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M.-C. Casaban®*, J.-C. Cortés?, L. Jodar?

4Instituto Universitario de Matemdtica Multidisciplinar, Building 8G, access C, 2nd floor, Universitat Politécnica de Valéncia, Camino de Vera
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Abstract

This paper is aimed to extend, the non-autonomous case, the results recently given in the paper [1] for solving au-
tonomous linear and quadratic random matrix differential equations. With this goal, important deterministic results
like the Abel-Liouville-Jacobi’s formula, are extended to the random scenario using the so-called L ,-random matrix
calculus. In a first step, random time-dependent matrix linear differential equations are studied and, in a second step,
random non-autonomous Riccati matrix differential equations are solved using the hamiltonian approach based on
dealing with the extended underlying linear system. Illustrative numerical examples are also included.

Keywords: mean square random calculus, L ,-random matrix calculus, random non-autonomous Riccati matrix dif-
ferential equation, analytic-numerical solution

1. Introduction

In the recent paper [1] linear and quadratic random autonomous differential equations were motivated and studied
in the L,-random sense. In that paper, all the coeflicients were assumed to be random matrices rather than matrix
stochastic processes, hence in [1] coefficients do not depend on time. Based on the well-known linear hamiltonian
approach, (see [2] and [3] for excellent references about Riccati differential equations and the hamiltonian approach),
the solution of the initial value problem for a general class of Riccati random quadratic matrix equations is obtained
in terms of the blocks of the solution stochastic process of the underlying random linearized problem.

In this paper, we address the solution in the L,-random sense of the non-autonomous Riccati matrix differential
initial value problem (IVP)

W' () + W(t) A(r) + D) W(t) + W) BO) W(H - C(t) =0, W) =W,, (1)

where the variable coefficient matrices A(7) € L7"(Q), D(r) € L7"(Q), B(t) € L"(Q), C(#) € L}"(Q), the initial
condition W, € LZ‘X”(Q) and the unknown W(¢) € LZ‘X”(Q) are matrix stochastic processes whose size are specified
in the superindexes and defined in certain L7**(€2) spaces, that will be specified later. It is important to underline
that in (1), the meaning of the derivative W’(¢) is understood in the p-th mean sense, that is, a kind of strong random
convergence that it will be introduced in Section 2. It is convenient to highligth that using the L;”(Q)-random
approach is not equivalent to deal with the averaged deterministic problem based on taking the expectations in every
entry of the matrices that define the differential equation (1). Even more, from a practical point of view, it is more
realistic to consider the random approach rather than the determinisitic since when modelling input data of the Riccati
equation (1) are usually fixed after measurments, hence having errors. We point out that the content of this paper may
be regarded as a continuation of [1, 4, 5]. Finally, we highlight some recent and interesting contributions dealing with
scalar random Riccati-type differential equations by means of L ,(Q)-random calculus or alternative techniques [6, 7],

for example.
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The organization of this paper is as follows. Section 2 is devoted to extend some stochastic results presented in
section 2 of [1] and to introduce new ones as well. These new results are addressed to establish a random analogous
of the Abel-Liouville-Jacobi’s formula that will play a key role to deal with the non-autonomous random case. In
Section 3 the random non-autonomous matrix linear problem is treated, including the bilateral case. In Section 4 the
random non-autonomous Riccati matrix equation is solved based on the extended underlying linear problem, includ-
ing a procedure for the numerical solution inspired in the results of [4] that were obtained for the non-autonomous
deterministic counterpart. In Section 5 the theoretical results obtained throughout the paper are illustrated by means
of several numerical examples. Finally, conclusions are drawn in Section 6.

2. New results on L,-random matrix calculus

The aim of this section is to establish new results belonging the so called L,({2)-random matrix calculus that
will be required later for solving both non-autonomous linear systems (see Section 3) and non-autonomous nonlinear
random Riccati-type matrix differential equations of the form (1) (see Section 4). This section can be viewed as
continuation of the contents introduced in [1, Sec.2]. For the sake of consistency, hereinafter we will keep the same
notation introduced in [1]. For ease of presentation, it is convenient to remember that given a complete probability
space, (Q, 7, P), LZ’X”(Q) denotes the set of all real random matrices X = (X; j)mux, Suchas x; ; : Q — R, 1 <i <m,
1 < j < n, are real random variables (r.v.’s) satisfying that

||xi,j”p = (E [lxi,j|P])l/p <400, p>1, )

where E [-] denotes the expectation operator. It can be proved that (LZ’X”(Q), [I1l,,), where

Xt = 3" > il E[lil’] < +eo, (3)

i=1 j=1

is a Banach space. Notice that no confusion is possible between the common notation used for the ||-||,, in (2) and
in (3) because they act on scalar r.v.’s (denoted by lower case letters) and random matrices (denoted by capital case
letters), respectively. In the case that m = n = 1, both norms are the same and (L;XI(Q) = L,(Q), [Ill,) represents
the Banach space of real r.v.’s with finite absolute moments of order p about the origin, being p > 1 fixed, [8]. In [9]
a number of results corresponding to p = 4 (fourth random calculus) and its relationship with p = 2 (mean square
calculus) are established and applied to solve scalar random differential equations. In [10] a scalar random Riccati
differential equation whose nonlinear coefficient is assumed to be an analytic stochastic process is solved using the
L,(Q)-random scalar calculus.

Given 7 C R, a family of f-indexed r.v.’s, say {x(¢) : t € 7}, is called a p-stochastic process (p-s.p.) if for each
t € 7T, ther.v. x(t) € L,(€). This definition can be extended to matrix s.p.’s X(#) = (x; j())uxn Of LZ‘X”(Q), which are
termed p-matrix s.p.’s, if x; ;(f) € L,(Q) foreveryl <i<mand1 < j<n.

The definitions of continuity, differentiability and integrability of p-matrix s.p.’s follow in a straightforwardly
manner using the ||-||,-norm introduced in (3). As a simple but illustrative example that will be invoked later when
showing more sophisticated examples in Section 5, below we show how to prove the p-differentiability of a matrix
s.p. of L7"(Q).

Example 1. Let a be an absolutely continuous r.v. defined on the bounded interval (ay, ay), i.e., a; < a(w) < a, for
every w € Q, and let us denote by f,(a) the probability density function (p.d.f.) of the r.v. a. Let us define the following
matrix s.p.

H(M):[ hiy(ta)  hyo(t a) ]:[ exp(at)  cosh(ar) (e 10.7].

ho(t;a)  hoo(t;a) sinh(ar) exp(—at) |’

On the one hand, by the definition of the random matrix p-norm (see (3)) one gets

2 2
IH(t; @), = (|7t a)”p = ||exp(at)”P + [[cosh(at)|, + [Isinh(an)l|,, + ||exp(—at)||p .
i=1 j=1

L

J
2
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On the other hand, if we denote

M, = max{Mf,’,]; c1<i,j<2}, where M) := ng{(hi,j(t; a(w)))P} < +oco.

