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Abstract— Independent component analysis (ICA) is a blind source separation technique where data are modeled as linear 

combinations of several independent non-Gaussian sources. The independence and linear restrictions are relaxed using several ICA 

mixture models (ICAMM) obtaining a two-layer artificial neural network structure. This allows for dependence between sources of 

different classes, and thus a myriad of multidimensional probability density functions (PDFs) can be accurate modeled. This paper 

proposes a new probabilistic distance (PDI) between the parameters learned for two ICA mixture models. The PDI is computed 

explicitly, unlike the popular Kullback-Leibler divergence (KLD) and other similar metrics, removing the need for numerical 

integration. Furthermore, the PDI is symmetric and bounded within 0 and 1, which enables its use as a posterior probability in fusion 

approaches. In this work, the PDI is employed for change detection by measuring the distance between two ICA mixture models 

learned in consecutive time windows. The changes might be associated with relevant states from a process under analysis that are 

explicitly reflected in the learned ICAMM parameters. The proposed distance was tested in two challenging applications using 

simulated and real data: (i) detecting flaws in materials using ultrasounds and (ii) detecting changes in electroencephalography signals 

from humans performing neuropsychological tests. The results demonstrate that the PDI outperforms the KLD in change-detection 

capabilities. 

Index Terms—independent component analysis, change detection, machine learning, probabilistic distance, EEG 

I. INTRODUCTION 

NDEPENDENT component analysis (ICA) is one of the most successful techniques for blind source separation. ICA considers 

the multidimensional mixed data, x , as a linear mixture of statistically-independent sources, s  (  x A s , where A  is called 

the mixing matrix). The sources are separated by the maximization of some indicator of their independence (e.g., mutual 

information or likelihood function) [1]. The restriction of independence of the sources of ICA is relaxed in ICA mixture models 

(ICAMM, first proposed in [2]), where sources of different classes need not be independent, but sources of the same class are 

still independent. In ICAMM, 
k k k k  x A s b , where the sub-index 1...k K , denotes the -thk  class of the mixture of K  

classes, and 
kb  is a bias term. Essentially, 

kb  determines the location of the cluster and 
kA  determines its shape. Both ICA and 

ICAMM have been successfully applied in a wide range of applications, from communications to bio-signal processing (see for 

instance [1, 3] and the references therein). 

ICAMM can be interpreted in terms of a two-layer artificial neural network (ANN) whose output is an estimate of the 

probability density of the inputs,  ( )| ip x θ , where 
 i
θ  is the set of parameters of the i-th probability density model. From this 

perspective, other ANN structures could be learned to estimate  ( )| ip x θ . However, this would require the definition of 

application-specific cost functions [4], and the distance between  (1)|p x θ  and  (2)|p x θ  cannot, in general, be estimated 

directly from the learned ANN parameters, (see Section III.A). 

The degrees of freedom provided by ICAMM make it suitable to accurately model a myriad of multidimensional probability 

density functions, considering any kind of underlying distributions and arbitrary relationships among explicit and hidden 

variables. ICAMM can be used to attempt physical interpretation of their estimated parameters (sources, mixing matrices, and 

bias terms) or as a general-purpose data mining technique. Thus, a measure that allows two ICAMMs to be distinguished will be 

a powerful tool for many applications such as pattern recognition, clustering, and model selection [5]. An immediate use of this 

measure is change detection problems, where detection could be done by estimating whether or not the model changes by using 

this measure for successive models in time. ANNs have been used for change detection [6, 7] and outlier detection in previous 

works [8, 9]. 

This paper proposes a probabilistic distance (PDI) between the parameters learned for two ICA mixture models. To the best of 

our knowledge, there are no references to this kind of distance in the literature. There are three significant differences between 
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the proposed distance and the KLD and other similar metrics: (i) PDI does not require numerical integration or simulated data; 

(ii) it is symmetric and bounded within 0 and 1, thus it can be used as a score or posterior probability for classification problems, 

facilitating late fusion with other scores [10]; and (iii) PDI is based on ICAMM, which is a very flexible technique that allows 

for meaningful subspace identification, discernible non-Gaussian source identification, and robustness with respect to noise and 

weak signals.  

This work compares the PDI with the Kullback-Leibler divergence (KLD), one of the most classic distances between two 

probability densities. The KLD is quite popular in pattern recognition applications, and even more so in speech and image 

processing (e.g., [11]). Unlike the PDI, the KLD is theoretically not model-based. However, in practice, the probabilities 

compared with KLD have to be estimated using some sort of model or estimation method, i.e., assuming a probability density 

model or being limited by the estimation method (e.g., [12] estimates probability densities from user profiles using histograms). 

The proposed PDI distance can be employed in several applications, since it enables to detect changes in the data generating 

process through differences in the multidimensional probability density function of data models. Taking advantage of this 

characteristic, the changes might be associated with relevant states from a process under analysis, which is usually called change 

detection [13, 14]. Depending on the application, the data generation of the process can be fixed (dataset) or continuous 

(datastream) on time. The latter might involve dynamic analysis of the evolution of unlabeled data generated from the process to 

adaptively changing the model, which is a current challenge in the framework of big data [15]. In essence, the proposed strategy 

is based on a two-step procedure. First, the parameters of the model are to be estimated from the observed data, and then the 

detection test is implemented. This is the idea behind well-known methods like the generalized likelihood ratio test (GLRT), 

which has been proven to yield good results in general, in spite of its strictly sub-optimal condition [16].  

In order to demonstrate the performance of the proposed distance, two applications using simulated and real data were 

approached. The first one consists of detecting flaws in materials using non-destructive testing by ultrasounds and the second one 

is detecting changes in electroencephalographic (EEG) signals from humans performing neuropsychological tests. The results 

demonstrate that the PDI outperforms KLD and symmetric KLD in change detection capabilities. 

