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Probabilistic Class Hierarchies for Multiclass

Classification

Daniel Silva-Palacios, Cèsar Ferri, Maŕıa José Ramı́rez-Quintana1

DSIC, Universitat Politècnica de València,
Camı́ de Vera s/n, 46022, Valencia, Spain

Abstract

The improvement in the performance of classifiers has been the focus of
attention of many researchers over the last few decades. Obtaining accurate
predictions becomes more complicated as the number of classes increases.
Most families of classification techniques generate models that define deci-
sion boundaries trying to separate the classes as well as possible. As an
alternative, in this paper, we propose to hierarchically decompose the orig-
inal multiclass problem by reducing the number of classes involved in each
local subproblem. This is done by deriving a similarity matrix from the mis-
classification errors given by a first classifier that is learned for this, and then,
using the similarity matrix to build a tree-like hierarchy of specialized classi-
fiers. Then, we present two approaches to solve the multiclass problem: the
first one traverses the tree of classifiers in a top-down manner similar to the
way some hierarchical classification methods do for dealing with hierarchical
domains; the second one is inspired in the way probabilistic decision trees
compute class membership probabilities. To improve the efficiency of our
methods, we propose a criterion to reduce the size of the hierarchy. We exper-
imentally evaluate all of the proposals on a collection of multiclass datasets
showing that, in general, the generated classifier hierarchies outperform the
original (flat) multiclass classification.
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inference, Hierarchy of classifiers

1. Introduction

In machine learning, classification is the problem of identifying to which
of a set of categories (classes) a new instance belongs. When the categories
contain more than two different labels, the problem is distinguished as mul-
ticlass classification. In the basic scenario of multiclass classification, it is5

assumed that: 1) only one class label is assigned to each instance, (i.e., this
is a single-class classification as opposed to multi-label classification, which
allows multiple class labels for each instance); and 2) class labels are inde-
pendent, (i.e., there are not relationships among class labels as opposed to
hierarchical classification problems where classes are organised into a hierar-10

chical structure).
One of the main objectives when solving a classification task is to make

predictions as “precise” as possible, where the notion of “precise” depends
on the evaluation measure that is used to assess the quality of the classifier.
For instance, accuracy is one of the most popular evaluation measures used15

to assess classifier performance. However, obtaining good predictions is not
always a simple task. This is especially complicated in multiclass problems
since the classifier needs to select among a high number of classes in order
to make the predictions. For this reason, in the last few decades, numer-
ous efforts have been made to improve classifier performance in multiclass20

problems. These approaches can be divided into one of the following three
groups:

a) Learning technique specialisation: For instance, the notion of multiclas-
sifier or ensemble learning, which is a general approach based on the idea
of using more than one model to obtain predictions (as a combination of25

individual predictions). There are two main strategies to construct a mul-
ticlassifier: to use the same learning technique to create all of the models
[1, 2, 3], and to use a different learning technique to build each model in the
multiclassifier [4, 5].

b) Training data transformation: For instance, approaches based on instance30

and feature selection [6, 7], which are developed with the aim of selecting
the most relevant instances or features to be used in the model construction
and also oversampling and undersampling methods [8, 9], which are proposed

2
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to deal with imbalanced datasets that have been shown to usually enhance
classification performance [10].35

c) Prediction adjustment: A common way to improve estimated probabilities
is to apply calibration techniques [11, 12, 13] in order to approximate the
predicted scores to the actual probabilities.

All of the above-mentioned methods and strategies assume that there
does not exist any relationship between class labels (i.e., class labels are40

independent).
Another possible approach that has been explored (also with the core tar-

get of improving multiclass classification accuracy) consists in decomposing
the multiclass problem into a collection of (somehow related) subproblems
that are smaller or simpler than the original one.45

Two alternative ways of decomposing the original problem have been
studied. The first way relies on the idea that a problem becomes less complex
if its dimensionality is reduced. For instance, in [14] the instance attributes
are iteratively split into disjoint sets and then a new classification problem is
defined for each partition. The second way relies on the idea that a multiclass50

problem becomes simpler if the number of classes is reduced. For instance, in
[15] and [16], a class hierarchy is constructed (by assuming that there exists
some relationship between the class labels) and then each internal node of
the hierarchy defines a new classification problem involving only its children
class labels. This second way of addressing the multiclass problem is inspired55

in the top-down hierarchical classification method. The different approaches
proposed mainly differ in how the class hierarchy is automatically generated
(based on instances or based on predictions) and/or which learning technique
is used for learning the intermediate classifiers.

