other hand, each sample has different values for LFW-derived metrics, due to vegetation 281 

variability. Therefore, with the aim of working with all 30 samples we did not fit a function for 282 

all the samples together. Instead, we fit a function for each sample individually, and then we 283 

averaged the model results from the 30 samples clustered by LFW-derived metric, voxel size and 284 

assignation value. As a result, we computed 12,600 different models (i.e. 30 samples × 6 LFW-285 

derived metrics × 14 voxel sizes × 5 assignation values) resulting 420 averaged results (i.e. 6 286 

LFW-derived metrics × 14 voxel sizes × 5 assignation values). Only negative exponential models 287 
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with a convergence tolerance of < 1 x 10-5 in the iterative fitting process were used for the study. 288 

Validation was carried out using the Jackknife procedure described by Duda et al. (2012), which 289 

utilizes a leave-one-out procedure. Results were evaluated using the coefficient b, which shows 290 

the minimum pulse density where LFW-derived metrics hardly vary, and the Jackknife bias, 291 

which shows the average of the deviations after removing one observation at each iteration. 292 

 293 

2.3.2. LFW-derived metric variation according to voxel size and assignation value 294 

As seen in the previous section, analyzing variability of LFW-derived metrics as pulse density 295 

increases provides the minimum pulse density (MPD) where metrics stay steady, corresponding 296 

to the coefficient b of the negative exponential model. In addition, analyzing the variability using 297 

different voxel sizes and assignation values may help to diminish the influence of the pulse 298 

density (Crespo-Peremarch et al., 2016). Total Variation (TVar) (Eq. (3)) (Harten, 1983) can be 299 

used instead of the variability of LFW-derived metric values for the different pulse densities (Fig. 300 

2), explained in the previous section. The TVar computes the sum of differences between 301 

adjacent values. Hence, the lower the TVar value, the less variability the LFW-derived metric has 302 

due to the pulse density. The formula of the TVar is as follows: 303 

 304 

     (3) 305 

 306 

where y = value of the metric in a given pulse density (pd) and, 307 

 pd = pulse density. 308 

 309 



19 
 

Given that LFW-derived metrics and assignation values have, in practice, a different range of 310 

values, LFW-derived metrics were rescaled independently for each possible combination of metric 311 

and assignation type. A modified version of the feature scaling method was used (Eq. (4)) to 312 

standardize data. In our case, the minimum value was equal to zero, since we wanted to keep the 313 

minimum TVar value as zero: 314 

 315 

 / min(x) = 0    (4) 316 

 317 

where y = standardization of the LFW-derived metric value, 318 

 x = LFW-derived metric value, 319 

min(x) = minimum LFW-derived metric value grouped by LFW-derived metric and 320 

assignation value, in our case modified to min(x) = 0, 321 

max(x) = maximum LFW-derived metric value grouped by LFW-derived metric and 322 

assignation value. 323 

 324 

Afterwards, we computed the TVar from the 30 samples by averaging every LFW-derived metric, 325 

voxel size and assignation value. 326 

 327 

3. Results 328 

Fig. 3 shows how the pseudo-vertical waveform and the LFW-derived metrics from the same 329 

voxel column vary modifying the pulse density, voxel size and assignation value. The lower the 330 

pulse density, the more null values and the less detail appear in the pseudo-vertical waveform. 331 
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However, changes in the waveform due to pulse density reduction seem to be less noticeable 332 

when voxel size increases to 1.25 m, except for the median assignation value. In addition, 333 

pseudo-vertical waveforms using the median assignation are smoother than those using the 334 

maximum assignation. 335 

Analyzing LFW-derived metric values for the same voxel size, HOME, WD, ROUGH and FS do 336 

not show significant variations. On the contrary, NP and RWE are more variable. 337 
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 338 

Fig. 3. Examples of pseudo-vertical waveforms at voxel column-level and LFW-derived metric 339 
values for different pulse densities (20, 10 and 5 pulses.m-2), voxel sizes (0.25 and 1.25 m) and 340 

assignation values (maximum and median). 341 
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 342 

3.1. Analysis of LFW-derived metric variation related to pulse density 343 

Fig. 4 shows the variation of HOME in one sample for the different pulse densities with the 344 

maximum assignation and voxel sizes of 0.25 and 0.75 m. In the case of 0.25 m (Fig. 4a), the 345 

trend fits a negative exponential model. This does not occur using a voxel size of 0.75 m (Fig. 346 