A. Independent component analysis mixture model 

Given its importance to the proposed method, the basics of ICA mixture models are reviewed here. Briefly, independent 

component analysis ([1]) is a blind source separation technique that assumes that the observations, x , can be modeled as an 

instantaneous linear mixture of a set of independent sources, s :  

 

   x A s  (1) 

 

where the mixing matrix, A , is of size  L M , where L is the number of variables of each observation and M is the number 

of sources. We will assume for simplicity that there are as many observed variables as sources (L = M), and that the mixing 

matrix can be inverted to find the demixing matrix, 
1W A . Individual sources can be extracted as T

m ms  w x , 1...m M , 

and T

mw  is the m-th row of the demixing matrix. 

One of the advantages of ICA is that the multivariate probability density function of the observations can be obtained as a 

product of one-dimensional densities: 

 

         1

1

1
det

det

M

m

m

p p p s



 x = A x W
A

 (2) 

 

Thus, modeling the joint probability density  p x  is decomposed into two parts: modeling the marginal densities 

   1 ...· Mp s p s , which implies M univariate models, and estimating the mixing matrix A , which is responsible for the 

statistical dependence among the elements of x . As long as the marginals are non-Gaussian, x  will be multivariate non-

Gaussian. There is a wide range of real multivariate non-Gaussian probability densities which can be modeled by adapting the 

marginal distributions and the mixing matrix, such as EEG data (see [17] and references therein). 

The use of ICA mixture models was first proposed in [2], which considered a source model switching between Laplacian and 

bimodal densities. In ICAMM, it is assumed that the data are separated in mutually-exclusive classes, and each class is modeled 

using an ICA. The general expression of ICAMM requires some bias vectors to separate the components of the mixture, and thus 

(1) becomes 

 

 k k k  x A s b   (3) 

 

where x  belongs to class k, denoted by kC ; kA  and ks  are respectively the mixing matrix and the sources of the ICA model 
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of class k; and 
kb  is the corresponding bias vector. Essentially, 

kb  determines the location of the cluster and 
kA  determines its 

shape.  

Given the extension to the mixture model, (2) becomes  

 

      
1

det
K

k k k

k

p P C p


  x W s   (4) 

 

where  kP C  is the prior probability of class k and 1

k k

W A . 

Mixture models emanate in a natural manner in the framework of classification/segmentation methods. If the data can be 

categorized into several mutually exclusive classes, where each class is characterized by a given multivariate probability density, 

the whole multivariate probability density of the data can be considered a mixture of the class-conditioned probability densities. 

II. PROBABILISTIC DISTANCE FOR ICAMM (PDI) 

A. Kullback-Leibler divergence in the detection context 

The difference between two models can be estimated from the distance between their probability density functions (PDFs). 

One of the most common ways to measure this distance between PDFs is the Kullback-Leibler divergence [18]. Strictly 

speaking, the KLD is not a distance metric but an asymmetric measure of information gain or relative entropy. That is why the 

KLD has been used in coding problems in information theory. However, the KLD is also frequently used in detection problems 

(e.g., [19, 20] and references therein), sometimes in a symmetrized form.  

Legitimation to use the KLD in the detection context can be obtained from optimum detection theory. Let us consider a data 

matrix of observed vectors  1... NX x x . Based on these vectors, the optimum detector between two hypotheses  
1H  and 

2H  is 

given by the log-likelihood ratio (LLR) test: 

 

  
 

 

1

2

1

2

|

|

H

H

p H
LLR ln ln

p H







X
X

X
  (5) 

 

where  | ip HX  is the probability density of X  conditioned to hypothesis 
iH , and   is a threshold selected to satisfy some 

performance criterion. In general, computing  | ip HX  is intractable due to the curse of dimensionality. In order to simplify 

this calculation, it is usually assumed that the observed vectors , 1...n n Nx , are statistically independent, so that

       1 2| | | ... |i i i N ip H p H p H p H X x x x  and we can write the test in the form 

 

 
 

 

1

2

1

1 2

|1 1

|

H
N

n

n n
H

p H
ln ln

N p H N









x

x
 (6) 

 

where the left side of (6) is a sample mean of the individual LLR corresponding to every observation 
nx . Theoretically, (6) 

leads to the optimum detector. In practice, however, any model mismatch due to presence of noise, statistical dependence, or 

approximation errors in the estimation of  | ip HX , may cause suboptimal performance. For example, if  1| 0np H x  for 

some 
nx , then  ln  X  independently of the individual LLR yielded by the rest of the observations. Therefore, it is better 

to use a sample estimate of the expected value of the individual LLR relative to the distribution  1|p Hx , where the 

contribution to the LLR corresponding to nx  is made proportional to  1|p Hx : 

 

  
 

 

1

2

1

1

1 2

|
|

|

H
N

n

n

n n
H

p H
p H ln ln

p H









x
x

x
 (7) 

 

Notice that the left side of (7) is a numerical integration of the KLD between  1|p Hx  and  2|p Hx , where 
nx , 1...n N , 

are realizations of the multivariate random vector x . Hence, KLD seems to be an adequate reference for performance 

comparison with other options like the one proposed in this paper. 
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In this work, the KLD is used for detection as follows. It is assumed that each 
nx  corresponds to a multichannel sample at 

discrete time n . These data are divided in multiple epochs with some overlap and a different model 
( )i
θ  is fit using the data in 

each epoch (in our case, an ICAMM). For detection, we compare the data and the models from two consecutive epochs. 