In this paper, we also propose to decompose the original multiclass prob-60

lem by using a class hierarchy from which a tree-like structure of classifiers is
constructed. Similar to [16], the relationship between classes is derived from
the confusion matrix of a “flat”2 classifier (interpreting the confusion matrix
as an indicator of how simple or hard it is for the classifier to distinguish the
classes). However, instead of deriving the similarity between classes directly65

from the values of the confusion matrix (as [16] does), we transform the

2In the literature, it is common to refer to a classifier that does not take into consider-
ation any relationship between the class labels as “flat”.

3
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matrix trying to obtain as much information as possible from it. From the
transformed matrix, we define a semi-metric function that is used to generate
the class hierarchy. With the aim of more precisely deriving the similarity
between classes, in this paper we propose using two different approaches: the70

confusion matrix of the multiclass classifier, and a version of the similarity
matrix based on the probability estimations of the classifier. We also propose
two alternatives to apply the hierarchy of local classifiers for classifying new
instances: the first one consists in applying the set of classifiers in a branch
(from the root to a leaf), whereas the second one consists in combining all75

of the classifiers in the hierarchy by employing the estimated probabilities.
We experimentally evaluate our proposals using a large collection of datasets
and techniques, and we analyse how our methods behave when classes are
unbalanced.

The paper is organized as follows. In Section 2, we review some previous80

works in the field of class hierarchy learning. Section 3 presents our method
for defining the similarity between classes from the confusion matrix by using
both class estimations and probability estimations. In Section 4, we describe
how to decompose a multiclass problem according to the class hierarchy, and
then we present two different methods to solve the original problem using85

the hierarchy of classifier generated. Section 5 presents different experiments
that we conducted in order to evaluate our approach. Finally, Section 6
concludes the paper.

2. Related Work on Class Hierarchy Generation

Typically, the different approaches for automatically generating class hier-90

archies are divided into two groups according to how the underlying distance
is defined: instance-based methods and prediction-based methods.

The so-called instance-based methods use any distance or similarity func-
tion d defined between the instances, and then the class hierarchy is built by
applying a clustering algorithm using d. The most commonly applied clus-95

tering algorithm is the Hierarchical Agglomerative Clustering (HAC), but
others techniques have also been applied (such as Kmeans [17] or the Formal
Concept Analysis [18]). Most approaches in the context of ontology con-
struction [19, 20, 21] and concept hierarchy learning from texts [22] fall into
this category. Other instance-based approaches first pre-process or trans-100

form the instances and then the hierarchy is induced by using any distance
function between the transformed items. For instance, [15] applies a linear

4
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discriminant projection to transform documents (represented as vectors) into
a low-dimensional space, and then a similarity between two classes is defined
as the distance between their centroids. A similar approach is presented in105

[23] for learning the ontologies used in a recommender system. From the
user-item matrix that describes the item ratings given by the users, the au-
thors derive a collection of ontologies by using several distance functions and
applying both agglomerative and divisive clustering.

The prediction-based approaches use the predictions given by a classifier110

that is, in many cases, specially constructed for this. For the framework of
multi-label hierarchical classification, in [24], an ARTMAP neural network
is used as a self-organizing expert system to derive hierarchical knowledge
structures. A similar approach is presented in [25], where the authors use an
association rule learner that extracts class hierarchies from the predictions115

given by a multi-label classifier. In the field of (non-hierarchical) multiclass
classification, [16] presents an approach to improve document classification by
combining Naive Bayes (NB) and Support Vector Machines (SVM). Specifi-
cally, once a NB classifier has been learned, each row of its confusion matrix
(after normalising it) is used to represent each class as a tuple of numerical120

values. Classes are compared by applying the Euclidean distance.
Although it is also prediction-based, our proposal differs from the last ap-

proaches just mentioned in that the similarity between classes is not obtained
from either the predictions of the classifier or by applying any well-known dis-
tance function over the values of the confusion matrix. Instead, the confusion125

matrix is turned into a similarity matrix.

3. A New Prediction-based Approach for Learning Class Hierar-
chies

In this section, we present our proposal for learning class hierarchies using
a classifier. We define the similarity between classes based on a confusion130

matrix. The matrix is built by using two different methods: the first method
uses the class estimations of the classifiers, while the second method con-
siders the class probability estimations. The hierarchy is obtained from the
confusion matrix by applying an HAC algorithm.

