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Abstract

In this manuscript, we analyze the dynamical anomalies of a parametric family of iterative schemes designed by Kou
et al. It is known that its order of convergence is three for any arbitrary value of the parameter, but it has order four
(and it is optimal in the sense of Kung-Traub’s conjecture) when an specific value is selected. Among all the elements
of this family, one can choose this fourth-order element or any of the infinite members of third order of convergence,
if only the speed of convergence is considered. However, the stability of the methods plays an important role in their
reliability when they are applied on different problems. This is the reason why we analyze in this paper the dynamical
behavior on quadratic polynomials of the mentioned family. The study of fixed points and their stability, joint with
the critical points and their associated parameter planes, show the richness of the class and allows us to find members
of it with excellent numerical properties, as well as other ones with very unstable behavior. Some test functions are
analyzed for confirming the theoretical results.

Keywords: Nonlinear equation; iterative method; dynamical behavior; Fatou and Julia sets; basin of attraction;
periodic orbits.

1. Introduction

Nonlinear equations f(z) = 0, where f : I ⊆ R → R is a real function defined in an open interval I , are often
used for modeling real problems arising in science and engineering as, for example, in the analysis of dynamical
models of chemical reactors [7], preliminary orbit determination of satellites [3], in radioactive transfer [13], to
simulate flow transport in a pipe [24] or even the approximation of the eigenvalues of square matrices, which is
known has many applications in areas as image processing, dynamical systems, control theory, etc (see, for example,
[8]).

For solving these equations, iterative schemes must be used. The best known iterative approach is Newton’s
method. In last decades, many researchers have proposed different iterative methods to improve Newton’s scheme
(see, for example, the review [21], and the references therein). These variants of Newton’s method have been designed
by means of different techniques, providing in the most of cases multistep schemes. Some of them come from
Adomian decomposition (see [1], for example). Another procedure to develop iterative methods is the replacement
of the second derivative in Chebyshev-type methods by some approximation, [23]. A common way to generate
new schemes is the direct composition of known methods with a later treatment to reduce the number of functional
evaluations. For example, by composing Newton’s method with itself, holding the derivative ”frozen” in the second
step, third-order Traub’s method [23] is obtained.

Recently, the weight-function procedure has been used to increase the order of convergence of known methods
([21, 22]), allowing to get optimal methods, under the point of view of Kung-Traub’s conjecture [17]. These authors
conjectured that an iterative methods, without memory, which uses d functional evaluations per iteration can reach,
at most, order of convergence 2d−1. When this bound is reached, the scheme is called optimal. Although the aim of
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many researches in this area is to design optimal high-order methods, it is also known that the higher the order is, the
more sensitive the scheme to initial estimations will be [18]. On the other hand, recent studies on damped Newton’s
procedure show (see, for example [19]) that small damping parameters widen the set of initial guesses that make the
method convergent, although the speed of convergence decreases.

In this paper, we present a Kou’s family of iterative methods [16], whose iterative expression is

zk+1 = zk −
(
1− 3

4

tk − 1

γtk + 1− γ

)
f(zk)

f ′(zk)
, n = 0, 1, . . . , (1)

where yk = zk −
2

3

f(zk)

f ′(zk)
, tk =

f ′(yk)

f ′(zk)
and γ is a free parameter.

In [16], the authors proved the following result of convergence.

Theorem 1. Let f : I ⊆ R → R be a sufficiently derivable function in the open interval I and let α ∈ I be a simple
solution of the nonlinear equation f(x) = 0. We consider that x0 is an initial approximation close enough to α. Then,
the sequence {xk}k≥0 obtained by using Kou’s family converges to α with order of convergence three for any value
of parameter γ, being the error equation

ek+1 =
2

3
(3− 2γ)c22e

3
k +O(e4k).

Moreover, for γ = 3
2 , the order of the method is four and its error equation is

ek+1 =
(
c32 − c2c3 +

c4
9

)
e4k +O(e5k),

where cj =
f (j)(α)
j!f ′(α) , j = 2, 3, . . . and ek = zk − α.