Hypothesis 
1H  is that the data are more likely to have been produced by 

(1)
θ , the model from the earlier epoch; conversely, 

hypothesis 
2H  is that the data are more likely to have been produced by 

(2)
θ , the model from the later epoch. Thus, in the 

following we will identify    ( )| | i

n i np H px x θ .  

As we will see in the experimental sections (IV and V), three variations of the KLD will be considered to compare with the 

proposed distance, namely 

 

 

 
 
 

 
 
 

(1)

(1)

12 (2)
1

(2)

(2)

21 (1)
1

12 21

|
|

|

|
|

|

2

N
n

n

n n

N
n

n

n n

sym

p
KLD p ln

p

p
KLD p ln

p

KLD KLD
KLD
















x θ
x θ

x θ

x θ
x θ

x θ
   (8) 

 

The detection obtained from 
12KLD  or 

21KLD  is different from that obtained from 
symKLD . If 

12KLD  rises above the 

threshold, it can be said that model 
(1)
θ  is more likely to have produced the data than model 

(2)
θ , but there is no information on 

the likelihood of 
(2)
θ . On the other hand, if 

symKLD  rises above the threshold, then it can be said that both models yield different 

PDFs, thus improving detection. The symmetrized KLD was first proposed in [18], but it remains in use until today (see for 

instance [19-21]). 

To avoid overfitting, the computation of the values  ( )| i

np x θ  required in (8) should use a different set of observations than 

the estimation of the ICAMM parameters 
( )i
θ . In practice, this would reduce the amount of data available for estimation, which 

could decrease performance. Another option is the generation of sample replicas once we have the ICAMM parameters. These 

problems can be avoided by using the distance proposed in the following section, as we obtain a closed form expression which 

allows direct computation of the proposed distance from the estimated ICAMM parameters.  

B. Proposed distance 

In this paper, we propose the use of a normalized quadratic distance (named “discordance” in [22]) between the PDFs of both 

models. In its general form, the discordance is: 

 

 

 
    
    

   
   

2
(1) (2)

(1) (2)

2 (1) 2 (2)

(1) (2)

2 (1) 2 (2)

| |
,

| |

2 | |
1

| |

p p d
D

p p d

p p d

p d p d

 
 

 

  
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  







 

x θ x θ x
θ θ

x θ x θ x

x θ x θ x

x θ x x θ x

 (9) 

 

where 
 i
θ  is the set of parameters of the thi   probability density (model). Unlike the Kullback-Leibler divergence, this 

distance is symmetric and bounded between 0 and 1 (with it being 0 if and only if    (1) (2)| |p px θ x θ ). These limits allow 

this distance to be used as a sort of score or probability that both models are dissimilar. With this interpretation, the results of the 

probabilistic distance could be combined using soft fusion with the results of other methods, or those of a classifier (e.g., 

[23, 24]). 

The distance in (9) cannot be calculated explicitly in its general form. We will demonstrate here, however, that a closed-form 

solution can be found if we assume that both models are ICA mixture models. In that case, the PDF of observation x  under the 

-thi  model is 

 

      
( )

( ) ( ) ( ) ( ) ( )

1

| det |

iK
i i i i i

k k k

k

p P C p


  x θ W s θ  (10) 
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where 
 i
ks , 

 i
kW , 

 i
kb  are, respectively,  the sources, demixing matrices and bias terms of the ICA for class 

 i
kC , the -thk  

class in model i , which has 
 i

K  classes and 
 i

M  sources;   i

kP C  is the prior probability that x  belongs to class k  in model 

i ; and  i
θ  is the set of ICAMM parameters for model i : 

 i
kW , 

 i
kb ,   i

kp s ,   i

kP C ,  
1...

i
k K . The density in (10) requires 

that the mixing matrices be square (i.e., both models have as many sources as variables are in x ) and thus 
   1 2

M M M  . 

Considering (10), the numerator in (9) can be expressed as  
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 (11) 

 

Due to the properties of ICA and ICAMM, the probability sources of the same class are independent. Thus,  ( ) ( )|i i

kp s θ  can 

be estimated as the product of the marginal probability densities of each source,    ( ) ( ) ( ) ( )

,

1

| |
M

i i i i

k k m

m

p p s


s θ θ , where 

 ( ) ( )

, |i i

k mp s θ  is the marginal probability density of the -thm  source of the -thk  class of mode𝑙 i .  

These marginal densities are unknown in practice, and thus, they are usually learned using training data. To evaluate the PDF 

of the sources,  ( ) ( )|i i

kp s θ , a model of some sort is required. It has been shown that incorrect hypotheses on these densities 

(while following a parametric approach) can yield poor estimation performance, even complete failure, during source separation 

[25]. To tackle this issue, we used non-parametric kernel density estimation (KDE). This estimator is asymptotically unbiased 

and efficient, it has been shown to be a true density (i.e., it is non-negative and integrates to 1) and to converge to the true PDF 

under several conditions [26].  

The choice of kernel for KDE has been shown to have little effect on the effectiveness of non-parametric estimation [26]. In 

this work, we have selected the Normal kernel due to its desirable properties, which enable to obtain closed analytical solutions, 

as we have done in equations (13) and (18). Bandwidth selection, which controls the functional, is contingent on the type of 

kernel. We have set the bandwidth to 
    

1/5
( )

, ,1.06
i ii

k m k m kh N


   , the optimal value for Normal kernels  (see [26, 27]). 

Let us assume that the marginal densities,  ( ) ( )

, |i i

k mp s θ , are estimated by a KDE with a Normal kernel. In that case, 
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 (12) 

 

where 
( )

,

i

k mh  is the estimated bandwidth of the non-parametric KDE for source 
( )

,

i

k ms , and 
( )

, ( )i

k m n  is the -thn  training value 

available for that source and class, 
 

1,...,
i

kn N . The parameters 
 i
θ  are extended to include the bandwidths. The training values 

( )

, ( )i

k m n  are the sources extracted during the estimation of model i , as           ( ) i i ii

k k k kn n  τ W ξ b , where 
   i

k nξ  are the 

observations used to estimate the model.  