It is clear that
a2 .
(Incjo|,) = [ 007 = f (hi,j(t; @) fu(@)da < M) < +oo,  forevery t € [0, T],
ap

where in the last step we have used that the integral of f,(a) over [ay,as] is just 1 because it is a p.d.f. This proves
that H(t; a) € LIZ,XZ(Q)for every p > 1. Moreover the H(t; a) is p-differentiable being its p-derivative

h(ta)  hi,(ta) } _ [ aexp(at)  asinh(ar)

H'(t.a) :[ By (a) acosh(af) —aexp(—at) } tel0,T1.

Indeed, observe that

2 2
H(t+Ata) - Hta) _ hijt+ At a) - hifta) o,
’ ~ H'(t,a) ) = ;; Al h[,j(t,a) p,
and, for example fori = j =1,
. — . P - r
(‘ hi1(t + At a) — hy 1 (t; a) S a ) _ E[(exp(a(H An) - exp(ar) aexp(at)) ]

At ’ p At

_ P
- E [(exp<a<t+ An) — explan(l + aAf)) ] = O(A) — 0,

At At—0

and the same can be shown for the rest of the components h'l,z(t§ a), h'2,1(t; a) and h/z,z(t; a).

The following two key inequalities for scalar r.v.’s will be used extensively throughout this paper (see [1])
Il < lixlly, T<r<s xeLy(Q), “

and
eyll, < [lxllop VI, 5 X,y € Lap(€2). @)

As a consequence of inequality (4), the L,(Q2) spaces are embedded according to the following relationship, that will
be play a key role throughout the this paper,

L(Q) cL(Q), I1<r<s. (©6)

The following result may be regarded as a matrix adaptation of the fundamental theorem of mean square calculus
but generalized to the p-norm defined in (3), [11, p.104]. We omit its proof since it follows the same argument shown
in [11, p.104] but working componentwise and using the p-norm defined in (2) instead of particularizing this norm
for p = 2.

Proposition 1. Let Z(1) € L7"(Q) be a p-differentiable matrix s.p. and assume that Z' () is p-integrable, then

Z(t) — Z(0) = f Z/(s)ds.
0

Definition 1. Let {{; ;(r) : t € T cR, 1 < i,j < m]} be scalar s.p.’s. The trace, tr(L(¢)), of the square matrix s.p.
L(#) = (£; j(t))mxm 1s defined by the sum of its diagonal entries, that is,

(L) = D 6i(1).
i=1

3
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The following result generalizes inequality (5) to an arbitrary number of factors since it is obtained for the partic-
ular case m = 2. This inequality will be applied later.

Lemma 1. Let us consider a set of scalar s.p.’s {xi(t) : t € T C R, 1 <i < m}inLyw1,(Q). Then, for eacht € T, it
is verified that

[Txo| <[ @i, (7)
i=1 p i=1

and [i%, xi(t) belongs to L ().

Proor. It follows by induction over m. Lett € T C R be arbitrary but fixed. For m = 1 the proof is trivial since (7)
becomes an identity. Let us assume that (7) is satisfied for the m — 1 scalar s.p.’s {x;(¥) : 1 <i < m — 1}, that is to say,
the following inequality

m—1

[ Jx®

i=1

m—1
<[ [l ®)
p =l
holds provided that ||x;()||yn2, < +00, i.e., xi(t) € Lon2,(Q), 1 <i < m —2. Now assuming m > 2, we shall prove (7),

m—1
[]_[ xm] (1)
i=1

m—1

[ Jxo
i=1

m—1

< 1_[ ||xi(t)||2m2(2p)] (1 (Dl

1

m

[ T

i=1

p p

X (DIl
2p

30

G

”-xi(t)”Zmlp] [1Xm (Dl

amy (=)
< ”xi(t)HZ”’lp] 126 (DNl -1,
i=1
m
<

[lxi(Dllpn-1,, < +00.

L

1l
—_

In step (I) we have applied (5) for rv.’s x = H,ngl xi(t), y = xpn(t). Taking into account that by hypothesis x;(t) €
Lon-1,(Q), 1 < i < m, together with the proof itself, it is justified that ]—LW;1 xi(t) and x,,(t) are in L,,(Q), which is
required to legitimate the application of inequality (5). In step (II) we have applied the induction hypothesis (8) with
de identification 2p instead of p, and finally, in step (III) we have used the Lyapunov’s inequality (4) with r = 2p and
s =2""1p m > 2 since by hypothesis x,,(t) € Lon-1,(€2). O

Remark 1. Notice that if in Lemma 1 we consider m — 1 scalar s.p.’s {x;() : t€ T CR, 1 <i<m—1}in Ly ,(Q),
then (7) is still true for p = 2p since [|x;(D)llan-2(2p) = [IXi(Dllpn-1, < +00. As a consequence, H;’:ll xi(t) € L,(€2). This
result will be used in the proof of the following lemma.

Lemma 2. Let us consider a set of scalar s.p.’s {x;(t) : t € T CR, 1 < i < m}in Lyw1,(Q) for everyt € T and
(2™ p)-differentiable, then [, x(?) is p-differentiable and, for each t € T, its value is

(ﬁ xi(t)), ST wofxof. ©)

i=1 i=1 j=1
j#i
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Proor. It follows by induction over m. Let t € 7~ C R be arbitrary but fixed. For m = 1 the proof is trivial because
both sides of (9) are the same. Let us assume that for m > 2

m—1 o om-l m—1
[]_[ x,-<t)] =20 [T xo]xor. (10)

i=1 i=1 j=1
j#i

holds. On the one hand, applying Remark 1 it is guaranteed that ]_[;'fll xi(t) € Lyp(Q). On the other hand, due to
Xp(t) € Low1,(Q) and (6), it is known that x,,(f) € L,(€2). Then, according to Proposition 2 of [1] (in its scalar
version) for the p-derivative of the product of two 2 p-differentiable s.p.’s, one gets

(ﬁ x,m]' - [{ﬁ xi(t)] xm(t)]’ _

i=1 i=1

m—1

! m—1
[ x,m] () + {]_[ xim] (1), (11)

i=1 i=1

Using the induction hypothesis (10) in (11), one obtains the result

m ’ m—1| m-1 m—1
[l_[ xi(t)) Z 1_[ x;(1) | xi(2) xm(t)+{l_[ -xi(t)]x;n(t)

i=1 i=1 j=1 i=1
J#i

3
L

m m—1
_ [T x0|xo +[]_[x,-<r>]x;,<r>

j=1 i=1
j#i

Il
—_

3

m

- l_[ x0|x@. O

Il
—_

In [1], we defined the determinant of a square matrix s.p. A(?) = (a;,j)uxn s

detA(r) = Z sgn(o) ai gy(t) - - - anomy(t), foreachte T CR,

o€eP,

being P, the set of all permutations of the n elements (1,2, ...,n), that is, the set of all permutations of the indexes
defining the n columns of A(#), and sgn(o) the signature of the permutation o = (o°(1),...,0(n)). Inasmuch as A(?) is
a matrix s.p. then det A(¢) is a scalar s.p. Furthermore, under conditions given in Proposition 3 of [1], it is guaranteed
that det A(?) is continuous in the p-norm defined by (2). The following result allows us to compute the p-derivative
of the determinant of a family of s.p.’s. It can be regarded as an extension of the classical rule for differentiating the
determinant whose entries are differentiable deterministic functions.