If we are only thinking in the speed of convergence any element of the Kou’s family (except for γ = 3
2 ) has a

similar behavior. However, in this paper we are interested in the stability of these iterative methods. So, by using
complex dynamics tools, we are going to analyze the dynamical behavior of the rational function associated to the
class of iterative schemes on low degree polynomials. The qualitative information that this analysis gives us is very
useful for selecting the members of the class with good stability properties and to refuse other ones with bad numerical
behavior.

From the numerical point of view, the dynamical behavior of the rational function associated with an iterative
method, on low degree polynomials, gives us important information about its stability and reliability. In these terms,
Amat et al. in [2] described the dynamical behavior of several well-known families of iterative methods. More
recently, in [4, 10, 12, 14, 19, 20] the authors analyze the qualitative behavior of different known iterative families.
The most of these studies show different pathological numerical behavior, such as periodic orbits, attracting fixed
points different from the solution of the problem, etc. Indeed, parameter planes associated to a family of methods
allow us to understand the behavior of the different members of the family of methods, helping us in the election of a
particular one.

The rest of the paper is organized as follows: in Section 2 we introduce the basic concepts on complex dynamics
that we will use in all the paper, in Section 3 we obtain the fixed and critical points of the rational operator associated
to Kou’s family on quadratic polynomials, and the stability of the obtained fixed points is analyzed in Section 4.
These stability regions also appear in the associated parameter spaces, obtained in Section 5, where we also show
some dynamical planes corresponding to different elements of the family with good and bad numerical behavior. In
this section, we also study the stability region of the attractive 2-periodic orbits, whose analytical expression is found,
depending on the parameter. Section 6 is devoted to the numerical results, with academical examples and members
of the class with different behavior, selected from the previous results. We finish the work with some remarks and
conclusions.
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2. Basic concepts

Under the point of view of complex dynamics, we will study the general convergence of family (1) on quadratic
polynomials. It is known (see, for example [6]) that the roots of a polynomial can be transformed by an affine map
with no qualitative changes on the dynamics of the family. So, we can use quadratic polynomial p(z) = (z−a)(z−b).
For p(z), the operator of the family is the rational function:

Tp,γ,a,b(z) = z +
(a− z)(b− z)(3a2 + 3b2 + b(−15 + 4γ)z + (15− 4γ)z2 + a(b(9− 4γ) + (−15 + 4γ)z))

(a+ b− 2z)(3a2 + 3b2 + 4b(−3 + γ)z − 4(−3 + γ)z2 + a(b(6− 4γ) + 4(−3 + γ)z))
,

depending on parameter γ and also on the roots of the polynomial a and b.

Blanchard in [5] considered the conjugacy map h (z) =
z − a

z − b
, (a Möbius transformation) with the following

properties:
i) h (∞) = 1, ii) h (a) = 0, iii) h (b) = ∞,

and proved that, for quadratic polynomials, Newton’s operator is conjugate to the rational map z2. In an analogous
way, operator Tp,γ,a,b(z) on quadratic polynomials is conjugated to operator Oγ (z),

Oγ (z) =
(
h ◦ Tp,γ,a,b ◦ h−1

)
(z) = −z3

6− 4γ + 3z

−3− 6z + 4γz
. (2)

We observe that the parameters a and b have been obviated in Oγ(z).
Now, we are going to recall some dynamical concepts of complex dynamics (see [6] for a more deep study of

these concepts) that we use in this work. Given a rational function R : Ĉ → Ĉ, where Ĉ is the Riemann sphere, the
orbit of a point z0 ∈ Ĉ is defined as:

{z0, R (z0) , R
2 (z0) , . . . , R

n (z0) , . . .}.

We analyze the phase plane of the map R by classifying the starting points from the asymptotic behavior of their
orbits. A z0 ∈ Ĉ is called a fixed point if R (z0) = z0. A periodic point z0 of period p > 1 is a point such that
Rp (z0) = z0 and Rk (z0) ̸= z0, for k < p. A pre-periodic point is a point z0 that is not periodic but there exists a
k > 0 such that Rk (z0) is periodic. A critical point z0 is a point where the derivative of the rational function vanishes,
R′ (z0) = 0. Moreover, a fixed point z0 is called attractor if |R′(z0)| < 1, superattractor if |R′(z0)| = 0, repulsor if
|R′(z0)| > 1 and parabolic if |R′(z0)| = 1.