Given KDE, the PDF of the sources can be found as the product of the probabilities in (12). For convenience,  ( ) ( )|i i

kp s θ  can 

be expressed as a multidimensional KDE: 
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extracted from the training data. Replacing (13) into (11) yields 
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The sources for the current observation can be estimated using the ICAMM parameters as     ( ) i ii

k k k  s W x b . With some 

algebraic manipulations,  , 'klu n n  can be split into one term that depends on x  and several terms that do not: 
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The exponentials in (17) can be simplified by considering the definitions of 
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This can be replaced back in (9) to obtain the distance indicator. The numerator of (9) can be straightforwardly calculated 

from (18), and each of the terms in the denominator can be obtained by replacing the adequate values in (18), since 

     2 ( ) ( ) ( )| | |i i ip d p p d    x θ x x θ x θ x .  

We have named the proposed distance PDI (probabilistic distance between ICAMM). 

As presented, the PDI measures the discordance between the probability density of the data, conditional to the ICAMM 

parameters ( , ,k k kW s b ) of each model. Another approach would be to calculate the discordance between the PDF of the 

extracted sources instead,     |
i i

kp s θ , or even a discordance that does not assume any model. These two alternatives to the 

proposed PDI, which we have denoted by PDI of the sources (PDIS) and non-parametric discordance (NPD), respectively, are 

developed in the Appendices. Their results are compared with those of PDI in Sections IV and V of this work. 

III. ON THE RELATION OF PDI WITH OTHER METHODS 

A. Relation between ICAMM and artificial neural networks 

Notice from equation (10) that ICAMM can be interpreted in terms of a two-layer artificial neural network (ANN) that, having 

the observed vector x  at the input, produces an estimate of  ( )| ip x θ  at the output (see Fig. 1 for K = 2 and M = 2). At the first 

layer, the input elements  1...
T

Mx xx are biased and linearly combined to yield the node elements 
     
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T
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k k kMs s 
 

s , 

      i i i

k k k  s W x b , 
 

1...
i

k K . Then, every node element 
 i
kms  is nonlinearly transformed by 

  ( )|
i i

kmp s θ , and the value 

   ( ) ( ) ( ) ( )

,

1

| |
M

i i i i

k k m

m

p p s


s θ θ is obtained.  Finally, at the second layer,   ( )| ip x θ  is computed as a weighted sum of 

 ( ) ( )|i i

kp s θ , as indicated in (10). Once this ANN structure is set by learning all the weights and non-linear (activation) functions 

for i = 1 and for i = 2, the proposed distance can be computed following the above indicated procedure. From this perspective, 

other ANN structures that could be learned in an unsupervised manner, could be candidates to estimate  ( )| ip x θ . However, this 

would require the definition of cost functions which are very application specific (see for example [4] and references therein) and 

the distance between  (1)|p x θ  and  (2)|p x θ  cannot, in general, be obtained directly from the estimated ANN parameters. In 

contrast, ICAMM has general applicability and the distance (PDI) can be computed directly from the learned models as indicated 

above, without relaying to KDE methods followed by KLD numerical integration. 

 
Fig. 1. Comparison between an ICA mixture model (K = 2 and M = 2) and an artificial neural network with two layers. 
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B. Comparison between PDI and adaptive ICA  

PDI is a general-purpose distance that, basically, can be applied using two different procedures. In the first procedure, PDI is 

successively applied to compare a set of previous and a set of current ICAMM parameters for adaptively detecting of changes in 

monitoring a continuous process. The second procedure consists of comparing the model of the current subject with those in the 

database in applications such as Brain-Computer Interfaces (BCI) and biometric access control (subject identification/ 

authentication). 

The applications of change detection approached in Sections IV and V employ the adaptive procedure. Note that the 

estimation of the ICAMM parameters is decoupled from the calculation of the PDI. Furthermore, the learned ICAMM 

parameters could also be used for other applications, such as classification or blind source separation. 

There are some similarities between adaptive uses of PDI and adaptive ICA estimation methods such as adaptive eta ([28, 29]) 

or online recursive ICA [30]. Adaptive ICA methods obtain an instantaneous channel separation matrix  tW  that depends on 

the current time instant, t . The values  ijw t  of this mixture are calculated by optimizing some form of gradient with an 

adaptive learning rate [29] or forgetting factor [30]. This adaptive value could potentially be compared with a threshold in order 

to detect important changes in the ICA parameters and thus detecting changes in the data.  

The main differences between the proposed change detection procedure based on PDI and adaptive ICA methods are the 

following: (i) the calculation of PDI is independent from the estimation of the ICA mixture models that are compared, while the 

adaptive learning rate (or forgetting factor) in adaptive ICA methods is linked with ICA parameter estimation; (ii) PDI is based 

on a more general modeling that involves mixture of several ICAs than adaptive ICA methods, which are based on only one 

ICA; (iii) the ICAMM parameters used by PDI, aside from source extraction, already include an analysis of the classification in 

categories of each observation of the data (see for instance [3]), while the ICA parameters obtained by adaptive ICA methods 

only include source extraction, without any further analysis; (iv) PDI compares ICAMM parameters that can be estimated using 

any ICA or ICAMM algorithm, which improves its flexibility in many applications (considering different kinds of learning, 

semi-blind source separation...), whereas in adaptive ICA methods the ICA parameters are always obtained using the methods in 

[28-30]; (v) as exposed previously, PDI could be immediately extended to other applications such as BCI or access control, 

while adaptive ICA methods are more limited in scope and, at any rate, their extension to these applications would require some 

modifications to the procedure.   

