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Solving linear and quadratic random matrix differential equations using: A mean
square approach. The non-autonomous case
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Abstract

This paper is aimed to extend, the non-autonomous case, the results recently given in the paper [1] for solving au-
tonomous linear and quadratic random matrix differential equations. With this goal, important deterministic results
like the Abel-Liouville-Jacobi’s formula, are extended to the random scenario using the so-called Lp-random matrix
calculus. In a first step, random time-dependent matrix linear differential equations are studied and, in a second step,
random non-autonomous Riccati matrix differential equations are solved using the hamiltonian approach based on
dealing with the extended underlying linear system. Illustrative numerical examples are also included.
Keywords: mean square random calculus, Lp-random matrix calculus, random non-autonomous Riccati matrix dif-
ferential equation, analytic-numerical solution

1. Introduction1

In the recent paper [1] linear and quadratic random autonomous differential equations were motivated and studied2

in the Lp-random sense. In that paper, all the coefficients were assumed to be random matrices rather than matrix3

stochastic processes, hence in [1] coefficients do not depend on time. Based on the well-known linear hamiltonian4

approach, (see [2] and [3] for excellent references about Riccati differential equations and the hamiltonian approach),5

the solution of the initial value problem for a general class of Riccati random quadratic matrix equations is obtained6

in terms of the blocks of the solution stochastic process of the underlying random linearized problem.7

In this paper, we address the solution in the Lp-random sense of the non-autonomous Riccati matrix differential8

initial value problem (IVP)9

W ′(t) +W(t) A(t) + D(t) W(t) +W(t) B(t) W(t) −C(t) = 0 , W(0) = W0 , (1)

where the variable coefficient matrices A(t) ∈ Ln×n
p (Ω), D(t) ∈ Lm×m

p (Ω), B(t) ∈ Ln×m
p (Ω), C(t) ∈ Lm×n

p (Ω), the initial10

condition W0 ∈ Lm×n
p (Ω) and the unknown W(t) ∈ Lm×n

p (Ω) are matrix stochastic processes whose size are specified11

in the superindexes and defined in certain Lr×s
p (Ω) spaces, that will be specified later. It is important to underline12

that in (1), the meaning of the derivative W ′(t) is understood in the p-th mean sense, that is, a kind of strong random13

convergence that it will be introduced in Section 2. It is convenient to highligth that using the Lr×s
p (Ω)-random14

approach is not equivalent to deal with the averaged deterministic problem based on taking the expectations in every15

entry of the matrices that define the differential equation (1). Even more, from a practical point of view, it is more16

realistic to consider the random approach rather than the determinisitic since when modelling input data of the Riccati17

equation (1) are usually fixed after measurments, hence having errors. We point out that the content of this paper may18

be regarded as a continuation of [1, 4, 5]. Finally, we highlight some recent and interesting contributions dealing with19

scalar random Riccati-type differential equations by means of Lp(Ω)-random calculus or alternative techniques [6, 7],20

for example.21
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The organization of this paper is as follows. Section 2 is devoted to extend some stochastic results presented in22

section 2 of [1] and to introduce new ones as well. These new results are addressed to establish a random analogous23

of the Abel-Liouville-Jacobi’s formula that will play a key role to deal with the non-autonomous random case. In24

Section 3 the random non-autonomous matrix linear problem is treated, including the bilateral case. In Section 4 the25

random non-autonomous Riccati matrix equation is solved based on the extended underlying linear problem, includ-26

ing a procedure for the numerical solution inspired in the results of [4] that were obtained for the non-autonomous27

deterministic counterpart. In Section 5 the theoretical results obtained throughout the paper are illustrated by means28

of several numerical examples. Finally, conclusions are drawn in Section 6.29

2. New results on Lp-random matrix calculus30

The aim of this section is to establish new results belonging the so called Lp(Ω)-random matrix calculus that31

will be required later for solving both non-autonomous linear systems (see Section 3) and non-autonomous nonlinear32

random Riccati-type matrix differential equations of the form (1) (see Section 4). This section can be viewed as33

continuation of the contents introduced in [1, Sec.2]. For the sake of consistency, hereinafter we will keep the same34

notation introduced in [1]. For ease of presentation, it is convenient to remember that given a complete probability35

space, (Ω,F ,P), Lm×n
p (Ω) denotes the set of all real random matrices X = (xi, j)m×n such as xi, j : Ω −→ R, 1 ≤ i ≤ m,36

1 ≤ j ≤ n, are real random variables (r.v.’s) satisfying that37

∥

∥

∥xi, j

∥

∥

∥

p =
(

E
[

|xi, j|p
])1/p

< +∞, p ≥ 1, (2)

where E [·] denotes the expectation operator. It can be proved that (Lm×n
p (Ω), ‖·‖p), where38

‖X‖p =
m

∑

i=1

n
∑

j=1

∥

∥

∥xi, j

∥

∥

∥

p , E
[

|xi, j|p
]

< +∞, (3)

is a Banach space. Notice that no confusion is possible between the common notation used for the ‖·‖p in (2) and39

in (3) because they act on scalar r.v.’s (denoted by lower case letters) and random matrices (denoted by capital case40

letters), respectively. In the case that m = n = 1, both norms are the same and (L1×1
p (Ω) ≡ Lp(Ω), ‖·‖p) represents41

the Banach space of real r.v.’s with finite absolute moments of order p about the origin, being p ≥ 1 fixed, [8]. In [9]42

a number of results corresponding to p = 4 (fourth random calculus) and its relationship with p = 2 (mean square43

calculus) are established and applied to solve scalar random differential equations. In [10] a scalar random Riccati44

differential equation whose nonlinear coefficient is assumed to be an analytic stochastic process is solved using the45

Lp(Ω)-random scalar calculus.46

Given T ⊂ R, a family of t-indexed r.v.’s, say {x(t) : t ∈ T }, is called a p-stochastic process (p-s.p.) if for each47

t ∈ T , the r.v. x(t) ∈ Lp(Ω). This definition can be extended to matrix s.p.’s X(t) = (xi, j(t))m×n of Lm×n
p (Ω), which are48

termed p-matrix s.p.’s, if xi, j(t) ∈ Lp(Ω) for every 1 ≤ i ≤ m and 1 ≤ j ≤ n.49

The definitions of continuity, differentiability and integrability of p-matrix s.p.’s follow in a straightforwardly50

manner using the ‖·‖p-norm introduced in (3). As a simple but illustrative example that will be invoked later when51

showing more sophisticated examples in Section 5, below we show how to prove the p-differentiability of a matrix52

s.p. of Ln×n
p (Ω).53

Example 1. Let a be an absolutely continuous r.v. defined on the bounded interval (a1, a2), i.e., a1 ≤ a(ω) ≤ a2 for54

every ω ∈ Ω, and let us denote by fa(a) the probability density function (p.d.f.) of the r.v. a. Let us define the following55

matrix s.p.56

H(t; a) =
[

h1,1(t; a) h1,2(t; a)
h2,1(t; a) h2,2(t; a)

]

=

[

exp(at) cosh(at)
sinh(at) exp(−at)

]

, t ∈ [0, T ].

On the one hand, by the definition of the random matrix p-norm (see (3)) one gets57

‖H(t; a)‖p =
2

∑

i=1

2
∑

j=1

∥

∥

∥hi, j(t; a)
∥

∥

∥

p =
∥

∥

∥exp(at)
∥

∥

∥

p + ‖cosh(at)‖p + ‖sinh(at)‖p +
∥

∥

∥exp(−at)
∥

∥

∥

p .
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On the other hand, if we denote58

Mt,p := max{Mi, j
t,p : 1 ≤ i, j ≤ 2}, where Mi, j

t,p := max
ω∈Ω
{(hi, j(t; a(ω)))p} < +∞.

It is clear that59

(∥

∥

∥hi, j(t; a)
∥

∥

∥

p

)p
= E

[

(hi, j(t; a))p
]

=

∫ a2

a1

(hi, j(t; a))p fa(a) da ≤ Mi, j
t,p < +∞, for every t ∈ [0, T ],

where in the last step we have used that the integral of fa(a) over [a1, a2] is just 1 because it is a p.d.f. This proves60

that H(t; a) ∈ L2×2
p (Ω) for every p ≥ 1. Moreover the H(t; a) is p-differentiable being its p-derivative61

H′(t; a) =
[

h′1,1(t; a) h′1,2(t; a)
h′2,1(t; a) h′2,2(t; a)

]

=

[

a exp(at) a sinh(at)
a cosh(at) −a exp(−at)

]

, t ∈ [0, T ].

