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Abstract

Computer architecture courses typically include lab sessions to reinforce,

from a practical perspective, concepts and architectural mechanisms studied in

lectures. Lab sessions are mainly based on simulation frameworks because they

benefit learning. Reading the source code that models certain processor mech-

anisms allows students to acquire a sound knowledge of how hardware works.

Unfortunately, simulators that model current multicore processors are getting

more and more complex, which lengthens the learning phase and complicates

their use in time-bounded lab sessions.

In this paper, we propose a new approach that complements the use of sim-

ulation frameworks in lab sessions of computer architecture courses. This ap-

proach is based on performing experiments on current commercial processors,

where multiple hardware events related to the performance of the computer

components under study are monitored. Then, students analyze the measured

events and how they impact the overall performance. Such analysis motivates

students and, not only helps reinforcing the theoretical concepts, but also in-

creases their analysis skills. In this paper we present the methodology and

scheduling framework that support the proposed approach and discuss five lab

sessions, which can be applied in different courses, covering multiple computer
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architecture topics.

Keywords: Lab sessions; computer architecture; real processors; processor

complexity; scheduling framework.

1. Introduction

Most electrical and engineering schools around the world offer two or three

courses on computer organization and computer architecture topics. These

courses usually comprise both conventional lectures at classroom and practical

sessions at laboratories. Computer architecture courses are typically considered5

as difficult courses by students mainly due to the wide range of topics that are

covered as well as the intrinsic difficulty of some of them. In addition, topics are

usually studied from a theoretical perspective, which discourages many students

from continuing their education in computer architecture.

Lab sessions are an excellent way to reinforce the theoretical concepts taught10

at conventional lectures. They provide a clear understanding about how the

computer mechanisms studied at lectures work, which helps correcting any pos-

sible misunderstanding and motivates these students that might feel discour-

aged at classrooms. To this end, labs use computer simulation frameworks

like Multi2sim [1] or Snipper [2], which model complex processors and their15

structures in detail. Working on small fragments of the simulator source code

helps students to appreciate the details about how specific processor mechanisms

work, allowing them to acquire a sound knowledge about internal architectural

mechanisms from a practical perspective. Therefore, simulators play an impor-

tant role in post-graduate courses, especially when a major goal of the course20

is to provide research skills to students.

While simulators are valuable tools to study the details of hardware, they

fail to provide an overview of how the distinct components of the machine in-

teract to each other. For example, how last level cache (LLC) misses impact

processor performance. One reason that explains this drawback is that simulat-25

ing a current multicore with complex cores and a huge cache hierarchy is time
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consuming. In fact, running just a millisecond of execution on real hardware

can take several hours with the simulator.

To deal with such problems, we propose lab sessions where students work

on real hardware. The proposed labs make use of the hardware performance30

counters implemented in most recent processors from the major manufacturers

Intel [3], AMD [4], IBM [5] or ARM [6]. Performance counters consists of a

set of special purpose registers that allow tracking advanced processor events

such as committed instructions, run cycles, memory accesses, or branch misses,

among many others.35

In summary, this paper presents a new approach to study computer archi-

tecture topics at lab sessions focusing on real hardware and makes two main

contributions.

• First, we present a methodology that can be used as a guide in the prepa-

ration of computer architecture labs using performance counters. It is40

aimed at reducing the long time required to prepare and develop this kind

of labs and considers both performance counters and common benchmark

suites used in research. The methodology employs an adapted version of

a research framework that has been successfully used in PhD thesis at our

research group, and the proposed lab sessions are based on the authors’45

expertise acquired while doing research on computer architecture in com-

mercial processors during the last decade. While performance counters

have been widely used in current research, to the best of our knowledge

this is the first time that their use is applied to computer architecture

labs.50

• Second, we discuss five lab examples covering different levels of difficulty,

depending on the course level. The main novelty of these labs is that

they study the different topics by measuring multiple hardware events

related with the topics under study on current commercial processors.

The presented labs are aimed at illustrating how lab sessions for computer55

architecture courses based on real machines can be designed. Instructors
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can use, if they consider appropriate, either a subset of the proposed labs

or design their own labs. Nevertheless, we would like to remark that

these labs do not intend to replace simulators, but both kind of labs are

orthogonal and fit a different range of learning goals.60

The remainder of this work is organized as follows. Section 2 motivates the

use of real machines for the proposed labs. Section 3 discusses how computer

architecture courses are typically organized at universities. Section 4 presents

the proposed methodology. Section 5 introduces the scheduling framework used

at labs. Section 6 discusses the proposed labs. Section 7 provides some ev-65

idences for evaluating the proposed methodology. Finally, Section 8 presents

some concluding remarks.

2. Motivation

Simulation has been, and continues being, an extensive methodology widely

used across computer architects for research purposes. Detailed cycle-by-cycle70

simulators model what happens at the different processor stages every processor

clock, which helps researchers to precisely understand how the processor and its

internal mechanisms work. Because of this reason, computer architects either

develop their own simulators or use other simulators widely spread across the

scientific community such as [1] [2] [7].75

The use of simulators has probably been the best way, if not the only one, to

go deeper into the study of computer architecture topics, either for research or

teaching purposes, in the last two decades. Thus, simulators have been widely

used by professors and instructors both in the academia and the industry. To

avoid the difficulties of complex simulation frameworks in lab sessions, a wide80

range of in house simulators have also been developed by instructors at uni-

versities such as DLX [8]. These simulators provide different complexity levels

depending on the learning requirements, and usually provide some kind of graph-

ical representation (e.g. display of simple pipelines) to ease the understanding

of computer architecture topics.85
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However, as processors become more advanced and computer architecture

courses need to cover the latests features of recent processors, simulators in-

evitably get more and more complex (e.g. they model hardware prefetchers,

memory controllers, cache coherence protocols, etc.) Hence, simulation frame-

works that model current advanced processors present two important disadvan-90

tages: i) their complexity translates into a very long learning phase that is not

adequate for undergraduates, and ii) due to the fast evolution of current proces-

sors they often fail to model the newest advances of all the system components

(e.g. the main memory or the network on chip).

In addition, writing a simulator that mimics the behavior of a specific ma-95

chine is almost an impossible task. A major drawback that must be overcome

is that many hardware details are not publicly available. Thus, the simulator

developer may implement hardware functionality incorrectly. Besides, many

components that significantly affect system performance like the main memory,

the LLC caches, or their replacement algorithms, along with their interactions,100

need be modeled. Many times researchers join different simulators (e.g. for the

core and for the main memory) with the aim of more accurately modeling the

entire system, but even so they are only able to model a machine that is still

quite different from the real hardware.

