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Abstract: In this work, the expression of the phasor of apparent power of harmonic distortion is
formulated in the time domain. Applying this phasor along with the phasor of apparent unbalance
power allows us to obtain a new set of phasors that include all of the inefficient power components
appearing in the transfer of energy in non-linear and unbalanced systems. In this manner, a new
model of inefficient power in electrical systems is developed. For each voltage harmonic of order ‘m’
and current harmonic of order ‘n’, a phasor of harmonic apparent power is obtained. Accuracy in
the determination of the total apparent power of a system depends on the number of harmonics
considered. Each phasor of apparent harmonic power is formed from six mutually orthogonal
parameters or components that are calculated from the harmonic voltages at the nodes of the network
and the circulating harmonic currents. To demonstrate the validity of the proposed formulation,
a four-wire non-linear system formed by two nodes is assessed.

Keywords: harmonic load flow; harmonics analysis; power flow

1. Introduction

In addition to useful power for the transfer of energy (or active power), the power generated by
a three-phase electrical system includes non-useful components that must be taken into account in
the analysis of energy transfer [1]. Phase differences between voltage and current result in reactive
power [2], and an unbalanced three-phase electrical system produces a so-called power of unbalance [3].
In addition, such electrical systems are designed to work with voltages and sinusoidal currents, and
the use of non-linear loads and/or variants over time distorts the voltage and current waveforms,
resulting in the creation of harmonic components. The analysis of the generation and propagation of
harmonic components through an electrical system is called harmonic power flow analysis [4].

These types of non-useful power can be critically detrimental to an electrical system through
their effects on the operation of protection and measuring equipment, which can result in unexpected
opening and erroneous measurement [5,6]. In addition, increased currents can enhance power losses in
transmission lines [7] and in motors can cause winding overheating; loss of thermal insulation, copper
and iron; reduction in the motor torque; decrease in performance, etc. [8]. In generators, non-useful
components can hinder automatic synchronization with the network, and in neutral conductors they
produce dangerous overheating because they add harmonic currents of the third-order (or integer
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multiples thereof). The physical significance of non-useful power components has been widely
discussed in the scientific literature [9–12].

Non-linear loads are increasingly used in general applications, including switch mode power
supplies, motors and variable speed drives, photocopiers, personal computers, laser printers,
fax machines, battery chargers, etc. There is also currently a high amount of government support for
the development of power generation using photovoltaic technology. Solar plants are considered to be
an important source of harmonics as a result of the power electronics technology used in the electricity
generation process [13–15]. The non-linear loads and solar energy sourcing has therefore increased the
overall harmonic power present in electrical systems.

Harmonic power has also been widely discussed in the literature [16–18], with most recent studies
focusing on the development of active filters to mitigate the effects of harmonic components [19–24].
Other research focuses on the development of techniques to assess and differentiate the harmonic
contribution of customers and networks [25,26]. In these contributions, the harmonic power of
the system is not evaluated phasorially. Currently, electrical power expressions developed in IEEE
Std. 1459–2010 [10], obtained in the time domain, are accepted as valid, although approaches in
the frequency domain are also possible [27]. Under the time-domain standard, harmonic current
and voltage distortion rates (THDi and THDv, respectively) are established as proportions of the
fundamental components and are expressed as percentages of the respective components.

In 2016, the authors of this paper defined the unbalance power phasor [28] and developed
an equivalent circuit for the analysis of unbalance power in three-wire electrical systems [29].
The unbalance power and apparent power phasors of the positive sequence can be combined to
produce the apparent power phasor of an unbalanced linear electrical system; this phasor has a
modulus equivalent to that obtained by Buchholz [30] and IEEE Std. 1459–2010 [10].

This paper extends the method used in the formulation of the unbalance power phasor [28] to
non-linear systems for calculating the harmonic distortion power. This application to non-linear power
systems is not immediate. In this case, there are voltage and current harmonics of the same order,
as well as of a different order. This gives rise to different harmonic powers, depending on the harmonic
order of voltage and current that is considered. In this work, these powers are formulated phasorially.

The main advantage of the proposed method is that it allows analysis by phasor components.
This allows us to obtain a new set of phasors that encompasses all balanced, unbalanced, sinusoidal or
non-sinusoidal inefficient power components appearing in the transfer of energy in an electrical system
in an approach that maintains all of the advantages of the phasor formulation.

The difference compared to the methods listed in the literature, mainly the IEEE Std. 1459–2010 [9],
is that it only determines the harmonic powers in absolute values. This value matches with the module
of the phasor proposed in this work. Moreover, another added advantage, presented by the phasor
of apparent harmonic power, is that it allows us to know the contribution of each load to each of the
mentioned harmonic powers at any point in the network.

The proposed procedure is not intended to replace the procedure established in IEEE Std.
1459-2010 but instead represents a new approach to understanding the inefficient power in an electrical
system from a time-domain-based perspective.

The rest of this paper is organized as follows. In Section 2, the production of instantaneous power
in non-linear systems is reviewed. In Section 3, the phasor of apparent harmonic power is formulated
for a three-phase system with balanced voltages and non-linear loads. In Section 4, the apparent
harmonic power phasor for a three-phase system with unbalanced voltages and non-linear loads is
analyzed. In Section 5, the total apparent power of an electrical system and its modulus are analyzed.
To aid in the understanding of the proposed calculation method and its application, Section 6 examines
a case involving a system with unbalanced voltages and non-linear loads.
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2. Review of Instantaneous Power in a Non-Sinusoidal System

The voltage and instantaneous current in a non-sinusoidal single-phase system are given by the
following equations:

v(t) = V0 +
√

2 ∑m Vm sin(mωt + αm) (1)

i(t) = I0 +
√

2 ∑n In sin(nωt + βn) (2)

where

• m is the harmonic order of the voltage and n is the harmonic order of the current.
• V0 and I0 are, respectively, the voltage and current constant terms. In alternating-current power

systems, these values are generally very small and, therefore, will not be considered further in
this work.