Indeed, observe that62

∥

∥

∥

∥

∥

H(t + ∆t; a) − H(t; a)
∆t

− H′(t, a)
∥

∥

∥

∥

∥

p
=

2
∑

i=1

2
∑

j=1

∥

∥

∥

∥

∥

∥

hi, j(t + ∆t; a) − hi, j(t; a)
∆t

− h′i, j(t; a)

∥

∥

∥

∥

∥

∥

p
,

and, for example for i = j = 1,63

(
∥

∥

∥

∥

∥

h1,1(t + ∆t; a) − h1,1(t; a)
∆t

− h′1,1(t; a)
∥

∥

∥

∥

∥

p

)p

= E
[(

exp(a(t + ∆t)) − exp(at)
∆t

− a exp(at)
)p]

= E
[(

exp(a(t + ∆t)) − exp(at)(1 + a∆t)
∆t

)p]

= O((∆t)p) −−−−→
∆t→0

0,

and the same can be shown for the rest of the components h′1,2(t; a), h′2,1(t; a) and h′2,2(t; a).64

The following two key inequalities for scalar r.v.’s will be used extensively throughout this paper (see [1])65

‖x‖r ≤ ‖x‖s , 1 ≤ r ≤ s, x ∈ Ls(Ω), (4)

and66

‖xy‖p ≤ ‖x‖2p ‖y‖2p , x, y ∈ L2p(Ω). (5)

As a consequence of inequality (4), the Lp(Ω) spaces are embedded according to the following relationship, that will67

be play a key role throughout the this paper,68

Ls(Ω) ⊂ Lr(Ω), 1 ≤ r ≤ s. (6)

The following result may be regarded as a matrix adaptation of the fundamental theorem of mean square calculus69

but generalized to the p-norm defined in (3), [11, p.104]. We omit its proof since it follows the same argument shown70

in [11, p.104] but working componentwise and using the p-norm defined in (2) instead of particularizing this norm71

for p = 2.72

Proposition 1. Let Z(t) ∈ Lm×m
p (Ω) be a p-differentiable matrix s.p. and assume that Z ′(t) is p-integrable, then73

Z(t) − Z(0) =
∫ t

0
Z′(s) ds .

Definition 1. Let {`i, j(t) : t ∈ T ⊂ R, 1 ≤ i, j ≤ m} be scalar s.p.’s. The trace, tr(L(t)), of the square matrix s.p.74

L(t) = (`i, j(t))m×m is defined by the sum of its diagonal entries, that is,75

tr(L(t)) =
m

∑

i=1

`i,i(t) .
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The following result generalizes inequality (5) to an arbitrary number of factors since it is obtained for the partic-76

ular case m = 2. This inequality will be applied later.77

Lemma 1. Let us consider a set of scalar s.p.’s {xi(t) : t ∈ T ⊂ R, 1 ≤ i ≤ m} in L2m−1 p(Ω). Then, for each t ∈ T , it78

is verified that79
∥

∥

∥

∥

∥

∥

∥

m
∏

i=1

xi(t)

∥

∥

∥

∥

∥

∥

∥

p

≤
m

∏

i=1

‖xi(t)‖2m−1 p , (7)

and
∏m

i=1 xi(t) belongs to Lp(Ω).80

Proof. It follows by induction over m. Let t ∈ T ⊂ R be arbitrary but fixed. For m = 1 the proof is trivial since (7)81

becomes an identity. Let us assume that (7) is satisfied for the m − 1 scalar s.p.’s {xi(t) : 1 ≤ i ≤ m − 1}, that is to say,82

the following inequality83
∥

∥

∥

∥

∥

∥

∥

m−1
∏

i=1

xi(t)

∥

∥

∥

∥

∥

∥

∥

p

≤
m−1
∏

i=1

‖xi(t)‖2m−2 p , (8)

holds provided that ‖xi(t)‖2m−2 p < +∞, i.e., xi(t) ∈ L2m−2 p(Ω), 1 ≤ i ≤ m − 2. Now assuming m ≥ 2, we shall prove (7),84

∥

∥

∥

∥

∥

∥

∥

m
∏

i=1

xi(t)

∥

∥

∥

∥

∥

∥

∥

p

=

∥

∥

∥

∥

∥

∥

∥

















m−1
∏

i=1

xi(t)

















xm(t)

∥

∥

∥

∥

∥

∥

∥

p

(I)
≤

∥

∥

∥

∥

∥

∥

∥

m−1
∏

i=1

xi(t)

∥

∥

∥

∥

∥

∥

∥

2p

‖xm(t)‖2p

(II)
≤

















m−1
∏

i=1

‖xi(t)‖2m−2(2p)

















‖xm(t)‖2p

=

















m−1
∏

i=1

‖xi(t)‖2m−1 p

















‖xm(t)‖2p

(III)
≤

















m−1
∏

i=1

‖xi(t)‖2m−1 p

















‖xm(t)‖2m−1 p

≤
m

∏

i=1

‖xi(t)‖2m−1 p < +∞ .

In step (I) we have applied (5) for r.v.’s x =
∏m−1

i=1 xi(t), y = xm(t). Taking into account that by hypothesis xi(t) ∈85

L2m−1 p(Ω), 1 ≤ i ≤ m, together with the proof itself, it is justified that
∏m−1

i=1 xi(t) and xm(t) are in L2p(Ω), which is86

required to legitimate the application of inequality (5). In step (II) we have applied the induction hypothesis (8) with87

de identification 2p instead of p, and finally, in step (III) we have used the Lyapunov’s inequality (4) with r ≡ 2p and88

s ≡ 2m−1 p, m ≥ 2 since by hypothesis xm(t) ∈ L2m−1 p(Ω). �89

Remark 1. Notice that if in Lemma 1 we consider m − 1 scalar s.p.’s {xi(t) : t ∈ T ⊂ R, 1 ≤ i ≤ m − 1} in L2m−1 p(Ω),90

then (7) is still true for p ≡ 2p since ‖xi(t)‖2m−2(2p) = ‖xi(t)‖2m−1 p < +∞. As a consequence,
∏m−1

i=1 xi(t) ∈ L2p(Ω). This91

result will be used in the proof of the following lemma.92

Lemma 2. Let us consider a set of scalar s.p.’s {xi(t) : t ∈ T ⊂ R, 1 ≤ i ≤ m} in L2m−1 p(Ω) for every t ∈ T and93

(2m−1 p)-differentiable, then
∏m

i=1 xi(t) is p-differentiable and, for each t ∈ T , its value is94















m
∏

i=1

xi(t)















′

=

m
∑

i=1





















































m
∏

j = 1
j , i

x j(t)



























x′i (t)



























. (9)
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Proof. It follows by induction over m. Let t ∈ T ⊂ R be arbitrary but fixed. For m = 1 the proof is trivial because95

both sides of (9) are the same. Let us assume that for m ≥ 296

















m−1
∏

i=1

xi(t)

















′

=

m−1
∑

i=1





















































m−1
∏

j = 1
j , i

x j(t)



























x′i (t)



























, (10)

holds. On the one hand, applying Remark 1 it is guaranteed that
∏m−1

i=1 xi(t) ∈ L2p(Ω). On the other hand, due to97

xm(t) ∈ L2m−1 p(Ω) and (6), it is known that xm(t) ∈ L2p(Ω). Then, according to Proposition 2 of [1] (in its scalar98

version) for the p-derivative of the product of two 2p-differentiable s.p.’s, one gets99















m
∏

i=1

xi(t)















′

=

































m−1
∏

i=1

xi(t)

















xm(t)

















′

=

















m−1
∏

i=1

xi(t)

















′

xm(t) +

















m−1
∏

i=1

xi(t)

















x′m(t) . (11)

Using the induction hypothesis (10) in (11), one obtains the result100















m
∏

i=1

xi(t)















′

=



























m−1
∑

i=1



























m−1
∏

j = 1
j , i

x j(t)



























x′i(t)



























xm(t) +

















m−1
∏

i=1

xi(t)

















x′m(t)

=

m−1
∑

i=1





















































m
∏

j = 1
j , i

x j(t)



























x′i(t)



























+

















m−1
∏

i=1

xi(t)

















x′m(t)

=

m
∑

i=1



























m
∏

j = 1
j , i

x j(t)



























x′i(t) . �

In [1], we defined the determinant of a square matrix s.p. A(t) = (ai, j)n×n as101

det A(t) =
∑

σ∈Pn

sgn(σ) a1,σ(1)(t) · · ·an,σ(n)(t) , for each t ∈ T ⊂ R ,

being Pn the set of all permutations of the n elements (1, 2, . . . , n), that is, the set of all permutations of the indexes102

defining the n columns of A(t), and sgn(σ) the signature of the permutation σ = (σ(1), . . . , σ(n)). Inasmuch as A(t) is103

a matrix s.p. then det A(t) is a scalar s.p. Furthermore, under conditions given in Proposition 3 of [1], it is guaranteed104

that det A(t) is continuous in the p-norm defined by (2). The following result allows us to compute the p-derivative105

of the determinant of a family of s.p.’s. It can be regarded as an extension of the classical rule for differentiating the106

determinant whose entries are differentiable deterministic functions.107

Lemma 3. Let us consider a square matrix s.p. A(t) = (ai, j(t))n×n, t ∈ T ⊂ R. Let us suppose that the scalar s.p.’s108

ai, j(t), i, j = 1, . . . , n, lie in L2n−1 p(Ω) for every t ∈ T and are (2n−1 p)-differentiable for every t ∈ T . Then, the109

determinant s.p. of A(t), det A(t), is p-differentiable and its p-derivative is given by110

(det A(t))′ = det





































(

a1,1(t)
)′ · · · (

a1,n(t)
)′

a2,1(t) · · · a2,n(t)
...