3.1. Calculating the similarity between classes135

Let C = {c1 . . . cn} be a set of n class labels and let D be a set of
labeled instances of the form 〈x, y〉 where x is a m-tuple whose components

5
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are the input attributes and y ∈ C is the target attribute, i.e. the class.
Given a flat multiclass classifier F trained using D, its confusion matrix M
is an n × n matrix that describes the performance of F . The rows of M140

represent the instances in actual classes, whereas the columns represent the
instances in predicted classes. Thus, the elements of M placed at the main
diagonal (Mci,ci) are the instances ofD that F correctly classifies, whereas the
rest of elements of M are the misclassification errors, that is Mci,cj , ci 6= cj,
represents the instances of class ci that F classifies as being of class cj. For145

the sake of simplicity, in what follows, we denote any class ci by its subindex
i.

In general, in any confusion matrix, the following can be observed: 1)
misclassification errors are not usually uniformly distributed, which indicates
that it is more difficult for the classifier to separate some classes than others;150

and 2) M is usually non-symmetrical, which means that to really measure the
degree of confusion between two classes i and j, we must take into account
all of the errors the classifier makes involving both classes, i.e., Mi,j and Mj,i.
Our proposal is based on this reasoning.

Given a confusion matrix M , we denote as M the result of normalising155

M (by rows), i.e. M ij =
Mij∑n

k=1Mik
.

From M we formally define the similarity between classes regarding their
level of distinguishability:

Definition 1. Class overlapping
The degree of overlapping between two classes i and j is

overlap(i, j) =

{
M ij+Mji

2
if i 6= j

1 if i = j

The result of applying the overlap function to M is a symmetric matrix MO

that we call the Overlapping Matrix.160

Definition 2. Class similarity
The similarity between two classes i and j is

dS(i, j) = 1− overlap(i, j)

The result of applying dS to M is also a symmetric matrix MS that we call
the Similarity Matrix. Note that dS(i, j) ∈ [0..1],∀i, j ∈ C. This means

6
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that dS(i, j) = 0 when classes i and j are completely indistinguishable from
each other, whereas dS(i, j) = 1 indicates that the classes are completely
overlapping.165

Remark 1. We remark that, (C, dS) is a semi-metric space [26] since dS
satisfies the non-negativity, symmetry, and identity conditions; however, for
some pairs of classes, dS can violate the triangle inequality property (as shown
in Example 1).

Example 1. Let us consider a classification problem with four class labels170

C = {a, b, c, d}. Suppose that we have trained a multiclass classifier F (using
any classification technique) whose confusion matrix M is depicted in Table
1a. From M we can see that F perfectly classifies the instances belonging
to class d but makes a lot of mistakes classifying the instances belonging to
the other classes. In fact, we could say that F is a poor classifier (whose175

accuracy is 0.55). Tables 1b to 1d show (step by step) the different matrices
obtained by applying our method.

Predicted
a b c d

Real

a 20 0 30 0
b 0 20 30 0
c 30 30 10 0
d 0 0 0 100

(a) Confusion Matrix M .

a b c d
a 0.400 0.000 0.600 0.000
b 0.000 0.400 0.600 0.000
c 0.429 0.429 0.143 0.000
d 0.000 0.000 0.000 1.000

(b) Normalised Confusion Matrix M .

a b c d
a 1
b 0.000 1
c 0.514 0.514 1
d 0.000 0.000 0.000 1

(c) Overlapping Matrix MO.

a b c d
a 0
b 1.000 0
c 0.486 0.486 0
d 1.000 1.000 1.000 0

(d) The similarity Matrix MS .

Table 1: Example that illustrates the calculation of the similarity between classes from
the confusion matrix of a multiclass classifier.

In this example, it is easy to see that the triangle inequality property
does not hold in dS since for classes a and b it holds that

dS(a, b) = 1 > dS(a, c) + dS(c, b) = 0.972

7
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3.2. Calculating class similarity by using estimated probabilities

For most real problems, it is more important and useful to know not only
the predictions given by the model but also how confident the classifier is180

in them. For instance, suppose that a bank is using a classifier to make
decisions about whether or not to grant loans. Imagine that the classifier
predicts class ”yes” for two customers, p1 and p2, meaning that the loan is
granted. However, are both decisions equally risky for the bank? Would
the bank change its decision if it knew that the classifier is 90% sure when185

predicting p1 as being of class ”yes” but only 55% for p2?
A probabilistic classifier (or probability estimator) is a decision system

that accompanies each prediction with a probability estimation. Given an
instance x, a probabilistic classifier estimates its probability of belonging to
each class ci, Π(ci | x), and assigns to x the following vector of predicted190

probabilities ~p(x):