In summary, on the one hand simulators fail to precisely model all the ma-105

chine components (e.g. the main memory, the interconnects, the cores, the LLC

replacement algorithm, etc.) and even more their most advanced features. On

the other hand, the high number of simulated components makes simulation

impractical for studying current multicores in lab sessions with a limited length

(e.g. around two hours). Given the previous rationales, we believe that students110

need to use real hardware to obtain accurate and precise results and understand

how the different parts of the machine interact among them.
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3. Computer Architecture Courses in Computer Engineering

Curricula

3.1. General Overview115

Most Computer Engineering curricula include an introductory course, e.g.

Computer Organization, where the basics of computer systems (i.e. the arith-

metic unit, the processor pipeline, the memory system, the I/O unit, etc.) are

introduced to the students. Then, at least two courses (e.g. Computer Archi-

tecture I and Computer Architecture II) study computer architecture topics in120

depth. The former computer architecture course is usually a core course in the

curricula, while the second one covers more advanced topics and can be offered

either as core or elective course depending on the syllabus.

Computer Architecture I courses cover a wide range of computer architecture

topics such as superscalar architectures, branch prediction, out-of-order execu-125

tion, or the memory hierarchy, among others. They might also introduce more

advanced topics such as multicore or multithreaded architectures and/or in-

terconnection networks. Instructors usually teach students to identify the main

components of the system (i.e. the processor, the caches, and the main memory)

and how different designs for each of these components impact on performance.130

Computer Architecture II courses typically focus on parallel architectures or

very advanced topics. Hence, they go further in the study of multicore and mul-

tithreaded architectures, as well as, memory hierarchy particularities intended

for these architectures. Other architectures such as dataflow and/or GPU ar-

chitectures, and advanced topics of speculation and interconnection networks135

can also be covered in these courses.

In addition, most universities also offer computer architecture courses in

a post-graduate master degree. These courses are usually directly focused on

particular topics or architectures such as multicore architectures, GPU archi-

tectures, or networks on chip, among others. Besides, instructors usually give a140

research-oriented approach to these courses and lectures are based on research

articles published at top conferences that introduce or built upon the covered
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topics. Thus, they can be considered as the most advanced courses taught on

computer architecture.

In this work, we propose a methodology to study and reinforce the knowledge145

of different topics covered in all these types of courses through lab sessions

carried out on real processors. The different courses, obviously, present different

levels of difficulty derived from how advanced the topics are and how deeply they

are studied. Following the proposed methodology, lab sessions can be prepared

and/or adapted to study the topics corresponding to each course level.150

3.2. Introduction of the Proposed Labs at the UPV Architecture Courses

The computer architecture courses in the Computing Engineering degrees of

the Universitat Politècnica de València (UPV) follow the organization described

above. A basic course in computer architecture, called Computer Structures, is

taught in the second year of the Computer Engineering degree. This course is155

followed by two more advanced computer architecture courses. The third-year

course, called Architecture and Computer Engineering, is a core course in the

year, while the fourth-year course is called Advanced Architectures and is an

optional course for students. The master degree in Computing Engineering of-

fers the most advanced courses on computing architecture taught at the UPV.160

Architecture and Technology of Multicore Processors is the core course that cov-

ers computer architecture topics for post-graduate students, while other courses

cover topics related to high performance systems and on-chip networks.

We have applied the proposed methodology in two of the computer architec-

ture courses offered at the UPV during the 2016-2017 academic year: Advanced165

Architectures and Architecture and Technology of Multicore Processors, and we

plan to introduce it in the Architecture and Computer Engineering in the next

year. The two courses that apply the methodology are described below.

• Advanced Architectures. This course has a duration of 45 hours, 30 of

which correspond to theoretical sessions and the remaining 15 to labs.170

We have carried out one lab session of two hours following the proposed
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methodology. The lab session covered the topics of hardware prefetch and

issue stalls, and it is discussed in Section 6.2.

• Architecture and Technology of Multicore Processors. This course has a

duration of 40 hours, 30 of which correspond to theoretical sessions and175

the remaining 10 to labs. Three lab sessions were performed in this course

following the proposed methodology. These labs addressed the cache hi-

erarchy performance and its relation with system performance (described

in Section 6.1), the study of bandwidth contention through the mem-

ory hierarchy (discussed in Section 6.3), and intra-thread interference and180

process to core allocation policies in simultaneous multithreading (SMT)

processors (explained in Section 6.5).

3.2.1. Labs equipment

The proposed labs leverage the performance accounting capability of cur-

rent processors to work on computer architecture topics trough experiments185

performed on real systems. Hence, it is required that all the computers in the

labs incorporate the same processor, which must also be relatively recent to

support monitoring as many hardware events as possible. Fortunately, most

processors built during the last five years are able to monitor the hardware

events used in the proposed lab sessions. Obviously, a lab intended to study190

SMT processors can only be carried out in a processor with this multithreading

architecture.

Lab sessions of computer architecture courses at our university are taught

in three different labs. Two labs have twenty personal computers equipped

with Intel i5-3570 and Intel i5-4590 processors. Both of them are multicore195

processors with four single-thread cores. The third lab has twelve computers

equipped with Intel i7-6700 processors. It is also a quad-core processor, but

with SMT cores. Depending on the number of students of the course and the

processor requirements (e.g. SMT processors), lab sessions are scheduled on an

adequate laboratory.200
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Event Description

unhalted core cycles Count core clock cycles whenever the clock signal

on the specific core is running (not halted).

retired instructions Count the number of instructions at retirement.

perf count hw cache l1d:access L1 data cache hit access.

perf count hw cache l1d:miss L1 data cache miss access.

l2 rqsts:all demand data rd Demand data read requests to L2 cache.

l2 rqsts:all demand data rd hit Demand data read requests that hit L2.

l2 rqsts:all pf Any L2 HW prefetch request to L2 cache.

l2 rqsts:pf hit Requests from the L2 hardware prefetchers that

hit L2 cache.

l2 rqsts:all rfo Any RFO (read for ownership) requests to L2

cache.

l2 lines in:e L2 lines allocated in E (exclusive) state.

l2 lines in:s L2 lines allocated in S (shared) state.

llc references Count each request originating from the core to

reference a cache line in the last level cache.

llc misses Count each cache miss condition for references to

the last level cache.

cycle activity:stalls l1 pending Stalled cycles with pending L1 data load cache

misses.

cycle activity:stalls l2 pending Stalled cycles with pending L2 miss loads.

cycle activity:stalls ldm pending Stalled cycles with pending memory loads.

cycle activity:cycles no execute Stalled cycles where no instructions are dis-

patched to the execution ports.