IV. EXPERIMENTAL SIMULATIONS 

A. Stability analysis 

An experiment with simulated data was performed in order to test the stability and accuracy of the proposed PDI distance. To 

this effect, several changes were introduced in an initial known ICA mixture model, and it was verified that the PDI increased as 

the models diverged further from the original known model. In order to compare these changes in the model, the PDI was 

compared with two commonly-used indicators of ICA extraction performance: the Amari index and the signal-to-distortion ratio 

(SDR) [31]. 

For each iteration of the experiment, N = 2048 samples were drawn from a randomly-initialized ICA mixture model with 

M = 4, K = 2, and sources following a K distribution [32]. This distribution is defined as  

 

   
   
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L

L x L x
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x L
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
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         

 (19) 

 

where   is the mean and ,L  are shape parameters. In order to introduce some amount of differences in the model, some of 

the sources remained stationary with shape parameters 1L    , while other sources were set to 1L     for the first 

1024 samples and then   was changed linearly from 1   to 5   during the last 1024 samples. The number of nonstationary 

sources was changed from 0 (all sources stationary) to 8 (all sources nonstationary). Nonstationary sources were distributed 

evenly between the classes of the model. 

The simulated data were then split into epochs of length 512 samples with 90% overlap between epochs. A different ICA 

mixture model was fit to each epoch using the MIXCA algorithm ([38]), and PDI between models of consecutive epochs was 

calculated. To compare with PDI, the SDR between the extracted sources and the Amari index between the mixing matrices were 

also estimated. Since these two methods are used to compare single ICA, their results were averaged for all classes of the 

mixture. The above process was repeated for a total of 300 Monte Carlo experiments. 

The results of the experiment are shown in Fig. 2.  All three indicators remained more or less constant for the first half of the 

data, during which the data were stationary, and showed a decrease in performance during the second half of the data, during 
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which the data changed for some sources. In all cases, the number of affected sources directly affected the results of the 

indicators. The behavior of the PDI was more linear than the Amari index with respect to the number of affected sources. 

Furthermore, unlike both the SDR and the Amari index, the distance between models did not decrease during the latest epochs 

(i.e., for large values of the shape parameter,  ). Thus, the PDI proved its sensitivity with respect to changes in the compared 

models. 

 
Fig. 2. Effect of changes in the data with respect to time and number of affected sources on several ICA performance indicators: a) the proposed distance; b) 

signal to distortion ratio (SDR); c) Amari index. 

 

B. Experiments on simulated ultrasound data 

The experimental simulations corresponded to a case of flaw detection in materials using ultrasounds (US). When inspected 

with US, any sufficiently large internal inhomogeneity in the material produces a reflection that is captured by the recording 

device. These reflections induce a change in the PDF of the recorded signals that we attempted to detect with the PDI of locally-

estimated ICAMM. 

ICA and ICAMM have been widely used for flaw detection in industrial processes and non-destructive testing, such as: image 

texture and defect detection for solar panels [33] and defects in metallic parts [34]; detection of flaws in materials using sonic 

signals [35, 36]; and fabric defect detection (see several of the references in [37]). In most cases, it is assumed that the 

contribution of the defect is effectively independent from that of the main contribution (e.g., the infrared image of the solar panel 

or the backscattering of the sonic signal), and thus ICA is used to detect and extract this foreign component. 

In this experiment, the data consisted of ultrasound targets buried into background noise. The targets were modeled using 

Gaussian-modulated tones with random initial phase, i.e.,       0sin 2 exp 2 /cx t A f t t T


        
 

 , where: A  is the 

peak amplitude; 
cf ,   and T  are respectively the central frequency, time center, and duration of the tone; and   is an even 

number that determines the shape of the envelope of the pulse. We used 20kHzcf  , 1msT  , 4  ,   20, 100 or 150 ms, 

0   randomly drawn from a uniform distribution in the range [0,2 ) , and A  calculated to obtain a peak signal-to-noise ratio 

(PSNR) of 0 dB. The background noise was modeled by a K distribution as in (19), which can describe the statistics of the 

envelope of the backscattered ultrasonic echo from a scattering medium [32]. The shape parameters were set to 1L    and 

10  . Finally, it was assumed that the data were sampled at 50 kHz. 

For each iteration of the experiment, we generated four channels filled with background noise during 200 ms, generating a 

total of 1000 samples. This noise was obtained by multiplying four independent K-distributed noise channels by a [4 × 4] 
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mixture matrix. Then, three ultrasound targets were buried into the noise at 20, 100 and 150 ms from the start of the simulation. 

The targets were obtained by mixing four Gaussian-modulated tones with random initial phases, using a different mixture matrix 

than the one used for the background noise. Thus, the areas of the simulation with background noise corresponded to a different 

model than the areas with both noise and US targets. An example of one channel of the generated data is shown in Fig. 3.a. Note 

that the targets (areas marked in red) are hardly distinguishable from the background noise, which shows the difficulty of the 

problem. 

In complex applications, the tuning of the parameters for adaptive analysis is very difficult. Usually, a subset of the data is 

selected for supervised learning of the optimal parameters considering the objective function (i.e., maximize change detection). 

Thus, we estimated window analysis size (epoch size) and overlap between consecutive windows using Monte Carlo 

experiments. The obtained optimal parameters were epoch size = 256 samples (5-ms) and overlap = 50%. 

After data generation, the simulated ultrasonic signals were split into epochs. A different ICA mixture model was fit to each 

epoch using the MIXCA algorithm ([38]) and the distance between the models of consecutive epochs was estimated. The models 

were one-class ICAMM with de-mixing matrices of size M = 4. It was hypothesized that the estimated ICAMM would change 

between epochs with no target and epochs with a target, and between epochs where the target was only partially present. Thus, 

the distance between models would mark the start and end of the ultrasound targets. 