~p(x) = 〈Π(c1 | x), . . . ,Π(cn | x)〉 ci ∈ C

Finally, the predicted class for x is the class with higher probability, that is,

x̂ = argmaxci∈C〈Π(c1 | x), . . . ,Π(cn | x)〉

The confusion matrix of a probabilistic classifier is constructed by adding
the estimated probability vectors of all the instances according to their real
classes, such that

Mij =
∑
〈x,i〉∈D

Π(j | x)

Table 2 illustrates the process of creating the confusion matrix through195

the predictions given for three instances e1, e2, and e3 of real classes a, b,
and a, respectively.

From the confusion matrix of a probabilistic classifier, we can derive the
similarity between classes by following the procedure explained in Section
3.1.200

3.3. Learning the Class Hierarchy

Once the distance matrix has been obtained, the class hierarchy is built
by applying an agglomerative hierarchical clustering algorithm. The agglom-
erative approach works in a bottom-up manner starting by assigning each

8
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Predicted
a b c

Real
a 0.7 0.1 0.2
b
c

(a) ê1 =< 0.7, 0.1, 0.2 >
real class(e1) = a

Predicted
a b c

Real
a 0.7 0.1 0.2
b 0.4 0.6 0
c

(b) ê2 =< 0.4, 0.6, 0 >
real class(e2) = b

Predicted
a b c

Real
a 1.5 0.1 0.4
b 0.4 0.6 0
c

(c) ê3 =< 0.8, 0, 0.2 >
real class(e3) = a

Table 2: Example of creation of the confusion matrix using the predictions given by a
probabilistic classifier for three examples e1, e2, and e3.

element to a single cluster (singleton) and then iteratively merging pairs of205

clusters until only one cluster is obtained. Clusters are joined based on the
distance between them, which is referred to as the linkage distance. Linkage
distances are, among others, the complete distance (the maximum distance
between elements of each cluster), the single linkage distance (the minimum
distance between elements of each cluster), and the average linkage distance210

(the mean distance between elements of each cluster). The hierarchical clus-
tering is graphically represented as a binary tree called a dendrogram that
shows both how the clusters are grouped and the distance at which the
grouping has taken place.

From the dendrogram, the hierarchy of classes is derived by considering215

that the clusters created between the leaves (the set of original classes) and
the root constitute the internal nodes of the hierarchy. We could obtain
different hierarchies depending on the linkage distance used and the kind
of estimations (classes or probabilities) used to infer the similarity matrix.
This is illustrated in Figure 1 for the Flare dataset from the UCI repository220

[27]. This figure shows the dendrogram and the corresponding hierarchy
generated by the agglomerative clustering using the complete linkage and
our semi-metric distance dS. To derive dS, we have used both class and
probability estimations. Note that, from the point of view of the similarity
between classes, estimating class values or membership probabilities (even for225

the same data) is not equivalent (i.e., the computed dS function is different)
and, hence, it leads to different class hierarchies as shown in Figure 1.

4. Using Class Hierarchies to Decompose Multiclass Problems

To solve the original multiclass problem, we propose learning one classifier
at every internal node in the class hierarchy (including the root) in order to230

9



Page 10 of 24

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 1: Comparison of the dendrograms (left) and class hierarchies (right) induced by
using the confusion matrix generated by a Probabilistic Classifier (top) and a Multiclass
Classifier (bottom) for the Flare dataset from the UCI repository.

distinguish between its child nodes. As a result, we obtain a set of classifiers
that is arranged in a tree-like structure. This method is inspired in the Local
Classifier per Parent Node (LCPN) approach [28], which is one of the most
commonly used methods in the field of hierarchical classification.

4.1. Class Hierarchy compression235

Since the agglomerative clustering algorithm aggregates two groups at
each step, the class hierarchy and the classifier tree derived from it are binary
trees. That means that for a problem with n classes, we have to train (n−1)
flat classifiers. We present a procedure to simplify the class hierarchy in
order to reduce the number of internal nodes, and thus the number of flat240

classifiers we have to train. This procedure, therefore, generally implies a
reduction in complexity of the method. In hierarchical clustering, the idea
of using a post-process to reduce the dendrogram was also applied in [29] to
develop a multidimensional hierarchical clustering.