• Vm and In are the root mean square (RMS) values for the harmonic voltage and harmonic current
of orders m and n, respectively.

• αm and βn are the phase angle harmonic voltage and phase angle harmonic current of orders m
and n, respectively.

The instantaneous power is given by the following equation:

p(t) = v(t) i(t) = pa + pq (3)

where the first term, pa, is the instantaneous active power, which is decomposed into three
instantaneous components:

pa = pa1 + pah + pa(m,n) (4)

Here, pa1 is the fundamental instantaneous active power, which is calculated as

pa1 = V1 I1 cos θ1[1− cos(2ωt + 2α1)] (5)

This expression has two terms: the fundamental active power P1 = V1 I1 cos θ1, and the oscillating
component −P1 cos(2ωt + 2α1). The first term is equal to the average value of pa1 and determines
the active power caused by the fundamental harmonics of voltage and current. The second term,
which has an average value of zero, is always present when net energy is transferred to the load;
however, it does not cause power loss in the conductors.

The second term in (4), pah, is the harmonic instantaneous active power of order h for h 6= 1, and is
calculated as

pah = ∑h 6=1 Vh Ih cos θh[1− cos(2hωt + 2αh)] (6)

This term is caused by harmonic voltages of order h and harmonic currents of order h, that is,
for harmonics of equal voltage and current, and has a value of zero for a linear electrical system.

The first term in (6) represents the sum of the harmonic active power components Ph = Vh Ih cos θh.
The sum ∑h 6=1 Ph is equal to the average value of pah and the sum of P1 and ∑h 6=1 Ph is the total active
power of a non-sinusoidal electrical system. The second term of (6) represents the sum of oscillating
harmonic components of amplitude Ph and a frequency of 2h. The average value of the second term is
zero, and the term does not correspond to power loss in the conductors.

The third term in (4), pa(m,n), is the harmonic instantaneous active power, which is caused by
the harmonic voltage of order m and the harmonic current of order n, where m 6= n. This term is
calculated as

pa(m,n) = ∑ m 6= n
m, n = 1

Vm In cos θm
n [cos(m− n)ωt− cos((m + n)ωt + 2αm)] (7)
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The average value of pa(m,n) is zero.
The second term in (3), pq, is the instantaneous reactive power, which is also decomposed into

three instantaneous components:
pq = pq1 + pqh + pq(m,n) (8)

where

• pq1 is the fundamental instantaneous reactive power, which is calculated from (9).
• pqh is harmonic instantaneous reactive power of order h 6= 1, which is calculated from (10).

This power component is caused by the harmonic voltage and harmonic current of orders h and
h, respectively.

• pq(m,n) is harmonic instantaneous reactive power, which is caused by the harmonic voltage of
order m and the harmonic current of order n, where m 6= n. This power is calculated from (11).

pq1 = −V1 I1 sin θ1 sin(2ωt + 2α1) (9)

pqh = −∑h 6=1 Vh Ih sin θh sin(2hωt + 2αh) (10)

pq(m,n) = −∑ m 6= n
m, n = 1

Vm In sin θm
n [sin(m− n)ωt + sin((m + n)ωt + 2αm)] (11)

In a non-sinusoidal three-phase system, the instantaneous power and its components are
expressed by the following equation:

p(t) = ∑z=a,b,c vziz = ∑z=a,b,c paz + ∑z=a,b,c pqz (12)

For each of the phases (a, b and c), the instantaneous active power paz and the instantaneous
reactive power pqz are calculated from (4)–(7) and (8)–(11), respectively.

3. Harmonic Power in a Non-Linear Three-Phase Power System with Non-Sinusoidal
Balanced Voltages

Figure 1 shows a non-linear load that is connected to an electrical system with non-sinusoidal
balanced voltages.
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where
va = ∑

m=1
vam ia = ∑

n=1
ian

vb = ∑
m=1

vbm ib = ∑
n=1

ibn
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vc = ∑
m=1

vcm ic = ∑
n=1

icn.

where vam, vbm and vcm are line-to-neutral harmonic voltages of order m and ian, ibn and icn are
harmonic currents of order n.

These voltages can be expressed in terms of the following symmetrical components:

vm+ =
√

2 ∑m=1 Vm+ sin(mωt + αm+) (13)

vm− =
√

2 ∑m=1 Vm− sin(mωt + αm−) (14)

vm0 =
√

2 ∑m=1 Vm0 sin(mωt + αm0) (15)

Similarly, the symmetric current components are

in+ =
√

2 ∑n=1 In+ sin(nωt + βn+) (16)

in− =
√

2 ∑n=1 In− sin(nωt + βn−) (17)

in0 =
√

2 ∑n=1 In0 sin(nωt + βn0) (18)

where

• Vm+ and In+ are the RMS values for the positive-sequence harmonic voltage and current of orders
m and n, respectively.

• Vm− and In− are the RMS values for the negative-sequence harmonic voltage and current of
orders m and n, respectively.

• Vm0 and In0 are the RMS values for the zero-sequence harmonic voltage and current of orders m
and n, respectively.