The distance between models was measured using PDI, PDIS, NPD, and KLD from the previous model to the current one 

(KLD12) and vice versa (KLD21), and symmetrized KLD (SKLD). PDI, PDIS and NPD were implemented according to the 

procedure explained in Section II and Appendices, and all variants of KLD were implemented using numerical integration with 

1000 points. The NPD was implemented using numerical integration with 1000 points. The above process was repeated for a 

total of 1000 Monte Carlo experiments.  

The distances obtained for one experiment are shown in Fig. 3. Note that the samples that we want to detect (see Fig. 3.a) 

correspond to the samples before and after each target, i.e., the transitions between noise and target, and vice versa. It can be seen 

that all distances consistently increased when the current epoch contained part of a target. In numerical terms, the correlation 

between the transitions and PDI, PDIS, NPD, KLD12, KLD21, and SKLD were 0.999, 0.8649, 0.964, 0.714, 0.697, and 0.936, 

respectively. The methods based on the discordance (PDI, PDIS, NPD), however, obtained detections that were more consistent 

in amplitude than all types of KLD. This was more noticeable for the proposed PDI distance, which consistently assigned large 

distances (>0.5) for targets and obtained a few false alarms. To better show this, the distance values have been compared with a 

threshold equal to the half value between the maximum and minimum distance (in the case of PDI, the threshold was set to 0.5). 

These thresholds are shown in Fig. 3.b through Fig. 3.g as horizontal dashed lines; values above the threshold were colored in 

red. Using these thresholds, PDI detected the six transitions (corresponding to the three targets), while the other methods missed 

one or more transitions. Note that one-sided KLDs tend to detect only the beginning (KLD21) or the end (KLD12) of each target, 

whereas the SKLD increases the detection in both cases.  

    KLD ,p x q x  can be considered as the information loss by approximating  p x  using  q x . The results obtained 

during simulation seem to indicate that there are several points where p can be approximated using q, yet q cannot be 

approximated using p. In the context of the change detection application, p is modeled by the previous ICAMM, and q is 

modeled by the current ICAMM. During data generation, the targets were over-imposed on the noise, i.e., the observations that 

contained target information also included noise information. Thus, a model estimated using data from the target would include 

more information than the model estimated using only noise. This would explained the observed behavior for KLD12 and 

KLD21, and predict the expected performance of the symmetrized KLD, which detects both cases. Measures based on the 

discordance (PDI, PDIS, and NPD) are not affected by this effect (as shown in Fig. 3) because they are symmetric. 

To further showcase the results obtained by the considered distances, the experiments were repeated three additional times 

with different values of PSNR: -7, -5, and -3 dB. These values were selected in order to simulate difficult detection cases, where 

targets are difficult to distinguish from the surrounding noise. For each value of PSNR, the average receiver operating 

characteristic (ROC) curve was calculated. The results are shown in Fig. 4. Note that to make the results more readable, the false 

positive rate (FPR) axis is in logarithmic scale. Experiments were performed with larger values of PSNR, but results were similar 

to those with 0 dB.  

PDI obtained the best ROC curves for all PSNR, particularly for low PSNR, and the non-parametric discordance obtained the 

second best result, being similar to that of PDI for PSNR = 0 dB. The results obtained by PDIS were the most affected by the 

PSNR value, yielding the worst result for -7 dB and a result similar to that of SKLD for 0 dB. The two one-sided versions of 

KLD obtained similar results in all cases, but symmetrized KLD yielded better results than both of them. The difference between 

PDI and the other methods were more important in the region of very low FPR. This region of FPR is particularly important in 

many real-world applications where operative working with relative high FPR is costly (e.g., fraud detection [39]). The ROC 

curve of the PDI rose rapidly with FPR, yielding over 90% TPR with 1% FPR even in the case with PSNR = -3 dB.  

Considering computational costs, the average time per each Monte Carlo experiment of each method was: 6.44 ms for PDI, 

6.50 ms for PDIS, 31.86 ms for non-parametric discordance, and 91.46 ms for each KLD (182.92 s for symmetrized KLD). Thus, 

PDI and PDIS
 were calculated 28 times faster than the symmetrized KLD and five times faster than non-parametric discordance. 
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However, the time for ICAMM calculation should also be taken into account. Adding the average time per ICAMM calculation 

(13.66 ms) to PDI, PDIS, and NPD time calculation, we have that PDI and PDIS
 were calculated 10 times faster than SKLD and 

twice as fast as NPD. This is because the result of KLD and NPD depend on the number of points of the numerical integration, 

whereas PDI is analytical and thus it only has to be computed once. Computational time was calculated on a computer running 

Windows 7 with four 3.3 GHz cores and 16 GB RAM. 

 
Fig. 3. Comparison between the transitions before and after each target with the distances between every pair of consecutive models for one iteration of the 

experiment: a) transitions before and after targets; b) PDI; c) PDI based on the sources; d) non-parametric discordance; e to f) KLD (both directions) and 

symmetrized KLD. Horizontal lines denote the change detection threshold for each distance. 
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Fig. 4. Average ROC curves obtained for simulated data with different values of PSNR: a) PSNR = -7 dB; b) PSNR = -5 dB; c) PSNR = -3 dB; d) PSNR = 0 dB. 

