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Abstract: This work describes the geometry behind the Smith chart, recent 3D Smith chart tool and
previously reported conceptual Hyperbolic Smith chart. We present the geometrical properties of
the transformations used in creating them by means of inversive geometry and basic non-Euclidean
geometry. The beauty and simplicity of this perspective are complementary to the classical way in
which the Smith chart is taught in the electrical engineering community by providing a visual insight
that can lead to new developments. Further we extend our previous work where we have just drawn
the conceptual hyperbolic Smith chart by providing the equations for its generation and introducing
additional properties.

Keywords: hyperbolic geometry; Möbius transformation; Smith chart

1. Introduction

The 2D Smith chart, one of the most helpful and recognized microwave engineering tools,
was proposed by Philip H. Smith in 1939 [1] and further developed by the same author throughout the
years [2] before becoming an icon of high frequency engineering [3,4]. Starting the last decades of the
20 century it became used widely in major computer aided design CAD/testing tools as add on but also
as a key part in stand-alone tools [5,6]. The Smith chart is bounded within the unit circle of the reflection
coefficient’s plane and provides by its practical size an excellent visual approach of the microwave
problems [1,6]. But it also has some disadvantages, such as that loads with voltage reflection coefficient
magnitude exceeding unity cannot be represented in a practical compact size. These loads appear in
active circuits exhibiting negative resistance or in circuits with complex characteristic impedance and
can be represented in 2D by constructing an additional reciprocal negative Smith chart [2]. However,
the Smith chart and the negative Smith chart cannot be used in a unitary way in the same time since
the scales used are different. The 3D Smith chart representation [7] using the Riemann sphere and the
circle conserving property of Mobius transformations on it lead to the creation of the first 3D Smith
chart tool which combines the design of active and passive components on the unit sphere. The reason
for seeking a 3D embedded generalization was motivated by the aspiration to have a single compact
chart proper for dealing with negative resistance impedances without distorting the circular shapes of
the Smith chart, thus keeping its properties. Described in References [7–10], the 3D Smith chart has
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its roots in the group theory of inversive geometry [11] where the point at infinity seen as a pole on a
sphere plays a key role.

However, the 3D Smith chart has some inconveniencies, for example it cannot be easy used
without a software tool, while the idea of using a 3D embedded surface may be still discouraging for
the electrical engineering community which is used to the 2D Smith chart [12]. In References [13,14]
we proposed a rather arts based hyperbolic geometry model dealing with all the reflection coefficients
within the unit disc.

In this article, we present the geometrical treatment of infinity on the 2D Smith chart, 3D Smith
chart and further develop the equations and properties of the intuitive hyperbolic Smith chart
drawing [13,14]. This is done by using the Kleinian view of geometry, that is, infinity treatment
of Möbius transformations [11,15] for the 2D and 3D Smith chart and basic elements of pure
Non-Euclidean geometry [16–18] for the hyperbolic Smith chart.

2. Planar Smith Chart and Möbius Transformations

The relation between the normalized impedance z = Z/Z0 = r + jx and the voltage reflection
coefficient ρ is given by [1,2,7,19]:

ρ =
z− 1
z + 1

, z 6= −1 (1)

The expression (1) maps the impedances with positive normalized resistance r (belonging to
the right half plane (RHP)) into the limited area of the unit circle and the impedances with negative
resistance are projected outside the unit circle, as we observe in Figure 1:
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Figure 1. (a) Normalized grid of the impedance plane; (b) Smith chart (voltage reflection coefficients
plane); (c) extended Smith chart including negative resistance impedances voltage reflection coefficient
representations too, infinite values are thrown in all directions of the 2D plane.

The transformation (1) regarded throughout the references [1–6] and [12,19] as “conformal
transformation”, “bilinear map” or “Möbius transformation” is from a geometrical perspective a
very simple direct inversive transformation [8,9,11,15]. Direct inversive transformations are defined by
(2) and together with the transformations defined by (3) (indirect inversive) they form the group of
inversive transformations [8,15].