• αm+, αm− and αm0 are, respectively, the angles of positive-, negative- and zero-sequence of the
harmonic voltage of order m.

• βn+, βn− and βn0 are, respectively, the angles of positive-, negative- and zero-sequence of the
harmonic current of order n.

As the voltages are balanced, the negative and zero-sequence voltages (vm− and vm0) become
zero. The positive-sequence voltages for each phase (a, b and c) are determined as follows:

vam+ = vm+ vbm+ = a2vm+ vcm+ = a vm+

where a = 1 ej120.
Similarly, the phase-specific positive-, negative- and zero-sequence currents are

ian+ = in+ ibn+ = a2in+ icn+ = a in+

ian− = in− ibn− = a in− icn− = a2 in−

ian0 = ibn0 = icn0 = in0

Under these conditions, the instantaneous power of the system is given by

p(t) = p+ + p+− + p+0 (19)

where
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p+ = ∑ m = 1
n = 1

z = a, b, c

Vzm+ Izn+ (20)

p+− = ∑ m = 1
n = 1

z = a, b, c

Vzm+ Izn− (21)

p+0 = ∑ m = 1
n = 1

z = a, b, c

Vzm+ Izn0 (22)

Here,

• p+ is the instantaneous power caused by positive-sequence voltages and currents.
• p+− is the instantaneous power caused by positive-sequence voltages and

negative-sequence currents.
• p+0 is the instantaneous power caused by positive-sequence voltages and zero-sequence currents.

Expressions of instantaneous power for voltage and current harmonics of order m and n,
respectively, can then be obtained as

p+(m,n) = 3 Vm+ In+ cos
(
(m− n)ωt + θm+

n+
)

(23)

p+−(m,n) = −3 Vm+ In− cos
(
(m + n)ωt + 2αm+ − θm+

n−
)

(24)

p+0(m,n) = −3 Vm+ In0 cos
(
(m + n)ωt + 2αm+ − θm+

n0
)

(25)

where

• θm+
n+ is the angle between the positive-sequence harmonic voltage of order m and the

positive-sequence harmonic current of order n.
• θm+

n− is the angle between the positive-sequence harmonic voltage of order m and the
negative-sequence harmonic current of order n.

• θm+
n0 is the angle between the positive-sequence harmonic voltage of order m and the zero-sequence

harmonic current of order n.

Equation (23) can be decomposed into the following two terms:

Pm+
n+ = 3 Vm+ In+ cos θm+

n+ (26)

Qm+
n+ = 3 Vm+ In+ sin θm+

n+ (27)

where Pm+
n+ and Qm+

n+ are, respectively, the positive-sequence active power and the positive-sequence
reactive power for a harmonic voltage of order m and a harmonic current of order n.

3.1. Harmonic Parameters Am
n , Bm

n , Cm
n and Dm

n

A three-phase four-wire star-connected system with a single-phase load in the A-phase with
balances and sinusoidal voltages will satisfy the following conditions:

In− = In0 = In+ =
1
3

Ian

Vam = Vam+ = Vm+
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αm+ = αam = αam+

θm+
n+ = θm+

n− = θm+
n0 = θam

an = θam+
an

Substituting these equalities into (24) and (25) produces the following expression:

p+−(m,n) + p+0(m,n) = −2 Vam+ Ian cos
(
(m + n)ωt + 2αam+ − θam+

an
)

(28)

If we proceed in this manner in connecting the load to Phase B and then to Phase C, applying the
superposition theorem results in the following expression:

p+−(m,n) + p+0(m,n) = −2 ∑z=a,b,c Vzm+ Izn cos
(
(m + n)ωt + 2αzm+ − θzm+

zn
)

(29)

which can be decomposed into Am
n (t), Bm

n (t), Cm
n (t) and Dm

n (t) as follows:

p+−(m,n) + p+0(m,n) = Am
n (t) + Bm

n (t) + Cm
n (t) + Dm

n (t) (30)

where
Am

n (t) = −2 ∑z=a,b,c Vzm+ Izn cos θzm+
zn cos 2αzm+ cos(m + n)ωt (31)

Bm
n (t) = 2 ∑z=a,b,c Vzm+ Izn cos θzm+

zn sin 2αzm+ cos(m + n)ωt (32)

Cm
n (t) = −2 ∑z=a,b,c Vzm+ Izn sin θzm+

zn sin 2αzm+ cos(m + n)ωt (33)

Dm
n (t) = −2 ∑z=a,b,c Vzm+ Izn sin θzm+

zn cos 2αzm+ sin(m + n)ωt (34)

These instantaneous parameters are sinusoidal waveforms with zero average value and RMS
values given by:

Am
n = −

√
2 ∑z=a,b,c Vzm+ Izn cos θzm+

zn cos 2αzm+ (35)

Bm
n =
√

2 ∑z=a,b,c Vzm+ Izn cos θzm+
zn sin 2αzm+ (36)

Cm
n = −

√
2 ∑z=a,b,c Vzm+ Izn sin θzm+

zn sin 2αzm+ (37)

Dm
n = −

√
2 ∑z=a,b,c Vzm+ Izn sin θzm+

zn cos 2αzm+ (38)

3.2. Phasor of Harmonic Apparent Power
→
Sm

n

For each harmonic voltage of order m 6= 1 and harmonic current of order n 6= 1, the phasor of

harmonic apparent power
−→
Sm

n can be defined as:

−→
Sm

n = um
n(A) Am

n + um
n(B) Bm

n + um
n(C) Cm

n + um
n(D) Dm

n + um
n(X) Pm+

n+ + um
n(Y) Qm+

n+ (39)

where

• um
n(A)

, um
n(B), um

n(C) and um
n(D)

are the unit vectors associated with parameters Am
n , Bm

n , Cm
n and Dm

n ,
respectively (see (35)–(38)).