Lemma 3. Let us consider a square matrix s.p. A(t) = (a; j(t))nxn, t € T C R. Let us suppose that the scalar s.p.’s
a;j(®), i,j = 1,...,n, lie in Lo ,(Q) for every t € T and are (2! p)-differentiable for every t € T. Then, the
determinant s.p. of A(t), det A(¢), is p-differentiable and its p-derivative is given by

(ai@®) -+ (@) ai(t) e ar (1) a (1) e a (1)
a ) o ax() (a1 () -+ (@) a ) o ax(?)
(det A())’ = det . . +det . . +---+det . . . (12)
an (t) e an,n(t) an1 (t) e Ann (t) (an,l (t)), e (an,n (t)),

ProOF. Since a;j(f) € Lyu1,(€), then E[Ia,-,j(t)lznflp] < 400, V¥i,j:1<ij<nn2>1,1€e T, and accordingly to
expression (15) of [1] it is guaranteed that (det A(¢)) € L,(Q2). Now, considering the definition of det A(f) one gets

(detA() =| )’ sgn(cr)]_[ai,(r(i)(r)] = sgn(cr)(]_[ai,(r(i)(o] : (13)
i=1

ogeP, o€eP, i=1

5
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Using that the n scalar s.p.’s a;»)(?), i = 1,...,n, are in Ly.-1,(€2) and they are (2"~ p)-differentiable, we can apply
Lemma 2 to (13) (with the identification m = n) for each t € 7 and then obtaining

n n n n

(detA(n) = Z_; sgn(o) Z; l_[ Ao () | @ (D) p = Z; Z,; sgn(o) l_[ i (D) | @ (D)
ar,i(r) R ar (1) -
::imt@@yu-@@Y- O
i=1 : :
an® o )

Proposition 2 (Abel-Liouville-Jacobi’s random formula). Ler O(7) = (¢f (t)) o L€ T C R be a matrix s.p. such

. nx
that its entries, ¢l/ (t), are (2" ' p)-differentiable scalar s.p.’s. Let us assume that ®(¢) verifies the random matrix linear
equation ©'(t) = L(t) ©(1), where the elements {; j(t) of the matrix s.p. L(t) = (ﬁi,‘,-(t))m lie in Low-1,(Q) and they

are (2" p)-differentiable for each t € T. Then, the scalar s.p. det®(r) € L,(Q) satisfies the random first-order
homogeneous linear equation

(det @(r))" = tr(L(r)) det D(z).
Furthermore, under the following conditions
(CI) L(t) € Lg:”(Q), foreachte T,
(C2) det®(ty) € Ly, (Q), fortg € T,
(C3) There exist r > 2p and 6 > 0, such that

145* r n f+5*
sup E [(exp ( f tr(L(u)) du)) ] = sup E [l_[ exp (r f ) du)
s,8*€[-0,0] x+s s,5*€[-0,0] : X+5§

< 400,
i=1
it is verified that det ®©(¢) satisfies the following identity for each t
!
det @(r) = det O(#y) exp (f tr(L(s)) ds) , heT. (14)
fo

Proor. Let us fix # € 7, and without loss of generality let us consider that the matrix s.p. O(¢) takes the form

G A
o) = [0\ "] = | i) -+ P |,

G B (3}

where ®/(¢), j = 1,...,n, denote the j-th column vector of the matrix s.p. @(r) and q){ () the i-th component of the
column vector ®/(¢). Since the entries of the matrix s.p. ®(¢) are (2"~! p)-differentiable, then accordingly to Lemma 3
the first p-derivative of the scalar s.p. det ®(¢) exists, (det ®(r))’, and by (12) it can be calculated as follows

o) - P
(MMM=Z®tW@’W (610 | (15)
i=1 . .
PR 0

6
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Taking into account we are assuming that ®@(7) verifies the random matrix linear equation @’ () = L(r) O(¢), then its
column vectors ®/(¢), j = 1,...,n, also hold this equation, that is,

@@ =L ®(@), Vj=1,...,n. (16)

By (16), the i-th component, ¢{(t), i=1,...,n,of each column vector s.p. DI(1), j=1...,n, takes the form

(¢/0) = kzn:a,k(t) ¢l(), Vi, j=1,....n. (17)
=
Substituting (17) into (15), one gets
¢ (1) HO)
(det®(1))" = zn:det Y=l fi,li(t) (IR Y é’i,/i(t) HONE (18)
=1 : :
BT 10

Note the i-th row, F;, of the right-hand side of (18) is a linear combination of all remaining rows of (18). Then,
making the elementary row operations

Fi— Z GO Fc— Fi,  Yi=1,....n,

k=1
k#i

and considering the standard determinant properties, one gets

$1(0) s (1)
(det®(1))" = zn: det fi,i(l‘):qﬁil 0 - &,i(t):q)?(t) = [zn: t’,-,,-(t)] det O(r) = tr(L(1)) det D(7). (19)
=1 : : i=1
¢,£.(t) . ¢Z.(t)
Now, let us consider the following scalar random IVP
70 7 o, o)

verifying the three conditions (C1)—-(C3). Then, taking into account that det ®(¢) verifies (19), that the (2"‘l p)—

differentiability of each ¢; ;(¢) implies the (2”’1 p)-continuity of the tr(L(¢)) and, applying an analogous reasoning to
the one shown in Theorem 8 of [12], we obtain that det ®(7) is a solution to random IVP (20) in L ,(£2). Moreover, it
is given by

det O(r) = det D(zy) exp (f tr(L(s)) ds) , heT. O

3. Random non-autonomous linear systems
We begin this section with the solution of the random vector IVP

Y=L Y(@), YO0)=Yy, re[0,T], 21
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where L(1) € Lg;”(Q) is a matrix s.p. and Yy € L’Zjl(Q). Under the hypothesis, L(¢) is absolutely integrable in the
2p-norm defined by (3) (in short, L(¢) is 2p-absolutely integrable) , that is,

T
jo‘ LDl df < +o0, (22)

it is guaranteed that, by submultiplicativity property (5), F : [0, T] X Lg:l(Q) — LZXI(Q), defined by F(z,Y) = L(?)Y,
satisfies
IF @ Y1) = F(t, Yo)ll, = IL(OY1 = Y2)ll, < ILDll, Y1 = Yalla, -

Thus, function F(¢, Y) is p-Lipschitzian and by Theorem 10.6.1 of [13, p.292] which holds for abstract Banach spaces,
the random vector IVP (21) admits a unique LZXI(Q) solution in [0, T'].

Let us denote by @, (¢; 0) the matrix s.p. in LZX”(Q) whose i-th column is the unique solution of problem (21) with
Yo =1[0,...,0,1,0,...,0]7, where the i-th entry is 1 and O elsewhere, with probability one. Then, one satisfies

Q;(1;0) = LO @L(1,0),  @L(0;0) =1, (23)
being I, the identity matrix of size n.