T(z) =
az + b
cz + d

(2)

TI(z) =
az + b
cz + d

(3)

Both (2) and (3) are conformal transformations and surely (1) is a particular case of (2).
The geometry of these transformations can be educationally explored by placing instead of z a photo:
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Applying transformations of type (2) to Figure 2a we can see in both Figure 2b,c that the
transformation (2) maps always lines like shapes into circle arcs [8] (contour of the photo) (their
position and length being dependent on the placement of (a) in the complex plane). This is an innate
property of the Möbius transformations but depending on the photo position in the normalized plane,
points can be sent towards infinity. In Figure 2b we can notice that points are already thrown outside
of the unite circle since the position of the photo in Figure 2a was not completely in the right half plane
of the z plane RHP. Möbius transformations as all inversive transformations do not always map circles
into circles and lines into circles on a 2D sheet since points can be thrown not only far from the unit
circle but also at infinity [7,15].
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Figure 2. (a) a photo of Andrei in the impedance plane; (b) mapping of (1) applied to the photo;
(c) mapping of (2) considering a = 1, b = −1, c = 1, d = 5.

If we extended the Möbius transformation (1) such that

M(z) = ρ =
z− 1
z + 1

; M(−1) = ∞; M(∞) = 1, (4)

then we have a map between the z-plane and the ρ-plane. A ρ-plane point in terms of the load
normalized resistance r and reactance x, is given by:

M(z = r + jx) =
r2 + x2 − 1

(r + 1)2 + x2
+ j

2x

(r + 1)2 + x2
, (5)

then the z-plane circumference |z| = 1 is sent to the ρ-plane imaginary axis. Its inverse, M−1(ρ) = z is

M−1(ρ = ρr + jρx) =
1 + ρ

1− ρ
=

1− ρr
2 − ρx

2

(1− ρr)
2 + ρx2

+ j
2ρx

(1− ρr)
2 + ρx2

; ρ 6= 1, (6)

then M−1 : C\{1} → C\{−1}; M−1(1) = ∞; M−1(∞) = −1 is the inverse in the extended complex
plane map.

The typical flat 2D Smith chart only considers the |ρ| ≤ 1 region. Infinity on a 2D Smith chart
embedded on a planar surface means Figure 1 which makes it difficult to use when loads with negative
resistance occur. Facing this problem, Maxime Bocher, a student of Felix Klein and president of
the American Mathematical Society, proposed in Reference [11] the general solution for all Möbius
transformations and indirect inversive transformations, so that these should always map circles into
circles or lines into circles.
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3D Smith Chart and Infinity

To construct the 3D Smith chart [7–10] we place the extended Smith chart inside the equatorial
plane of the Riemann sphere (Figure 3) and using the south pole we map it on the unit sphere (Figure 4):
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Figure 4. 3D Smith chart obtained with the 3D Smith chart Tool [20], infinity of the voltage reflection is
the South pole, circle shape of the Smith chart is preserved.

The 3D Smith chart [20] obtained in Figure 4 has a variety of convenient attributes analogous to a
real Earth globe, as can be summarized in Table 1.
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Table 1. Comparative capabilities of Smith and 3D Smith charts.

Comparative Capabilities Smith Chart 3D Smith Chart

Positive resistance Interior of unity circle North hemisphere
Negative resistance (|ρ| > 1) NO (towards infinity) South hemisphere

Perfect match Origin North pole
|ρ| = ∞ NO South pole

Inductive Above the abscissa East
Capacitive Below the abscissa West

r,x,g,b constant Circles, circle arcs, 1 line Circles
Purely resistive Abscissa Greenwich meridian

Power levels/group delays NO 3D space(Exterior > 0, Interior < 0)

In Figure 5 we can see the idea of infinity more humanly. A girl and a boy start from the centre of
the chart moving on the ordinate of the reflection plane (r = 0). When they reach the contour (|ρ| = 1),
their journey ends and they can never meet again (and just imagine meeting again at infinity). On the
3D Smith chart, once they reach the equator they can continue walking on the same great circle and
still meet at infinity (south pole) which is compact and reachable.
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We consider the stereographic projection, by using the south pole S = (0, 0,−1), on the complex
plane πS : S\{S} → C , where S represent the surface of the unit sphere:

πS(xS, yS, zS) =
xS

zS + 1
+ j

yS
zS + 1

(7)

This transformation is a bijection and by applying the inverse to the ρ-plane, then the equations
of the 3D Smith chart are presented by:

ρS(ρ = ρr + jρx) =

(
2ρr

|ρ|2 + 1
,

2ρx

|ρ|2 + 1
,

1− |ρ|2

|ρ|2 + 1

)
(8)