The basin of attraction of an attractor α is defined as:

A (α) = {z0 ∈ Ĉ : Rn (z0)→α, n→∞}.

The immediate basin of attraction of an attractor is the connected component of its basin of attraction that holds the
attractor.

The Fatou set of the rational function R, F (R) , is the set of points z ∈ Ĉ whose orbits tend to an attractor (fixed
point, periodic orbit or infinity). Its complement in Ĉ is the Julia set, J (R). That means that the basin of attraction
of any fixed point belongs to the Fatou set and the boundaries of these basins of attraction belong to the Julia set.

The following theorem establishes a classical result of Fatou and Julia that we use in the study of parameter space
associated to the family.

Theorem 2. Let R be a rational function. The immediate basin of attraction of an attracting fixed or periodic point
holds, at least, a critical point.

By using this result, one can be sure to find all the stable behavior associated to a rational function R, by analyzing
the performance of R on the set of critical points.
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3. Analysis of the fixed and critical points

In the next sections, we are going to analyze, under the dynamical point of view, the stability and reliability of the
members of the proposed family. Firstly, we study the fixed points of the rational function Oγ(z) that are not related
with the original roots of the polynomial p(z) (called strange fixed points), and the free critical points, that is, the
critical points of Oγ(z) different from 0 and ∞, which are associated to the roots of p(z).

Fixed points of Oγ (z) are the roots of the equation Oγ (z) = z, that is, z = 0, z = ∞ and the strange fixed points

• ex1(γ) = 1,

• ex2(γ) =
1

6
(−9 + 4γ −

√
45− 72γ + 16γ2),

• ex3(γ) =
1

6
(−9 + 4γ +

√
45− 72γ + 16γ2).

Some relations between the strange fixed points are described in the following result.

Lemma 1. The number of simple strange fixed points of operator Oγ (z) is three, except in the following cases:

i) If γ =
3

4
, then the operator is O3/4(z) = z3, so there are no strange fixed points.

ii) If γ =
9

4
, then the operator is O9/4(z) = −z3, so there are no strange fixed points.

iii) If γ =
15

4
, there is only one strange fixed point, ex2 = ex3 = 1, as O15/4(z) = −z3

−3 + z

−1 + 3z
.

iv) If γ =
3

2
, then the operator is O3/2(z) = z4, so there are no strange fixed points.

In order to determine the critical points, we calculate the first derivative of Oγ (z),

O′
γ (z) = 2z2

16γ2z + 27(1 + z)2 − 6γ(3 + z(8 + 3z))

(−3 + (−6 + 4γ)z)2
.

As we have said, a classical result establishes that there is, at least, one critical point associated with each invariant
Fatou component. It is clear that z = 0 and z = ∞ (related to the roots of the polynomial by means of Möbius map)
are critical points and give rise to their respective Fatou components, but there exist in the family some free critical
points, some of them depending on the value of the parameter.

Lemma 2. Analyzing the equation O′
γ(z) = 0, we obtain:

a) If γ =
3

4
, γ =

9

4
or γ =

3

2
there is no free critical points of operator Oγ (z).

b) If γ = 0, then z = −1 is the only free critical point.

c) If γ = 3, then z = 1 is the only free critical point.

d) In any other case,

cr1(γ) =
27− 24γ + 8γ2 − 2

√
−81γ + 171γ2 − 96γ3 + 16γ4

9(−3 + 2γ)

and

cr2(γ) =
27− 24γ + 8γ2 + 2

√
−81γ + 171γ2 − 96γ3 + 16γ4

9(−3 + 2γ)
=

1

cr1(γ)
,

are free critical points.
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From the previous results, let us summarize:

• When γ = 0, cr1(0) = cr2(0) = −1 that is a pre-image of z = 1, that in this case is not a fixed point, and the

associated operator is O0(z) = z3
2 + z

1 + 2z
.

• When γ = 3, cr1(3) = cr2(3) = 1 that is a superattractive fixed point and the associated operator is O3(z) =

−z3
−2 + z

−1 + 2z
.

• At most, there is one independent free critical point. So, we will consider only cr1(γ).