Definition 2. The matrix s.p. ®(t; 0) satisfying (23) is referred to as the random fundamental matrix solution of the
random linear system (21).

Note that if L(r) = (£; ;(1)) satisfies the hypotheses of Proposition 2, then ®(#; 0) is invertible in L;’,X”(Q) in the sense
introduced in the Definition 3 of [1] (see (14) and note that det ®(#() = I, being I, the identity matrix of size n).

For the sake of clarity in the presentation, below we introduce the following definition:
Definition 3. The linear system (21) is said to be random p-regular, p > 1, if the following conditions are satisfied:

o the matrix s.p. L(¢) € L’Z’;”(Q) of (21) is 2p-absolutely integrable in [0, T'];

e the random fundamental matrix solution, ®(z;0), and its inverse, @Zl(t; 0), both lie in L;’,X”(Q) and they are
p-differentiable.

Example 2. Let L = (; j)uxn be a random matrix for whose entries {; j : Q — R there exist positive constants m; ;
and h; j satisfying that
E[l6,]] < mij(hi)) <+o0.  ¥r20, Vij:1<ij<n. (24)

Then, by Section 3 of [ 1], the corresponding random autonomous linear system (23) with L(t) = L is p-regular for any
p = 1 with ©r(t;0) = exp(Lt) and (Dil(t; 0) = exp(—L?). Moreover, as indicated in Remark 3 into Section 3 of [1],
any bounded or truncated r.v. satisfies condition (24). Therefore, important r.v.’s like binomial, uniform, beta satisfy
condition (24). In addition, unbounded r.v.’s like exponential, gaussian, etc. can be truncated adequately in order for
this property to be satisfied. As a consequence, the set of r.v.’s satisfying condition (24) is, in practice, quite broad.

Example 3. Let us consider the random IVP (21) where all entries, €; j(t), of the matrix s.p. L(t) = (&,‘j(t))m have
s-degrees of randomness, [11, p.36],

gl,j(t) = fl,‘](t; ala a27 MR aS) .

Let us assume that {; j(t;a1,a0,...,as) € Lg:”(Q) is 2p-absolutely integrable, for each i,j : 1 < i,j < n, hence
condition (22) is guaranteed. If Yo = [Y0,1,.-.,Yo.] is the random vector initial condition of the IVP (21), then it
is easy to check, throughout the approximate successive method [13], that the random fundamental matrix solution
@, (#;0) of (21) has (s + n)-degrees of randomness determined by the r.v.’s ay,ay, .. .,ds, Y015 - - - Yo.n. By Proposition
2, ®(t;0) is invertible, and assuming that (I)Zl(t; 0) e L;’,X”(Q) and it is p-differentiable, then, the linear system (21)
is p-regular.

Below, we show an example where the random fundamental matrix solution, @, (#; 0), is available for the time-
dependent case.
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Example 4. Let us consider the random IVP (21) with L(t) = f(t)L, where f(t) is a real continuous deterministic
function, f : [0,T] — R, and L = (Z"u")m is a random matrix whose entries satisfy the condition (24), hence
Le Lg;”(Q). Notice that L(t) is 2p-absolutely integrable in [0, T]:

T T T
f IL@Dl2p dt = f If DLy dr = [ILIl2p f |f(Oldf < +co,
0 0 0
since ||L||>, < +oo (by assumption (24), see [1]) and fOT [f(®)|dt < +o0 (by continuity of f(t)). Also by hypothesis (24)
and Section 3 of [1],
t
Y(t;0) = exp (Lf e dS) , (25)
0
and its inverse .
Y7 (5;0) = exp (—L f f(s) ds) , (26)
0
are well-defined in L;’,X”(Q) and it is also guaranteed that Y (t; 0) and wil(t; 0), defined by (25) and (26), respectively,
are p-differentiable. Therefore, the random IVP (21) with L(t) = f(¢t)L is random p-regular and v (t; 0) satisfies that

Y (1;0) = L f(1) exp (Lj; 1) dS) = f(O L yr(1;0) = L) y(1;0).

Thus, @1 (t;0) = y1.(t;0) is its random fundamental matrix solution.
The following result provides a closed form solution of p-regular random linear systems.

Theorem 1. Let us assume that the random linear system (21) is 2p-regular and let L(t) = (é’[, j(t))nxn be a matrix s.p.

such as its entries satisfy condition (24) for every t. Let us suppose that the random vector s.p. B(t) lies in Lg;l(Q)
and is 2 p-integrable, and the initial condition Yy € Lg;l(Q). Then

!
X(1) = 0,(;0) Yo + O (2; 0)f @, ' (s:0)B(s)ds, (27)
0
satisfies the unhomogeneous problem
X'()= L X(®) + B@), X(0) =Y,

where the derivative X' (t) is understood in the LZXI(Q) sense.

Proor. On the one hand, observe that under hypothesis L(#) = ({’,-, j(t))nxn be a random matrix s.p. such as its entries

satisfy condition (24) for every ¢ fixed, it is guaranteed that @ (t; 0) € L’;;"(Q) (see [1]). On the other hand, taking
derivatives of the s.p. X(¢) defined by (27) and, applying Proposition 2 of [1], Proposition 1 and (23), one gets

X' (1)

@ (£;0) Yo + @ (;0) f ;' (s;0) B(s) ds + @L(t; 0) D; ' (t; 0) B(r)
0
= L(t) ®p(t;0)Yo + L(1) @ (t;0) f ®;'(s;0) B(s)ds + B(t)
0

= L(?) [@L(t; 0) Yo+ @.(1;0) f d)zl(s; 0)B(s)ds|+ B(®)
0

= LX) + B(@).

In addition, by (23) one gets
X0)=0,0;0)Yo=Yy. O

9
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The next result provides a random analogous of the deterministic case, solved by R. Bellman in [14], where the
solution of a random matrix bilateral differential equation is constructed in terms of the solution of two auxiliary
random linear systems of the form (21).

Corollary 1. Let A(f) and B(¢) be matrix s.p.’s such that A(f) € LZ;"(Q), B(t) € Lg;”(Q). Let X € LZ;"(Q) and let us
suppose that the random linear system

Y (@) =A®Y@®), YO0)=I,, 0<t<T, (28)
is 4p-regular, and
Z'(1) = (B)" Z(1); Z0)=1,, 0<t<T, (29)
is 2p-regular. Then, the unique solution, X : [0, T] — LZX”(Q), of the random bilateral IVP
X'(t) = A(OX(@) + X(1)B(1) , X(0)=Xo, 0<t<T,
is given by
X(0) = 04(1;0) Xo (Pp(1;0)",  0<t<T,

where ®@4(#; 0) and ®p(#; 0) denote the random fundamental matrix solutions of random IVP’s (28)—(29), respectively.

Proor. Let Y(#) and Z(¢) be the solution s.p.’s of the random IVP’s (28) and (29) respectively, and consider the s.p.
X(¢) defined by
X0 =YX (Z@)" .  0<t<T, (30)

Considering the factorization X(f) = (Y(£)Xo) (Z(¢))" of (30) and applying Proposition 2 of [1], one follows

X0 = (Y(OXo) Z) +YOXo) (Za)T)
= Y'(OXo(Z0) +YOXo(Z ()"
= ADYOXo (Z(1)T + Y(1)Xo (Z(1)" B()

= AOX® + X(1)B®).