10
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Algorithm 1: Class Hierarchy Compression with Threshold
Function CompressionProcess (class hierarchy ,threshold) is

/* Depth-first search of the class hierarchy. */

node ← getRootNode(class hierarchy);
node ← VerifyLevel(node);
children ← getChildren(node);
foreach child in children do

node.child ← CompressionProcess(child);
return node;

Function VerifyLevel(node) is
/* While there is a child with same height. */

while (exists(node)) do
children ← getChildren(node);
foreach child in children do

nodeHeight ← getHeight(node);
childHeight ← getHeight(child);
distance ← nodeHeight - childHeight;
if (distance <= threshold) then

node ← JoinNodes(node,child);
break;

return node ;

Function JoinNodes(nodeFather,nodeChild) is
nodeFather ← removeChild(nodeChild);
decendents ← getChildren(nodeChild);
foreach descendent in decendents do

nodeFather ← addChildNode(descendent);
return nodeFather;

In order to reduce the size of the class hierarchy, the dendrogram is tra-245

versed in a depth-first search such that if there are two contiguous clusters3

i and (i + 1) whose linkage distance does not exceed a certain threshold θ,
i.e., | linkage(i) − linkage(i + 1) |< θ, then the clusters are merged, where
linkage(A) is the linkage distance at which cluster A has been created. Al-
gorithm 1 presents the compression procedure.250

The threshold can be chosen by the user, be dependent on the domain,
or be estimated. In this paper, we propose to determine the threshold from
the linkage distances that are employed for the HAC algorithm to group the
clusters. More specifically, for a given dendrogram consisting of n clusters,
the threshold θ is determined as

θ = α ·maximumk∈[1..(n−1)] | linkage(k)− linkage(k + 1) |

where α ∈ [0..1] is the compression parameter. A value α = 0 means that

3For the sake of simplicity, we use the order that is used to create the clusters to denote
them.

11
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only clusters at the same linkage distance will be joined in the post-process,
whereas α = 1 means that all of the clusters collapse in the dendrogram
root4.

Figure 2 shows the compression process applied to the Flare dataset (from255

the UCI repository [27]). As can be observed, for α = 0.1 (Figure 2b), the
nodes root and c1 in the original hierarchy (2a) are merged into one node
that is the root of the resulting hierarchy (2b); in the same way, nodes c2
and c4 in 2a are merged into one node (c2) in Figure 2b. Additionally, for
α = 0.4 (Figure 2c), the nodes root, c1, c2, and c3 are merged into the node260

root of the resulting hierarchy (2c). As a consequence, the number of flat
classifiers to be learned has been reduced from five to three for α = 0.1 and
from five to two for α = 0.4.

In the next section, we experimentally estimate the value of α in order to
analyse whether or not it is possible to reach a balanced compromise between265

reducing the number of classifiers and not losing too much information about
the dissimilarity between classes.

4.2. Top-down Prediction

The first method we propose for making predictions relies on the fact of
having a hierarchy of flat classifiers that is composed of binary or multiclass270

classifiers. In this scenario, to classify a new instance, the tree of classifiers is
traversed in a top-down manner applying the classifiers from the root until a
leaf is reached. This means that, for a hierarchy made up of n classifiers, the
number of flat classifiers we have to apply for classifying an instance varies
from (n/2), when the class hierarchy (and the tree of classifiers) is balanced,275

up to (n− 1), when the class hierarchy is a chain.

4.3. Top-down and Bottom-up Prediction

The second method we propose for making predictions is devised to work
with hierarchies that are composed of flat classifiers that are probability
estimators. Given an instance x, the idea is to traverse the tree in a top-280

down manner applying all of the classifiers and in each node ν estimating the
probability of belonging to each of its children. When the leaves are reached,
a probability vector is constructed in every leaf. The probability vectors are

4In fact, depending on the dendrogram, the class hierarchy may collapse into the root
at a value of α < 1.

12
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(a) Original class hierarchy. (b) Compressed hierarchy for α = 0.1.

(c) Compressed hierarchy for α = 0.4.

Figure 2: Example of the Hierarchy Compression Process applied to the Flare DataSet.

the conditional probabilities 〈Π(c1 | x), . . . ,Π(cn | x)〉. Given that the leaves
represent the original classes, the vector in a leaf ci has all its components285

equal to zero except the component Π(ci | x) = 1. In a second stage, the
probability vectors are propagated bottom up.