As we will see in the following section, not only the number but also the stability of the fixed points depend on
the parameter of the family. The relevance of this study yields in the fact that the existence of attracting strange fixed
points can make the iterative scheme converge to a ”false” solution.

4. Stability of the fixed points

As the order of convergence of the family is at least three, it is clear that the origin and ∞ (related to the roots of
p(z)) are always superattractive fixed points, but the stability of the other fixed points gives us interesting numerical
information. In the following results we show the stability of the strange fixed points.

Theorem 3. The character of the strange fixed point ex1(γ) = 1, γ ̸= 9

4
, is as follows:

i) If
∣∣∣∣γ − 13

4

∣∣∣∣ < 1
2 , then ex1(γ) = 1 is an attractor and it is a superattractor when γ = 3.

ii) When
∣∣∣∣γ − 13

4

∣∣∣∣ = 1

2
, ex1(γ) = 1 is a parabolic point.

iii) If
∣∣∣∣γ − 13

4

∣∣∣∣ > 1

2
, then ex1(γ) = 1 is a repulsor.

Proof. It is easy to see that

O′
γ (1) =

8(−3 + γ)

−9 + 4γ
.

So, ∣∣∣∣8(−3 + γ)

−9 + 4γ

∣∣∣∣ ≤ 1 is equivalent to 8| − 3 + γ| ≤ |−9 + 4γ| .

Let us consider γ = a+ ib an arbitrary complex number. Then,

82(32 − 6a+ a2 + b2) ≤ 92 − 72a+ 16a2 + 16b2.

By simplifying
495− 312a+ 48a2 + 48b2 ≤ 0,

that is, (
a− 13

4

)2

+ b2 ≤ 1

4
.

Therefore, ∣∣O′
γ (1)

∣∣ ≤ 1 if and only if
∣∣∣∣γ − 13

4

∣∣∣∣ ≤ 1

2
.

Theorem 4. The analysis of the stability of strange points ex2(γ) and ex3(γ) shows that:
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i) If
∣∣∣∣γ − 9

2

∣∣∣∣ < 3

4
, then both points are attractors and they are superattractors when γ =

9

2
.

ii) If
∣∣∣∣γ − 9

2

∣∣∣∣ = 3

4
, then ex2(γ) and ex3(γ) are parabolic.

iii) In any other case, both points are repulsors.

Proof. It is easy to see that

O′
γ (exi) = 6− 4γ

3
, i = 2, 3

So, ∣∣∣∣18− 4γ

3

∣∣∣∣ ≤ 1 is equivalent to |18− 4γ| ≤ 3.

Let us consider γ = a+ ib an arbitrary complex number. Then,

182 − 144a+ 42a2 + 42b2 ≤ 9.

By simplifying
315− 144a+ 16a2 + 16b2 ≤ 0,

that is, (
a− 9

2

)2

+ b2 ≤
(
3

4

)2

.

Therefore, ∣∣O′
γ (exi)

∣∣ ≤ 1 if and only if
∣∣∣∣γ − 9

2

∣∣∣∣ ≤ 3

4
.

In Figure 1, we represent the stability regions of exi(γ), i = 1, 2, 3, that we get from Theorem 3 and Theorem 4.

Figure 1: Stability regions of ex1(γ) (left) and exi(γ), i = 2, 3 (right), respectively.

5. The parameter space

As we have seen, the dynamical behavior of operator Oγ(z) depends on the values of parameter γ. Taking into
account Theorem 2, we would like to know what happens with the free critical points, that is, do some of them belong
to a basin of attraction different to those of zero and infinity? For answering this question we construct the parameter
plane associated to family (1).

The parameter space associated with an independent free critical point of operator (2) is obtained by associating
each point of the plane with a complex value of γ, i.e., with an element of family (1). Every value of γ belonging
to the same connected component of the parameter space gives rise to subsets of schemes of family (1) with similar
dynamical behavior. So, it is interesting to find regions of the parameter plane as much stable as possible, because
these values of γ will give us the best members of the family in terms of numerical stability.
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As cr1(γ) =
1

cr2(γ)
, we have at most one free independent critical point, so we can obtain different parameter

planes, with complementary information. When we consider the free critical point z = cr1(γ) as a starting point of
the iterative scheme of the family associated to each complex value of γ, we paint this point of the complex plane in
red if the method converges to any of the roots (zero and infinity) and they are black in other cases. The color used
is brighter when the number of iterations is lower. Then, the parameter plane P1 is obtained; it is showed in Figure
2. The parameter plane has been generated by using the routines described in [9]. A mesh of 1000 × 1000 points
has been used, 500 has been the maximum number of iterations involved and 10−3 the tolerance used as a stopping
criterium.