...

an,1(t) · · · an,n(t)





































+det





































a1,1(t) · · · a1,n(t)
(

a2,1(t)
)′ · · · (

a2,n(t)
)′

...
...

an,1(t) · · · an,n(t)





































+ · · ·+det





































a1,1(t) · · · a1,n(t)
a2,1(t) · · · a2,n(t)
...

...
(

an,1(t)
)′ · · · (

an,n(t)
)′





































. (12)

Proof. Since ai, j(t) ∈ L2n−1 p(Ω), then E
[

|ai, j(t)|2
n−1 p

]

< +∞, ∀i, j : 1 ≤ i, j,≤ n, n ≥ 1, t ∈ T , and accordingly to111

expression (15) of [1] it is guaranteed that (det A(t)) ∈ Lp(Ω). Now, considering the definition of det A(t) one gets112

(det A(t))′ =

















∑

σ∈Pn

sgn(σ)
n

∏

i=1

ai,σ(i)(t)

















′

=
∑

σ∈Pn

sgn(σ)















n
∏

i=1

ai,σ(i)(t)















′

. (13)
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Using that the n scalar s.p.’s ai,σ(i)(t), i = 1, . . . , n, are in L2n−1 p(Ω) and they are (2n−1 p)-differentiable, we can apply113

Lemma 2 to (13) (with the identification m ≡ n) for each t ∈ T and then obtaining114

(det A(t))′ =
∑

σ∈Pn

sgn(σ)



























n
∑

i=1



























n
∏

j = 1
j , i

ai,σ( j)(t)



























a′j,σ( j)(t)



























=

n
∑

i=1



























∑

σ∈Pn

sgn(σ)



























n
∏

j = 1
j , i

ai,σ( j)(t)



























a′j,σ( j)(t)



























=

n
∑

i=1

det



















































a1,1(t) · · · a1,n(t)
...

...
(

ai,1(t)
)′ · · · (

ai,n(t)
)′

...
...

an,1(t) · · · an,n(t)



















































. �

Proposition 2 (Abel-Liouville-Jacobi’s random formula). Let Φ(t) =
(

φ
j
i (t)

)

n×n
, t ∈ T ⊂ R be a matrix s.p. such115

that its entries, φ j
i (t), are (2n−1 p)-differentiable scalar s.p.’s. Let us assume thatΦ(t) verifies the random matrix linear116

equation Φ′(t) = L(t)Φ(t), where the elements `i, j(t) of the matrix s.p. L(t) =
(

`i, j(t)
)

n×n
lie in L2n−1 p(Ω) and they117

are (2n−1 p)-differentiable for each t ∈ T . Then, the scalar s.p. detΦ(t) ∈ Lp(Ω) satisfies the random first-order118

homogeneous linear equation119

(detΦ(t))′ = tr(L(t)) detΦ(t) .

Furthermore, under the following conditions120

(C1) L(t) ∈ Ln×n
2p (Ω), for each t ∈ T ,121

(C2) detΦ(t0) ∈ L2p(Ω), for t0 ∈ T ,122

(C3) There exist r > 2p and δ > 0, such that123

sup
s,s∗∈[−δ,δ]

E












(

exp
(∫ t+s∗

x+s
tr(L(u)) du

))r










= sup
s,s∗∈[−δ,δ]

E















n
∏

i=1

exp
(

r
∫ t+s∗

x+s
`i,i(u) du

)















< +∞ ,

it is verified that detΦ(t) satisfies the following identity for each t124

detΦ(t) = detΦ(t0) exp
(∫ t

t0
tr(L(s)) ds

)

, t0 ∈ T . (14)

Proof. Let us fix t ∈ T , and without loss of generality let us consider that the matrix s.p. Φ(t) takes the form125

Φ(t) =
[

Φ1(t) · · ·Φn(t)
]

=



















































φ1
1(t) · · · φn

1(t)
...

...

φ1
i (t) · · · φn

i (t)
...

...

φ1
n(t) · · · φn

n(t)



















































,

where Φ j(t), j = 1, . . . , n, denote the j-th column vector of the matrix s.p. Φ(t) and φ j
i (t) the i-th component of the126

column vector Φ j(t). Since the entries of the matrix s.p. Φ(t) are (2n−1 p)-differentiable, then accordingly to Lemma 3127

the first p-derivative of the scalar s.p. detΦ(t) exists, (detΦ(t))′, and by (12) it can be calculated as follows128

(detΦ(t))′ =
n

∑

i=1

det























































φ1
1(t) · · · φn

1(t)
...

...
(

φ1
i (t)

)′ · · ·
(

φn
i (t)

)′

...
...

φ1
n(t) · · · φn

n(t)























































. (15)
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Taking into account we are assuming that Φ(t) verifies the random matrix linear equation Φ′(t) = L(t)Φ(t), then its129

column vectors Φ j(t), j = 1, . . . , n, also hold this equation, that is,130

(Φ j(t))′ = L(t)Φ j(t), ∀ j = 1, . . . , n . (16)

By (16), the i-th component, φ j
i (t), i = 1, . . . , n, of each column vector s.p. Φ j(t), j = 1 . . . , n, takes the form131

(

φ
j
i (t)

)′
=

n
∑

k=1

`i,k(t) φ j
k(t) , ∀i, j = 1, . . . , n . (17)

Substituting (17) into (15), one gets132

(detΦ(t))′ =
n

∑

i=1

det



















































φ1
1(t) · · · φn

1(t)
...

...
∑n

k=1 `i,k(t) φ1
k(t) · · · ∑n

k=1 `i,k(t) φn
k(t)

...
...

φ1
n(t) · · · φn

n(t)



















































. (18)

Note the i-th row, Fi, of the right-hand side of (18) is a linear combination of all remaining rows of (18). Then,133

making the elementary row operations134

Fi −
n

∑

k = 1
k , i

`i,k(t) Fk −→ Fi , ∀i = 1, . . . , n,

and considering the standard determinant properties, one gets135

(detΦ(t))′ =
n

∑

i=1

det



















































φ1
1(t) · · · φn

1(t)
...

...

`i,i(t) φ1
i (t) · · · `i,i(t) φn

i (t)
...

...

φ1
n(t) · · · φn

n(t)



















































=















n
∑

i=1

`i,i(t)















detΦ(t) = tr(L(t)) detΦ(t) . (19)

Now, let us consider the following scalar random IVP136

y′(t) = tr(L(t)) y(t) , t ∈ T ,
y(t0) = detΦ(t0),

}

(20)

verifying the three conditions (C1)–(C3). Then, taking into account that detΦ(t) verifies (19), that the
(

2n−1 p
)

-137

differentiability of each `i, j(t) implies the
(

2n−1 p
)

-continuity of the tr(L(t)) and, applying an analogous reasoning to138

the one shown in Theorem 8 of [12], we obtain that detΦ(t) is a solution to random IVP (20) in Lp(Ω). Moreover, it139

is given by140

detΦ(t) = detΦ(t0) exp
(∫ t

t0
tr(L(s)) ds

)

, t0 ∈ T . �

3. Random non-autonomous linear systems141

We begin this section with the solution of the random vector IVP142

Y ′(t) = L(t) Y(t) , Y(0) = Y0 , t ∈ [0, T ] , (21)
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where L(t) ∈ Ln×n
2p (Ω) is a matrix s.p. and Y0 ∈ Ln×1

2p (Ω). Under the hypothesis, L(t) is absolutely integrable in the143

2p-norm defined by (3) (in short, L(t) is 2p-absolutely integrable) , that is,144

∫ T

0
‖L(t)‖2p dt < +∞ , (22)

it is guaranteed that, by submultiplicativity property (5), F : [0, T ]×Ln×1
2p (Ω) −→ Ln×1

p (Ω), defined by F(t, Y) = L(t)Y,145

satisfies146

‖F(t, Y1) − F(t, Y2)‖p = ‖L(t)(Y1 − Y2)‖p ≤ ‖L(t)‖2p ‖Y1 − Y2‖2p .