Notice that in the last step, we have applied (28) and (29). Moreover for the initial condition, X(0), from (30), (28)
and (29), one gets
X(0) = Y(0)Xo (Z(0))" = L,Xo(I)" = Xo.

Now, from Theorem 1 with B(f) the null matrix of size n X n, B(t) = O,,, we know that the solutions of random IVP’s
(28) and (29), are given by,
Y(1) = ©a(1;0) I, = Da(1; 0), Z(t) = Op=(1;0) 1, = (Dp(1;0))" 1, = Dpr(1;0), (31)

respectively. Therefore, by (30), (31) and taking into account the p-Lipschitz property of F(t,X) = A(H) X + X B(¢)
that guarantees the uniqueness, one gets

X(0) = Y(0) Xo (Z(1)" = @s(;0) Xo (Pp(1;0))" . O

4. Random non-autonomous Riccati matrix equation

Once random linear vector systems have been treated in the previous section, we are in a good situation to apply
a random version of the linearization method developed in [2] and [4] to construct local solutions of the random
time-dependent Riccati IVP (1). This approach may be regarded as a continuation of paper [1], where the random
autonomous Riccati problem has been recently treated.
Consider the matrix s.p. L(¢) in Li’;f’")x(”*m) (Q) defined by
A() | B@
L(t) = [ o) | =DO) } , (32)

10
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and assume that the random matrix

I
Yy = [To} , (33)
lies in Lf(;:rm)x"(Q) and that random linear matrix IVP
) I
Y(i)=LnYQ), Yy = [—} , (34)
Wo

is 2p-regular. Let us consider the block-partition of Y(#) of the form

Y(1) =[ l‘i((g } . UM e, V() e L), (35)

Note that U(0) = I, and that if U(#) is invertible in an ordinary neighbourhood of t = 0, Ny (0), and (U(#))™! €
L’;;"(Q), then the s.p.

W) =V U@, 1€ Ny(0), (36)

is well-defined and it lies in LZ’X”(Q). Assuming that V(¢) and (U(¢))"" are 2p-differentiable, by (36), Proposition 2
and Corollary 1 of [1], one gets that W(¢) is p-differentiable in Ny (0) with

W)= V'O U0 + Vo) (UO)!) = VO W)™ -vo e Uy . reNy©. (37

Let us consider the block-partition of the random fundamental matrix solution ®;(; 0) of the random linear IVP
(34), of the form

Q1,1(1;0) | @12(1;0)
O, (1;0) = : : ) 38
£(50) [ B3.1(£;0) | D2(70) %)
with
O11(1:0) € LE(Q), @15(50) € LEM(Q), @a,1(150) € LEX(Q), D2(1;0) € LI (Q). (39)
From the definition of 2p-regularity, (35) and (38) one gets
UM = @11(50) + Do O0Wo 3 V(1) = @o1(1;0) + Dop(,00Wo, 1€ Ny(0). (40)
Then, W(¢) defined by (36), can be written in the form
W(t) = (©2,1(1;0) + D22(1: 0)Wo) (@1,1(10) + @ro(,0Wo) ™, 1€ Ny(0). (41)

From (32), (34), (35) and (37), it follows that

VoW -vowo) ! vowe!

= {COU@) -DOVOYU®) ™ =V W)™ U@ W)™
= C(t) - DOW() - WO {ADU(t) + BOV ()} U @)™

= C(0) - DOW() - WHA®) - WOBOW(),

W'(1)

with W(0) = V(0) (U(0))™! = W,. As factors V(¢) and (U(¢))"" of W(¢), both lie in L’Z”pX”(Q) and L';;”(Q) respectively,
then by Proposition 1 of [1] W(¢) lies in LZ‘X”(Q).

Summarizing, the following result has been established:
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Theorem 2. Let us assume that matrix s.p. L(t) defined by (32), lie in Lf";m)x(“m)(ﬂ) , and that the random matrix

Yo defined by (33), lie in Li’;:rm)xn(ﬂ). Let us further assume that the random linear matrix IVP (34) is 2p-regular, and
consider the block-entries @, j(t;0) of the random fundamental matrix solution ®(t; 0) defined by (38)—(39). Let U(2)
and V(t) be defined by (40) with U(0) = I, and Vo = Wy € LZ’;”(Q). If Ny(0) is an ordinary neighbourhood of t = 0
where U(t) € Lg;"(Q) is 2p-differentiable, invertible and (U (1))~ € Lg;"(Q) is 2p-differentiable, then W(t) defined by
(41) is a solution of random Riccati IVP (1) in LZ’X”(Q).

Remark 2. As it also occurs in the deterministic case, in dealing with non-autonomous IVP’s, the fundamental matrix
solution of a linear system is not available, in general. Thus, it is convenient to have the possibility of constructing
reliable numerical approximations. Random linear multistep methods, for scalar problems, have been proposed in
[15] and they can be extended to the random matrix framework in a similar way to the one developed in [4] in a
non-trivial way. From the practical point of view, hereinafter we will consider the particular multistep matrix method
(2.28) of [4]

h I,
Yigr — Y = 3 {L(tee ) Yirr — L)Y}, Yo = [ Wo } , (42)

for solving the random linear IVP (21), where #;4; = tx + h, 0 < k < N—-1,1% = 0, t € [0,T], such that Nh = T.
Solving (42), see (2.34) of [4] for small enough value of /, one gets the random approximations

1
Yo = [ b } ,
k-1 . 4 , (43)
Yo = ]_[ {(1’”"’ - §L(tkj)) (In+m + §L(tkj1))} Yo, 1<k<N.
J=0

Approximations (43) for the linear IVP (34) can be used to generate a sequence of approximations of the random
non-autonomous Riccati IVP (1), see (2.40) of [4]. In fact, if [1,, Onxm]Y is invertible, being O,x,, the null matrix of
size n X m, and both [O,,xn, L 1Y and [I,,, Oxm] Yk lie in LE";"(Q) and Lg;”(Q), respectively, then

Wk = {[Oan’ Im]Yk} {[In, Onxm]Yk}71 > k = 192’ . "N’ (44)

are random matrix approximations of the solution W(¢#) of problem (1). This numerical procedure will be used in
the subsequent section to compare the approximations of the mean and standard deviation of the solution s.p. to the
random Riccati matrix IVP (1) constructed using the approach studied throughout this section.

5. Numerical examples

This section is devoted to illustrate the theoretical development previously exhibited by means of several examples
where randomness is considered through a wide variety of probabilistic distributions. We emphasize that both scalar
and random Riccati matrix differential equations are studied in the examples. Computations have been carried out
using the software Mathematica.