4b). The negative exponential function shows that HOME values progressively increase as pulse 347 

density increases, until they reach the sill of the curve at 9-10 pulses.m-2 (in this case the MPD 348 

was 7.11 pulses.m-2). However, HOME values in Fig. 4b, except for a pulse density of 2 349 

pulses.m-2, seem to be constant, even with a slight negative slope. This negative slope prevents 350 

from the fitting with a negative exponential model. 351 

 352 

 353 

Fig. 4. Variation of HOME related to pulse density in one sample for the maximum 354 
assignation value and voxel sizes of (a) 0.25 m and (b) 0.75 m. The black points represent the 355 

values computed and the red curve the fitted model, being (a) negative exponential. The values 356 
of HOME in (b) do not fit a negative exponential model. 357 

 358 

After generating the fitted models for every sample, Fig. 5a shows the average of the adjusted 359 

MPD values from the 30 samples where the corresponding LFW-derived metric remains stable 360 

(i.e., the b coefficients from the negative exponential models (see Eq. (2))); and Fig. 5b shows 361 
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the standard deviation of the MPD for all samples. All the models obtained a Jackknife bias 362 

lower than 1.56.10-13 in the validation procedure for the three coefficients of the negative 363 

exponential model (e.g. a, b, and c). This means that there were not outliers after applying the 364 

leave-one-out procedure. It is important to remark that negative exponential models were 365 

generated using sample data from 2 to 16 pulses.m-2. Hence, LFW-derived metric variation values 366 

estimated out of this range are extrapolations, and as such the resulting MPD values higher than 367 

16 pulses.m-2 must be considered carefully. Additionally, empty cells in Fig. 5 correspond to 368 

combinations of metrics and voxel sizes that do not fit a negative exponential model. NP, 369 

ROUGH and RWE are the metrics with highest MPD values (MPD ϵ [42.2, 46.2], MPD ϵ [18.7, 370 

21.3] and MPD ϵ [60.2, 89.7] pulses.m-2, respectively, for a voxel size of 0.25 m), while HOME, 371 

WD and FS have the lowest (MPD ϵ [7.1, 7.2], MPD = 9.6 and MPD ϵ [3.9, 4.1] pulses.m-2, 372 

respectively, for a voxel size of 0.25 m). Every LFW-derived metric remains asymptotically stable 373 

at lower pulse densities as voxel size increases. For instance, the MPD decreases from 7.1 to 3.4 374 

pulses.m-2 for HOME; from 9.6 to 8.4 pulses.m-2 for WD; from 45.5 to 15.4 pulses.m-2 for NP; 375 

from 21 to 4.6 pulses.m-2 for ROUGH; and from 60.2 to 5.3 pulses.m-2 for RWE. However, WD 376 

has low values for voxel sizes of 0.35 and 0.45 m (MPD ϵ [8.4, 8.5]), but they increase again as 377 

the voxel size also increases (MPD = 13.5 pulses.m-2). Results also show that for low MPD 378 

values (i.e. MPD ϵ [3.9, 5.6]), LFW-derived metric variation does not fit a negative exponential 379 

trend for high voxel sizes. This behavior is observed with HOME, ROUGH, RWE and FS, 380 

except for ROUGH using the maximum assignation value. In these cases, LFW-derived metric 381 

values tend to slightly decrease as pulse density increases. 382 

Comparing different assignation values, HOME, WD, NP and FS have similar MPD values; 383 

however, ROUGH and RWE were influenced differently. Both ROUGH and RWE remain stable 384 
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at lower pulse densities using the median as assignation value, but they present more variation 385 

using the maximum, percentiles 90 and 95. For instance, RWE has a MPD value of 5.3 pulses.m-386 

2 using the median assignation and a voxel size of 1.25 m, while the MPD value was 18.6 using 387 

the maximum and the same voxel size. 388 

Analyzing the average of the standard deviation of the MPD from the 30 samples (Fig. 5b), all 389 

the values are low (between 1 and 2.6 pulses.m-2) except for NP and RWE with small voxel 390 

sizes. These LFW-derived metrics have large standard deviations for small voxel sizes ([6.7, 8.6] 391 

and [5.8, 11] pulses.m-2, respectively), diminishing the values for larger voxel sizes ([1.9, 2.3] 392 

and [1.0, 1.2] pulses.m-2, respectively). However, the standard deviation of ROUGH using the 393 

maximum assignation increases as voxel size increases. High standard deviation values of MPD 394 

are related to high MPD values. 395 
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 396 