Table 1: Overview of some of the events measured in the lab sessions.
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Regarding performance counters capabilities and focusing on the proposed

labs (see Section 6), all the mentioned processors are able to measure the same

events. Table 1 presents a list of events used in the proposed labs and a brief

explanation of what they account for. As it can be observed, most of them are

basic events that should be available in most current processors independently205

of their manufacturer.

4. Proposed Methodology

The proposed labs follow an active learning methodology [9] [10], leaving

students high responsibility in their learning process. We think that instructors

should act as resource provides and guide students through the experiments210

that should be performed. However, students should take the primary role

on the analysis and interpretation of the results. This is the key part that

will help students achieve a high understanding of the studied topics. Active

learning methodologies, additionally, allow students to develop cross-curricular

skills such as critical analysis skills.215

A major contribution of this work is that the learning process is experienced

with real hardware. Working on real machines presents several drawbacks that

should be overcome by the proposed methodology. The following guidelines

address the different issues that rise when working on real hardware, avoiding

unnecessary distractions and making it easier to carry out the proposed labs.220

Hence, students can strictly focus on the computer architecture topics under

study.

First, performance monitoring capabilities differ among commercial proces-

sors of different microarchitectures (even for the same manufacturer) and thus,

not all the labs we propose in this paper can be done on any machine. Although225

most recent processors should be able to monitor the hardware events used in

the proposed labs, instructors must first check if the hardware events required

to perform a lab session are available or not. In addition, some labs require

processors that implement specific features such as the labs intended to study
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SMT processors. Therefore, the instructor should make sure that a given lab230

can be carried out. Since current processors are able to measure hundreds of

hardware events, it is important that the instructor provides some guidance

to the students about the events to be monitored. To prevent students from

wasting time looking for the events that should be measured, we recommend to

provide the precise set of events to be monitored in each lab session, or at least,235

a superset of them from which students can choose the correct ones.

Second, some sort of framework is required carry out the proposed experi-

ments quickly and precisely. Performance monitoring libraries, such as libpfm,

offer multiple functions to facilitate the configuration of performance counters

and monitoring of a set of events. In addition, libpfm also offers command240

line tools to monitor a single application. However, a scheduling framework is

needed when multiple applications are to be launched and monitored concur-

rently. To face this problem the proposed methodology provides a scheduling

framework to the students, as discussed in Section 5. The framework allows

them to launch the experiments easily and concentrate on the analysis of the245

results, which is the key part of the proposed labs.

Third, the framework is introduced in an increasing level of difficulty de-

pending on the course level. For lab sessions aimed at basic and intermediate

courses, the framework can be seen as a black box. In this case, students only

need to feed the framework with the correct inputs to carry out the proposed250

experiments, and then collect the output event counts to analyze the required

metrics. On the other hand, in lab sessions aimed at advanced courses, students

can modify the different modules of the framework to implement, for instance,

new scheduling algorithms guided by performance monitoring.

Fourth, in order to obtain representative values when running experiments,255

the proposed labs should be as close as possible to real experiments performed

in research. That is, we should use similar workloads instead of toy applications

or synthetic benchmarks. With this aim we use applications from the SPEC

CPU2006 benchmark suite, even though benchmarks from other suites can also

be used. However, directly using these benchmarks can be inappropriate for a260
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relatively short lab session length since many of them present long execution

times. To deal with this drawback and allow performing multiple experiments

in the lab sessions, the scheduling framework is able to limit the benchmarks’

executions to the time needed to complete a given number of instructions (e.g.

the instructions required to run the application alone during 1 minute). Finish-265

ing the benchmarks when they complete a given number of instructions instead

of when they have run a given number of seconds allows comparing the same

execution part in experiments with different configurations.

Fifth, the methodology proposes experiments running a single application

and multiple applications concurrently (multiprogram workloads). In the for-270

mer scenario, the performance and different metrics related with the computer

architecture structures under study are analyzed, identifying their relation if it

exists. In the later scenario, the experiments study either inter-core interfer-

ences in the resources shared among different cores (e.g., LLC or main memory)

or intra-core interference within SMT cores.275

In the computer architecture courses where we have applied this method-

ology, we offer students multiple voluntary course projects on different archi-

tecture topics. The projects present a research-oriented approach and make

use of the scheduling framework to study novel topics within the research lines

of our group. The projects can become final degree thesis, required to earn a280

graduate or a master degree at our university. With these projects, we offer stu-

dents a project-based methodology. This methodology has been already used

in computer architecture [11] [12] and other areas [13] [14], and has been shown

to improve multiple students skills such as critical thinking, problem solving,

sustained inquiry or collaboration, among others.285
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5. Framework Features

To apply the proposed methodology, we developed a scheduling framework1.

This framework is a simplified version of the scheduling framework designed

in the Group of Parallel Architectures (GAP), developed for research purposes

and used in many top-conference papers [15] [16]. The framework is a key290

component to carry out the lab sessions. Basically, it consists of a user-level

scheduler that controls the execution of a workload on the defined cores while

gathering multiple hardware events. The main aim of the framework is to

simplify the development of the lab sessions and to allow students to concentrate

on the architectural concepts under study instead of on the specific issues of the295

experimental environment.

The basic operation of the framework is as follows. When an experiment

starts, the framework launches the workload applications and initializes perfor-

mance counters, setting the events that should be monitored. As introduced

before, performance counters are configured and read using the functions pro-300

vided by the libpfm library. Then, the framework enters a loop where the

following steps are repeated:

1. The process selection policy selects which applications should run during

the next quantum.

2. The process allocation policy assigns the applications to the cores using305

the CPU affinity mask of the Linux processes.

3. Applications run during the quantum length.

4. Once the quantum expires, the framework stops the running applications

and reads their performance counters, whose values are printed if required.

5. If the workload execution is completed, the framework prints overall event310

counts and exits. Otherwise, it goes to step 1.