Example 5. Let us consider the following random scalar IVP based on a non-autonomuous Riccati differential equa-
tion
w' (1) + a exp(—r) w(®)? —a exp(-) =0, 0<r<T, w(0) = wy. 45)

This IVP is a particular case of (1) taking m = n = 1 and
W) =w(@), WO)=wy, A@F)=a, B@)=aexp(-t), C@{) =aexp(—t), D()=-a. (46)

We will assume that both input parameters, a and wy, in the random IVP (45), are independent, positive, and bounded
or truncated r.v.’s defined in a common complete probability space (Q, ¥, P). For the sake of clarity in the presentation,
we split the construction of the approximations to the expectation and standard deviation of the solution s.p. to the
random IVP (45) in several steps.
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According to (32)—(34) and (46), in this example, we have the following extended random linear system

Y0 =LOY0D. Yo= [w%} : 7)

where the matrix s.p. L(t) is defined by

(A | Bo |_ a | aexp(-n)
L ‘[ C@0) | =D) }‘[ aexp(-n | a ] :

(48)

As by hypothesis a and wo both are either bounded or truncated r.v.’s, then the random vector Y\, defined in
47), lies in LZZI(Q) and the matrix s.p. L(t), defined in (48), is in Li:z(Q)for everyteT.

Moreover, as the matrix s.p. L(t), given by (48), commutes with its integral, that is,

L(?) ( f [ L(s) ds)
0

a® exp(=21) (=1 + exp(?) + texp(2t)) a® exp(—t) (=1 + exp(t) + 1)
a® exp(—t) (=1 + exp(t) + 1) a® exp(=21) (=1 + exp(?) + texp(2t))

(ft L(s) ds) L(?),
0

then, it is known its random fundamental matrix solution ®(t;0) is given by (see [16])

O;(1;0) = exp (f L(s) ds) .
0

Moreover, it can be seen that

[ D11 (1;0) | @12(1;0) }
D;,1(1;0) | D22(1;0)

D (2, 0)
exp(at) cosh [a(—1 + exp(—1)] exp(at) sinh [a(1 — cosh(¢) + sinh(?))] 49
exp(ar) sinh [a(1 — cosh(¢) + sinh(?))] exp(ar) cosh (a(—1 + exp(-1)) (49)

Now, we are going to check that the random linear vector IVP (47) is 2p-regular.

e The matrix s.p. L(t) = (f,-, j(t))2X , given by (48), only depends on the r.v. a, which is taken either bounded
or truncated. Then, by Examplze 2 each entry {; j(t) of L(t) verifies condition (24) for every t € T, and

consequently, L(t) € L%;Z(Q), i.e., it is guaranteed that L(t) is 2 p-absolutely integrable in [0, T]:

! ¢ df = ! Ene o) q ! 2P 4r = o AP,
16 jOlp de = | (ENIE(0F7) 0 [ (i) T de = mi )P T < oo
0 0 0

o [t can be checked that the inverse, <Dil(t; 0), of the random fundamental matrix solution ®(t;0) defined
by (49), exists in an ordinary neighbourhood of t = 0 and it takes the following form

exp(—ar) cosh [a(1 — cosh(r) + sinh(r))]  —exp(—ar) sinh [a(1 — cosh(?) + sinh(7))]

—exp(—at) sinh [a(1 — cosh(?) + sinh(¢))]  exp(—at) cosh[a(l — cosh(?) + sinh(¥))] |~ (50)

®;'(1;0) = [

Notice that @ZI(O; 0) = I,. Moreover, based on the same argument previously shown about boundedness
of the random input parameter a, it is easy to check that ®(t; 0) and CDZl(t; 0) both lie in LiXZ(Q).

e Using an analogous argument to the one exhibited in the Example 1, it is straightforward to prove the
p-differentiability of matrices s.p.’s O (t;0) and CDZl(t; 0) defined by (49) and (50), respectively.
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Construction of the solution s.p. of the random scalar Riccati IVP (45).

According to (36), (38), (40) and (49), the solution s.p. of the scalar random Riccati (45), w(t), can be expressed
in a closed form by terms of the random parameters a and wy

D,1(£;0) + P22(2; 0wy

o1
Yo wey™ = D1,1(£;0) + @1 2(2; 0wy

w(?)

exp(ar) {wg cosh[a(—1 + exp(—1)] + sinh [a(1 — cosh(?) + sinh(¢))]}
exp(at) cosh [a(—1 + exp(—1)] + exp(at)wg sinh [a(1 — cosh(¢) + sinh())] °

te Ny(0).

Note that the parameter wy lies in L4p(Q) as well as the four block-entries ®; j(t;0), 1 < i, j < 2, of the random
fundamental matrix solution ®(t; 0) given by (49).

Finally, taking into account the hypotheses of Theorem 2, it remains to check that U(t) € L,,(Q) is 2p-
differentiable and invertible and that its inverse (U(£))™! € L, (Q) is also 2p-differentiable. These conditions
can be checked following an analogous reasoning like the one showed in Example 1. We here omit because its
checking is only cumbersome.

Computation of the expectation of solution s.p. of (45).

Denote by f,(a) and f,,,(wo) the probability density functions of rv.s a and wy, respectively. Compute the
expectation of w(t) as follows

E[w(®)] = fR WD fa(@)fi, (wo) dadwo

Computation of the standard deviation of solution s.p. of (45).

a2 Determine the standard deviation by the expression

& [W(D)] =+ E[00(D)?] - B [w()?,

ss  computing, firstly, the following expectation

E|w(ny] = fR V() ful@) fyw0) dat dwo.

304 In Figure I and Figure 2, the expectation, E[w(¢)], and the expectation plus/minus the standard deviation, E[w(t)] +
as  o[w(t)], of the solution s.p. to the random scalar Riccati IVP (45) for different choices of the input r.v.’s a and wo have
as  been plotted.

a7  Example 6. Let us consider the random Riccati IVP (1) for the following election of the data

1

wi () 2 1 b
WO = | w® | Wo=|w |, A0 =Fa, B(r>=t2[—E 0 E]’
ws(1) 0
01 2 1 0 0 (62Y)
cn = 2| — |, D(t)=—' 0 d 0
2 21 1 01

s We will assume that the input parameters a, b, d and wy are rv.s. The parameter a has a beta distribution of
s parameters @ = 3 and B = 2, a ~ Be(3;2); b has an exponential distribution of parameter A = 1 truncated at the
s interval [1,2], b ~ Exppy (1), d has a uniform distribution on the interval [2,4], d ~ U(2,4) and, finally, w, has a
st beta distribution of parameters @ = 1 and B = 2, wy g ~ Be(1;2). We will assume that all the input parameters are
stz independent r.v.’s.
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1.551

1.251

Figure 1: The expectation, E[w(f)], and the expectation plus/minus the standard deviation, E[w(#)] o [w(?)], of the solution s.p. to the random scalar
Riccati IVP (45) for the following choice of the input r.v.’s: a ~ Be(0.2; 1) (a has a beta distribution of parameters (0.2; 1)) and wo ~ Ny 2;(1.5;0.1)
(wo has a gaussian distribution of parameters (1.5;0.1) truncated on the interval [1,2]). The expectation has been plotted on the time domain

t € [0, 10] in the context of Example 5.