Fig. 5. (a) Average minimum pulse density (MPD; i.e. coefficient b from the negative exponential model) from the 30 samples for 397 

different voxel sizes and assignation values. Empty cells correspond to combinations of metrics and voxel sizes that do not fit a 398 
negative exponential model. Values in bold correspond to MPD values higher than 16 pulses.m-2 (i.e. the maximum pulse density 399 
from sample data used to generate the negative exponential model). (b) Average standard deviation of MPD for the 30 samples 400 

tested. Smallest and highest values are represented by blue and red colors, respectively.401 
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3.2. Analysis of LFW-derived metric variation related to voxel size and assignation 402 

value 403 

Fig. 6 shows the Total Variation standardized (TVar) value defined by Eq. (3) and (4) for every 404 

LFW-derived metric computed at the different voxel sizes and assignation values. Overall, 405 

HOME, WD and FS present the lowest TVar values (TVar ϵ [0.03, 0.27], TVar ϵ [0.06, 0.28] and 406 

TVar ϵ [0.10, 0.28], respectively), while NP, ROUGH and RWE present higher values (TVar ϵ 407 

[0.24, 0.36], TVar ϵ [0.14, 0.52] and TVar ϵ [0.012, 0.45], respectively, using small voxel sizes). 408 

TVar values of HOME, WD, NP for maximum, RWE for mean and median, and FS, decrease as 409 

voxel size increases compared to the lowest voxel size (i.e. 0.25 m). These values range from 410 

0.27 to 0.04 for HOME, from 0.28 to 0.06 for WD, from 0.33 to 0.30 for NP with the maximum 411 

assignation value; from [0.40, 0.45] to [0.12, 0.17] for RWE with the mean and median 412 

assignation values; and from [0.26, 0.28] to [0.10, 0.14] for FS. NP TVar values do not vary 413 

significantly as voxel size increases, the values being [0.24, 0.32] at 0.25 m, and [0.27, 0.30] the 414 

lowest TVar values at other voxel sizes. Regarding RWE, the TVar values are minimal at the 415 

lowest voxel size using the maximum, percentiles 90 and 95 as assignation values. Nevertheless, 416 

TVar values are particularly high at the lowest voxel size using the mean and median assignation 417 

value, and become low for the largest voxel sizes, especially with the median. In addition, TVar 418 

values from ROUGH steeply increase as voxel size increases, varying from [0.14, 0.23] at 0.25 419 

m to [0.38, 0.52] at 1.55 m. 420 

Regarding the assignation values, HOME and WD present little or no differences. However, NP, 421 

ROUGH and RWE have different TVar values depending on the assignation values. NP has the 422 

lowest value at 0.25 m for the median assignation value (TVar = 0.24). The lowest TVar values 423 

of ROUGH are reached using the maximum, percentiles 90 and 95. Finally, RWE TVar values 424 
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have the largest differences between assignation values, the mean and median being completely 425 

different from the others. 426 

 427 

 428 

Fig. 6. Total Variation values for the different LFW-derived metrics computed for the 429 
assignation values and voxel sizes. Smallest and highest values are represented by blue and 430 

red colors, respectively. 431 
 432 
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4. Discussion 433 

In this research we analyzed how LFW-derived metrics varied according to pulse density, voxel 434 

size and assignation value. Key results indicate that LFW-derived metric variations due to pulse 435 

density differences can be modelled, and therefore their impact reduced by setting a MPD, 436 

modifying the voxel size and/or the assignation value used. This may help to diminish the side-437 

lap effect in a particular study area, and therefore to obtain a more accurate estimate of forest 438 

stand variables. 439 

 440 

Results showed that LFW-derived metric variations related to pulse density have a negative 441 

exponential behavior, especially with small voxel sizes. Usually, there is a MPD from which 442 

metric values are stabilized. In new LFW acquisitions, this MPD should be the minimum pulse 443 

density value registered by the sensor to avoid the side-lap effect. However, the MPD is not 444 