1The framework source code can be downloaded at https://github.com/jofepre/lab_

sched_framework
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Workload:
App1,	App2,	…,	Appn

Available	cores:
C1,	C2,	…,	Cn

Events	to	monitor:
Cycles,	instructions,	…,	Event	k

Configuration	parameters:
Scheduling	algorithm,	interval	
length,	printing	options,	etc.

Per-process	event	
counts	for	the	entire	run

Per-process	per-
quantum	event	counts

Performance	
monitoring

Process	selection

Process	allocation

Scheduling	frameworkInputs Outputs

Figure 1: Framework block diagram.

In lab sessions aimed at basic or intermediate courses, the framework can be

used as a black box (see the Lab Example 1, presented in Section 6.1). In these

lab sessions, students only need configure the input parameters of the frame-

work, which can be observed in Figure 1, and then analyze the experimental315

results. The main parameters that can be configured are: i) the workload to be

run, ii) the cores to be used, iii) the hardware events to be monitored, and iv)

the scheduling policy (process selection and process allocation).

The workload refers to the application or set of applications whose behavior

is going to be monitored. The cores to be used indicate the set of cores where320

the applications will run. This parameter is critical in some architectures. For

example, depending on the system configuration, two applications can run on

cores sharing a given cache or not. Similarly, the cores configuration in SMT

multicores determines if two applications run in the same SMT core or in dif-

ferent cores. The configured events to be monitored determine the metrics that325

will be analyzed. Regarding the scheduling policy, the framework also allows

configuring algorithms for selecting which applications will be executed each

quantum (if the number of applications exceeds the number of cores) and where

(i.e., in which core) they will be executed. Finally, other parameters such the

quantum length or the granularity at which event counts are printed can also330

be configured.
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The framework is composed of three main modules according to the function

they carry out: i) performance monitoring, ii) process selection, and iii) process

allocation, as depicted in Figure 1. This abstraction level simplifies the mod-

ifications that can be proposed in advanced lab sessions. In the performance335

monitoring module, new performance metrics can be calculated from the events

counts to guide the scheduling, which is usually performed in two steps: pro-

cess selection and process allocation. For each step, different policies can be

implemented in its corresponding module.

The modular structure of the framework facilitates modifying its source code340

since it hides the complex internal management of the processes (create, stop,

and continue processes) and performance counters (configuration and reading).

In this way, it is possible to implement a simple bandwidth-aware scheduling

policy within a lab session length (or a couple if required), as proposed in the

Lab Example 4 (see Section 6.4).345

6. Proposed Labs

The proposed labs are aimed at studying the impact of the major sys-

tem components on performance. System performance is typically quantified

in terms of instructions per cycle or IPC, which can severely be damaged as

processor stalls rise, limiting the number of instructions issued in a given cycle.350

Stalls appear because of data, control, or structural dependences. The major

performance limiter in current systems is the memory subsystem, including the

on-chip cache hierarchy and the external main memory. Because of this rea-

son, the devised labs focus either on a given part of the memory subsystem

itself or on specific mechanisms that end up affecting its performance (e.g., the355

prefetcher or the issue logic). In addition, some labs are devoted to study SMT

multicores, which are the unique processors that share computational resources

among multiple threads within a core.

The general organization of the lab sessions consists of the following parts:

1. Description of the problem and learning goals.360
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2. Summary of the theoretical aspects focusing on how they are implemented

in the commercial processor used at labs.

3. Introduction of the involved hardware events.

4. Configuration and launch of experiments.

5. Graphical representation of results.365

6. Analysis of results and conclusions.

We provide students with a booklet that guides them through the lab session.

Such a booklet should be adapted to the course level, being more specific in

the steps to be performed when the lab session is intended for under-graduate

students. However, the booklet cannot replace the instructor, who plays a370

key role describing the problem, learning goals, and theoretical background, as

well as, guiding students towards the correct interpretation of the experimental

results.

The booklet guides students on the experiments that should be carried out

and how to prepare the report to assess the lab session. This report must be375

delivered to the instructor, including both the obtained results and the requested

analysis. It is emphasized the need of presenting clear figures that ease the

interpretation of the results.

To illustrate the wide scope of the proposed approach, we present five lab

sessions that cover multiple computer architecture topics intended for different380

course levels2. Note that current performance counters can monitor hundreds of

hardware events, allowing the study of other components that are not studied

in the proposed labs. For instance, our research scheduling framework already

supports the execution of parallel applications and we plan to prepare new lab

sessions with these applications in the next years.385

2The booklet and files related to each lab session can be downloaded at https://github.

com/jofepre/lab_sched_framework/tree/master/lab_sessions/
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6.1. Lab Example 1. Understanding the Basics on Cache Hierarchy Perfor-

mance and System Performance (Basic Level)

Lectures typically study cache basics focusing on internal cache organization

and working behavior. However, when teaching about the different cache lev-

els, instructors make scarce or no difference among them, with some exceptions390

(e.g. cache size, associativity, or access time). In some cases, it is taught that

L1 caches are intended to provide as fast as possible access to the most recently

used data (designed for performance), whereas LLCs caches focus on avoiding

main memory accesses to data with less locality (designed for capacity). Un-

fortunately, these ideas are only covered from a theoretical perspective, which395

makes it hard for students to understand and differentiate the specific role of

each cache level on the overall performance, as well as the possible relation-

ship between cache performance and processor performance. This lab session is

aimed at dealing with these learning issues.

6.1.1. Learning goals.400

This lab session pursues to achieve the following learning goals:

• Familiarize with cache performance metrics; e.g. cache misses per kilo-

instruction (MPKI), bandwidth (BW), and hit ratio (HR).

• Understand the role of each cache level in system performance.

• Identify the relationship between cache and system performance.405

6.1.2. Session development and discussion

The instructor starts the session refreshing the memory hierarchy organiza-

tion concepts studied at lectures, but focusing on the memory hierarchy of the

processor equipped at the lab’s computers. After that, and assuming this is the

first lab session of the course, an overview of the framework and its use should410

to be introduced.

Students typically work with hit ratios when studying cache basics. However,

this metric usually yields students to misleading conclusions when trying to
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Figure 2: IPC of a subset of benchmarks.

identify its relation with processor performance. Instead, MPKI is a metric

that correlates better with performance and thus, it is typically used in research415

papers.