• um
n(X)

and um
n(Y) are the unit vectors associated with the positive-sequence active power Pm+

n+ and

the positive-sequence reactive power Qm+
n+ (see (26) and (27)).

As these unit vectors are all mutually orthogonal, the moduli of harmonic apparent power for a
harmonic voltage of order m and harmonic current of order n is given by:

|Sm
n | =

√
Am

n
2 + Bm

n
2 + Cm

n
2 + Dm

n
2 + Pm+

n+
2 + Qm+

n+
2 (40)
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For m = n = 1, the phasor of fundamental apparent power is obtained as:

−→
S1

1 = u1
1(A) A1

1 + u1
1(B) B1

1 + u1
1(C) C1

1 + u1
1(D) D1

1 + u1
1(X) P1+

1+ + u1
1(Y) Q1+

1+ (41)

This expression is the same as that defined in [22]. In this phasor, the positive-sequence active
and reactive power components, as well as the unbalanced power caused by unbalanced currents,
are all included.

3.3. Application of
→
Sm

n on a Bus with Loads Connected in Parallel

Figure 2 shows two non-linear three-phase loads in a star configuration in which they are
connected to bus ‘i’ of an electric power system.
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Under these conditions, for a harmonic voltage of order m and harmonic current of order n,
the phasor of harmonic apparent power in bus ‘i’ is given by the sum of the individual phasors of each
load connected to the bus:

−−−−−−→
S(bus i)m

n =
−−−−−−−→
S(load 1)m

n +
−−−−−−−→
S(load 2)m

n (42)

3.4. Application of
→
Sm

n between Two Buses in a System

Figure 3 shows two buses in a system (i and j) linked by a power line with impedance Zij.
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Under these conditions, for a harmonic voltage of order m and harmonic current of order n
the phasor of harmonic apparent power in the power line between the two buses is determined by
subtracting the phasor in bus ‘j’ from that in bus ‘i’:

−−−−−−−−→
S(bus line)m

n =
−−−−−−→
S(bus i)m

n −
−−−−−−→
S(bus j)m

n (43)

4. Harmonic Power in a Non-Linear Three-Phase Power System with Non-Sinusoidal
Unbalanced Voltages

In Section 3, we assumed that the voltages were non-sinusoidal but balanced in each of the phases.
In a real three-phase non-linear system, the voltages are normally both non-sinusoidal and unbalanced;
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in this case, the expression of the apparent power module defined by Buchholz in Reference [24] can
be extended for voltage and current harmonics of order m and n, respectively, to obtain:

|ST
m
n | = 3

√(
V2

m+ + V2
m− + V2

m0
) (

I2
n+ + I2

n− + I2
n0
)

(44)

Substituting the voltage unbalance factors of order m, δm− = Vm−/Vm+ and δm0 = Vm0/Vm+,
into (44) produces the following expression:

|ST
m
n | =

√
1 + F2

um

√
9 V2

m+

(
I2
n+ + I2

n− + I2
n0
)

(45)

where Fum =
√

δ2
m− + δ2

m0 and is referred to as the global harmonic voltage unbalance factor of order
m. The expression under the second square root in (45) corresponds to the phasor magnitude apparent
harmonic power defined in (39); this suggests that the modulus of the apparent power |Sm

n | for a
harmonic voltage of order m and a harmonic current of order n at any point of the system must be
corrected and multiplied by

√
1 + F2

um as follows:

|ST
m
n | = |Sm

n |
√

1 + F2
um (46)

5. Total Harmonic Apparent Power and Total Apparent Power

In any node of a non-linear system, the number of harmonics of voltage and current that are
considered will determine the number of phasors of harmonic apparent power. As these phasors are
all mutually orthogonal, they do not sum arithmetically. In any node, the module of total harmonic
apparent power STH is calculated from either of the following two expressions:

|STH | =
√√√√∑ m 6= 1

n 6= 1

|STm
n |

2 (47)

|STH | =
√√√√∑ m 6= 1

n 6= 1

|Sm
n |

2 (1 + F2
um) (48)

These values coincide with those obtained in IEEE Std. 1459-2010 [9] and by Buchholz [24].
Equation (47) or (48) can be alternatively expressed as a function of the fundamental harmonic of
voltage and current (m = n = 1) in either of the two following manners:

|STH | = H
∣∣∣ST

1
1

∣∣∣ (49)

|STH | = H
∣∣∣S1

1

∣∣∣ √(1 + F2
u1
)

(50)

where
H =

√
THD2

I + THD2
V + THD2

I THD2
V (51)

The values THDI and THDV are, respectively, the rates of harmonic distortion of the currents
and voltages of the three-phase system. Symmetrical components are determined by:

THDI =

√√√√∑n 6=1(I2
n+ + I2

n− + I2
n0)

I2
1+ + I2

1− + I2
10

(52)

THDV =

√√√√∑m 6=1(V2
m+ + V2

m− + V2
m0)

V2
1+ + V2

1− + V2
10

(53)
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In terms of phase components, they are determined by:

THDI =

√
∑n 6=1(I2

an + I2
bn + I2

cn)

I2
a1 + I2

b1 + I2
c1

(54)

THDV =

√
∑m 6=1(V2

am + V2
bm + V2

cm)

V2
a1 + V2

b1 + V2
c1

(55)

At any point in the system, the module of total apparent power ST is given by:

|ST | =
√∣∣ST

1
1

∣∣2 + |STH |2 (56)

6. Practical Application

In this section, a practical case study for checking all of the concepts discussed in the previous
sections is developed. Figure 4 shows a four-wire, two-bus electrical system with two unbalanced
three-phase non-linear loads and an unbalanced three-phase linear load. All of the loads are modelled
at a constant impedance. To simulate loads 2 and 3, we use single-phase full-wave rectifiers (see
Figure 5). The values of Ra, Rb and Rc for loads 2 and 3 are listed in Table 1.