Thus, function F(t, Y) is p-Lipschitzian and by Theorem 10.6.1 of [13, p.292] which holds for abstract Banach spaces,147

the random vector IVP (21) admits a unique Ln×1
p (Ω) solution in [0, T ].148

Let us denote byΦL(t; 0) the matrix s.p. in Ln×n
p (Ω) whose i-th column is the unique solution of problem (21) with149

Y0 = [0, . . . , 0, 1, 0, . . . , 0]>, where the i-th entry is 1 and 0 elsewhere, with probability one. Then, one satisfies150

Φ′L(t; 0) = L(t)ΦL(t; 0) , ΦL(0; 0) = In , (23)

being In the identity matrix of size n.151

Definition 2. The matrix s.p. ΦL(t; 0) satisfying (23) is referred to as the random fundamental matrix solution of the152

random linear system (21).153

Note that if L(t) = (`i, j(t)) satisfies the hypotheses of Proposition 2, then ΦL(t; 0) is invertible in Ln×n
p (Ω) in the sense154

introduced in the Definition 3 of [1] (see (14) and note that detΦ(t0) = In being In the identity matrix of size n).155

156

For the sake of clarity in the presentation, below we introduce the following definition:157

Definition 3. The linear system (21) is said to be random p-regular, p ≥ 1, if the following conditions are satisfied:158

• the matrix s.p. L(t) ∈ Ln×n
2p (Ω) of (21) is 2p-absolutely integrable in [0, T ];159

• the random fundamental matrix solution, ΦL(t; 0), and its inverse, Φ−1
L (t; 0), both lie in Ln×n

p (Ω) and they are160

p-differentiable.161

Example 2. Let L = (`i, j)n×n be a random matrix for whose entries `i, j : Ω −→ R there exist positive constants mi, j162

and hi, j satisfying that163

E
[∣

∣

∣`i, j

∣

∣

∣

r] ≤ mi, j

(

hi, j

)r
< +∞ , ∀r ≥ 0, ∀i, j : 1 ≤ i, j ≤ n . (24)

Then, by Section 3 of [1], the corresponding random autonomous linear system (23) with L(t) = L is p-regular for any164

p ≥ 1 with ΦL(t; 0) = exp(L t) and Φ−1
L (t; 0) = exp(−L t). Moreover, as indicated in Remark 3 into Section 3 of [1],165

any bounded or truncated r.v. satisfies condition (24). Therefore, important r.v.’s like binomial, uniform, beta satisfy166

condition (24). In addition, unbounded r.v.’s like exponential, gaussian, etc. can be truncated adequately in order for167

this property to be satisfied. As a consequence, the set of r.v.’s satisfying condition (24) is, in practice, quite broad.168

Example 3. Let us consider the random IVP (21) where all entries, `i, j(t), of the matrix s.p. L(t) =
(

`i, j(t)
)

n×n
have169

s-degrees of randomness, [11, p.36],170

`i, j(t) = `i, j(t; a1, a2, . . . , as) .

Let us assume that `i, j(t; a1, a2, . . . , as) ∈ Ln×n
2p (Ω) is 2p-absolutely integrable, for each i, j : 1 ≤ i, j ≤ n, hence171

condition (22) is guaranteed. If Y0 = [y0,1, . . . , y0,n] is the random vector initial condition of the IVP (21), then it172

is easy to check, throughout the approximate successive method [13], that the random fundamental matrix solution173

ΦL(t; 0) of (21) has (s + n)-degrees of randomness determined by the r.v.’s a1, a2, . . . , as, y0,1, . . . , y0,n. By Proposition174

2, ΦL(t; 0) is invertible, and assuming that Φ−1
L (t; 0) ∈ Ln×n

p (Ω) and it is p-differentiable, then, the linear system (21)175

is p-regular.176

Below, we show an example where the random fundamental matrix solution, ΦL(t; 0), is available for the time-177

dependent case.178
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Example 4. Let us consider the random IVP (21) with L(t) = f (t)L, where f (t) is a real continuous deterministic179

function, f : [0, T ] −→ R, and L =
(

`i, j

)

n×n
is a random matrix whose entries satisfy the condition (24), hence180

L ∈ Ln×n
2p (Ω). Notice that L(t) is 2p-absolutely integrable in [0, T ]:181

∫ T

0
‖L(t)‖2p dt =

∫ T

0
‖ f (t)L‖2p dt = ‖L‖2p

∫ T

0
| f (t)| dt < +∞ ,

since ‖L‖2p < +∞ (by assumption (24), see [1]) and
∫ T

0 | f (t)| dt < +∞ (by continuity of f (t)). Also by hypothesis (24)182

and Section 3 of [1],183

ψL(t; 0) = exp
(

L
∫ t

0
f (s) ds

)

, (25)

and its inverse184

ψ−1
L (t; 0) = exp

(

−L
∫ t

0
f (s) ds

)

, (26)

are well-defined in Ln×n
p (Ω) and it is also guaranteed that ψL(t; 0) and ψ−1

L (t; 0), defined by (25) and (26), respectively,185

are p-differentiable. Therefore, the random IVP (21) with L(t) = f (t)L is random p-regular and ψL(t; 0) satisfies that186

ψ′L(t; 0) = L f (t) exp
(

L
∫ t

0
f (s) ds

)

= f (t) L ψL(t; 0) = L(t)ψL(t; 0) .

Thus, ΦL(t; 0) = ψL(t; 0) is its random fundamental matrix solution.187

The following result provides a closed form solution of p-regular random linear systems.188

Theorem 1. Let us assume that the random linear system (21) is 2p-regular and let L(t) =
(

`i, j(t)
)

n×n
be a matrix s.p.189

such as its entries satisfy condition (24) for every t. Let us suppose that the random vector s.p. B(t) lies in Ln×1
2p (Ω)190

and is 2p-integrable, and the initial condition Y0 ∈ Ln×1
2p (Ω). Then191

X(t) = ΦL(t; 0) Y0 + ΦL(t; 0)
∫ t

0
Φ−1

L (s; 0)B(s) ds , (27)

satisfies the unhomogeneous problem192

X′(t) = L(t) X(t) + B(t) , X(0) = Y0 ,

where the derivative X′(t) is understood in the Ln×1
p (Ω) sense.193

Proof. On the one hand, observe that under hypothesis L(t) =
(

`i, j(t)
)

n×n
be a random matrix s.p. such as its entries194

satisfy condition (24) for every t fixed, it is guaranteed that ΦL(t; 0) ∈ Ln×n
2p (Ω) (see [1]). On the other hand, taking195

derivatives of the s.p. X(t) defined by (27) and, applying Proposition 2 of [1], Proposition 1 and (23), one gets196

X′(t) = Φ′L(t; 0) Y0 + Φ
′
L(t; 0)

∫ t

0
Φ−1

L (s; 0) B(s) ds + ΦL(t; 0)Φ−1
L (t; 0) B(t)

= L(t)ΦL(t; 0)Y0 + L(t)ΦL(t; 0)
∫ t

0
Φ−1

L (s; 0) B(s) ds + B(t)

= L(t)
[

ΦL(t; 0) Y0 + ΦL(t; 0)
∫ t

0
Φ−1

L (s; 0) B(s) ds
]

+ B(t)

= L(t)X(t) + B(t) .