To get familiarized with these performance metrics and their typical values

in current systems, students are asked to obtain the cache hit ratio and MPKI

at each cache level, that is: HRDL1, HRL2, HRLLC , MPKIDL1, MPKIL2,

and MPKILLC . To perform this task, they use the scheduling framework as a420

black box that is fed with the appropriate inputs, which are the benchmark to be

run and the hardware events to be monitored. As explained before, these events

can either be directly provided by the instructor or identified by the students

from a provided subset of the available events.

Once the events to be monitored are identified, the launch of the experiments425

can be automatized in a bash script, which can be completely coded by students

or partially provided to them. After running the experiments, students must

collect the event counts for each application and calculate, for each benchmark,

the IPC as well as the HR and MPKI for each cache level. Then, the studied

metrics should be plotted (using an spreadsheet software or gnuplot) to be430

analyzed.

As an example, Figures 2, 3, and 4 present, respectively, the IPC, the HR,

18



0.0

0.2

0.4

0.6

0.8

1.0
Hi
t	R

at
io

L1	hit	ratio L2	hit	ratio LLC	hit	ratio

Figure 3: L1, L2, and LLC hit ratios of a subset of benchmarks.
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Figure 4: L1, L2, and LLC MPKIs of a subset of benchmarks.

and the MPKI of the three cache levels (L1, L2, and LLC) implemented by

the processor used at our labs across a subset of SPEC2006 benchmarks. As

observed, HRs and MPKIs widely differ. Regarding the hit ratios, Figure 3435

shows that the L1 data cache hit ratio is really high and catches, on average,

more than 85% of the memory accesses, while L2 captures less than 40% of its

accesses, and the huge LLC resolves around 75% of the L2 misses. This picture

illustrates: i) the high locality exhibited in the small L1, ii) the rather poor

data locality in the much larger L2, and iii) the importance of the LLC in the440

system, since it avoids a significant percentage of the memory accesses. However,
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there is not a clear relation between the obtained hit ratios and the processor

performance. For instance, astar shows high hit ratios, which resemble the hit

ratios achieved by xalancbmk but its IPC is below 0.6 while xalancbmk achieves

an IPC of 1.4.445

Next, students are asked to identify the relation between the system perfor-

mance and the MPKIs. Important conclusions can be drawn with this compar-

ison. For instance, the higher the MPKI of the LLC, the lower the IPC. It can

be observed that mcf, astar, and milc, which are the three applications with

the highest MPKIL3 are those also showing the lowest IPC. With this kind of450

experiments and analysis, students realize about the importance of L3 caches,

which comes from catching many memory request.

6.2. Lab Example 2. Prefetching and Issue Stalls (Intermediate Level)

Current microprocessors implement aggressive hardware prefetchers at the

multiple levels of the cache hierarchy to bring the data that will be requested455

soon closer to the processor. Prefetching is typically covered in lectures by

focusing on the distinct components of a hardware prefetcher, how patterns are

detected, and when new prefetches are triggered. Instructors emphasize that

prefetching can highly hide the main memory access time, which is critical in

current microprocessors, but again, the gap between theory and practice is not460

covered in most courses.

On the other hand, regarding stalled cycles, lecturers usually explain that

stalls can appear at different stages of the processor pipeline, such as the dis-

patch and issue stages, and that they are strongly related with performance

losses. Most dispatch stalls rise when instructions cannot be dispatched due465

to there is no free entry in the re-order buffer (ROB) or the issue queue. In

contrast, most issue stalls occur when no instruction can be issued due to data

hazards (e.g., due to a cache miss).

Unfortunately, lectures typically quantify the wasted issue slots, but do not

discuss how prefetching may affect the number of stalls. To provide a sound470

understanding of both prefetching and stalls from a practical perspective, we
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combine their study in this lab session. This lab pursues, first, that students

realize how prefetching can significantly rise the performance of a complex out-

of-order processor (e.g. by a 3x factor), and second, that students familiarize

with stalls as a way to quantify performance losses and analyze how prefetching475

is able to reduce the number of stalled cycles.

6.2.1. Learning goals

This lab session pursues to achieve the following learning goals:

• Reinforce the knowledge about how out-of-order processors work, focusing

on the issue stage. Identify stalls as performance constraints.480

• Characterize the issue stalls of a subset of benchmarks running on a real

machine.

• Study the connection between issue stalls and processor performance.

• Learn how prefetching can be configured at runtime.

• Study the performance degradation that disabling the prefetcher causes485

to different applications in a real machine, and how performance losses

are reflected as issue stalls.

• Analyze the characteristics of applications with respect to the benefits (or

lack of them) that prefetching has on their performance.

6.2.2. Session development and discussion490

The instructor starts the session reviewing the instruction flow on a generic

out-of-order processor, and then, focuses the discussion on the execution pipeline

of the processor available in the labs. The issue slots are identified and the

issue slots waste concepts (horizontal waste and vertical waste) are refreshed.

After that, the hardware events that the processor exposes to the performance495

monitoring unit related with the issue logic are discussed.

Students continue the development of the lab session following the booklet.

First, they are asked to monitor the issue stalls of a subset of applications.
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Figure 5: Issue stalls of a subset of benchmarks with prefetch enabled and disabled.

To this end, they need to feed the scheduling framework with the appropriate

inputs (i.e., stall-related and memory-related events). Using the collected event500

counts, students obtain and represent the percentage of issue stalls relative to

the number of cycles, as well as the IPC of the applications.

Figure 5 plots, in the PF E labeled bars, the issue stalls breakdown of the

prefetch-enabled system configuration (default). Issue stalls are broken down

according to three main causes: memory accesses resolved by the L1 or L2505

caches, memory accesses resolved by the LLC or main memory, and other causes

(e.g. dispatch stalls). It can be appreciated that the memory structures (i.e.

the two former ones) represent a significant fraction in some applications that

are memory intensive such as milc or libquantum, while this fraction is smaller

in other benchmarks like sjeng or lbm. Students are asked to identify these510

aspects. Figure 6 shows the performance of the applications. Comparing the

IPC and stalls of the prefetch-enabled bars in Figure 6 and Figure 5, respectively,

students realize that the achieved performance can be closely estimated in real

machines by measuring the issue stalls.