In the same way, by applying first the Möbius transformation (1) and then ρS (8), we calculate the
corresponding point in the 3D Smith chart of each point z = r + jx. This is just:

(
ρS ◦M

)
(z = r + jx) =

(
|z|2 − 1

|z|2 + 1
,

2x

|z|2 + 1
,

2r

|z|2 + 1

)
(9)
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Conversely, a given point on the unit sphere (xS, yS, zS) ∈ S\{S} (i.e., xS2 + yS2 + zS2 = 1) is
mapped to in the ρ-plane (i.e., the sphere equatorial plane) by:

ρ(xS, yS, zS) = πS(xS, yS, zS) =
xS + jyS
zS + 1

(10)

Then, the reflection coefficient magnitude is connected to the coordinate zS of the sphere and the
phase of the reflection coefficient is equal to the angle of the point (xS, yS) with respect to the sphere
xS axis:

|ρ| =

√
1− zS
1 + zS

, ϕρ = arctan
(

yS
xS

)
(11)

Similarly, (xS, yS, zS) ∈ S\{S} is mapped into in the z-plane, considering M−1(6), by:

(M−1 ◦ ρ)(xS, yS, zS) =
zS + jyS
1− xS

(12)

3. A Hyperbolic Smith Chart

Here we present the mathematical theory that lies behind the intuitive models that we have
presented in References [13,14].

The extended complex ρ-plane (Figure 1c) includes also the loads outside the unit circumference
|ρ| = 1 but thrown also towards infinity and the compact representation requires a sphere) (Figure 4),
which necessitates a software tool for its practical use.

In this hyperbolic approach while maintaining a flat surface, we use models associated to the
hyperbolic geometry, the Weierstrass Model and its stereographic projection onto the Poincaré unit
disk in the plane [15].

We consider extended complex ρ-plane and map it onto the superior part of two sheet hyperboloid
using the usual parametrization of this surface. Then, by using the stereographic projection from the
upper sheet hyperboloid onto the unit disc D = {ρ ∈ C : |ρ| > 1} (used in the Poincaré unit disc
model of hyperbolic geometry), we construct the Hyperbolic Smith chart (Figures 6 and 7).

A generic ρ-plane point ρ = ρr + jρx = |ρ| ejϕρ is mapped on

H+ =
{
(xH, yH, zH) ∈ R3 : xH2 + yH2 + zH2 = −1, zH > 0

}
, (13)

by the usual parametrization of this surface t : C→ H+ :

t(ρ = ρr + jρx) =

(
ρr, ρx,

√
1 + |ρ|2

)
, (14)
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Next, by applying the stereographic projection s : H+ → D, from the point (0, 0,−1), on the
complex plane to a generic point in the space (xH, yH, zH) ∈ H+, we obtain that the point is mapped
into the unit disc D centered on the origin, as in the Figure 6:

s(xH, yH, zH) =
xH

zH + 1
+ j

yH
zH + 1

(15)

Therefore, the hyperbolic Smith chart equation in terms of the voltage reflection coefficients is
given by:

ρh(ρ = ρr + jρx) = (s ◦ t)(ρ) = s
(

ρr, ρx,
√

1 + |ρ|2
)
=

ρr

1 +
√

1 + |ρ|2
+ j

ρx

1 +
√

1 + |ρ|2
(16)

By arithmetical manipulations we can further get the connection to the resistance r and reactance x:(
ρh ◦M

)
(z = r + jx) = |z|2−1

(r+1)2+x2+
√

2(1+|z|2)((r+1)2+x2)
+ j 2x

(r+1)2+x2+
√

2(1+|z|2)((r+1)2+x2)
(17)

In Figure 7, we observe the different steps in the construction of the Hyperbolic Generalized
Smith chart: First, the generalized Smith chart is sent by t (14) on the upper sheet of the hyperboloid
and then the stereographic projection s(15) send it in the Poincaré unit disc model.
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Figure 7. Steps in construction of the Hyperbolic Generalized Smith chart [13,14]: (a) Generalized Smith
chart orthogonally projected on the upper part of the two-sheet hyperboloid (it spreads to infinity but
on the upper sheet of the hyperboloid); (b) stereographic mapping from the upper hyperboloid on the
2D plane (Figure 6)—the infinity becomes the contour of the unit circle (from point S = (0, 0,−1),—blue
colour).