Energies 2018, 11, x FOR PEER REVIEW  9 of 16 

 

௏ܦܪܶ = 	ට∑ (௏೘శమ೘ಯభ ା௏೘షమ ା௏೘బమ )௏భశమ ା௏భషమ ା௏భబమ   (53) 

In terms of phase components, they are determined by: ܶܦܪூ = 	ට∑ (ூೌ೙మ೙ಯభ ାூ್೙మ ାூ೎೙మ )ூೌభమ ାூ್భమ ାூ೎భమ   (54) 

௏ܦܪܶ = 	ට∑ (௏ೌ ೘మ೘ಯభ ା௏್ ೘మ ା௏೎೘మ )௏ೌ భమ ା௏್ భమ ା௏೎భమ   (55) 

At any point in the system, the module of total apparent power ்ܵ is given by: |்ܵ| = ටห்ܵଵଵหଶ + |்ܵு|ଶ (56) 

6. Practical Application 

In this section, a practical case study for checking all of the concepts discussed in the previous 
sections is developed. Figure 4 shows a four-wire, two-bus electrical system with two unbalanced 
three-phase non-linear loads and an unbalanced three-phase linear load. All of the loads are modelled 
at a constant impedance. To simulate loads 2 and 3, we use single-phase full-wave rectifiers (see 
Figure 5). The values of ܴ௔, ܴ௕ and ܴ௖ for loads 2 and 3 are listed in Table 1. 

 
Figure 4. Three-phase electrical system with non-linear loads. 

 
Figure 5. Single-phase full-wave rectifier (loads 2 and 3). 

Figure 4. Three-phase electrical system with non-linear loads.

Energies 2018, 11, x FOR PEER REVIEW  9 of 16 

 

௏ܦܪܶ = 	ට∑ (௏೘శమ೘ಯభ ା௏೘షమ ା௏೘బమ )௏భశమ ା௏భషమ ା௏భబమ   (53) 

In terms of phase components, they are determined by: ܶܦܪூ = 	ට∑ (ூೌ೙మ೙ಯభ ାூ್೙మ ାூ೎೙మ )ூೌభమ ାூ್భమ ାூ೎భమ   (54) 

௏ܦܪܶ = 	ට∑ (௏ೌ ೘మ೘ಯభ ା௏್ ೘మ ା௏೎೘మ )௏ೌ భమ ା௏್ భమ ା௏೎భమ   (55) 

At any point in the system, the module of total apparent power ்ܵ is given by: |்ܵ| = ටห்ܵଵଵหଶ + |்ܵு|ଶ (56) 

6. Practical Application 

In this section, a practical case study for checking all of the concepts discussed in the previous 
sections is developed. Figure 4 shows a four-wire, two-bus electrical system with two unbalanced 
three-phase non-linear loads and an unbalanced three-phase linear load. All of the loads are modelled 
at a constant impedance. To simulate loads 2 and 3, we use single-phase full-wave rectifiers (see 
Figure 5). The values of ܴ௔, ܴ௕ and ܴ௖ for loads 2 and 3 are listed in Table 1. 

 
Figure 4. Three-phase electrical system with non-linear loads. 

 
Figure 5. Single-phase full-wave rectifier (loads 2 and 3). Figure 5. Single-phase full-wave rectifier (loads 2 and 3).



Energies 2018, 11, 1888 11 of 16

Table 1. Load 2 and 3 values (see Figure 5).

Resistance Load 2 Load 3

Ra (Ω) 7 5
Rb (Ω) 12 15
Rc (Ω) 20 25

Using the ‘PSPICE’ analysis software (version 9.2), the harmonic line-to-neutral voltages in the
buses (1 and 2) and harmonic currents circulating in the loads are obtained. These magnitudes are
displayed in Tables 2–4. The harmonic currents supplied by the generator and the circulating currents
along the line between buses 1 and 2 are easily deduced from the load currents. Here, we consider
only harmonics 1, 3, 5 and 7 of voltage and current.

Table 2. Harmonic line-to-neutral voltage.

Bus
Order Vam (V) Vbm (V) Vcm (V)

m Modulus Angle Modulus Angle Modulus Angle

Bus 1

1 227.5 −0.086 223.0 −120.1 217.6 119.9
3 0.261 −137.4 0.188 −127.1 0.14 −121.1
5 0.196 −137.0 0.143 −11.27 0.099 114.0
7 0.174 −137.6 0.126 108.2 0.085 −5.423

Bus 2

1 226.4 −0.109 222.2 −120.1 217.0 119.9
3 0.704 −131.9 0.521 −122.4 0.376 −115.9
5 0.555 −131.5 0.411 −5.450 0.278 120.2
7 0.507 −133.0 0.375 112.0 0.248 −1.351

Table 3. Harmonic currents in each phase and positive-sequence harmonic currents.