Once students have realized that the stalls related to memory events are the515

dominant ones, we follow working on prefetching as a way to unclog the per-

formance by reducing the issue stalls. With this aim, the instructor discusses

the prefetching capabilities of the target processor. For instance, the Intel pro-

cessors available in our labs implement four hardware prefetchers that can be
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disabled.

enabled/disabled at runtime [3]. Next, the instructor explains how the prefetch-520

ers can be configured at runtime. On the Intel and AMD processors they can be

enabled and disabled through a machine specific register (MSR), which can be

read or written in Linux using the rdmsr and wrmsr commands, respectively.

Next students disable the prefetchers and obtain the same metrics that were

measured with the prefetchers enabled. Figure 5, 6 and 7 also show, labeled as525

prefetch disabled or PF D, these results for stalls, IPC and MPKI, respectively.

Students are asked to compare PF E and PF D configurations and observe

how enabling the prefetchers highly reduces the MPKI, which translates into an

important reduction in the corresponding components of the issue stalls bars,
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and consequently, in a great performance improvement in some applications.530

This is the case of libquantum whose performance is boost by a 3.1x factor.

Looking at these values, students realize why prefetching is so important for

attacking the memory bottleneck. In other words, without these mechanisms,

it would make no sense to improve the performance of computational cores,

since the memory subsystem would strangle the system performance.535

6.3. Lab Example 3. Inter-thread Interferences: Bandwidth Contention through

the Memory Hierarchy (Intermediate Level)

The previous labs have focused on single-threaded applications running alone

in the system. However, multicore processors typically run multiprogram work-

loads where the performance of individual applications is harmed, with respect540

to their isolated execution, due to the inter-thread interference. That is, in-

structions from multiple concurrently running applications (co-runners) com-

pete among them in the access to the shared resources, which translates into

performance losses. The intensity of the interference depends on the shared

resource demands of the co-runners, which dynamically vary at run time. In545

single-threaded cores, which is the focus of this lab, the interference rises in

shared uncore resources, mainly the LLC and main memory. This lab takes

a close look at how applications interfere in these resources and studies how

contention at the LLC and main memory impact on the overall performance.

6.3.1. Learning goals550

This lab session pursues to achieve the following learning goals:

• Realize to what extent thread interference at main memory can damage

performance.

• Understand how important reducing cache contention is for performance.

• Work with synthetic applications (microbenchmarks) and understand how555

they can be used to model certain co-runner behaviors.

• Study the performance degradation due to bandwidth contention.
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6.3.2. Session development and discussion

At the beginning of the session the instructor refreshes key concepts about

resource sharing focusing on the LLC and the main memory, which are the560

shared resources addressed in this lab session. It might also be required to

remind memory-related hardware events that should be monitored during the

experiments.

First, the main memory bounded microbenchmark is introduced. This mi-

crobenchmark is a synthetic program that is provided to the students and causes565

main memory contention by allocating a huge memory area, which is randomly

accessed to avoid prefetch hits. Nonetheless, depending on the course level

and the lab session length, the instructor can go deeper explaining how the

microbenchmark works looking at its source code.

Students continue the lab session guided by the booklet. They characterize570

the microbenchmark to experimentally confirm its expected behavior; that is,

a high main memory demand (i.e. high LLC MPKI) and an almost zero LLC

hit ratio. Next, they launch several experiment where each benchmark runs

jointly with Num cores − 1 microbenchmarks, maximizing the main memory

bandwidth contention.575

Once the experiments are completed, students analyze the performance

degradation of each application, which is obtained by comparing the IPC of

the applications in the experiments over their IPC running alone. As an exam-

ple, Figure 8 shows the performance degradation of a subset of benchmarks due

to main memory bandwidth contention (blue bars). In order to understand the580

specific impact on performance for each benchmark, students should compare

these results with the LLC MPKI in isolated execution, which can be obtained

previously (these results were already presented in Figure 4). Using these fig-

ures, students are asked to provide a rough analysis with some quantitative

values about the relationship between IPC degradation and main memory in-585

terference. For instance, looking at both figures it can be appreciated that the

five benchmarks with higher MPKI at main memory are the ones that experi-
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Figure 8: Performance degradation due to main memory and LLC bandwidth contention.

ence the highest IPC degradation. This performance drop ranges between 30%

and 50%; that is, some benchmarks double their execution time.

Next, the session focuses on LLC bandwidth contention. The instructor can590

provide the students an LLC bounded microbenchmark or guide them to de-

velop it from the source code of the main memory bounded microbenchmark.

The LLC bounded microbenchmark must always miss in the L2 and hit in the

LLC. This behavior can be achieved by configuring its allocated memory space

and access pattern according to the LLC cache geometry [17]. Once this mi-595

crobenchmark is developed, students analyze the performance degradation of

the applications due to LLC bandwidth contention, similarly as how it was an-

alyzed for main memory bandwidth contention. First, they verify that the LLC

bounded microbenchmark works as expected. Then, the experiments to measure

the performance degradation due to LLC bandwidth contention are launched.600

Figure 8 presents the performance degradation of a subset of benchmarks due

to LLC bandwidth contention, and Figure 4 showed their L2 MPKIs. Students

may conclude (with some guidance if required) that the five benchmarks that

most frequently access to the LLC are the ones that experience the highest IPC

degradation due to LLC contention. In this case, performance drops between605

8% and 30%.
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Notice that the performance degradation values obtained in this session are

really significant (i.e. up to 50% due to main memory contention and up to

30% due to LLC contention), which makes students understand to what extent

the memory subsystem can strangle system performance. This fact is usually610

explained at lectures, but it is important that students realize how serious this

problem can be from a practical experience.

6.4. Lab Example 4. Main Memory Bandwidth-Aware Scheduling (Advanced

Level)

In the Lab Example 3, we focused on how the interference among processes on615

the shared resources of the memory hierarchy impacts on performance. This is

in line with what instructors teach in computer architecture lectures. However,

once students understand these interactions, they can go a step further and

learn that by running together friendly or symbiotic applications that present

low run-time interference in the shared resources, contention can be reduced620

and performance improved. This lab addresses this issue by designing a main

memory bandwidth-aware scheduler.

6.4.1. Learning goals

This lab session pursues a threefold goal:

• Realize how improving resource utilization yields to important perfor-625

mance benefits.

• Understand why architecture-aware scheduling can boost the performance

of the systems.