constant for every LFW-derived metric, voxel size or assignation values employed. Therefore, in 445 

practice, either the most affected LFW-derived metrics should be avoided for estimation of forest 446 

stand variables, the voxel size increased or the assignation value modified. 447 

 448 

On the other hand, when LFW has already been acquired, pulse density cannot be increased, and 449 

therefore other strategies are required, such as modifying LFW parameters. Our results showed 450 

that increasing the voxel size and/or modifying the assignation value can make more stable LFW-451 

derived metrics. The probability that larger voxels are crossed by at least one waveform is 452 

higher, avoiding the gaps in the voxel columns that may alter LFW-derived metric values. 453 

Eventually, a trade-off between increasing voxel size to reduce side-lap effect and a substantial 454 

loss of resolution should be considered. Regarding the assignation value, its effect on the 455 



29 
 

stability of LFW-derived metrics depends on the chosen metrics. Some standard LFW-derived 456 

metrics, such as RWE, have unstable behavior, whereas some others, such as WD, have not. In 457 

general, the increment of the voxel size and the change of the assignation value reduce the LFW-458 

derived metric variation. 459 

 460 

MPD values determine the minimum pulse density required to obtain stable LFW-derived metrics. 461 

However, the variation trend of some LFW-derived metrics does not follow a negative 462 

exponential model. Additionally, in some metrics (e.g. WD) higher values of MPD do not 463 

correspond to higher values of TVar. Therefore, the introduction of TVar complements the MPD 464 

as an indicator of the variability of the LFW-derived metric due to pulse density changes. 465 

 466 

Regarding different behavior among LFW-derived metrics, NP and RWE are more sensitive to 467 

pulse density changes than the rest. The lack of one or more voxel values means fewer peaks and 468 

a different sum of amplitudes in the wave. On the contrary, HOME, WD, ROUGH (at lower 469 

voxel sizes) and FS are less affected, since they are metrics that are related either to the height or 470 

to the top texture of the canopy, where the laser energy from airborne sensors arrives without 471 

occlusion (Crespo-Peremarch and Ruiz, 2017). WD only requires a proper estimation of the 472 

height of the beginning of the waveform (top of the canopy), and it is well determined if the 473 

waveform intersects with the top of the trees. HOME calculation involves the beginning of the 474 

waveform as well as the height of the median energy. The latter is usually well registered, since 475 

it often corresponds to the densest vertical layer (see HOME values in Fig. 3). ROUGH and FS 476 

calculation requires the beginning of the waveform, and the position and amplitude of the first 477 
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peak. Therefore, HOME, WD, ROUGH and FS vary if some voxel columns have no data due to 478 

a low pulse density. In order to avoid this, an increment of the voxel size is required. 479 

In addition, there is remarkable disparity in LFW-derived metric values using different assignation 480 

values. MPD and TVar values from WD do not vary, since the beginning of the waveform does 481 

not vary by modifying the assignation value. HOME has slight differences, since the height of 482 

the median energy may vary depending on the assignation employed. NP also presents minor 483 

variation, since the pseudo-vertical waveform has more singularities when the maximum 484 

assignation value is employed. ROUGH also has some differences due to possible variations of 485 

the first peak. RWE is the most variable LFW-derived metric. As it is computed as the sum of 486 

amplitudes of a waveform, the sum of maximum values may substantially differ from the sum of 487 

median values, for instance. A normalized metric may be used in order to avoid these 488 

differences. A possible approach could be to calculate a normalized RWE (nRWE) following Eq. 489 

(4), where x is equal to RWE, and min(x) and max(x) are the minimum and maximum RWE 490 

values, respectively, for each assignation value. Thus, nRWE values from different assignation 491 

values would be comparable. Finally, FS may present small differences, since the amplitude and 492 

position of the first peak can vary as well. 493 

To summarize, in order to reduce the side-lap effect in this scenario, the increment of the voxel 494 

size is recommended for HOME, WD, FS, and RWE for the mean and median assignation 495 

values, but not for ROUGH and RWE when maximum, percentiles 90 and 95 assignation values 496 

are used. Besides, depending on the voxel size, the selection of the assignation value has to be 497 

considered for RWE. According to results, NP might be discarded for estimating forest stand 498 