In the following, we will focus our attention on parameter plane P1, due to its dynamical richness.

IRe{α}

IIm
{α

}

−2 0 2 4 6 8
−6

−4

−2

0

2

4

6

Figure 2: Parameter plane P1 associated to cri(γ), i = 1, 2

We can observe that the members of family (1) are, in general, very stable, the red area is very big. However,
there are small black regions that inform us about different pathological behavior of some elements of the family.

Let us remark that two balls with centers (13/4, 0) and (9/2, 0), called D1 and D2, respectively. The first ball
correspond to values of parameter γ for which ex1(γ) is attractor or superattractor (see Theorem 3). The second one
corresponds to values of γ for which ex2(γ) and ex3(γ) are simultaneously attractors or superattractors (see Theorem
4). In addition, there are other black areas and bulbs that correspond to attractive orbits of different periods. In the
next section, we obtain the orbits of period two.

5.1. Orbits of period two
In order to obtain the analytical expression of the elements of 2-periodic orbits, depending on γ, we calculate

Oγ(Oγ(z)), that will be denoted by O2
γ(z)

O2
γ(z) =

z9(6− 4γ + 3z)3(18− 12γ + 36z − 48γz + 16γ2z + 18z3 − 12γz3 + 9z4)

(−3− 6z + 4γz)3(−9− 18z + 12γz − 36z3 + 48γz3 − 16γ2z3 − 18z4 + 12γz4)
.
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Figure 3: Stability regions of 2-periodic orbits pei(γ), i = 1, 2 (left) and pei(γ), i = 3, 4 (right)

The periodic points of Oγ(z) with period two are the roots of the equation O2
γ(z) = z, that is, the fixed points and

the 2-periodic points

pe{1,2}(γ) =
1
12(−9 + 4γ − r(γ)±

√
2
√

−9 + 16γ2 + 9r(γ)− 4γ(12 + r(γ)),

pe{3,4}(γ) =
1
12(−9 + 4γ + r(γ)±

√
2
√

−9 + 16γ2 − 9r(γ) + 4γ(−12 + r(γ)),

where r(γ) =
√

45− 24γ + 16γ2.
In Figure 3, we represent the stability regions of the orbits pe{1,2} and pe{3,4}. We can observe small areas where

these orbits are attractive. Moreover, it can be checked that there exist several values of parameter γ that make the
2-periodic orbits superattracting, that is, satisfy O′

γ
2(z) = 0. In Figure 4 we show all the stability regions including

those of the strange fixed points and the 2-periodic orbits.

Figure 4: Stability regions of strange fixed points and 2-periodic points

This 3D-plot allows us to identify many of the different stability regions appearing in the parameter plane P1 (see
Figure 2) as black regions.

5.2. Dynamical Planes

In this section we will show, by means of dynamical planes, the qualitative behavior of the different elements of
family (1). We will select these elements by using the conclusions obtained by analyzing the parameter plane of the
family and the stability analysis made on fixed and 2-periodic points.

As in case of parameter plane, these dynamical planes has been generated by using the routines appearing in [9].
The dynamical plane associated to a value of the parameter γ, that is, obtained by iterating an element of family
(1), is generated by using each point of the complex plane as initial estimation (we have used a mesh of 400 × 400
points). We paint in blue the points whose orbit converges to infinity, in orange the points converging to zero (with
a tolerance of 10−3), in other colors (green, red, etc.) those points whose orbit converges to one of the strange fixed
points (all fixed points appear marked as a white star in the figures) and in black if it reaches the maximum number of
40 iterations without converging to any of the fixed points.