• Minimize the interference through a simple scheduling policy and quantify

the performance benefits it provides.630

6.4.2. Session development and discussion

The instructor begins the lab session explaining its contents and learning

goals. Then, the main parts of the scheduling framework are described both
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conceptually and going through its source code. The development that students

must perform in this session is not too complex, but the instructor should give635

a clear overview of the framework in order for students to reach a successful

implementation.

After the instructor’s explanations, students start working on the perfor-

mance monitoring module of the scheduling framework. They should configure

the memory-related events to be monitored and implement the computation of640

the main memory bandwidth utilization, which will be updated by the scheduler

after each quantum. The instructor can discuss the choice of a bandwidth uti-

lization metric instead of other memory-related metrics like MPKI. Bandwidth

is widely affected by interference, which makes it a better index to guide the

scheduling.645

To facilitate the implementation of the new policy, we assume a simple

scenario consisting of two processor cores and four processes to be scheduled.

Hence, the scheduling policy should select two processes to be run at each quan-

tum. To minimize bandwidth contention, the following policy is proposed. The

scheduler should select to be run each quantum the couple of processes with650

highest and lowest bandwidth utilization. Students should also implement a

worst case scheduler, which will be used as baseline. Instead of balancing the

bandwidth utilization, the worst case scheduler runs concurrently the processes

with highest bandwidth utilization, increasing the interference.

Finally, students set the framework to evaluate a few workloads and quantify655

the performance benefits that the proposed scheduler provides over the worst

case one. As an example, Figure 9 shows the speedup achieved running the

five 4-application workloads presented in Table 2 in our lab computers. For

workloads with two memory-bounded and two cpu-bounded benchmarks, the

speedup can be as high as 11.5%, as observed in workload 1. In other workloads660

the achieved benefits are lower (e.g., by 2% in workloads 3 and 5).
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Figure 9: Speedup of the main memory bandwidth-aware scheduler when running the evalu-

ated workloads.

Workload Benchmarks

Wk 1 gamess, h264ref, lbm, milc

Wk 2 astar, mcf, sjeng, xalancbmk

Wk 3 astar, hmmer, lbm, leslie3d

Wk 4 astar, bwaves, gammes, xalancbmk

Wk 5 bwaves, h264ref, leslie3d, milc

Table 2: Workload evaluated in the lab session 4.

6.5. Lab Example 5. Process to Core Allocation in SMT Processors (Advanced

Level)

Multithreaded processors support concurrent execution of multiple threads

(or processes) in the same processor. Among them, SMT processors are the only665

type of multithreaded processors that are able to issue instructions from multiple

threads in the same cycle. Most processor manufacturers implement SMT in

their high-end products since it is a promising architecture paradigm that offers

excellent performance when running a single process and high throughput when

running multiple threads or applications.670

Lecturers explain this paradigm but it is difficult to understand how the

intra-core interference among co-runners in the same core affects performance.
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This session pursues students to experimentally realize how important this in-

terference can be and to what extent it can seriously damage the individual

performance of the applications over their isolated execution on the same core.675

Consequently, process to core allocation policies are required to maximize the

performance in SMT processors.

6.5.1. Learning goals

This lab session pursues to achieve the following learning goals:

• Identify the connection between L1 bandwidth utilization and performance680

of applications running on an SMT core.

• Study how the L1 bandwidth utilization of an application limits the use

of this resource and, consequently, the perofrmance of other applications

running simultaneously in the same core.

• Understand how the performance of SMT processors can be boosted by685

an intelligent thread-to-core allocation policy.

• Design a simple bandwidth-aware thread-to-core allocation policy.

6.5.2. Session development and discussion

To accomplish the learning goals, this lab sessions comprises multiple ex-

periments. According to the instructor’s criterion and the available time in the690

course, it is possible to: i) limit the experiments to carry on the lab in a single

session, ii) extend the lab through a couple of sessions, allowing a deeper anal-

ysis of the effects of the intra-thread interference, or iii) split the lab session in

two parts and cover them in different courses.

At the beginning of the session, the instructor summarizes the main concepts695

about SMT processors, reminding their ability to launch multiple instructions

of different threads in the same cycle. The following experiments, guided by the

booklet and the instructor advises, will lead students to analyze and understand

the effects of intra-thread interference. Such concepts are more easy to assimilate
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Figure 10: IPC and L1 bandwidth of the benchmark bwaves.

from a practical experience than from a theoretical point of view; hence the700

importance of this lab.

First, students analyze the relation between the L1 bandwidth utilization of

the applications and their performance. The connection between both metrics

can be observed by looking at the average L1 bandwidth and performance of

multiple applications. However, the effect is much more noticeable by look-705

ing at how these metrics evolve dynamically along the execution time. The

scheduling framework allows obtaining per-quantum event counts by enabling

the per-quantum printing option. Then, the collected data can be processed

using a spreadsheet or gnuplot to draw the L1 bandwidth utilization and IPC

of a few applications. As an example, Figure 10 shows the IPC and L1 band-710

width of bwaves. The connection between both metrics is quite evident, but

the instructor should ensure that all students identify and understand it.

Next, the lab continues towards studying how intra-thread interference af-

fects L1 bandwidth and performance of two applications running concurrently

on the same SMT core. To run the experiments, students need to configure715

the framework to run a couple of applications on the same core. Instructors

should ensure that students correctly allocate both applications to the same

core. Otherwise, no intra-thread interference will occur. To better appreciate
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Figure 11: L1 bandwidth of bwaves and h264ref running concurrently on an SMT core.
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Figure 12: IPC of bwaves and h264ref running concurrently on an SMT core.

the connection between L1 bandwidth and performance, it is also recommended

that at least one of the applications present a phase behavior easily identifiable720

in the plots.

Figures 11 and 12 present the L1 bandwidth and IPC, respectively, of bwaves

and h264ref running concurrently on the same SMT core. The figures show how

the drops in the L1 bandwidth of bwaves reduce the intra-thread interference

and allow h264ref to increment its bandwidth utilization, which presents a725

uniform value on isolated execution. Notice that the IPC of h264ref rises on

the periods where the interference introduced by bwaves is reduced. At this
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point, the instructor should emphasize how the interference strongly impacts

on performance (it can make the performance benefit of SMT processors nearly

worthless), and discuss how a thread allocation policy aware of the intra-thread730

interference should improve the throughput of SMT cores.