Given a non-leaf node ν in the hierarchy of classifiers, Chl(ν) denotes the
set of nodes that are the children of ν. Then, the probability vector of x at
node ν, ~p(x, ν), is obtained as follows290

~p(x, ν) =
∑

µ∈Chl(ν)

(Π(µ | x)× ~p(x, µ))

Finally, the class predicted for x is the highest component in vector ~p(x, root).

5. Experimental Analysis

In this section, we evaluate the performance of our proposals for solving
multiclass problems (as described in Section 4).

13



Page 14 of 24

Acc
ep

te
d 

M
an

us
cr

ip
t

The experiments were performed over 15 different datasets (Table 3) taken295

from the UCI [27] and the LIBSVM5 public repositories. All of the datasets
are multivariate, multiclass, non-hierarchical a priori, and the criterion we
followed to select them was to include datasets of different size and differ-
ent numbers of classes. We have preprocessed the datasets removing the
instances with missing values. Additionally, we have applied under-sampling300

to datasets 7, 9, and 13 (to cope with class imbalance).

DataSet 1 2 3 4 5 6 7 8
Id Arrhytmia Covtype Dermatology Flare Forest Glass Letters Pendigits
NumInst 416 2100 358 1066 523 214 2600 7494
NumAtt 330 54 34 19 27 9 16 16
NumClass 7 7 6 6 4 6 26 10

DataSet 9 10 11 12 13 14 15
Id SatImage Segmentation Sports TrafficLight Usps Vertebral Zoo
NumInst 1795 3000 8000 300 3000 310 101
NumAtt 36 18 13 10 256 6 16
NumClass 6 7 10 6 10 3 7

Table 3: Information about the datasets used in the experiments: number of instances,
attributes, and classes.

5.1. Evaluating the use of Class Hierarchies to decompose Multiclass Prob-
lems

The purpose of this study is to analyse the performance of our method
for solving multiclass problems by decomposing them using a class hierarchy305

that is derived from the confusion matrix.
The experiments we carried out follow the schema shown in Figure 3.

First, a flat classifier is built and the class hierarchy is inferred as explained
in Section 3. Next, the class hierarchy is compressed to reduce the number
of flat classifiers to be learned, and, finally, the tree of classifiers is generated310

according to the transformed class hierarchy. In this first experiment, to
infer the class hierarchies, we use the complete linkage distance in the ag-
glomerative hierarchical clustering algorithm and a compression parameter
of α = 0.

In order to analyse the suitability of the class hierarchies generated by315

our method, we include two existing methods for generating hierarchies in
the classes. The first method, which we denote as dC , calculates the dis-
tance between the centroids of each class [15]. The second approach, which

5https://www.csie.ntu.edu.tw/$\sim$cjlin/libsvmtools/datasets/
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Figure 3: Decomposition schema of Multiclass Problems guided by Class Hierarchy infer-
ence.

we denote as dE, computes similarities by applying the Euclidean distance
over the normalized confusion matrix generated by the flat classifier[16]. Our320

proposals, which use a semi-metric function to compute the similarity ma-
trix, are denoted by dS when the confusion matrix is calculated using class
estimations and dSP when we use probability estimations (Section 3.2). In
addition, to analyse whether the multiclass classification can be improved by
using class hierarchies, we compare the results obtained with our top-down325

method (Section 4.2) with those obtained by the flat classifier, which was
first trained to induce the class hierarchy.

In the experiments, we apply six classification techniques in an R [30]
script by means of the libraries caret [31], rpart, e1071, and C50. Specif-
ically, we use the following classification algorithms: a decision tree, J48;330

Naive Bayes, NB; a recursive partitioning tree, RPART; a neural network,
NNET; a parallel random forest, RF; and a support vector machine, SVM.
We adopt a 10-fold cross-validation for the complete process, and we use
accuracy as the evaluation measure. In what follows, the letters S, SP , C,
and E denote that the classifiers have been built from a class hierarchy that335

is inferred from our semi-metric distance using class estimates dS and using
probability estimates dSP , the distance between centroids dC , and the Eu-
clidean distance dE, respectively. Additionally, F stands for the flat classifier
approach. Table 4 shows the results obtained. For each classification tech-
nique and dataset, the best result is underlined, and the best method using340

a hierarchy is highlighted in bold.
In general, the results show that, in terms of accuracy, the methods that