0.9r

0.8

0.7

o

Figure 2: The expectation, E[w(#)], and the expectation plus/minus the standard deviation, E[w(#)] + o[w(f)], of the solution s.p. to random
scalar Riccati IVP (45) for the following choice of the input r.v.s: a ~ Gamma(2;3) (a has a gamma distribution of parameters (2;3)) and
wo ~ Bxpjg521(1.5) (wo has an exponential distribution of parameter A = 1.5 truncated on the interval [0.5, 2]). The expectation has been plotted
on the time domain ¢ € [0, 10] in the context of Example 5.

a1s Step 1. Construction of the auxiliary random linear vector IVP of (1) with the data (51).
The extended random linear vector system (32)—(34), associated to (1) with data (51), takes the form

314

315

316

L
Yo = !
w2,0
0

Y' () =LY,

(52)

Note that, it is verified that the random vector Yy, defined in (52), lies in Li;l(Q) because Yy satisfies condition

(24) since wy is a bounded r.v.
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317 In Eq. (52) we have chosen the matrix s.p. L(t) as the product of the real continuous deterministic function,

an (&) = /2, and the following random matrix L verifying condition (24)
a -1 0 b
SR
0 -1 0 -1
319 because its entries a, b and d are bounded r.v.’s. Hence, the random coefficient matrix L(t) takes the form
2

L) = f(H)L = 3 L, L(r) e L{H(Q).

a20 The block-partition of L(t) is given by
at* | ¢ bt
27 Y 5
+ 0
(A0 Bo ]| | 3
wo =g || e o 4P Y
2 2
tz 0 tz
0 | —— _
2 2
a2t As we shown in Example 4, the random linear vector IVP (52) with L(t) = f(¢) L is 2p-regular, and the random
a2 fundamental matrix solution, ®(t;0), is given by
¢ ) A
Or(1;0) = exp (L f f(s) ds) = exp (L f — ds) = exp (L —)
0 0 2 6
[ Q11 (1011 | Pt 0)1x3 ] (54)
D@y,1(1;0)3x1 | P22(5;0)3x3
323 It can be seen that, the block-entries ®; ;(;0), 1 < i, j, < 2, of ®r(t;0) in (54) are
@1t 0)1x1 = exp(ar’/6), (55)
[exp(=£2/6) {b — ab + (2 + 2a + b + ab) exp(t*/3) - 2(1 + a + b) exp(1/6(1 + a)*)}
2(-1+a?)
Q5(t0) 5, = 0 ,(56)
bexp(—3/6)(—=1 + exp(1/6(1 + a)t*))
1+a
0
376y _ _J3
1 (1:0)3q = | ~SPA/O) —exp(=dr/0) (57)
a+d
0
B2t 0)3cs = | @3,(1:0) DF,(1:0) 3,(1:0) |, (58)
324 where the column vectors (I)iz(t; 0), 1 < j <3, of block-entry @, (t;0) in (58) are the following expressions
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327 Step 2.

328

329

330

331

332

s Step 3.

334

335

336

337

338 Step 4.

exp(t3/6)
1 /. _ bexp(—/6) (2+b)exp(?/6) | (1+a+b)exp(ar’/6) | (—1-b+d)exp(—dr/6)
(Dz,z(t’o) - 2(1+a)(—1+d) ~ 2(-1+a)(1+d) (~1+a?)(a+d) (a+d)(—1+d?) ’ (59
—sinh(£3/6)
0
©3,(1;0) = | exp(-dr/6) |, (60)
0
0
3 .. _ bexp(=1/6)(1+d)r>){ (1+a) exp(r* /6)—-(a+d) exp(d’ /6)+(~1+d) exp(1/6(1 +a+d)r*)}
D5,(#:0) = - Tra(—T+d)a+d) : 61
exp(—£3/6)

The p-differentiability of matrix s.p. ®(t;0) given by (54)—(61) and its inverse can be justified following an
analogous reasoning to the one shown in the Example 1.
Construction of the solution s.p. of the random Riccati IVP (1) with data given in (51).

According to (36), (40) and (54)—(61), the solution s.p., W(t) = [w1(t) wa(t) w3 ()", of the random Riccati IVP
(1) with the data (51), can be expressed in a closed form as follows

wi (D) 0 o\
wat) | = VOW@) ™" =|D21(50) + Dop(t;0) | wap 011(#0) + @1 2(50) | wap (62)
w3(?) 0 15 0 i
0
Note that parameter Wy = | wao | € Li;l(Q) because r.v. wy verifies condition (24) since it is bounded.
0

Again the 2p-differentiable of the s.p. U(t) € L,,(£2)

_ exp(-1/6)

v = 2(-1+ a?)

{21 + @) [exp(*/3) + (=2 + @) exp(1/6(1 + a)t*)
+b [1 —a+(1+a)exp(’/3) - 2exp(1/6(1 + a)t3)]} ,

and its inverse, (U(t))™" € L, (Q), follows in broad outline the same arguments shown in Example 1. Here,
details are omitted because they are quite cumbersome.

Computation of the expectation of the solution s.p. of the IVP (1) with the data given in (51).

Compute the expectation of each one of the three components of the solution s.p. W(t) = [w1(f) wa(f) wz()]"
obtained from (62), as follows

E[wi(n] = L Wi fa(@)fo (D) fa(d) fiyy (W20) da db dd dws . i=123, (63)

where we denote by, f,(a), f,(b), fa(d) and f,,,,(W2p), the probability density functions of r.v.’s a, b, d and w»,
respectively.

Computation of the standard deviation of solution s.p. of the IVP (1) with data given in (51).

17
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Compute the following expectations

EWMﬂi&MW%@W%@MMMM%MMmi=m&

Afterwards, computing the standard deviations according to

o ()] = + JE[0n0)?] - E w0 i=1,2.3, (64)
where E [w;(1)] is given by (63).

In Figure 3, we have plotted the expectations E[w;(?)], i = 1,2, 3, and plus/minus the standard deviations, E[w;(¢)]+
olwi®], i = 1,2,3, of the three components of the vector solution s.p. W(t) = [w1(t) wa(t) w3()]", given by (62), of
the random Riccati IVP (1) with the data (51).

14 T T T 06 T T T
e Blu ()] £ o(wi () | T T T T e - == Blwy(t)] £ o(wa(t))
1351 ——E[wn(t)] / - 1a(1)]
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Figure 3: Evolution of the expectations E[w(#)] (plot(a)), E[w2(#)] (plot(b)) and E[w3(#)] (plot(c)), of the solution s.p. W(£) = [w1(t) wa(£) w3()]"
of the Riccati (1), given by (62), on the time domain ¢ € [0, 1] in the context of Example 6.

Finally, we are going to compare the values of expectation and standard deviation of the solution s.p. W(t), defined
in (62) as a closed form, versus the numerical approximations, Wy, obtained by the particular random multistep matrix
method (43)—(44). Note that in (43), it must be guaranteed the existence of the inverse of the matrices

h
(Iner—EL(tkj)), 1<k-j<N, n=1,m=3, (65)
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where matrix s.p.’s L(ti—;) are defined by (53). In fact, the matrices of (65) are invertible due to the positivity of the
time-step h and the r:v.’s a, b and d.