The last part of the lab session proposes the implementation of a thread al-

location policy that minimizes L1 bandwidth interference among threads, thus

improving performance. To implement such a policy, students need to modify

the scheduling framework to: i) calculate the L1 bandwidth utilization of the735

application at the end of each quantum (performance accounting module), and

ii) implement the new allocation policy on the process allocation module. Im-

plementing the policy is not challenging, but instructors should guide students

to skip difficulties and students frustration. The policy should simply allocate

the application with the highest and lowest requirements together on the same740

SMT core, so that the L1 bandwidth is balanced among the cores. As in the

Lab Example 4, it is not required to implement a policy covering all possible

scenarios; for instance, it can be restricted to four application workloads that

are run on two SMT cores.

Once the policy is implemented students evaluate it by comparing its per-745

formance with respect to a random or a worst case process allocation policy.

Students should report the achieved performance benefits to make sure that

they identify the strong benefit that an interference-aware thread allocation

policy can provide to SMT processors [18]. Trough this lab session, students

understand and reinforce the knowledge and importance of the intra-thread in-750

terference in SMT processors, something difficult to teach in a theoretical lecture

but at the same time, easy to identify and work on in the proposed lab session.

7. Evaluation of Proposed Approach

This section provides a qualitative assessment of how the proposed method-

ology helps students to achieve their learning outcomes. In this regard, three755

major axes have been considered that provide evidence of the success of the
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proposed approach. These axes, discussed below, are lab and course grades,

evaluation of transversal competences, and satisfaction surveys.

Majority of the students (75%) achieved a grade of A (score ≥ 90 out of 100)

in the lab and rest (25%) achieved grade B (80–89 out of 100). Furthermore, we760

observed that lab marks are strongly related with final course marks. This fact

suggests that the designed labs help clarify and reinforce the concepts taught

at lectures.

We also found that the proposed labs help students to develop transver-

sal competencies. The purpose of a transversal competency is to acquire skills765

related with students’ personal development that are not tied to a specific dis-

cipline or subject area and are commonly required in both professional and

academic domains [19]. There have been several efforts to standardize transver-

sal competences by educational organizations such as ABET [20], ENAEE [21],

or ANECA [22]. Based on these efforts, UPV has defined 13 transversal com-770

petences [23]: CT-01: Understanding and integration, CT-02: Application and

practical thinking, CT-03: Analysis and problem solving, CT-04: Innovation,

creativity and undertaking, CT-05: Design and project, CT-06: Teamwork and

leadership, CT-07: Ethical, environmental and professional responsibility, CT-

08: Effective communication, CT-09: Critical thinking, CT-10: Knowledge of775

contemporary issues, CT-11: Lifelong learning, CT-12: Planning and time man-

agement, and CT-13: Specific instruments.

At UPV, each course must train and evaluate a given set of transversal

competences. In particular, ATP is assigned CT-01, CT-10, and CT-11 compe-

tences. UPV recommends to evaluate transversal skills through student activi-780

ties that leverage the subject content. In ATP labs, CT-01 is trained by writing

lab reports where students, based on what they learn at lectures, identify cause-

effect relationships when analyzing the data gathered in the experiments. On

the other hand, working on the hardware of current processors also helps raise

the awareness about specific contemporary issues in the course area of knowl-785

edge (CT-10). In fact, the most advanced labs provide students an opportunity

to develop their own solutions to attack some of these issues. Finally, CT-11 is
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trained by encouraging students to look for and read technical documentation

on processor architectures and specific hardware events that can be measured

with performance counters as well as by modifying the scheduling framework in790

the most advanced labs.

Following UPV recommendations, lab activities play a major role in the

evaluation of these competences. The evaluation is performed by supervising

the students’ work at labs and by reviewing lab reports. The assessment cor-

roborates that the proposed methodology is useful to achieve high levels of pro-795

ficiency in the three assigned competences. At UPV, transversal competences

are evaluated apart from the course. The possible grades are: A (excellent), B

(fair), C (in development), and D (not achieved). The distribution of grades in

ATP was roughly A: 67%, B: 25%, C: 8%.

With respect to the satisfaction surveys, they are periodically conducted800

by UPV for every course, allowing students to express their opinion with each

course methodology. Regarding ATP course, all the students backed the method-

ology and activities carried out at lab sessions. In fact, many of them highlighted

that the proposed methodology drastically reduces the time required to prepare

the lab session compared to simulation-based methodologies, where a huge effort805

is made to get familiarized and understand the complex simulation framework,

and the source code involved to model a given processor structure under study.

Finally, apart from the discussed axes, we found great interest of students

in carrying out volunteer course projects based on the proposed framework.

In fact, four students (one from a master degree and three from a degree in810

Computing Engineering) chose (during this academic year) to carry out the

proposed projects with the scheduling framework, with the aim of being their

final degree thesis. One of the students is working on scheduling for real-time

systems, another one is doing research on cache partitioning, and the remaining

two are working on dynamic configuration of the hardware prefetching mecha-815

nisms. Furthermore, three of them have already shown interest in joining our

research group and enroll the PhD program in Computer Science. Their effort

will provide them an invaluable background with their PhDs.
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8. Conclusions

This paper identifies the strengths and weaknesses, from a pedagogical per-820

spective, of using computer simulation frameworks at labs, and presents a new

approach to cover a wide range of studies on real machines, which cannot be

handled by simulators in time-bounded labs. The proposal, based on the re-

search expertise of the authors, exploits the performance monitoring capability

of current processors, which allows the hardware to track many architectural825

events (e.g., committed instructions, cache misses, issue stalls, etc). In this pa-

per, we present the methodology, the scheduling framework, and five labs that

illustrate the possibilities of the proposed methodology. The examples present

distinct ranges of difficulty, and cover topics such as memory hierarchy, hard-

ware prefetching, issue logic, or SMT cores.830

We have applied the proposed methodology during the academic year 2016-

2017 in two computer architecture courses at the UPV. We found that the

proposed approach helps improving the understanding of the theoretical con-

cepts taught at conventional lessons. Furthermore, it really motivates students

to continue their education in computer architecture topics. After applying our835

methodology, three undergraduate students and one post-graduate that followed

these courses are currently performing their final degree thesis and master de-

gree thesis, respectively, in our research team. In addition, two PhD students

that were working with simulators in their PhD have moved their work to real

machines.840

Finally, we would like to emphasize that a key goal of this paper is to serve

as a guide to other colleagues to design their labs. With this aim, we have made

the source code of the scheduling framework available and presented the lab

examples in a rather detailed way.
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