use a class hierarchy outperform the flat classification for most datasets and

15
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techniques (except for the NB followed by SVM whose flat classifiers are
mainly more accurate than the classifiers using hierarchies). Hence, we can345

say that, in general, the use of class hierarchies for decomposing the original
multiclass problems seems to be suitable for addressing multiclass problems.
With regard to the way in which the class hierarchies are induced, on average,
our semi-metric functions dS and dSP obtain the best results for almost all of
the techniques except for the NB (where the distance between centroids dC350

gives better accuracy values) and RPART (for which dS and/or dSP and dC
obtain similar results). When dS and dSP are compared, it can be observed
that the approaches obtain similar results in general, although the exception
is NB. For this method, dSP usually obtains the worst performance, probably
because of the bad probability estimations associated to NB models.355

Next, we analyse how the size of the datasets (in terms of number of
classes and instances) affects the performance of the methods. To do this, we
have first grouped the datasets into three categories according to NumClass:
small (NumClass =< 6, datasets 3,4,5,6,9,12,14); medium (6 < NumClass <
10, datasets 1,2,10,15); and large (10 =< NumClass, datasets 7,8,11,13).360

We observe that for the small-size group there are no big differences when
using the flat, S, and C approaches. For medium-size and large datasets,
C and S/SP approaches are the best for almost all of the learning tech-
niques. When grouping the datasets according to the number of instances,
it can be observed that for small-size datasets (NumInst =< 550, datasets365

1,3,5,6,12,15), all of the methods perform similarly; for medium-size datasets
(550 < NumInst =< 2100, datasets 2,4,9,14) and large datasets (NumInst >
2100, datasets 7,8,10,11,13), the methods that use a class hierarchy are bet-
ter than the flat ones, with the methods that are based on the Euclidean and
the semi-metric distances being the best ones.370

5.2. Analysing the impact of the compression parameter

In the previous section, we used the value α = 0 to define the threshold
that is used to compress the class hierarchy. In this section, we analyse the
impact of the parameter α on our methods.

In order to do that, we have conducted a first analysis to determine if375

there is some evidence that allows us to assume that by using this α value
our methods will indeed perform better. This experiment was carried out
on five datasets from Table 3, which were selected according to NumClass
(3, 5, 6, 11, 13). We use our S method and the average linkage distance to
generate the class hierarchies (given that we are using only five datasets, we380
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α
Classification Techniques

Average
SVM J48 PART RF NNET

0 0,819 0,803 0,783 0,870 0,791 0,813
0.1 0,822 0,805 0,779 0,870 0,789 0,813
0.2 0,824 0,806 0,781 0,871 0,764 0,809
0.3 0,823 0,804 0,779 0,870 0,763 0,808
0.4 0,824 0,798 0,779 0,869 0,748 0,803
0.5 0,824 0,802 0,777 0,869 0,745 0,803

Table 5: Average of the accuracy of the S method per α and learning technique.

chose the average linkage since it is less sensitive to outlier instance values).
We varied the α value from 0 to 0.5 in increments of 0.1. Table 5 shows the
average of the accuracy for the five datasets and five learning techniques.

For this analysis, we performed a second experiment on all of the datasets
in Table 3 using α = 0 and α = 0.1. Although the values 0 and 0.1 might seem385

to be similar (according to the average results in Table 5), the results in Table
6 show that, for almost all of the learning techniques, the S method with the
compression parameter α = 0 outperforms the results obtained at α = 0.1
except for the NB method, which obtains a better average performance for
α = 0.1. Therefore, we will use α = 0 in the next section.390

5.3. Evaluating the effect of using probability estimators for problem decom-
position

In this section, we experimentally evaluate the performance of the top-
down&bottom-up method based on probability estimations as described in
Section 4.3. We denote this method as PS when the dS distance is used for395

generating the class hierarchy and as PSP when using the dSP distance. To
compare our two methods, in Table 7 we have also included the results for
accuracy obtained by our top-down method S.