variables because of its sensitivity to pulse density. Observing Figures 5 and 6, MPD, voxel size 499 

and assignation values can be selected to minimize the side-lap effect in areas with similar 500 
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vegetation types and densities. When planning a LiDAR flight, a MPD around 10 pulses.m-2, a 501 

voxel size of 0.75 m or similar, and the mean or median voxel assignation seem to optimize 502 

general performance. This combination of parameters provides the minimum values of MPD for 503 

most of the LFW-derived metrics (Fig. 5), except for NP. However, if LiDAR data are already 504 

available and the pulse density cannot be increased, the maximum assignation and a voxel size of 505 

about 0.75 m would be the most efficient option in terms of reduction of side-lap effect (Fig. 6). 506 

 507 

There are few published studies that analyze how LFW-derived metrics respond to progressive 508 

variations of the LiDAR pulse density. Crespo-Peremarch et al. (2016) analyzed differences in 509 

LFW-derived metrics between pair samples with similar (but not identical) forest structure and 510 

different pulse densities due to side-lap effect. They employed a paired Student’s t-test and the 511 

Wilcoxon signed-rank test to determine whether LFW-derived metrics were significantly different 512 

between pair samples, quantifying these differences. Although general conclusions were reached 513 

in this study, they do not allow for a practical treatment of the problem. Nevertheless, the 514 

behavior of the metrics related to pulse density variations has been analyzed in more detail and 515 

with greater sensitivity. For instance, the definition and use of MPD and TVar provides more 516 

complete information about LFW-derived metric variations, since they were measured in the same 517 

sample but with different pulse density, as well as practical guidance to reduce the effect of 518 

density differences in LFW data sets. 519 

Our results are analogous to those of previous studies using LD. In these studies, a similar 520 

tendency for R2 (Jakubowski et al., 2013; Manuri et al., 2017), reliability ratio (Magnussen et al., 521 

2010; Hansen et al., 2015) and maximum height metric (Roussel et al., 2017) was found. These 522 

values stabilize as pulse density increases. 523 
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 524 

Modelling LFW-derived metric variations related to the pulse density is relevant to remove or 525 

reduce the side-lap effect when mapping metrics and forest structural variables are computed. 526 

Depending on the LiDAR data acquisition step, different strategies can be followed. First, if LFW 527 

data has not been acquired yet, a minimum pulse density that keeps LFW-derived metrics stable 528 

may be set. Second, if LFW data has already been acquired, LFW-derived metric variation can be 529 

reduced by increasing the voxel size to a certain extent, and/or using a specific assignation value. 530 

In this case, the pulse density cannot be increased, therefore LFW parameters that provide more 531 

stable metrics should be used. Finally, if some variables do not respond to these strategies and 532 

reducing the side-lap effect is not possible, then they should be avoided for further analyses. 533 

 534 

5. Conclusions 535 

The present study has analyzed the variation of LFW-derived metrics according to the pulse 536 

density. This variation is common due to side-lap areas that are registered with a higher pulse 537 

density, and is known as “side-lap effect”. Our results suggest that LFW-derived metric variations 538 

related to pulse density can be modelled in most cases using a negative exponential model, and 539 

therefore there is a threshold at which their values stabilize. From this point, a minimum pulse 540 

density can be set to avoid the side-lap effect. In addition, modifying LFW parameters (i.e. voxel 541 

size and assignation value) reduces the side-lap effect when pulse density cannot be increased, 542 

e.g. when LFW data has already been acquired. Thus, an increment of the voxel size is 543 

recommended for HOME, WD, FS and RWE for the mean and median assignation values. 544 

Nevertheless, small voxel sizes make ROUGH and RWE for maximum, percentiles 90 and 95 545 

more stable. On the other hand, the choice of the assignation value must be considered 546 
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depending on the voxel size used for RWE. However, NP is sensitive to pulse density variations 547 

and they cannot be reduced through LFW parameters, and therefore should be avoided for further 548 

analyses. The results presented in this study have practical relevance in order to avoid the side-549 

lap effect when estimating forest stand variables using LFW data. Further studies could focus on 550 

analyzing the effect of these parameters on different ecosystems with different dominant species, 551 

as well as the effect of the emitted pulse energy and footprint size on LFW-derived metrics, since 552 

they also influence the penetration of laser pulses. 553 

 554 
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