Load
Order Ian (A) Ibn (A) Icn (A) In+ (A)

n Modulus Angle Modulus Angle Modulus Angle Modulus Angle

L1

1 45.59 −3.68 39.1 −118.5 51.51 121.4 45.36 −0.271
3 0.032 −143.2 0.013 −124.8 0.01 −98.12 0.008 −144.7
5 0.036 −137.2 0.025 −8.218 0.025 103.4 0.005 −144.9
7 0.033 −138.8 0.208 102.1 0.024 −3.652 0.088 −136.7

L2

1 9.174 −13.12 6.168 −137.2 4.647 98.81 6.652 −16.25
3 2.850 3.895 1.928 12.58 1.472 20.61 0.436 7.065
5 1.679 −9.547 1.113 117.2 0.823 −116.6 0.266 −41.31
7 1.183 −19.32 0.78 −133.0 0.573 113.0 0.842 −14.59

L3

1 7.435 −15.47 5.363 −139.5 4.197 96.69 5.656 −18.68
3 2.297 7.58 1.678 15.97 1.337 23.77 0.312 8.613
5 1.342 −7.51 0.954 119.1 0.733 −114.6 0.192 −43.64
7 0.946 −18.04 0.667 −131.8 0.509 114.3 0.704 −13.12

Table 4. Harmonic line-to-neutral voltage in sequence components and voltages unbalance factors.

Bus
Order Vm+ (V) Vm− (V) Vm0 (V)

δm− δm0
m Modulus Angle Modulus Angle Modulus Angle

Bus 1

1 222.7 −0.10 2.872 33.21 2.852 −32.8 0.013 0.013
3 0.035 −133.2 0.042 −177.5 0.195 −130.2 1.185 5.525
5 0.030 −174.9 0.145 −132.6 0.028 −121.0 4.778 0.910
7 0.128 −133.0 0.026 −121.3 0.028 −176.3 0.202 0.218

Bus 2

1 221.87 −0.10 2.712 33.21 2.725 −33.82 0.012 0.012
3 0.095 −124.4 0.113 −174.1 0.53 −125.1 1.192 5.607
5 0.088 −171.1 0.413 −126.9 0.079 −114.6 4.692 0.894
7 0.376 −128.8 0.075 −114.5 0.08 −173.0 0.201 0.214
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Tables 5–10 list the results obtained using the equations formulated in the preceding
sections, where:

• the values of Pm+
n+ and Qm+

n+ are calculated from (26), (27) and those of Am
n , Bm

n , Cm
n and Dm

n are
calculated from (35)–(38). The ‘line 1–2’ results in Table 10 are calculated from the difference
between the corresponding node 1 and 2 values.

• the values of Sm
n are calculated from (40).

Table 5. Results in Bus 1.

Harmonic
Am

n (VA) Bm
n (VA) Cm

n (VA) Dm
n (VA) Pm+

n+ (W) Qm+
n+ (VAr) Fum Sm

n (VA)
m n

1 1 −2115.82 −2638.24 −138.238 −1463.141 38,155.5 2534.16 0.018 38,423.27
1 3 −2057.60 −583.353 1460.40 188.710 490.788 −64.749 0.018 2643.823
1 5 −1240.00 −70.671 −820.267 −79.911 223.934 207.223 0.018 1521.736
1 7 −261.988 −52.893 −84.365 −128.994 960.705 287.299 0.018 1049.309
3 1 0.297 −0.080 0.423 0.263 −3.843 −4.702 5.650 35.010
3 3 −0.123 −0.237 0.233 0.211 −0.061 −0.050 5.650 2.409
3 5 0.094 −0.132 0.147 −0.091 0.000 −0.048 5.650 1.387
3 7 0.003 −0.014 0.043 −0.018 −0.071 −0.143 5.650 0.956
5 1 0.330 0.306 0.027 0.224 −5.158 −0.817 4.864 26.051
5 3 0.289 0.009 −0.202 0.037 −0.068 0.003 4.864 1.793
5 5 0.168 −0.011 0.114 0.006 −0.028 −0.031 4.864 1.032
5 7 0.032 −0.012 0.016 0.018 −0.127 −0.051 4.864 0.711
7 1 1.072 −0.291 1.535 0.947 −13.864 −17.045 0.297 23.027
7 3 −0.449 −0.854 0.849 0.757 −0.219 −0.181 0.297 1.584
7 5 0.339 −0.477 0.530 −0.330 0.000 −0.175 0.297 0.912
7 7 0.011 0.049 0.156 −0.067 −0.255 −0.517 0.297 0.629

Table 6. Results in Bus 2.