Conversely, a generic point d = (xh, yh) ∈ D, in the unit disc centred on the origin,
then, d = xh + jyh = |d| ejϕd , |d| < 1, is mapped through the inverse stereographic projection
s−1 : D→ H+, into a point in the upper hyperboloid:

s−1(d = xh + jyh) =

(
2xh

1− |d|2
,

2yh

1− |d|2
,

1 + |d|2

1− |d|2

)
(18)
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Next, this point in the upper hyperboloid is mapped into C by applying the orthogonal projection
t−1 : H+ → C . Therefore, a given generic point d = (xh, yh) in the Hyperbolic Smith chart is mapped
to the ρ-plane by:

ρ(d) = ρh−1(d) =
(

t−1 ◦ s−1
)
(d) =

2xh

1− |d|2
+ j

2yh

1− |d|2
(19)

To find the expression in the z-plane, we need to consider (19) and the extended transformation
M−1(6). Then:

z(d) = (M−1 ◦ ρh−1)(d = xh + jyh) =
1−6|d|2+|d|4

(1+|d|2)((1+|d|2)−4xh)
+ j 4yh(1−|d|2)

(1+|d|2)((1+|d|2)−4xh)
(20)

4. Properties

The Hyperbolic Smith chart has useful properties. In this section, we summarize them (Figure 8).
The entire Smith chart is mapped into the interior of the 0.414 radius circle of the hyperbolic chart.
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Figure 8. Hyperbolic Smith chart. Circuits with the magnitude of the voltage reflection coefficient below
1 are mapped into the interior of the 0.414 hyperbolic circle in ρh (the circuits with blue normalized
resistance r and with red normalized reactance x) while the circuits with negative normalized resistance
(green) are mapped in between the 0.414 radius circle and the unit circle (in this the constant normalized
reactance circle are coloured in orange).

The circumference of radius one in the ρ-plane, |ρ| = 1, is mapped by (16) to the circumference of
radiu 1

1+
√

2
=
√

2− 1 ' 0.414 in the ph-plane, |ph| = 0.414 and |ph| = 0 in |ph| = 0.
The Hyperbolic Smith chart contains the circuits with inductive reactance above the horizontal

(real line) of the ρh-plane and the circuits with capacitive reactance below the real line of the hyperbolic
reflection plane, like in the Smith chart. Further, as seen from (16), the constant reflection coefficients
circles 0 ≤ |ρ| ≤ 1 of the 2D Smith chart are projected onto circles with 0 ≤

∣∣∣ρh
∣∣∣ ≤ 0.414 in the

hyperbolic reflection coefficients plane. The 1 < |ρ| < ∞ constant circles (which are exterior to
the 2D Smith chart or in the South hemisphere on the 3D Smith chart) and which are important in
active circuit design are contained in limited region of the hyperbolic reflection coefficients plane
with 0.414 <

∣∣∣ρh
∣∣∣ < 1, as shown in Figure 9, and their circular forms is unaltered. The image of the
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infinite magnitude constant reflection coefficient circle |ρ| = ∞ unimaginable to represent even on a
generalized 2D Smith chart becomes the contour of the new chart

∣∣∣ρh
∣∣∣ = 1.
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Figure 9. Hyperbolic Smith chart. Constant 0 < |ρ| < ∞ contours are represented by circles on
the Hyperbolic Smith chart and entirely mapped into the hyperbolic reflection coefficients plane

0 <
∣∣∣ρh
∣∣∣ < 1; |ρ| = 0 ⇔

∣∣∣ρh
∣∣∣ = 0 ; |ρ| = 1 ⇔

∣∣∣ρh
∣∣∣ = 0.414 ; |ρ| = ∞⇔ |ρ| = 1 (in red are the |ρ| > 1

circles while in black the |ρ| < 1 circles). Thus, infinity of the magnitude of the reflection coefficient can
be represented on the contour of the hyperbolic Smith chart (as in hyperbolic geometry) [15]

If we consider lines of constant resistance equal to k in the z-plane, r = k, we obtain in the ρh-plane
the part inside of the unit circle of the quartic curve:

k
(

xh
4 + 4xh

3 + 2xh
2(1 + yh

2))− xh
4 + 6xh

2 − 2xh
2yh

2 + 4kxh
(
yh

2 − 1
)