V. APPLICATION ON REAL DATA 

The proposed probabilistic distance was devised for a real-life application: automatic staging of EEG data from six epileptic 

patients performing neuropsychological tests. This is an essential area of clinical neurophysiology, since the evaluation of the 

learning and memory functions of the patient is a critical part of their neuropsychological assessment. Information cannot be 

processed if the brain is unable to store a certain amount of it in short-term (working) memory or to recall past experiences, 

events and strategies from long-term memory. Conversely, information stored in short- or long-term memory is useless without 

the means to properly access and activate it. The biosignals and the tests were synchronized using a graphic user interface 

designed by the authors, and the data were captured by the Neurology and Neurophysiology Units at Hospital Universitari i 

Politècnic La Fe, Valencia (Spain). 

The evaluated neuropsychological tests were the following: the visual paired associates and figural memory subtests from the 
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Wechsler Memory Scale (WMS-R, [40]), the digit span subtest from the Wechsler Adult Intelligence Scale (WAIS, [40]), and 

the TAVEC ([41]). The latter is commonly considered as the Spanish version of the California Verbal Learning Test ([40]). The 

first two tests are based on visual stimuli, whereas the last two tests rely on auditory stimuli. All the tests can be split in two 

stages, stimulus display (D) and subject response (R) that are repeated in several trials changing the stimuli. 

The use of an ICAMM-based distance for this application is motivated by many successful works in the literature that are 

based on ICA and ICAMM for processing EEG signals, see for instance [17]. We hypothesized that the learned ICAMM would 

change between the two stages (D and R) of the test. If the models correspond to different classes or to a transition, they should 

be more different than if the models belong to the same class. Thus, PDI could be used to search for increases in distance, which 

would mark the commuting between stages. 

The EEG was composed of M = 19 EEG channels that were sampled at 500 Hz. These data were split into 4-seconds epochs 

with 90% overlap, and a different ICA mixture model with 2K   classes was fit to each epoch using MIXCA. These models 

had de-mixing matrices of size [19 × 19]. Then, the distance between the models of every pair of consecutive epochs was 

estimated as explained in Section II.B.  

Due to epoch size and overlap between epochs, the model does not instantly transit between classes, but there is a transition 

zone instead (see Fig. 5.a). This zone is related with uncertainty of the change detection algorithm, not with uncertainty of source 

separation. In this application we were interested in detecting changes using all the ICAMM parameters jointly (mixing matrices, 

sources, and bias terms) instead of an accurate estimation of the sources. The resolution of the algorithm depends on epoch size 

and overlap. For lasting changes, this transition zone is not critical. For sudden changes, however, the resolution becomes an 

important part of the method: the larger the overlap, the lower the chance to lose detection. Thus, the ideal behavior is choosing 

the highest possible overlap between epochs. In practice, overlap is a compromise between resolution and other limitations (e.g., 

time costs).  

The results of the experiment of the TAVEC test for one of the subjects are shown in Fig. 5. The results of discordance-based 

tests are noisier than the results for KLD, but PDI and PDIS obtained the best result. The behavior of PDI followed the changes in 

test stage more closely than KLD, which obtained more local peaks. Furthermore, KLD has no upper bound, whereas PDI is 

always constrained within [0, 1]. Thus, the values of PDI can be compared with a fixed threshold (e.g., 0.5, as shown in Fig. 5.b) 

in order to detect changes between stages. Conversely, KLD would have to be compared with some empirically-determined 

threshold value. For instance, the thresholds shown in Fig. 5.d through Fig. 5.f were half of the maximum KLD. In numerical 

terms, the correlation between the real changes in the stage of the test and the considered methods were: 0.870, 0.775, 0.008, 

0.754, and 0.756 for PDI, PDIS, NPD, KLD12, KLD21, and SKLD, respectively. 

The detection obtained by NPD was no longer valid owing to two reasons: (i) the higher dimension of the real-data 

experiment, which might mean that the multivariate KDE would require a larger amount of data in order to adapt to the data; and 

(ii) there were greater similarities between the PDF of the data of consecutive epochs. All versions of the KLD obtained a worse 

result than the PDI in part for lack of a definite bound, since each possible detection obtained a different value of KLD. This 

makes setting the threshold a difficult prospect. Conversely, the good results of the PDI are explained by the robustness of the 

method, the values limited within [0, 1], and the suitability of the ICAMM to EEG data. Finally, the PDI obtained a few false 

alarms between 780 and 900 seconds. These alarms were likely due to the subject being distracted from the task at hand, since 

they were struggling to produce more words for several seconds, to no avail. However, these false alarms could be removed by a 

slight increase of the detection threshold. 

Detection results for all tests from the same subject in Fig. 5 are summarized in Fig. 6, which shows the ROC curves for each 

test. Results were similar for the other subjects. The results are consistent with those in Fig. 5, with PDI and PDIS yielding the 

best results, followed by SKLD, then the one-sided versions of the KLD, and finally the NPD yielded the worst result. Again, 

this would suggest that the multidimensional KDE used in NPD was not enough to properly capture the differences between 

epochs, or that the epochs are very similar.  

As seen in Fig. 6, detection for visual tests (Fig. 6.c and Fig. 6.d) was slightly better than detection for auditory tests (Fig. 6.a 

and .b). Using the thresholds shown in Fig. 5, the average detection probabilities for auditory tests were: 94.43%, 94.16%, 

2.03%, 30.65%, 33.67%, and 36.69% for PDI, PDIS, NPD, KLD12, KLD21, and SKLD, respectively.  

In comparison, the average results for visual tests were: 99.00%, 98.73%, 3.81%, 35.31%, 41.31%, and 47.98% for PDI, PDIS, 

NPD, KLD12, KLD21, and SKLD, respectively. These differences could be due to the patients being more engaged by the visual 

tests, which would produce more pronounced changes in their mental state between stages. 