Harmonic
Am

n (VA) Bm
n (VA) Cm

n (VA) Dm
n (VA) Pm+

n+ (W) Qm+
n+ (VAr) Fum Sm

n (VA)
m n

1 1 −2052.78 742.814 −72.357 −181.155 7821.842 2430.956 0.017 8480.335
1 3 −2058.52 −587.648 1456.722 195.425 493.339 −67.699 0.017 2644.456
1 5 −1246.02 −61.539 −825.547 −69.403 225.739 204.571 0.017 1528.464
1 7 −242.657 −91.012 −51.341 −146.629 999.69 245.924 0.017 1073.082
3 1 −0.299 −0.343 0.611 −0.54 −1.02 −3.337 5.732 21.022
3 3 −0.552 −0.387 0.835 0.27 −0.142 −0.157 5.732 6.555
3 5 0.184 −0.367 0.359 −0.331 0.018 −0.129 5.732 3.789
3 7 −0.006 −0.005 0.096 −0.085 −0.153 −0.411 5.732 2.66
5 1 0.666 −0.518 0.132 0.166 −2.916 −1.439 4.777 16.426
5 3 0.822 −0.12 −0.562 0.236 −0.198 −0.004 4.777 5.122
5 5 0.484 −0.078 0.336 0.001 −0.076 −0.094 4.777 2.961
5 7 0.072 −0.057 0.047 0.061 −0.377 −0.158 4.777 2.078
7 1 −1.096 −1.735 2.602 −1.667 −5.063 −12.905 0.293 14.954
7 3 −1.804 −2.092 2.959 1.712 −0.611 −0.58 0.293 4.663
7 5 0.86 −1.449 1.505 −1.149 0.031 −0.515 0.293 2.695
7 7 −0.042 −0.055 0.426 −0.274 −0.733 −1.581 0.293 1.892
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Table 7. Results in load 1.

Harmonic
Am

n (VA) Bm
n (VA) Cm

n (VA) Dm
n (VA) Pm+

n+ (W) Qm+
n+ (VAr) Fum Sm

n (VA)
m n

1 1 −55.554 −3384.39 −65.46 −1281.05 30,304.59 93.023 0.018 30,525.2
1 3 8.837 5.75 −1.922 −6.779 −4.413 3.137 0.018 13.791
1 5 10.703 −9.126 8.391 −10.302 −2.625 1.853 0.018 19.617
1 7 −18.464 38.519 −32.779 18.204 −42.707 40.317 0.018 81.743
3 1 0.383 0.117 0.171 0.375 −3.275 −3.527 5.65 27.813
3 3 0 0.002 0 −0.001 0.001 0 5.65 0.013
3 5 0 0.002 0 0.002 0 0 5.65 0.018
3 7 0.008 −0.005 0 0.001 0.009 0.001 5.65 0.074
5 1 0.075 0.455 −0.001 0.178 −4.12 −0.388 4.864 20.696
5 3 −0.001 −0.001 0 0.001 0.001 0 4.864 0.009
5 5 −0.001 0.001 −0.001 0.001 0 0 4.864 0.013
5 7 0.004 0.005 0.004 −0.003 0.006 −0.005 4.864 0.055
7 1 1.386 0.418 0.624 1.357 −11.819 −12.786 0.297 18.293
7 3 −0.001 0.006 −0.001 −0.003 0.003 0.001 0.297 0.008
7 5 0.001 0.008 0 0.007 0.002 0 0.297 0.012
7 7 0.028 −0.017 0.001 0.003 0.034 0.002 0.297 0.049

Table 8. Results in load 2.

Harmonic
Am

n (VA) Bm
n (VA) Cm

n (VA) Dm
n (VA) Pm+

n+ (W) Qm+
n+ (VAr) Fum Sm

n (VA)
m n

1 1 −1200.93 419.477 −38.06 −101.712 4253.073 1231.714 0.017 4608.92
1 3 −1133.33 −294.699 779.618 70.706 288.081 −36.232 0.017 1438.41
1 5 −685.076 −42.472 −440.704 −48.682 133.342 116.764 0.017 836.27
1 7 −142.086 −51.436 −28.3 −84.158 542.853 140.298 0.017 587.532
3 1 −0.174 −0.203 0.359 −0.31 −0.586 −1.793 5.732 11.425
3 3 −0.298 −0.202 0.462 0.131 −0.082 −0.093 5.732 3.566
3 5 0.1 −0.198 0.202 −0.177 0.009 −0.075 5.732 2.073
3 7 −0.004 −0.003 0.056 −0.049 −0.081 −0.225 5.732 1.456
5 1 0.392 −0.298 0.074 0.096 −1.591 −0.747 4.777 8.927
5 3 0.448 −0.075 −0.295 0.141 −0.115 −0.004 4.777 2.786
5 5 0.266 −0.04 0.181 0.006 −0.045 −0.054 4.777 1.62
5 7 0.042 −0.033 0.027 0.035 −0.204 −0.089 4.777 1.138
7 1 −0.632 −1.023 1.523 −0.95 −2.872 −6.922 0.293 8.127
7 3 −0.983 −1.104 1.653 0.874 −0.353 −0.342 0.293 2.536
7 5 0.468 −0.782 0.8438 −0.6093 0.0132 −0.2997 0.293 1.47
7 7 −0.025 −0.034 0.2487 −0.156 −0.3889 −0.8656 0.293 1.04

Table 9. Results in load 3.