As can be observed, there are no big differences among the three methods.
In general, the methods based on probabilities (PS and PSP ) behave better400

for almost all of the learning techniques except for the SVM and NNET, for
which the S method is more accurate for most datasets. We observe that
the NB method behaves better when we use the PS and PSP method. This
can be due to the fact that decomposing the problem into subproblems that
have fewer classes improves the probability estimations of the NB algorithm.405

With regard to the construction of the class hierarchy, it seems that the dis-
tance derived from probability estimations does not improve the predictions.
Hence, we can conclude that to induce the class hierarchy, it is advisable to
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Options α
Datasets

1 2 3 4 5 6 7 8

SVM
0 0,589 0,690 0,945 0,744 0,898 0,666 0,803 0,996

0,1 0,589 0,677 0,942 0,747 0,902 0,685 0,832 0,996

J48
0 0,709 0,707 0,949 0,744 0,866 0,714 0,720 0,961

0,1 0,736 0,701 0,950 0,734 0,864 0,702 0,732 0,961

RPART
0 0,769 0,667 0,927 0,736 0,866 0,680 0,636 0,906

0,1 0,759 0,646 0,944 0,740 0,866 0,665 0,477 0,885

RF
0 0,800 0,774 0,983 0,751 0,889 0,831 0,880 0,991

0,1 0,781 0,759 0,975 0,742 0,891 0,824 0,878 0,991

NNET
0 0,661 0,503 0,964 0,759 0,917 0,703 0,763 0,913

0,1 0,592 0,327 0,955 0,753 0,891 0,685 0,301 0,817

NB
0 0,589 0,146 0,771 0,551 0,852 0,583 0,535 0,793

0,1 0,589 0,165 0,930 0,524 0,862 0,606 0,670 0,840
Options α 9 10 11 12 13 14 15 Average

SVM
0 0,873 0,958 0,616 0,677 0,957 0,826 0,972 0,814

0,1 0,872 0,700 0,628 0,701 0,969 0,848 0,972 0,804

J48
0 0,817 0,956 0,628 0,724 0,852 0,810 0,933 0,806

0,1 0,820 0,964 0,618 0,739 0,850 0,806 0,943 0,808

RPART
0 0,798 0,948 0,584 0,724 0,830 0,816 0,866 0,784

0,1 0,797 0,948 0,583 0,727 0,770 0,819 0,893 0,768

RF
0 0,875 0,975 0,707 0,803 0,938 0,845 0,973 0,868

0,1 0,880 0,981 0,710 0,814 0,953 0,848 0,972 0,867

NNET
0 0,870 0,933 0,517 0,707 0,931 0,797 0,963 0,793

0,1 0,851 0,923 0,364 0,673 0,739 0,787 0,944 0,707

NB
0 0,749 0,871 0,520 0,371 0,684 0,810 0,645 0,631

0,1 0,813 0,891 0,557 0,431 0,725 0,813 0,893 0,687

Table 6: Comparison of the performance of the S method using the values 0 and 0.1 for
the compression parameter α.

use a distance that is derived from class predictions and probability estima-
tors to construct the hierarchy of classifiers.410

6. Conclusions

In this paper, we have proposed an approach to improve accuracy in mul-
ticlass classification problems. The idea is that in situations where there
exists a high number of classes, traditional methods find it difficult to cor-
rectly discern the new observations given the high number of possibilities.415

The proposal consists in building specialised classifiers for the classes that
present the most common mistakes (i.e., to build a chain of specialised clas-
sifiers for simpler problems). Therefore, the method is based on the inference
of the hierarchy of classes. From the confusion matrix obtained from train-
ing data, we derive a similarity matrix, then a hierarchical agglomerative420

clustering technique derives the hierarchy of classes. We have proposed a
semi-metric to calculate the distances between classes given a confusion ma-
trix. We compared two different methods to generate the confusion matrix:
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one based on the crisp class predictions, and one based on the class probabil-
ity estimations. We also introduced a modification in the original algorithm425

that probabilistically combines the classes of the leaves of the hierarchy of
classifiers for making the predictions. Finally, we introduced a method to
compress hierarchies, which allows us to better represent the hierarchical
structure and also helps to reduce the complexity of hierarchical classifica-
tion since it reduces the number of local classifiers. The proposed method430

compresses the hierarchy using a minimum distance threshold.
Experiments with several multiclass datasets illustrate the validity of our

proposal. We have shown that the new technique is able to improve accuracy
with respect to the basic flat approach. In the experiments, we also included
other proposals to build the hierarchy of classifiers. The new method based435

on the semi-metric distance obtained a better performance for the majority of
datasets. Finally, we evaluated the behaviour of the improvements proposed
for the original algorithm.

As future work, we propose to better analyse the relation between number
of classes and performance obtained by the chain of classifiers approach. We440

are also interested in studying the effect of class balance on the performance
of the method. Finally, we plan to further study methods that are based on
the combination of the local classifiers of the hierarchy.
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