= 1 + yh
4 − 6yh

2 + k
(
1 + 2yh

2 + yh
4) (21)

and in the same way if we consider lines of constant reactance x = k in the z-plane we get in the ρh-plane
the part inside of the unit circle of the quartic curve:

k
(

xh
4 + 4xh

3 + 2xh
2(1 + yh

2))+ 4xh
2yh

2 + 4kxh
(
yh

2 − 1
)
= 4yh − 4yh

2 − k
(
1 + 2yh

2 + yh
4) (22)

as shown in Figure 10. These quartic curves are orthogonal along the curve in ρh-plane, corresponding
to the image of the hyperbola r2 − x2 = 1 in the z-plane.
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In the hyperbolic Smith chart, by using (19) we see that the reflection coefficient is:

|ρ| = 2|d|
1− |d|2

, ϕρ = arctan
(

yh
xh

)
(23)

We observe that the phase of the reflection coefficient is the same in the ρ-plane and the ρh-plane
and the magnitudes are clearly related.

By using (20), we obtain that the normalize impedance is:

|z| =
√
(1−6|d|2+|d|4)

2
+(4yh(1−|d|2))

2

(1+|d|2)((1+|d|2)−4xh)

cot(ϕz) = Q = r
x = 1−6|d|2+|d|4

4yh(1−|d|2)

(24)

5. Application Example and Discussion

In oscillator theory, the active circuit must exhibit an infinite value of the reflection coefficient at
the desired frequency. Surely, the use of a 2D Smith chart based on Euclidean geometry is unattainable
to visualize the phenomenon (as seen in Figure 11).
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Figure 11. Input impedance (in black) of a microwave oscillator based on an Infineon bipolar transistor
send towards infinity in the Euclidean geometry of the 2D Smith chart.

In the hyperbolic reflection plane, governed by Non-Euclidean geometry [16] this phenomenon is
easy to be seen in Figure 12a, while in Figure 12b on the 3D Smith chart.
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Figure 12. (a) Input impedance (in black) of a microwave oscillator based on an Infineon bipolar

transistor is approaching infinity (unit circle) |ρ| = ∞ ⇔
∣∣∣ρh
∣∣∣ = 1 on the hyperbolic Smith chart. Thus,

its behaviour (capacitive/ inductive approach of infinity) can be always easily seen on this later
hyperbolic Smith chart; (b) 3D Smith chart representation of the input impedance (through a few
discrete frequency points).

The hyperbolic Smith chart (whose main properties are summarized in Table 2) maps the infinite
mismatch into the contour of the unit circle, thus if one would use a new vocabulary when passing
from one geometry to another [18] one can translate infinite reflection coefficient (Smith chart) into the
proper representation (Table 3).

Table 2. Comparative capabilities of the Hyperbolic Smith chart.

Comparative Capabilities Hyperbolic Smith Chart

Positive resistance Inside the 0.414 radius circle
Negative resistance Between the 0.414 radius circle and unit circle

Perfect match Origin
|ρ| = ∞ Unit circle

Inductive Above xh axes
Capacitive Bellow xh axes

r, x, g, b constant Quartic curves and 0.414 radius circle circumference
Purely resistive Oxh axes

Table 3. Vocabulary.

Chart Geometry |ρ| = ∞

Smith Chart 2D Euclidean Not usable
Extended 2 Smith chart 2D Euclidean unending

3D Smith chart Inversive, spherical South pole
Hyperbolic Smith chart hyperbolic Contour of the unit circle

6. Conclusions

We have presented the geometric properties of the Smith chart, 3D Smith chart and Hyperbolic
Smith chart by means of inversive geometry and hyperbolic geometry.
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The infinite magnitude of the reflection coefficient is mapped by these charts (drawn when applied
to the grid of the normalized impedance plane) into different locations: infinity on the 2D Smith chart,
South pole on the 3D Smith chart and contour of the unit disc for the Hyperbolic Smith chart.

Further we presented for the first time the equations of the Hyperbolic Smith chart, diagram
which was previously just intuitively drawn.

The infinity treatment exceeds the classical electrical engineering books and is based on applied
pure mathematics (and not engineering manipulations of equations).

In the future, the topology of the 3D Smith chart in particular can be expanded to deal with more
complex phenomenon such as phase change materials [21,22] where their physical properties vary a
lot as frequency or temperature changes. The compact (spherical) representation of its reflection
coefficients on its surface leaves the space surrounding it free to be used for visualizing other
parameters by employing 3D Euclidean geometry or space filling concepts where the notion of
infinity may be treated differently.
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