In addition, by (23) one gets197

X(0) = ΦL(0; 0) Y0 = Y0 . �
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The next result provides a random analogous of the deterministic case, solved by R. Bellman in [14], where the198

solution of a random matrix bilateral differential equation is constructed in terms of the solution of two auxiliary199

random linear systems of the form (21).200

Corollary 1. Let A(t) and B(t) be matrix s.p.’s such that A(t) ∈ Ln×n
4p (Ω), B(t) ∈ Ln×n

2p (Ω). Let X0 ∈ Ln×n
4p (Ω) and let us201

suppose that the random linear system202

Y ′(t) = A(t)Y(t) , Y(0) = In , 0 ≤ t ≤ T , (28)

is 4p-regular, and203

Z′(t) = (B(t))> Z(t) ; Z(0) = In , 0 ≤ t ≤ T , (29)

is 2p-regular. Then, the unique solution, X : [0, T ] −→ Ln×n
p (Ω), of the random bilateral IVP204

X′(t) = A(t)X(t) + X(t)B(t) , X(0) = X0 , 0 ≤ t ≤ T ,

is given by205

X(t) = ΦA(t; 0) X0 (ΦB(t; 0))> , 0 ≤ t ≤ T ,

whereΦA(t; 0) andΦB(t; 0) denote the random fundamental matrix solutions of random IVP’s (28)–(29), respectively.206

Proof. Let Y(t) and Z(t) be the solution s.p.’s of the random IVP’s (28) and (29) respectively, and consider the s.p.207

X(t) defined by208

X(t) = Y(t) X0 (Z(t))> , 0 ≤ t ≤ T . (30)

Considering the factorization X(t) = (Y(t)X0) (Z(t))> of (30) and applying Proposition 2 of [1], one follows209

X′(t) = (Y(t)X0)′ (Z(t))> + (Y(t)X0)
(

(Z(t))>
)′

= Y ′(t)X0 (Z(t))> + Y(t)X0
(

Z′(t)
)>

= A(t)Y(t)X0 (Z(t))> + Y(t)X0 (Z(t))> B(t)
= A(t)X(t) + X(t)B(t) .

Notice that in the last step, we have applied (28) and (29). Moreover for the initial condition, X(0), from (30), (28)210

and (29), one gets211

X(0) = Y(0)X0 (Z(0))> = InX0(In)> = X0 .

Now, from Theorem 1 with B(t) the null matrix of size n × n, B(t) = On, we know that the solutions of random IVP’s212

(28) and (29), are given by,213

Y(t) = ΦA(t; 0) In = ΦA(t; 0) , Z(t) = ΦB>(t; 0) In = (ΦB(t; 0))> In = ΦB>(t; 0) , (31)

respectively. Therefore, by (30), (31) and taking into account the p-Lipschitz property of F(t, X) = A(t) X + X B(t)214

that guarantees the uniqueness, one gets215

X(t) = Y(t) X0 (Z(t))> = ΦA(t; 0) X0 (ΦB(t; 0))> . �

4. Random non-autonomous Riccati matrix equation216

Once random linear vector systems have been treated in the previous section, we are in a good situation to apply217

a random version of the linearization method developed in [2] and [4] to construct local solutions of the random218

time-dependent Riccati IVP (1). This approach may be regarded as a continuation of paper [1], where the random219

autonomous Riccati problem has been recently treated.220

Consider the matrix s.p. L(t) in L(n+m)×(n+m)
4p (Ω) defined by221

L(t) =
[

A(t) B(t)
C(t) −D(t)

]

, (32)
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and assume that the random matrix222

Y0 =

[

In

W0

]

, (33)

lies in L(n+m)×n
4p (Ω) and that random linear matrix IVP223

Y ′(t) = L(t) Y(t) , Y0 =

[

In

W0

]

, (34)

is 2p-regular. Let us consider the block-partition of Y(t) of the form224

Y(t) =
[

U(t)
V(t)

]

, U(t) ∈ Ln×n
2p (Ω) , V(t) ∈ Lm×n

2p (Ω) . (35)

Note that U(0) = In and that if U(t) is invertible in an ordinary neighbourhood of t = 0, NU(0), and (U(t))−1 ∈225

Ln×n
2p (Ω), then the s.p.226

W(t) = V(t) (U(t))−1 , t ∈ NU(0) , (36)

is well-defined and it lies in Lm×n
p (Ω). Assuming that V(t) and (U(t))−1 are 2p-differentiable, by (36), Proposition 2227

and Corollary 1 of [1], one gets that W(t) is p-differentiable inNU (0) with228

W ′(t) = V ′(t) (U(t))−1 + V(t)
(

(U(t))−1
)′
= V ′(t) (U(t))−1 − V(t) (U(t))−1 U ′(t) (U(t))−1 , t ∈ NU(0) . (37)

Let us consider the block-partition of the random fundamental matrix solution ΦL(t; 0) of the random linear IVP229

(34), of the form230

ΦL(t; 0) =
[

Φ1,1(t; 0) Φ1,2(t; 0)
Φ2,1(t; 0) Φ2,2(t; 0)

]

, (38)

with231

Φ1,1(t; 0) ∈ Ln×n
4p (Ω), Φ1,2(t; 0) ∈ Ln×m

4p (Ω), Φ2,1(t; 0) ∈ Lm×n
4p (Ω), Φ2,2(t; 0) ∈ Lm×m

4p (Ω) . (39)

From the definition of 2p-regularity, (35) and (38) one gets232

U(t) = Φ1,1(t; 0) + Φ1,2(t; 0)W0 ; V(t) = Φ2,1(t; 0) + Φ2,2(t; 0)W0 , t ∈ NU (0) . (40)

Then, W(t) defined by (36), can be written in the form233

W(t) =
(

Φ2,1(t; 0) + Φ2,2(t; 0)W0
) (

Φ1,1(t; 0) + Φ1,2(t; 0)W0
)−1

, t ∈ NU (0) . (41)

From (32), (34), (35) and (37), it follows that234

W ′(t) = V ′(t) (U(t))−1 − V(t) (U(t))−1 U ′(t) (U(t))−1

= {C(t)U(t) − D(t)V(t)} (U(t))−1 − V(t) (U(t))−1 U ′(t) (U(t))−1

= C(t) − D(t)W(t) −W(t) {A(t)U(t) + B(t)V(t)} (U(t))−1

= C(t) − D(t)W(t) −W(t)A(t) −W(t)B(t)W(t) ,

with W(0) = V(0) (U(0))−1 = W0. As factors V(t) and (U(t))−1 of W(t), both lie in Lm×n
2p (Ω) and Ln×n

2p (Ω) respectively,235

then by Proposition 1 of [1] W(t) lies in Lm×n
p (Ω).236

237

Summarizing, the following result has been established:238
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Theorem 2. Let us assume that matrix s.p. L(t) defined by (32), lie in L(n+m)×(n+m)
4p (Ω) , and that the random matrix239

Y0 defined by (33), lie in L(n+m)×n
4p (Ω). Let us further assume that the random linear matrix IVP (34) is 2p-regular, and240

consider the block-entries Φi, j(t; 0) of the random fundamental matrix solution Φ(t; 0) defined by (38)–(39). Let U(t)241

and V(t) be defined by (40) with U(0) = In and V0 = W0 ∈ Lm×n
4p (Ω). If NU(0) is an ordinary neighbourhood of t = 0242

where U(t) ∈ Ln×n
2p (Ω) is 2p-differentiable, invertible and (U(t))−1 ∈ Ln×n

2p (Ω) is 2p-differentiable, then W(t) defined by243

(41) is a solution of random Riccati IVP (1) in Lm×n
p (Ω).244

Remark 2. As it also occurs in the deterministic case, in dealing with non-autonomous IVP’s, the fundamental matrix245

solution of a linear system is not available, in general. Thus, it is convenient to have the possibility of constructing246

reliable numerical approximations. Random linear multistep methods, for scalar problems, have been proposed in247

[15] and they can be extended to the random matrix framework in a similar way to the one developed in [4] in a248

non-trivial way. From the practical point of view, hereinafter we will consider the particular multistep matrix method249

(2.28) of [4]250

Yk+1 − Yk =
h
2
{L(tk+1)Yk+1 − L(tk)Yk} , Y0 =

[

In

W0

]

, (42)

for solving the random linear IVP (21), where tk+1 = tk + h, 0 ≤ k ≤ N − 1, t0 = 0, tk ∈ [0, T ], such that Nh = T .251

Solving (42), see (2.34) of [4] for small enough value of h, one gets the random approximations252

Y0 =

[

In

W0

]

,

Yk =

k−1
∏

j=0















(

In+m −
h
2

L(tk− j)
)−1 (

In+m +
h
2

L(tk− j−1)
)















Y0 , 1 ≤ k ≤ N .















































(43)