There are some regions in parameter space P1 whose corresponding iterative methods have good numerical be-
havior, in terms of stability and efficiency. They correspond to values of γ painted in red (Figure 2). In Figure 5 we
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(a) γ = 3
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and γ = 3
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(b) γ = 0

Re{z}
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{z
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−0.5

0

0.5

1

1.5
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(c) γ = 2− 4i

Figure 5: Some dynamical planes with stable behavior

show different stable behavior corresponding to several values of γ selected in this red region; in particular, we use
γ = 0 , γ = 3

4 , γ = 3
2 and γ = 2− 4i.

On the other hand, unstable behavior is found when we choose values of γ in the black region of parameter plane
P1. In Figure 6, the dynamical plane of the iterative method corresponding to γ = −2 ∈ D2 is presented, showing
the existence of four different basins of attraction, two of them of the superattractors 0 and ∞ and the other two
corresponding to the superattractors ex2(−2) and ex3(−2).

6. Numerical results

This section is devoted to verify the validity and effectiveness of our theoretical results. The members of the family
not only hold the theoretical order of convergence, but also the good elements of the class for quadratic polynomials
(selected by means of the complex dynamics analysis) remain being stable for more complicated functions. During
these numerical experiments software Matlab R2013b have been done with double precision arithmetics. We have
used as stopping criterium |xk+1 − xk| < tol or |f(xk+1)| < tol, being tol = 10−12. In order to confirm the
theoretical order of convergence, we use the approximated computational order of convergence ACOC introduced in
[11] as

p ≈ ACOC =
ln (|xk+1 − xk|/|xk − xk−1|)
ln (|xk − xk−1|/|xk−1 − xk−2|)

.

If ACOC is not stable along the iterative process, it is denoted by ’-’. Moreover, when an scheme does not converge,
it appears in Tables 2 to 4 as ’nc’.

For solving the nonlinear functions appearing in Table 1, we use some elements of Kou’s family (some of them
with good stability properties and others with bad ones) and also some known iterative schemes as Newton’, Traub’
and Homeier’s ones. Let us recall that their iterative expressions are

xk+1 = xk −
f(xk) + f(yk)

f ′(xk)
, (3)

xk+1 = xk −
1

2

(
1 +

f ′(xk)

f ′(yk)

)
f(xk)

f ′(xk)
, (4)

where yk = xk − f(xk)
f ′(xk)

is Newton’s step, corresponding to Traub’ [23] and Homeier’s [15] procedures, respectively.

Test functions Zeros
f1(x) = arctan(x) α = 0

f2(x) = ex
2−3x sinx+ ln (x2 + 1) α = 0

f2(x) = ex − 1.5− arctan(x) α1 ≈ 0.767653, α2 ≈ −14.101270

Table 1: Test functions and their zeros
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(b) γ = 2.7, in a bulb to the left of D1
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(c) γ = 4, in D2

Re{z}
Im

{z
}

−2 −1 0 1 2 3 4 5
−2

−1

0

1

2

(d) γ = 5, in D2
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(e) γ = 2 + 2i, in a Maldelbrot type set

Figure 6: Dynamical planes with unstable behavior

Regarding Table 2, let us remark that classical methods have problems of convergence for initial estimations far
from the solution, meanwhile stable members of Kou’s family have a better numerical behavior.

In Tables 3 and 4, classical schemes show good results. In a similar way, those elements of Kou’s class found to
be stable on quadratic polynomials present as good behavior as Newton’, Traub’ and Homeier’s methods. However,
when values of γ are selected among the unstable ones, the numerical behavior is very bad.

7. Conclusions

A dynamical study on quadratic polynomials of a parametric family of iterative methods for solving nonlinear
equations, constructed by Kou et al., has been presented. From the parameter plane associated to the class, it has
been proved that there are many values of parameter γ, that is, elements of the family, with good stability properties
and other ones with no convergence to the roots of the polynomial, and the existence of periodic orbits of period two
has been showed and its analytical expression has been obtained in terms of parameter γ. Some numerical tests, with
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x0 α |xk+1 − xk| |f(xk+1)| Iter ACOC