Harmonic
Am

n (VA) Bm
n (VA) Cm

n (VA) Dm
n (VA) Pm+

n+ (W) Qm+
n+ (VAr) Fum Sm

n (VA)
m n

1 1 −851.848 323.337 −34.297 −79.444 3568.768 1199.2412 0.017 3875.11
1 3 −925.192 −292.949 677.104 124.719 205.258 −31.467 0.017 1208.05
1 5 −560.943 −19.067 −384.842 −20.720 92.3965 87.8068 0.017 692.781
1 7 −100.571 −39.576 −23.041 −62.471 456.837 105.625 0.017 485.841
3 1 −0.125 −0.140 0.252 −0.230 −0.4337 −1.5443 5.732 9.606
3 3 −0.254 −0.186 0.373 0.139 −0.0603 −0.0647 5.732 2.995
3 5 0.084 −0.170 0.157 −0.154 0.0088 −0.0536 5.732 1.717
3 7 −0.002 −0.001 0.040 −0.037 −0.0724 −0.1862 5.732 1.204
5 1 0.274 −0.220 0.058 0.070 −1.3247 −0.6917 4.777 7.506
5 3 0.375 −0.045 −0.267 0.096 −0.0824 −0.0004 4.777 2.340
5 5 0.218 −0.038 0.156 −0.005 −0.0308 −0.0402 4.777 1.342
5 7 0.029 −0.024 0.020 0.026 −0.1726 −0.07 4.777 0.941
7 1 −0.095 −0.067 0.161 −0.233 −0.2011 −1.2414 0.293 6.531
7 3 −0.230 −0.062 0.318 0.015 −0.0413 −0.056 0.293 2.036
7 5 0.050 −0.133 0.109 −0.140 0.0116 −0.0410 0.293 1.168
7 7 0.002 0.002 0.024 −0.035 −0.0399 −0.1515 0.293 0.819
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Table 10. Results in line 1–2 (Bus 1–Bus 2).

Harmonic
Am

n (VA) Bm
n (VA) Cm

n (VA) Dm
n (VA) Pm+

n+ (W) Qm+
n+ (VAr) Fum Sm

n (VA)
m n

1 1 −7.467 3.324 −0.44 −0.928 29.051 10.185 0.252 32.861
1 3 −7.882 −1.45 5.569 0.058 1.862 −0.188 0.252 10.247
1 5 −4.683 −0.007 −3.115 −0.206 0.82 0.799 0.252 5.923
1 7 −0.865 −0.398 −0.246 −0.567 3.722 1.058 0.252 4.158
3 1 0.188 0.15 −0.334 0.424 0.452 2.162 5.739 13.318
3 3 0.393 0.128 −0.564 −0.037 0.081 0.107 5.739 4.153
3 5 −0.095 0.232 −0.208 0.239 −0.019 0.08 5.739 2.4
3 7 −0.002 −0.002 −0.05 0.064 0.073 0.268 5.739 1.685
5 1 −0.408 0.366 −0.107 −0.117 1.878 1.009 4.742 10.699
5 3 −0.526 0.128 0.353 −0.199 0.129 0.007 4.742 3.336
5 5 −0.313 0.065 −0.223 0.004 0.048 0.063 4.742 1.928
5 7 −0.043 0.04 −0.035 −0.039 0.243 0.112 4.742 1.354
7 1 0.762 1.025 −1.671 1.259 3.018 8.647 0.291 9.875
7 3 1.33 1.209 −2.082 −0.929 0.389 0.398 0.291 3.079
7 5 −0.525 0.962 −0.971 0.813 −0.034 0.339 0.291 1.78
7 7 0.022 0.024 −0.268 0.203 0.444 1.062 0.291 1.25

Table 11 compares the following total apparent power values: S1+
1+ (positive-sequence fundamental

apparent power), which is calculated from P1+
1+ and Q1+

1+; ST
1
1. (fundamental apparent power), which

is calculated from (45); STH (total harmonic apparent power), which is calculated from (47); and ST
(total apparent power), which is calculated from (55). These values are calculated from (48) and are the
same as those obtained using IEEE Std. 1459–2010.

Table 11. Summary of apparent power components.

ID S1+
1+ (VA) ST

1
1 (VA) STH (VA) ST (VA)

Bus 1 38,239.55 38,423.268 3328.831 38,567.196
Bus 2 8190.894 8480.335 3339.87 9114.319

Load 1 30,304.737 30,525.191 95.775 30,525.341
Load 2 4427.839 4608.918 1820.784 4955.54
Load 3 3764.875 3875.109 1521.095 4162.956

Line 1–2 30.785 32.861 26.84 42.429

7. Conclusions

In a power system, there are several inefficient power components within the energy balance,
and reducing or eliminating them requires that they be properly quantified. Three-phase sinusoidal
systems are exclusively affected by fundamental voltage and current components, with imbalances
in their magnitudes at fundamental frequencies leading to the appearance of unbalance power.
This power component was analyzed by the authors in a previous work [22] through the application
of the unbalance power phasor. In non-sinusoidal systems, the voltages and currents contain harmonic
components other than the fundamental component that generate a harmonic power component that
is also inefficient.

In this study, the authors extended the method they applied in analyzing unbalance power
to the analysis of harmonic power by formulating the phasor of apparent harmonic power for the
voltage harmonic of order ‘m’ and current harmonic of order ‘n’. The number of phasors depends
on the number of voltage and current harmonics considered, and phasors of voltage and current
harmonics of the same and different orders are considered. Each phasor of apparent harmonic power
is formed from six parameters or components that are mutually orthogonal; these components are
calculated from the harmonic voltages at the nodes of the network and from the circulating harmonic
currents. For a node with several loads connected in parallel, the components of each resultant
phasor are calculated as the arithmetic sum of the individual components of the loads. For nodes
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connected in serial, the components are calculated through arithmetic subtraction of the components.
An expression of the modules of the total harmonic power and total apparent power at any point was
also proposed. The results of these formulations were shown to coincide with those obtained using
IEEE Std. 1459–2010.

The proposed set of phasors of harmonic power can be used in conjunction with the phasor
of unbalance power to analyze all of the inefficient power components appearing in the transfer of
energy in an electrical system, regardless of whether they are balanced or unbalanced or sinusoidal
or non-sinusoidal. To validate the applicability of the proposed expressions and improve our
understanding of them, we undertook practical case studies of four-wire systems with two nodes,
unbalanced voltages and loads, and non-linear loads.
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