In Table 1, we collected the exact values of the expectations and standard deviations, in a fixed time T (so we
use the so-called “approximation in the fixed station sense”), for the three components of solution s.p. W(t) =
(w1 () wa () wa(®)]T, denoted by E[wi(1)), i = 1,2,3, and \Varlw(T)], i = 1,2, 3, respectively. Those values have been
compared with their respective numerical expectations and numerical standard deviations, denoted by E[w; x(T)] and
v Varlw; n(T)], respectively, in the same fixed time T = Nh, considering N = 50 fixed. Then, for the following values
of T €{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}, and N = 50, the time-step h has been determined. The components
win(T), i = 1,2,3, of the numerical solution Wi(T), have been computed in each time instant T using (43)—(44) for
k =N =50, that is

Wy = {[O3x1, B1YN) {1, OnslYy) ™', N =50, (66)

where the time T is reached. Note that in (66), the scalar r.v. [I1, O1x3]1Yy is invertible, and both [O3x1, I31Yy and
[11, O1x3]1Yy lie in L%ZI(Q) and L,,(Q), respectively.

InTable 1, the numerical values of the relative errors for the expectations, RelErr, (T), i = 1,2, 3, and the standard
deviations, RelErry(T), i = 1,2,3, have been computed according to the following expressions

E[wi(T)] = E[win(T)] RelErry (T) = VVarwi(T)] = /Varlwin(T)]

RelErr, (T) = Elwi ()] ’ Varlw;(T)]

,i=1,2,3. (67

Computations have been carried out using different fixed stations T and time steps h. From the numerical values, we
observe that both relative errors, for every component of the solution s.p., take very small values. This shows that
the numerical values for the expectation and the standard deviations obtained from the closed form solution (62) are
quite good.

6. Conclusions

In this paper one completes the closed form solution of the random non-autonomous Riccati matrix type IVP’s,
initiated in [1] for the autonomous case. The study of the random non-autonomous matrix linear case has required
the random analogous of the Abel-Liouville-Jacobi’s formula that is interesting itself and will be used in forthcoming
works. The potential application to develop numerical methods starting from the analytic solution has been shown
through appropriate results and numerical examples.
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E[wi(T)] E[w;n(T)]  RelErr, (T) Var[w(T)] +/Var[win(T)] RelErr, (T)
i=1 1.0002e+00 1.0002e+00 4.6728e-08 0 0 0
T=01 i=2 3.3302e-01 3.3302e-01 0 2.3560e-01 2.3560e-01 3.0000e-07
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T=02 i=2 3.3085e-01 3.3085e-01 1.4000e-06  2.3489e-01 2.3489¢-01 3.0000e-07
(h=0.004) i=3 -1.3340e-03 -1.3343e-03 2.0011e-04 0 0 0
i=1 1.0063e+00 1.0064e+00 1.3048e-06  8.4591e-04 8.4600e-04 2.3257e-04
T=03 i=2 3.2499e-01 3.2499e-01 4.8000e-06  2.3297e-01 2.3297e-01 2.0000e-06
(h=0.006) i=3 -4.5083e-03 -4.5092e-03 2.0041e-04  3.7895e-06 3.7910e-06 4.3172e-04
i=1 1.0152e+00 1.0152e+00 3.2403e-06  2.1527e-03 2.1532e-03 2.0995e-04
T=04 i=2 3.1375e-01 3.1375e-01 1.1000e-05  2.2931e-01 2.2931e-01 4.8000e-06
(h=0.008) i=3 -1.0714e-02 -1.0716e-02 2.0113e-04 2.2719e-05 2.2728e-05 4.0788e-04
i=1 1.0302e+00 1.0303e+00 6.8135e-06 4.3292e-03 4.3302e-03 2.1189¢-04
T=05 i=2 2956%9-01 2.956%9e-01 2.0100e-05  2.2348e-01 2.2348e-01 8.7000e-06
(h=001) i= -2.1022e-02  -2.1027e-02  2.0273e-04  8.8339e-05 8.8375e-05 4.0785e-04
i=1 1.0537e+00 1.0537e+00 1.3066e-05  7.7370e-03 7.7387e-03 2.2050e-04
T=06 i=2 26978e-01 2.6977e-01 3.0600e-05 2.1524e-01 2.1524e-01 1.1000e-05
(h=0.012) i=3 -3.6600e-02 -3.6607e-02 2.0611e-04 2.6874e-04 2.6885e-04 4.135%e-04
i=1 1.0886e+00 1.0886e+00 2.3758e-05  1.2835e-02 1.2838e-02 2.3680e-04
T=07 i=2 2.3556e-01 2.3555e-01 3.8000e-05  2.0459e-01 2.0458e-01 1.3600e-05
(h=0.014) i=3 -5.8807e-02 -5.8819e-02 2.1294e-04  6.9563e-04 6.9365e-04 2.8458e-03
i=1 1.1395e+00 1.1396e+00 4.1890e-05  2.0500e-02 2.0505e-02 2.6277e-04
T=08 i=2 1.9321e-01 1.9320e-01 3.1800e-05  1.9180e-01 1.9180e-01 6.2000e-06
(h=0.016) i=3 -8.9393e-02 -8.9413e-02 2.2617e-04 1.6113e-03 1.6089¢-03 1.4978e-03
i=1 12134e+00 1.2135e+00 7.2653e-05  3.2097e-02 3.2107e-02 3.0664e-04
T=09 i=2 1.4355e-01 1.4355e-01 1.5000e-05 1.7747e-01 1.7747e-01 1.4800e-05
(h=0.018) i=3 -1.3088e-01 -1.3091e-01 2.5006e-04  3.4613e-03 3.4638e-03 7.2867e-04
i=1 13220e+00 1.3222e+00 1.2535e-04  5.0139e-02 5.0158e-02 3.8335e-04
T=1 i=2 8.7824e-02 8.7842e-02 2.0260e-04  1.6245e-01 1.6246e-01 6.8930e-05
(h=0.02) =3 -1.8738e-01 -1.8743e-01 2.9568e-04  7.1046e-03 7.1104e-03 8.1559¢-04
20

Table 1: Values of the exact expectations, E[w;(T)], i = 1,2, 3, and exact standard deviations, /Var[w;(T)], i = 1,2, 3, using (63)—(64), for the
three components of the solution s.p., W(T'), given by (62), to the random Riccati matrix IVP (1) in the context of Example 6. These values are
computed in some time instants 7 € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1} using the corresponding time-step 4 such as Nh = T for N = 50
fixed. Numerical expectations, E[w; y(T)], i = 1,2,3, and numerical standard deviations, +/Var[w;ny(T)], i = 1,2,3, of the vector numerical
solution Wy (T'), computed by (43)—(44) and (66), are shown too. To compare the numerical values of both approximations to the expectation and
the standard deviation, their relative errors, RelErr,, (T), i = 1,2,3 and RelErr,(T), i = 1,2, 3, respectively, have also been computed using (67).
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