Newton 1 0.0 7.96e-10 0.0 5 2.9937
1.8 nc
-1.9 nc

Traub 1 0.0 3.63e-10 0.0 4 -
1.8 nc
-1.9 nc

Homeier 1 3.31e-24 1.97e-8 3.31e-24 4 2.9951
1.8 nc
-1.9 nc

Kou γ = 3
2 1 2.12e-22 1.65e-6 2.12e-22 3 4.6015

1.8 0.0 5.80e-10 0.0 5 -
-1.9 nc

γ = 3
4 1 0.0 2.89e-6 0.0 3 4.7770

1.8 0.0 8.14e-6 0.0 4 -
-1.9 0.0 1.27e-7 0.0 5 -

γ = 0 1 0.0 3.80e-7 0.0 4 -
1.8 -1.78e-16 7.95e-4 1.78e-16 3 2.7746
-1.9 > 1000

γ = 3 1 -6.09e-15 0.014 6.09e-15 3 3.4617
1.8 nc
-1.9 nc

γ = 5 1 0.0 2.38e-10 0.0 4 -
1.8 nc
-1.9 nc

γ = 2.7 1 -2.62e-16 7.86e-4 2.62e-16 3 3.6158
1.8 nc
-1.9 nc

Table 2: Numerical results for f1(x)

non-polynomial equations, confirm the information given by the dynamical study respect to the good or bad numerical
behavior of the different elements of the family.
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[10] A. Cordero, J. Garcı́a-Maimó, J.R. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family, Appl.
Math. Lett. 26 (2013) 842–848.

[11] A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas, Appl. Math.
Comput. 190 (2007) 686–698.

[12] A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of a family of Chebyshev-Halley type method, Appl. Math.
Comput. 219 (2013) 8568–8583.

[13] J.A. Ezquerro, J.M. Gutiérrez, M.A. Hernández, M.A. Salanova, Chebyshev-like methods and quadratic equa-
tions, Rev. Anal. Num. Th. Approx. 28 (1999) 23–35.

[14] J.M. Gutiérrez, M.A. Hernández, N. Romero, Dynamics of a new family of iterative processes for quadratic
polynomials, J. Comput. Appl. Math. 233 (2010) 2688–2695.

[15] H.H.H. Homeier, On Newton-type methods with cubic convergence, J. Comput. Appl. Math. 176 (2005) 425–
432.

[16] J. Kou, Y. Li, X. Wang, Fourth-order iterative methods free from second derivative, Appl. Math. Comput. 184
(2007) 880–885.

[17] H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Math. 21 (1974)
634–651.

12



x0 α |xk+1 − xk| |f(xk+1)| Iter ACOC

Newton 4 0.7677 1.56e-12 0.0 9 2.0001
2 0.7677 1.34e-7 0.0 6 2.0021
-2 -14.1013 8.80e-8 0.0 7 2.0037

Traub 4 0.7677 3.83e-7 0.0 5 2.8767
2 0.7677 5.55e-5 0.0 4 2.7523
-2 -14.1013 2.45e-6 0.0 5 2.9919

Homeier 4 0.7677 2.10e-8 0.0 5 3.1308
2 0.7677 2.19e-10 0.0 4 3.0927
-2 -14.1013 1.36e-4 0.0 4 3.1931

Kou γ = 3
2 4 0.7677 5.18e-5 2.22e-16 4 3.3038

2 0.7677 9.68e-5 0.0 3 3.2606
-2 -14.1013 0.0078 4.44e-16 3 6.8668

γ = 3
4 4 0.7677 8.49e-12 2.22e-16 6 2.9780

2 0.7677 1.68e-6 1.11e-16 4 2.8713
-2 -14.1013 9.77e-10 0.0 5 3.0043

γ = 0 4 0.7677 4.12e-7 1.11e-16 6
2 0.7677 5.64e-5 4.49e-13 4
-2 -14.1013 2.98e-6 2.22e-16 5

γ = 3 4 nc
2 nc
-2 - 5.94e-13 0.0849 35 0.9723

γ = 5 4 nc
2 > 1000
-2 > 1000

γ = 2.7 4 nc
2 nc
-2 nc

Table 4: Numerical results for f3(x)

[18] T. Lotfi, S. Sharifi, M. Salimi, S. Siegmund, A new class of three-point method with optimal convergence order
eight and its dynamics, Numer. Algor. 68 (2015) 261–288.
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