Approximations (43) for the linear IVP (34) can be used to generate a sequence of approximations of the random253

non-autonomous Riccati IVP (1), see (2.40) of [4]. In fact, if [In,On×m]Yk is invertible, being On×m the null matrix of254

size n × m, and both [Om×n, Im]Yk and [In,On×m]Yk lie in Lm×n
2p (Ω) and Ln×n

2p (Ω), respectively, then255

Wk = {[Om×n, Im]Yk} {[In,On×m]Yk}−1 , k = 1, 2, . . . ,N , (44)

are random matrix approximations of the solution W(t) of problem (1). This numerical procedure will be used in256

the subsequent section to compare the approximations of the mean and standard deviation of the solution s.p. to the257

random Riccati matrix IVP (1) constructed using the approach studied throughout this section.258

5. Numerical examples259

This section is devoted to illustrate the theoretical development previously exhibited by means of several examples260

where randomness is considered through a wide variety of probabilistic distributions. We emphasize that both scalar261

and random Riccati matrix differential equations are studied in the examples. Computations have been carried out262

using the software Mathematica.263

Example 5. Let us consider the following random scalar IVP based on a non-autonomuous Riccati differential equa-264

tion265

w′(t) + a exp(−t) (w(t))2 − a exp(−t) = 0, 0 < t ≤ T, w(0) = w0. (45)

This IVP is a particular case of (1) taking m = n = 1 and266

W(t) = w(t) , W(0) = w0 , A(t) = a , B(t) = a exp(−t) , C(t) = a exp(−t) , D(t) = −a . (46)

We will assume that both input parameters, a and w0, in the random IVP (45), are independent, positive, and bounded267

or truncated r.v.’s defined in a common complete probability space (Ω,F ,P). For the sake of clarity in the presentation,268

we split the construction of the approximations to the expectation and standard deviation of the solution s.p. to the269

random IVP (45) in several steps.270
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Step 1. Construction of the auxiliary random linear vector IVP to (45).271

According to (32)–(34) and (46), in this example, we have the following extended random linear system272

Y ′(t) = L(t) Y(t) , Y0 =

[

1
w0

]

, (47)

where the matrix s.p. L(t) is defined by273

L(t) =
[

A(t) B(t)
C(t) −D(t)

]

=

[

a a exp(−t)
a exp(−t) a

]

. (48)

As by hypothesis a and w0 both are either bounded or truncated r.v.’s, then the random vector Y0, defined in274

(47), lies in L2×1
4p (Ω) and the matrix s.p. L(t), defined in (48), is in L2×2

4p (Ω) for every t ∈ T.275

Moreover, as the matrix s.p. L(t), given by (48), commutes with its integral, that is,276

L(t)
(∫ t

0
L(s) ds

)

=

[

a2 exp(−2t)
(−1 + exp(t) + t exp(2t)

)

a2 exp(−t)
(−1 + exp(t) + t

)

a2 exp(−t)
(−1 + exp(t) + t

)

a2 exp(−2t)
(−1 + exp(t) + t exp(2t)

)

]

=

(∫ t

0
L(s) ds

)

L(t) ,

then, it is known its random fundamental matrix solution ΦL(t; 0) is given by (see [16])277

ΦL(t; 0) = exp
(∫ t

0
L(s) ds

)

.

Moreover, it can be seen that278

ΦL(t; 0) =

[

Φ1,1(t; 0) Φ1,2(t; 0)
Φ2,1(t; 0) Φ2,2(t; 0)

]

=

[

exp(at) cosh
[

a(−1 + exp(−t)
]

exp(at) sinh [a(1 − cosh(t) + sinh(t))]
exp(at) sinh [a(1 − cosh(t) + sinh(t))] exp(at) cosh

(

a(−1 + exp(−t)
)

]

. (49)

Now, we are going to check that the random linear vector IVP (47) is 2p-regular.279

• The matrix s.p. L(t) =
(

`i, j(t)
)

2×2
, given by (48), only depends on the r.v. a, which is taken either bounded280

or truncated. Then, by Example 2 each entry `i, j(t) of L(t) verifies condition (24) for every t ∈ T, and281

consequently, L(t) ∈ L2×2
2p (Ω), i.e., it is guaranteed that L(t) is 2p-absolutely integrable in [0, T ]:282

∫ T

0
‖`i, j(t)‖2p dt =

∫ T

0

(

E[|`i, j(t)|2p]
)1/(2p)

dt ≤
∫ T

0

(

mi, j(hi, j)2p
)1/(2p)

dt = (mi, j)1/(2p)hi, j T < +∞ .

• It can be checked that the inverse, Φ−1
L (t; 0), of the random fundamental matrix solution ΦL(t; 0) defined283

by (49), exists in an ordinary neighbourhood of t = 0 and it takes the following form284

Φ−1
L (t; 0) =

[

exp(−at) cosh [a(1 − cosh(t) + sinh(t))] − exp(−at) sinh [a(1 − cosh(t) + sinh(t))]
− exp(−at) sinh [a(1 − cosh(t) + sinh(t))] exp(−at) cosh [a(1 − cosh(t) + sinh(t))]

]

. (50)

Notice that Φ−1
L (0; 0) = I2. Moreover, based on the same argument previously shown about boundedness285

of the random input parameter a, it is easy to check that ΦL(t; 0) and Φ−1
L (t; 0) both lie in L2×2

p (Ω).286

• Using an analogous argument to the one exhibited in the Example 1, it is straightforward to prove the287

p-differentiability of matrices s.p.’s ΦL(t; 0) and Φ−1
L (t; 0) defined by (49) and (50), respectively.288
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Step 2. Construction of the solution s.p. of the random scalar Riccati IVP (45).289

According to (36), (38), (40) and (49), the solution s.p. of the scalar random Riccati (45), w(t), can be expressed290

in a closed form by terms of the random parameters a and w0291

w(t) = V(t) (U(t))−1 =
Φ2,1(t; 0) + Φ2,2(t; 0)w0

Φ1,1(t; 0) + Φ1,2(t; 0)w0

=
exp(at)

{

w0 cosh[a(−1 + exp(−t)] + sinh [a(1 − cosh(t) + sinh(t))]
}

exp(at) cosh
[

a(−1 + exp(−t)
]

+ exp(at)w0 sinh [a(1 − cosh(t) + sinh(t))]
, t ∈ NU (0) .

Note that the parameter w0 lies in L4p(Ω) as well as the four block-entries Φi, j(t; 0), 1 ≤ i, j ≤ 2, of the random292

fundamental matrix solution ΦL(t; 0) given by (49).293

Finally, taking into account the hypotheses of Theorem 2, it remains to check that U(t) ∈ L2p(Ω) is 2p-294

differentiable and invertible and that its inverse (U(t))−1 ∈ L2p(Ω) is also 2p-differentiable. These conditions295

can be checked following an analogous reasoning like the one showed in Example 1. We here omit because its296

checking is only cumbersome.297

Step 3. Computation of the expectation of solution s.p. of (45).298

Denote by fa(a) and fw0 (w0) the probability density functions of r.v.’s a and w0, respectively. Compute the299

expectation of w(t) as follows300

E [w(t)] =
∫

R2
w(t) fa(a) fw0 (w0) da dw0 .

Step 4. Computation of the standard deviation of solution s.p. of (45).301

Determine the standard deviation by the expression302

σ [w(t)] = +
√

E
[

(w(t))2] − (E [w(t)])2 ,

computing, firstly, the following expectation303

E
[

(w(t))2
]

=

∫

R2
(w(t))2 fa(a) fw0(w0) da dw0 .

In Figure 1 and Figure 2, the expectation, E[w(t)], and the expectation plus/minus the standard deviation, E[w(t)]±304

σ[w(t)], of the solution s.p. to the random scalar Riccati IVP (45) for different choices of the input r.v.’s a and w0 have305

been plotted.306

Example 6. Let us consider the random Riccati IVP (1) for the following election of the data307

W(t) =





















w1(t)
w2(t)
w3(t)





















, W0 =





















1
w2,0

0





















, A(t) =
t2

2
a , B(t) = t2

[

−1
2

0
b
2

]

,

C(t) = t2



























0
−1
2
0



























, D(t) =
t2

2





















−1 0 0
0 d 0
1 0 1





















.



























































. (51)

We will assume that the input parameters a, b, d and w2,0 are r.v.’s. The parameter a has a beta distribution of308

parameters α = 3 and β = 2, a ∼ Be(3; 2); b has an exponential distribution of parameter λ = 1 truncated at the309

interval [1, 2], b ∼ Exp[1,2](1); d has a uniform distribution on the interval [2, 4], d ∼ U(2, 4) and, finally, w2,0 has a310

beta distribution of parameters α = 1 and β = 2, w2,0 ∼ Be(1; 2). We will assume that all the input parameters are311

independent r.v.’s.312
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E[w (t) ] ± σ (w (t))

E[w (t) ]

Figure 1: The expectation, E[w(t)], and the expectation plus/minus the standard deviation, E[w(t)]±σ[w(t)], of the solution s.p. to the random scalar
Riccati IVP (45) for the following choice of the input r.v.’s: a ∼ Be(0.2; 1) (a has a beta distribution of parameters (0.2; 1)) and w0 ∼ N[1,2](1.5; 0.1)
(w0 has a gaussian distribution of parameters (1.5; 0.1) truncated on the interval [1, 2]). The expectation has been plotted on the time domain
t ∈ [0, 10] in the context of Example 5.
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E[w (t) ] ± σ (w (t))
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Figure 2: The expectation, E[w(t)], and the expectation plus/minus the standard deviation, E[w(t)] ± σ[w(t)], of the solution s.p. to random
scalar Riccati IVP (45) for the following choice of the input r.v.’s: a ∼ Gamma(2; 3) (a has a gamma distribution of parameters (2; 3)) and
w0 ∼ Exp[0.5,2](1.5) (w0 has an exponential distribution of parameter λ = 1.5 truncated on the interval [0.5, 2]). The expectation has been plotted
on the time domain t ∈ [0, 10] in the context of Example 5.