With regard to computational costs, the average time per epoch of each method was: 1.53 s, 1.52 s, 0.83 s, 1.69 s, 1.69 s, and 

3.37 s for PDI, PDIS, NPD, KLD12, KLD21, and SKLD, respectively. The times for KLD and PDI, however, do not include the 

6.40 s spent on average on ICAMM estimation. Thus, PDI was on average 1.23 times faster than SKLD (2.2 times without 

considering ICAMM), but took on average 9.60 times as long as NPD (1.86 times without considering ICAMM). Again, 

computational time was calculated on a computer running Windows 7 with four 3.3 GHz cores and 16 GB RAM. The reduction 

in the computational burden ratio between PDI and KLD compared with simulation results of Section IV was due to the 

increased size of the model (M = 19 for real data versus M = 4 for simulated data) and the higher epoch size (2000 versus 250 

samples). Although these results are not real time, they could be brought down to real time by reducing epoch size or by 
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exploiting parallel computing techniques that reduce the estimation stage of the methods [42]. 

 

Fig. 5. Comparison between the transitions before and after each stage of the TAVEC test and the distances between every pair of consecutive models: a) 

transitions between stages of the TAVEC memory test; b) PDI; c) PDIS; d) non-parametric discordance; e to g) KLD (both directions) and symmetrized KLD. 
The horizontal lines denote the change detection threshold for each distance. 
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Fig. 6. ROC curves obtained for the experiment on real data for four neuropsychological tests: a) TAVEC; b) digit span; c) figural memory; d) visual paired 

associates. 

VI. DISCUSSION AND CONCLUSION 

A novel probabilistic distance for mixtures of independent component analyzers (ICAMM), which we have named PDI, has 

been proposed. Unlike similar metrics such as the Kullback-Leibler divergence (KLD), the proposed distance does not require 

numerical integration and also it is symmetric and bounded within 0 and 1. An experiment with simulated data compared the 

stability of the PDI with that of two commonly-used indicators, the signal-to-distortion ratio and Amari index. Results showed 

that the proposed distance was similarly sensitive to changes in the data, and the results were just as stable as those of the other 

methods while considering more information about the model. 

PDI outperformed KLD in two challenging change-detection applications: detecting flaws in materials using ultrasounds and 

detecting changes in electroencephalography signals from epileptic patients performing neuropsychological tests. PDI followed 
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more accurately the actual changes in the underlying data distributions, even in cases of low signal to noise ratio. ROC analyses 

demonstrated the efficiency of PDI for detecting small changes in the underlying data generation models at very low false 

positive rates (FPR). Furthermore, since the PDI is bounded within [0, 1], a detection threshold was easy to set up. 

The definition of PDI as a probabilistic-driven model distance entails relevant advantages compared with classic distances. 

After the change-detection step, the estimated parameters of the models can be used for subsequent processing steps. For 

instance, in the EEG application studied herein, the parameters of ICAMM might be used to analyze some brain properties like 

level of activation or define brain functional regions for the different stages of the neuropsychological tests. Besides, the 

estimated non-Gaussian sources would facilitate further analyses for clinical research. 

The capability of PDI for accurate detection of changes in the stages of an EEG-based neuropsychological test suggests its 

application to other EEG staging problems such as the study of stages during sleep. It could also improve the performance of 

real-life applications where a more precise temporal location of each stage could in turn yield more precise spatial locations 

during subsequent studies of the extracted EEG sources. For instance, this is the case with focal epileptic seizures, where precise 

location can yield more information about the focus of the seizure [43]. Future works will attempt to apply the PDI on data from 

subjects in real time, using parallel processing techniques to improve estimation times. 

The normalized range of values of PDI allows for this distance to be directly used as a score in the fusion with other detectors 

in complex problems where only one detector cannot give appropriate performance. This could leave to further work in fields 

such as credit card fraud detection, multimodal classifier fusion, or data mining. Another possible line of work is the creation of a 

combined method that includes both PDI and ICAMM estimation. By embedding PDI in the ICAMM estimation procedure, the 

method could adapt to new data (e.g., by building new classes) while performing estimation and source extraction.  

APPENDICES 

A. Probabilistic distance between sources 

Section II.B introduced the PDI as the discordance between the probability density of the data, conditional to the ICAMM 

parameters ( , ,k k kA s b ) of each model. Another approach would be to calculate the discordance between the PDF of the extracted 

sources instead, 
    |
i i

kp s θ . There is, however, some uncertainty in this comparison: since there are multiple classes in each 

model, one would need to know which class from model 1 corresponds to each class in model 2. This uncertainty is further 

compounded by the fact that model 1 and model 2 need not have the same number of classes, so there could potentially be 

multiple matches. In order to consider all the possible combinations of sources for a detection problem, we define the following 

discordance between sources: 
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which is similar to the PDI, but considering only the probability density of the sources. Using the same development outlined 

in Section II.B, it can be seen that 
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As per the PDI, the solution to (A.2) can be plugged into (A.1) to obtain the final discordance between sources. This distance 

has also been considered in the following, denoted by PDIS. 
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B. Non-parametric discordance 

The PDI distances developed in Section II.B and Appendix A assume an ICA mixture model. In order to test the performance 

of this parametric model, the PDI was compared with a non-parametric version of the discordance in (9). This is done by 

estimating the PDF of the data,   |
i

p x θ , using multivariate non-parametric kernel density estimation [26]. Assuming a 

multivariate Normal kernel,  
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where M  is the number of variables of the data;  i
N  is the number of data available for model i ; 
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nξ  are the data 

available for model i ,  
1...

i
n N ; and 

 i
H  is the bandwidth matrix for model i . Here,  i

θ  is the set of values of the bandwidth 

matrix. 

In this work, we used a diagonal matrix, 
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 [44]. 

We have denoted this distance as NPD. 
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