Step 1. Construction of the auxiliary random linear vector IVP of (1) with the data (51).313

The extended random linear vector system (32)–(34), associated to (1) with data (51), takes the form314

Y ′(t) = L(t) Y(t) , Y0 =





























1
1

w2,0

0





























. (52)

Note that, it is verified that the random vector Y0, defined in (52), lies in L4×1
4p (Ω) because Y0 satisfies condition315

(24) since w2,0 is a bounded r.v.316
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In Eq. (52) we have chosen the matrix s.p. L(t) as the product of the real continuous deterministic function,317

f (t) = t2/2, and the following random matrix L verifying condition (24)318

L =





























a −1 0 b
0 1 0 0
−1 0 −d 0

0 −1 0 −1





























,

because its entries a, b and d are bounded r.v.’s. Hence, the random coefficient matrix L(t) takes the form319

L(t) = f (t) L =
t2

2
L , L(t) ∈ L4×4

4p (Ω) .

The block-partition of L(t) is given by320

L(t) =
[

A(t) B(t)
C(t) −D(t)

]

=

































































a t2

2
− t2

2
0

b t2

2

0
t2

2
0 0

− t2

2
0 −d t2

2
0

0 − t2

2
0 − t2

2

































































. (53)

As we shown in Example 4, the random linear vector IVP (52) with L(t) = f (t) L is 2p-regular, and the random321

fundamental matrix solution, ΦL(t; 0), is given by322

ΦL(t; 0) = exp
(

L
∫ t

0
f (s) ds

)

= exp
(

L
∫ t

0

s2

2
ds

)

= exp
(

L
t3

6

)

=

[

Φ1,1(t; 0)1×1 Φ1,2(t; 0)1×3

Φ2,1(t; 0)3×1 Φ2,2(t; 0)3×3

]

. (54)

It can be seen that, the block-entries Φi, j(t; 0), 1 ≤ i, j,≤ 2, of ΦL(t; 0) in (54) are323

Φ1,1(t; 0)1×1 = exp(at3/6) , (55)

Φ1,2(t; 0)>3×1 =









































exp(−t3/6)
{

b − ab + (2 + 2a + b + ab) exp(t3/3) − 2(1 + a + b) exp(1/6(1 + a)t3)
}

2(−1 + a2)
0

b exp(−t3/6)(−1 + exp(1/6(1+ a)t3))
1 + a









































, (56)

Φ2,1(t; 0)3×1 =





























0

−exp(at3/6) − exp(−dt3/6)
a + d
0





























, (57)

Φ2,2(t; 0)3×3 =
[

Φ1
2,2(t; 0) Φ2

2,2(t; 0) Φ3
2,2(t; 0)

]

, (58)

where the column vectors Φ j
2,2(t; 0), 1 ≤ j ≤ 3, of block-entry Φ2,2(t; 0) in (58) are the following expressions324
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Φ1
2,2(t; 0) =











































exp(t3/6)

b exp(−t3/6)
2(1+a)(−1+d) −

(2+b) exp(t3/6)
2(−1+a)(1+d) +

(1+a+b) exp(at3/6)
(−1+a2)(a+d) +

(−1−b+d) exp(−dt3/6)
(a+d)(−1+d2)

− sinh(t3/6)











































, (59)

Φ2
2,2(t; 0) =





















0
exp(−dt3/6)

0





















, (60)

Φ3
2,2(t; 0) =











































0

− b exp(−1/6)(1+d)t3){(1+a) exp(t3/6)−(a+d) exp(dt3/6)+(−1+d) exp(1/6(1+a+d)t3)}
(1+a)(−1+d)(a+d)

exp(−t3/6)











































. (61)

The p-differentiability of matrix s.p. ΦL(t; 0) given by (54)–(61) and its inverse can be justified following an325

analogous reasoning to the one shown in the Example 1.326

Step 2. Construction of the solution s.p. of the random Riccati IVP (1) with data given in (51).327

According to (36), (40) and (54)–(61), the solution s.p., W(t) = [w1(t) w2(t) w3(t)]>, of the random Riccati IVP328

(1) with the data (51), can be expressed in a closed form as follows329





















w1(t)
w2(t)
w3(t)





















= V(t)(U(t))−1 =





















Φ2,1(t; 0) + Φ2,2(t; 0)





















0
w2,0

0









































3×1





















Φ1,1(t; 0) + Φ1,2(t; 0)





















0
w2,0

0









































−1

1×1

.(62)

Note that parameter W0 =





















0
w2,0

0





















∈ L3×1
4p (Ω) because r.v. w2,0 verifies condition (24) since it is bounded.330

Again the 2p-differentiable of the s.p. U(t) ∈ L2p(Ω)

U(t) =
exp(−t3/6)
2(−1 + a2)

{

2(1 + a)
[

exp(t3/3) + (−2 + a) exp(1/6(1 + a)t3)
]

+b
[

1 − a + (1 + a) exp(t3/3) − 2 exp(1/6(1 + a)t3)
]}

,

and its inverse, (U(t))−1 ∈ L2p(Ω), follows in broad outline the same arguments shown in Example 1. Here,331

details are omitted because they are quite cumbersome.332

Step 3. Computation of the expectation of the solution s.p. of the IVP (1) with the data given in (51).333

Compute the expectation of each one of the three components of the solution s.p. W(t) = [w1(t) w2(t) w3(t)]>334

obtained from (62), as follows335

E [wi(t)] =
∫

R4
wi(t) fa(a) fb(b) fd(d) fw2,0(w2,0) da db dd dw2,0 , i = 1, 2, 3 , (63)

where we denote by, fa(a), fb(b), fd(d) and fw2,0 (w2,0), the probability density functions of r.v.’s a, b, d and w2,0,336

respectively.337

Step 4. Computation of the standard deviation of solution s.p. of the IVP (1) with data given in (51).338
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Compute the following expectations339

E
[

(wi(t))2
]

=

∫

R4
(wi(t))2 fa(a) fb(b) fd(d) fw2,0 (w2,0) da db dd dw2,0, i = 1, 2, 3 .

Afterwards, computing the standard deviations according to340

σ [wi(t)] = +
√

E
[

(wi(t))2] − (E [wi(t)])2, i = 1, 2, 3 , (64)

where E [wi(t)] is given by (63).341

In Figure 3, we have plotted the expectations E[wi(t)], i = 1, 2, 3, and plus/minus the standard deviations, E[wi(t)]±342

σ[wi(t)], i = 1, 2, 3, of the three components of the vector solution s.p. W(t) = [w1(t) w2(t) w3(t)]>, given by (62), of343

the random Riccati IVP (1) with the data (51).344

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

t

 

 

E[w 1(t ) ] ± σ(w 1(t ))

E[w 1(t ) ]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t

 

 

E[w 2(t ) ] ± σ(w 2(t ))

E[w 2(t ) ]

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

t

 

 

E[w 3(t ) ] ± σ(w 3(t ))

E[w 3(t ) ]

(c)

Figure 3: Evolution of the expectations E[w1(t)] (plot(a)), E[w2(t)] (plot(b)) and E[w3(t)] (plot(c)), of the solution s.p. W(t) = [w1(t) w2(t) w3(t)]>

of the Riccati (1), given by (62), on the time domain t ∈ [0, 1] in the context of Example 6.

Finally, we are going to compare the values of expectation and standard deviation of the solution s.p. W(t), defined345

in (62) as a closed form, versus the numerical approximations, Wk, obtained by the particular random multistep matrix346

method (43)–(44). Note that in (43), it must be guaranteed the existence of the inverse of the matrices347

(

In+m −
h
2

L(tk− j)
)

, 1 ≤ k − j ≤ N , n = 1, m = 3 , (65)
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where matrix s.p.’s L(tk− j) are defined by (53). In fact, the matrices of (65) are invertible due to the positivity of the348

time-step h and the r.v.’s a, b and d.349

In Table 1, we collected the exact values of the expectations and standard deviations, in a fixed time T (so we350

use the so-called “approximation in the fixed station sense”), for the three components of solution s.p. W(t) =351

[w1(t) w2(t) w3(t)]>, denoted by E[wi(t)], i = 1, 2, 3, and
√

Var[wi(T )], i = 1, 2, 3, respectively. Those values have been352

compared with their respective numerical expectations and numerical standard deviations, denoted by E[wi,N(T )] and353
√

Var[wi,N(T )], respectively, in the same fixed time T = Nh, considering N = 50 fixed. Then, for the following values354

of T ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, and N = 50, the time-step h has been determined. The components355

wi,N(T ), i = 1, 2, 3, of the numerical solution Wk(T ), have been computed in each time instant T using (43)–(44) for356

k = N = 50, that is357

WN = {[O3×1, I3]YN} {[I1,O1×3]YN}−1 , N = 50 , (66)

where the time T is reached. Note that in (66), the scalar r.v. [I1,O1×3]YN is invertible, and both [O3×1, I3]YN and358

[I1,O1×3]YN lie in L3×1
2p (Ω) and L2p(Ω), respectively.359

In Table 1, the numerical values of the relative errors for the expectations, RelErrµi (T ), i = 1, 2, 3, and the standard360

deviations, RelErrσi (T ), i = 1, 2, 3, have been computed according to the following expressions361

RelErrµi (T ) =
∣

∣

∣

∣

∣

E[wi(T )] − E[wi,N(T )]
E[wi(T )]

∣

∣

∣

∣

∣

, RelErrσi (T ) =

∣

∣

∣

∣

∣

∣

∣

√
Var[wi(T )] −

√

Var[wi,N(T )]
√

Var[wi(T )]

∣

∣

∣

∣

∣

∣

∣

, i = 1, 2, 3 . (67)

Computations have been carried out using different fixed stations T and time steps h. From the numerical values, we362

observe that both relative errors, for every component of the solution s.p., take very small values. This shows that363

the numerical values for the expectation and the standard deviations obtained from the closed form solution (62) are364

quite good.365

6. Conclusions366

In this paper one completes the closed form solution of the random non-autonomous Riccati matrix type IVP’s,367

initiated in [1] for the autonomous case. The study of the random non-autonomous matrix linear case has required368

the random analogous of the Abel-Liouville-Jacobi’s formula that is interesting itself and will be used in forthcoming369

works. The potential application to develop numerical methods starting from the analytic solution has been shown370

through appropriate results and numerical examples.371

Acknowledgements372

This work has been partially supported by the Spanish Ministerio de Economı́a y Competitividad grant MTM2013-373

41765-P and by the European Union in the FP7-PEOPLE-2012-ITN Program under Grant Agreement no. 304617374

(FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance).375
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E[wi(T )] E[wi,N(T )] RelErrµi (T )
√

Var[wi(T )]
√

Var[wi,N(T )] RelErrσi (T )

i = 1 1.0002e+00 1.0002e+00 4.6728e-08 0 0 0
T = 0.1 i = 2 3.3302e-01 3.3302e-01 0 2.3560e-01 2.3560e-01 3.0000e-07

(h = 0.002) i = 3 -1.6668e-04 -1.6671e-04 2.0001e-04 0 0 0

i = 1 1.0019e+00 1.0019e+00 3.7725e-07 0 0 0
T = 0.2 i = 2 3.3085e-01 3.3085e-01 1.4000e-06 2.3489e-01 2.3489e-01 3.0000e-07

(h = 0.004) i = 3 -1.3340e-03 -1.3343e-03 2.0011e-04 0 0 0

i = 1 1.0063e+00 1.0064e+00 1.3048e-06 8.4591e-04 8.4600e-04 2.3257e-04
T = 0.3 i = 2 3.2499e-01 3.2499e-01 4.8000e-06 2.3297e-01 2.3297e-01 2.0000e-06

(h = 0.006) i = 3 -4.5083e-03 -4.5092e-03 2.0041e-04 3.7895e-06 3.7910e-06 4.3172e-04

i = 1 1.0152e+00 1.0152e+00 3.2403e-06 2.1527e-03 2.1532e-03 2.0995e-04
T = 0.4 i = 2 3.1375e-01 3.1375e-01 1.1000e-05 2.2931e-01 2.2931e-01 4.8000e-06

(h = 0.008) i = 3 -1.0714e-02 -1.0716e-02 2.0113e-04 2.2719e-05 2.2728e-05 4.0788e-04

i = 1 1.0302e+00 1.0303e+00 6.8135e-06 4.3292e-03 4.3302e-03 2.1189e-04
T = 0.5 i = 2 2.9569e-01 2.9569e-01 2.0100e-05 2.2348e-01 2.2348e-01 8.7000e-06

(h = 0.01) i = 3 -2.1022e-02 -2.1027e-02 2.0273e-04 8.8339e-05 8.8375e-05 4.0785e-04

i = 1 1.0537e+00 1.0537e+00 1.3066e-05 7.7370e-03 7.7387e-03 2.2050e-04
T = 0.6 i = 2 2.6978e-01 2.6977e-01 3.0600e-05 2.1524e-01 2.1524e-01 1.1000e-05

(h = 0.012) i = 3 -3.6600e-02 -3.6607e-02 2.0611e-04 2.6874e-04 2.6885e-04 4.1359e-04

i = 1 1.0886e+00 1.0886e+00 2.3758e-05 1.2835e-02 1.2838e-02 2.3680e-04
T = 0.7 i = 2 2.3556e-01 2.3555e-01 3.8000e-05 2.0459e-01 2.0458e-01 1.3600e-05

(h = 0.014) i = 3 -5.8807e-02 -5.8819e-02 2.1294e-04 6.9563e-04 6.9365e-04 2.8458e-03

i = 1 1.1395e+00 1.1396e+00 4.1890e-05 2.0500e-02 2.0505e-02 2.6277e-04
T = 0.8 i = 2 1.9321e-01 1.9320e-01 3.1800e-05 1.9180e-01 1.9180e-01 6.2000e-06

(h = 0.016) i = 3 -8.9393e-02 -8.9413e-02 2.2617e-04 1.6113e-03 1.6089e-03 1.4978e-03

i = 1 1.2134e+00 1.2135e+00 7.2653e-05 3.2097e-02 3.2107e-02 3.0664e-04
T = 0.9 i = 2 1.4355e-01 1.4355e-01 1.5000e-05 1.7747e-01 1.7747e-01 1.4800e-05

(h = 0.018) i = 3 -1.3088e-01 -1.3091e-01 2.5006e-04 3.4613e-03 3.4638e-03 7.2867e-04

i = 1 1.3220e+00 1.3222e+00 1.2535e-04 5.0139e-02 5.0158e-02 3.8335e-04
T = 1 i = 2 8.7824e-02 8.7842e-02 2.0260e-04 1.6245e-01 1.6246e-01 6.8930e-05

(h = 0.02) i = 3 -1.8738e-01 -1.8743e-01 2.9568e-04 7.1046e-03 7.1104e-03 8.1559e-04

Table 1: Values of the exact expectations, E[wi(T )], i = 1, 2, 3, and exact standard deviations,
√

Var[wi(T )], i = 1, 2, 3, using (63)–(64), for the
three components of the solution s.p., W(T ), given by (62), to the random Riccati matrix IVP (1) in the context of Example 6. These values are
computed in some time instants T ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} using the corresponding time-step h such as Nh = T for N = 50
fixed. Numerical expectations, E[wi,N (T )], i = 1, 2, 3, and numerical standard deviations,

√

Var[wi,N (T )], i = 1, 2, 3, of the vector numerical
solution WN (T ), computed by (43)–(44) and (66), are shown too. To compare the numerical values of both approximations to the expectation and
the standard deviation, their relative errors, RelErrµi (T ), i = 1, 2, 3 and RelErrσi (T ), i = 1, 2, 3, respectively, have also been computed using (67).
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